

 COVER SHEET

Tan, Siak Chuan (Andrew) and Wong, On (2006) Framework for Event Discrete Simulation (FEDS).
In Proceedings 7th Asian Pacific Industrial Engineering and Management Systems
Conference (APIEMS06), Bangkok, Thailand.

Copyright 2006 (please consult author)

Accessed from http://eprints.qut.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10876824?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Framework for Event Discrete Simulation (FEDS)

Siak Chuan Tan and On Wong †

Queensland University of Technology, Brisbane Australia

+61 3864 9579, Email: {a2.tan, wongo}@qut.edu.au

Abstract. Wireless Sensor Networks (WSN) have recently gained much momentum in research and

development, its potential to provide valuable services in key areas like military surveillances and mobile

applications have attracted much attention from government and commercial research organisations.

Researchers however, might not have the resources to purchase large numbers of sensors to obtain concrete

research findings. Thus simulators are being created in an attempt to mimic conditions in the real world,

providing research conclusions with an acceptable level of accuracy.

Discrete event simulation is one way of building up models to observe the time based (or dynamic) behavior

of a system. Existing discrete event sensor simulators, e.g. ATEMU, JProwler, SNetSim and SensorSim, have

a tendency to be specific to hardware, not platform portable or even lack information on the flow of events.

Different simulators will be reviewed in this article, some simulators are build to accept only MICA2 sensors

models while others are either incomplete or has insufficient visual impact.

This article will introduce FEDS (Framework for Event Discrete Simulation) which is designed to simulate

objects functioning in the real physical world, events occurred are treated like messages which are being sent

to environment mediums (air or water) for processing and decision making. FEDS is a generic framework

meant for discrete event simulations, it can be customised by developers to simulate many scenarios from

shipping lines planning to sensor networks and the objects in FEDS themselves can be further customized.

FEDS is also designed to allow easy tracing of events, users can easily trace the flow of events and better

understand the details of operation. Being a java implementation, FEDs is designed to be scalable and

portable.

This article will also look at how we can adapt a sensor network test bed to the proposed framework,

messages are being sent from a sensor to another sensor in a sensor bed. A trace is also being created to

observe the flow of events and how sensors react when messages are received/sent, this will allow better

understanding of what has happened and can be used to prove a routes performance over others.

Keywords: Sensors, Discrete event simulation, Frameworks, Networks.

1. INTRODUCTION

Wireless sensor networks (WSNs) have gained much

attention and there have been a steady growth in researches

and development. The potential of sensor networks could

range from simple environment aware systems to military

implementation, which attracted researchers to this area of

study. Sun have only recently released a new version of

sensors which runs on Squawk Virtual machine, Squawk is

a pure java environment which is recently developed for

small mobile devices. This is only an example of the

growing trend of researchers committing to improving or

setting standards for wireless sensors.

The feasibility of implementing a pervasive network

of small and low powered devices have became much

better with the recent advancement in technology, sensors

with onboard processors are now able to last longer with

better power saving techniques or more efficient processor

capabilities. The potential implementation of these sensors

are almost non exhaustive only to be restricted by one’s

imagination. There are already plans for location aware

systems, inventory systems, military surveillance,

biological warfare and even traffic network management.

Large software or techniques are usually tested in

simulators to obtain predicted results. Discrete event

simulation is one way of building up models to observe the

time based (or dynamic) behavior of a system. There are

formal methods for building simulation models and

ensuring that they are credible. The results can then be used

to provide insight into a system and a basis to make

decisions on [BAL96].

This article will discover the motivations behind the

introduction of a simulation framework and subsequently,

its implementation. The requirements of sensor networks

will also be discussed to help identify the needs of a sensor

simulator to support the motivations. Current simulators

will then be reviewed for advantages and potential

problems. The FEDS architecture is then introduced and

explained, FEDS is a framework for simulation which can

be adapted to a wireless sensor scenario. This paper will

then be concluded and future work identified.

