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A Mathematical Model of Integrin—-Mediated
Haptotactic Cell Migration

D.G. Mallet ** G.J. Pettet ®

aSchool of Mathematical Sciences, Queensland University of Technology, Brisbane,
Australia. !

Abstract

Haptotactic cell migration, a directed response to gradients of cell-extracellular
matrix adhesion, is an important process in a number of biological phenomena
such as wound healing and tumour cell invasion. Previously, mathematical models
of haptotaxis have been developed on the premise that cells migrate in response to
gradients in the density of the extracellular matrix. In this paper we develop a novel
mathematical model of haptotaxis which includes the adhesion receptors known as
integrins and a description of their functional activation, local recruitment and pro-
trusion as part of lamellipodia. Through the inclusion of integrins, the modelled cell
matter is able to respond to a true gradient of cell-matrix adhesion, represented by
functionally active integrins. We also show that previous matrix—-mediated models
are in fact a subset of the novel integrin—mediated models, characterised by specific
choices of diffusion and haptotaxis coefficients in their model equations. Numer-
ical solutions suggest the existence of travelling waves of cell migration that are
confirmed via a phase plane analysis of a simplified model.

Key words: haptotaxis, cell migration, integrin, travelling waves, wall of
singularities

1 Introduction

Cell migration is at the root of processes such as wound healing angiogen-
esis and tumour cell invasion. Migration can be driven by numerous factors
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including the directed response to gradients in pressure, chemical substances
and components of the extracellular matrix (ECM).

Of particular interest to this work is the process of tumour or normal cell
invasion into extracellular matrix, as a comprehensive understanding of this
phenomenon can be important in the development of novel tissue engineering
and tumour treatment strategies. Haptotactic migration, being the directed
motion of cells due to gradients in bound or insoluble chemicals (in the case of
cell invasion, gradients in bound cellFECM adhesion molecules), is therefore
of great importance in cell invasion.

Previous modelling of haptotactic migration of cells has favoured two main
types of mathematical model. Cell population models with haptotactic migra-
tion have developed from the more commonly modelled cell migration phe-
nomenon of chemotaxis (the directed migration of cells due to gradients in
soluble chemical attractants), while models of individual cell migration have
arisen from models of cell adhesion to ligands in the underlying substrate.
These two types of model are discussed below.

The models of haptotactic migration of cell populations can be broadly grouped
into two classes: mass conservation and mechano—chemical models. Maini
(1989) developed a mechano—chemical model to investigate the generation
of one dimensional spatial and spatio—temporal patterns. This model included
mass balance equations for the conservation of cells and extracellular ma-
trix, along with a mechanical force balance equation. While the application
of Maini’s work is of limited interest here, the model itself is one of the earli-
est references to a mathematical model of haptotaxis in a population of cells.
Furthermore, the model employs a cell velocity which is proportional to the
gradient of the ECM density. We note that Murray (1993) and Tracqui (1995)
developed similar models of mechano—chemical nature, with Murray including
a long range sensor of ECM gradients in the cell flux. All of these models ne-
glect the underlying mechanisms of cell-ECM adhesion in their descriptions
of haptotactic migration, favouring a simple relationship to the ECM density
gradient for describing haptotaxis.

Perumpanani and Byrne (1999), Perumpanani et al. (1996, 1999) Anderson
and Chaplain (1998); Anderson et al. (2000) and Marchant (1999) also devel-
oped models for cell population migration which relied solely on mass balance
equations. These models again utilised a cell velocity proportional to the gra-
dient in ECM density, and in particular the collagen or fibronectin components
of the ECM. Anderson and Chaplain (1998) and Anderson et al. (2000) also
developed discrete cell migration models that were derived from the mass
balance models.

With regard to individual cell models, Lauffenburger (1989) and DiMilla et al.



(1991) model the distribution of adhesion receptors, cell-substratum adhesion
and intracellular force generation of moving cells. These models use ordinary
differential equations which introduce kinetic terms describing receptor activ-
ity in cell-adhesion based migration processes.

To date, there is a distinct lack of theoretical literature in the area of integrin—
mediated haptotactic cell population migration which accurately models cell