2. MOTIVATIONS

Researchers often have limited resources when it

comes to sensor procurement as each sensor costs a

significant amount of money. Building an effective sensor

networks usually involves tens of sensors in order to be

tested reliably, assistance on resources or support from

industries are only viable with some solid evident result

from prototyping. Thus researchers always look into

simulators to simulate ideas or logics, results from

simulation prototypes are usually the key to the next step of

research or development.

Time is also another limited resource, while simulators

have the ability to compress timeline. It is possible for

simulators to speed up results and reduce potential errors in

measurements by sensor components.

Control is much better with simulation as simulators

have the ability to pause, inspect and debug. It is also

possible for implementer to review, improve and rerun

again immediately. Sensor variables can also be controlled

easily with settings, these allows greater control and saves

huge amount of time.

There are several simulations to date which are

commonly used for testing in sensor networks, most of

them lacks in the ability to control and customize

effectively. This article attempts to introduce a common

framework where researchers are able to have full control

over what they implement, they are allowed to write their

own energy source classes, routing strategies or others if

they follow a certain set of rules.

Due to the diversity of researchers in the world, it is

difficult to predict the preference of language which is used

for simulation. Java for example is a very good platform for

a simulation to be written in, it has multi platform

compatible and it could be written even with a notepad.

Unfortunately, there are not a lot of simulators to make use

of its advantage. This means that additional steps or

knowledge need to be learned before being able to just set

up a simulation system, ignoring the fact that some

programming will need to be done also for customisation.

Many simulators are being introduced, each to mimic

specific sensor hardware or to adapt to specific scenario.

Frameworks for these simulators are always different to

each other, and thus it is not possible to perform

collaboration between different researches. It is desirable

for there to be a common framework for these simulations,

this article aims to introduce a simulator which has a

framework generic enough to be adapted by different

researchers and yet specific enough for future collaboration

between different implementation.

3. CURRENT SIMULATIONS

3.1 ATEMU

ATEMU [PBM04] (ATmel EMUlator) is a very

accurate MICA2 wireless sensor mote emulator, which

tried to achieve extensibility by implementing the model of

the "air" simulating the medium in the physical world.

ATEMU is able to support binary TinyOS code from

MICA2 mote, which makes ATEMU a very good simulator

to use if you are developing with MICA2 hardware

platform. Unfortunately, this also means that ATEMU is

restricted to work efficiently in MICA2 hardware platform

only.

3.2 GloMoSim

GloMoSim [ZBG98] is a wireless sensor network build by

UCLA in 1998. GlomoSim is written in parsec, a variant of

C to support parallel programming extension. However,

GlomoSim only allow fixed protocols, it is limited to P

networks due to the low level design assumptions.

Glomosim do not provide support for the environmental

factor which makes the result of simulations questionable.

3.3 J-Sim

J-Sim [AWC05] is quite similar to what this paper

wishes to achieve, J-Sim is implemented in java making it

platform independent. J-Sim uses Jacl which is similar to

NS2 which uses C++. J-Sim simulates event-to-sink

protocols, this means that target nodes could only send data

packets over the sensor channel where other sensor nodes

can only receive over the sensor channel.

3.3 Prowler

Prowler [SIS06] is a probabilistic sensor simulator

written in Matlab, it has a version build in java (JProwler).

JProwler is build for MICA Mote hardware platform, which

is running on Tiny OS. It also has a very efficient

throughput, but it provides only one MAC protocol of

tinyOS. JProwler has a very good visual display for its

results too, showing the path of propagation.

Figure 1: Prowler simulation system

3.4 NS-2

NS2 [INS06] is a very mature discrete event network

simulation software written in 1989, NS2 is the defacto

standard for network simulations, but it is limited to IP

networks due to low level assumptions. NS2 supports

802.11 and single-hop TDMA wireless protocols. Most

sensor modes uses a standard IEEE 802.15.4 protocol.

4. REQUIREMENTS OF SENSOR NETWORKS

Before this paper introduces FEDs, it will show
you the different requirements of a typical sensor
network. It is important that the requirements are
properly identified as it will help to understand
potential problems while planning for a simulator’s
framework. Coincidentally, the requirements can
easily be mapped onto the network OSI layers.

4.1 Hardware Resources (Layer 1 – Physical)

Hardware Resources is a basic requirement for a

sensor network, it is also related to OSI layer 1’s physical

layer because hardware’s physical and electrical

characteristics are involved. Implementing a sensor

networks will require a large number of sensors to create a

test bed, the numbers however usually adds up to a

significant amount of cost. Thus there is always reluctance

to obtain sensors immediately especially when the theory or

prototype is not tested or proven at all.

Due to the potential cost, this article attempts to

remove this layer by replacing it with a simulator, this

simulator should have provision for handling the objects

(sensors) in which details will be discussed in the later

chapter.

4.2 Reliability (Layer 2 – Data link)

Sensor networks have their own purpose and

applicability, these applications are dependent on the ability

to communicate and send messages from the source to the

destination sink [PS03]. The constructs of a reliable

message delivery system is just what data link layer in the

OSI aims to achieve, this layer is responsible for an error

free transmission by means of synchronization, error and

flow control. Some of the protocols currently used include

CSMA/CD, 802.5 Token bus and FDDI [RAD00].

As reliability is caused by the environment medium

like air or water, the simulation framework will need to

have a medium for the objects to communication with each

other. This medium will be governing the laws of the

physical world, i.e. attenuation, deflection or others.

4.3 Communication Framework (Layer 3 –

Network layer)

Although messages can be assured a reliable passage

from source to destination, there must be a destination to

start with. Routing and energy conservation is the most

important factor for this layer [BJ05]. There are many

protocols implemented including RIP, Rumor routing,

Directed diffusion and more.

The simulator should allow objects to decide where is

it sending communicating packets to, and allow the object

to handle the method of sending too. This will allow the

objects to be responsible for their own communication

method.

4.4 Security (Layer 5 – Session)

Security is very important for sensors as wireless

transmission are broadcasted to the environment, any

intruder can easily snoop around and obtain information by

sniffing alone. Thus messages must be well encrypted and

destination reached, there should be mechanism to prevent

or deter hacks of different kinds.

Security is usually handled by logic but supported by a

protocol in any networks, and thus simulators are expected

to allow different protocols to be tested for different

security strategies.

4.5 Goal and Objective (Layer 7 –App)

Objects will all require having a purpose in simulation,

or else there won’t be a need to include them in. This

simulation framework should allow objects to have an

objective, which can range from a sensor (object) listening

to seismic activity (objective) to a robot (object) trying to

reach the finishing line (objective). There should even be

provision for cloning or transportation of application agents

via wireless transmission.

5. FRAMEWORK FOR EVENT DISCRETION
SIMULATION (FEDS)

FEDS describes a set of framework which is similar to

the physical environment itself, where there are objects

which interacts with each other and the environment which

acts as the medium. There should also be a trace capability

to be handled by the simulator, where all ‘traffic’ in and out

of an object will be captured by the trace.

In view of the different simulators created, FEDs is

designed to be very scalable. FEDS’s can be applied from

sensor network scenario to shipping network scenario or

from High level application layer in application classes to

low level data layer in environment classes. The goal is for

user to be able to increase the objects’ ability (i.e. adding

sensor’s component) or increase the simulator’s scope (i.e.

creating ‘water’ environment).

Figure 2: Backbone framework of FEDs.

Sensors are the objects in this context, and these

objects follow a small framework by itself. This is

important for FEDS as it will allow simulation of different

scenarios too in the future instead of just wireless sensors.

Objects in the simulator have the following properties.

5.1 Priority

The object’s priority determines the speed or

efficiency of the object in the simulator, which equate to

the CPU of the sensors itself. One is free to set his/her

implementation of the speed as long as the priority

interface is implemented.

5.2 Power source

The object’s power source determines the amount of

energy the object has to perform operations, which is

similar to a typical AA battery attached to the sensor. Just

like the Priority, you can easily write your own power

source as long as you implement the power source interface.

Power is not restricted to just AA batteries, but it has a

more generic representation from nuclear power plants to

watch batteries.

5.3 Application

Every object will have an objective or goal, and there

must be an application running to fulfill it. It could be a

recognition program trained to recognise a particular wave

pattern, and to send this information to a listener.

Application can be easily written and implemented in the

sensors as long as the application class is implemented,

application migration of sensors are also possible in the

future.

5.4 Components

Extra components can also be added to the sensors,

sensor boards could be added to the sensors to provide

additional capability. But take note that extra components

equates to extra drain to the power source. You can easily

create your own sensor component as long as you

implement the component class.

Figure 3: Framework of an Object in FEDs.

So a typical sensor will look like fig. 3 in comparison

from the framework in figure 2.

Figure 4: An implementation of a Sensor object.

5.5 Communication with environment

Air is the medium in this context, the environment air

is expected to handle all transmission/event and determine

which objects are eligible to receive the transmission/event.

For example, the air will decide the recipient sensors from

the sender base on the signal strength, range and

surrounding objects (see fig. 4). It is important to note that

message received is not restricted to just wireless

transmission by sensors, there can be GPS transmission by

satellites or other events which uses air as a medium to

transport itself.

Figure 5: Flow of FEDs in a transmission of sensor via

environment air.

5.6 Traceability

FEDS also take trace into consideration, and you are

allowed to create your own trace as long as you follow the

Trace interface. It is important to follow the trace interface

for the trace viewer to display the result accurately. Note

that this is an event discrete simulator, and thus trace

display is solely on message transmission timeline.

6. IMPLEMENTATION

An implementation of the framework is created, this

simulator simulates X sensors in a simulator space. Each

sensor is being attached a wireless transmitter and a GPS

receiver, a simple GPS satellite is also being added to the

simulator. The following illustrations will demonstrate how

the implementation of FED works.

Sensors are firstly created with a wizard framework,

sensors to be created could have a choice of differnt

batteries and components. Due to the nature of the wireless

sensors, this implementation assumes that all wireless

sensors have a wireless transceiver attached and a routing

strategy chosen (broadcast route).

Figure 6: Creating of sensors in implementation.

A trace is then created, from a source to destination.

Note that different routing strategies will require different

settings. And these could be customized by the user

themselves.

Figure 7: Creating of trace in implementation.

With the simulator running, you can opt to view the

trace are several modes: ‘Accepted Packets Only’/ ‘All

packets’ / ‘print text’. As all wireless transmissions are of

broadcasting nature, there will be rejects either due to back

propagation or invalid route. And thus we need to specify

which transmissions are accepted (green link) and which

ones are rejected (red link).

Figure 8: Simulator running trace.

Traces can also be inspected in details, every packet

sent can be viewed in steps. There are two modes in

viewing too, user can view accepted packets only or all

packets bring broadcasted. This is great for understanding

the routes and how they behave. The summary of packets

consisting of number of send, number of accepts, number

of reject and other information are displayed. These

information are very useful to chart out results and

comparisons in terms of effectiveness.

Figure 9: Viewing activity step-by-step and summary of

trace.

7. FUTURE WORK AND CONCLUSION

FEDS should look into security very seriously as the

role of security is currently being heavily rested on the

components (wireless transceiver) of the objects (sensors).

It is possible for FEDS to incorporate security features into

the current framework, this will reduce the load of

components as security will then be handled by higher

layers. It will also make writing of customized components

easier.

A proper implementation of FEDS should be created,

current implementation is a skeletal version only. It will

only be better if this project can be placed in an open

source area where other developer can contribute and write

their customized components.

Some research and prototyping should be done on

FEDS to prove its real scalability by implementing other

scenarios which are also event discrete. Although current

implementation and discussion are all on wireless sensors

but FEDS is not limited to just sensors, its potential can

expand to other boundaries. Looking at a shipping

simulator, figure 9 and 4 with figure 10 and 5 respectively

will show that both scenario are very different but they both

fulfills the simulator framework’s requirement (figure 2 and

3). The ships in this case have crews which affect its

efficiency or speed, while the coal generator will ensure

energy source’s power. The objective could be an

application to move the ship from one shipping port to

another, components like propeller and radio transceiver

and radio transceiver still transmits to the environment air,

but the propeller might send messages to environment

water instead. This will allow the ‘water’ to calculate the

distance moved by ship, and even determine if collision

occurred.

Figure 10: Alternative implementation of FEDs.

Figure 11: Flow of FEDs in an activity by ship via

environment water.

To conclude, FEDS is a scalable simulator where

developers can freely improve on as it follows a generic

framework suitable for all event discrete scenarios. FEDS

is currently being implemented as a wireless sensor

network with the intention of studying how messages travel

and routing efficiencies.

REFERENCES

[AWC05] A. Sobeih, W. Chen, C. Hou, L. Kung, N. Li, H.

Lim, H. Tyan, H. Zhang, “J-Sim: A Simulation

Environment for Wireless Sensor Networks”, In

Proceedings of the 38th Annual Simulation Symposium

(ANSS-38 2005), 4-6 April 2005, San Diego, CA, USA.

[BAL96] P.Ball, “Introduction to Discrete Event

Simulation”, 2nd DYCOMANS workshop on

‘Management and Control : Tools in Action’, pp. 367-376,

15th - 17th May 1996, Algarve, Portugal.

[BJ05] N. Bulusu and S. Jha, “Wireless Sensor

Networks”, Artech House Publishers, July 31, 2005

[INS06] Information Sciences Institude. The network

simulator - ns-2. Retrieved from the world

wide web,http://www.isi.edu/nsnam/ns/, 29 Mary 2006.

[PBM04] J. Polley, D. Blazakis, J. McGee, D. Rusk , J.S.

Baras, M. Karir, “ATEMU : A Frine-grained Sensor

Simulator”, In proceedings of the First IEEE

Communications Scoiety on Sensor and Ad Hoc

Communications and Networks (SECON), 4-7 October

2004, Santa Clara, CA, USA.

[PS03] S. Park and R. Sivakumar, “Sink-to-sensors

reliability in sensor networks”, SIGMOBILE Mob. Comput.

Commun. Rev., ACM Press, 2003, 7, 27-28

[RAD00] RADCom Academy, “World of Protocols Poster”,

Technical papers, RADcom Academy, Tel-Aviv , Israel,

2000.

[SIS06] Institude for Software Intergrated System.

Jprowler. Retrieved from the world wide web,

http://www.isis.vanderbilt.edu/Projects/nest/jprowler/, 28

May 2006.

[ZBG98] X. Zeng, R. Bargrodia, M. Gerla, “GloMoSim: a

Library for parallel simulation of large scale wireless

networks”, In proceedings of the 12th Workshop on

Parallel and distributed simulations (PADS), May 26-29,

1998, Banff, Alberta, Canada.

AUTHOR BIOGRAPHIES

Siak Chuan Tan (Andrew) is a PhD student under the

scholarship from SAP in School of Software Engineering,

Queensland University of Technology, Australia. He is

researching on routing techniques in sensor networks and

event discrete simulations. Andrew has also received a

scholarship for his honours degree from QUT and his

academic achievements includes diploma with merit,

degree with distinction, scholarship for honours degree,

selection into the accelerated honours scheme, student

excellence award for honours degree and scholarship for

PhD. Andrew has also perform duties of a lecturer and tutor

in QUT, his teaching and research interests includes web

applications, wireless technologies, sensor networks, neural

networking, mobile devices and location aware systems.

His email address is a2.tan@qut.edu.au or

http://sky.fit.qut.edu.au/~tan9/

On WongOn WongOn WongOn Wong is a lecturer in, School of Software Enginee

ring, Queensland University of Technology, Australia.

He had been working in the IT industry for more than

 10 years before joining Queensland University of Tec

hnology as a postdoctoral fellow in 1999 and as a lect

urer in 2000. While in the industry, he worked on a

number of projects involving system architecture and d

esign of real time transaction systems, load balancing

system, fault tolerant systems, and network administrati

on system. His recent work experience was with a We

b-based e-commence software Development Company,

where he designed and developed Internet based order

transaction processing system and payment technology

system. Since joining QUT, Dr. Wong had been rese

arching in the area of component software technologies

, Web Services, agent system, mobile technologies and

 location-aware system. His email address is <o.wong

@qut.edu.au>

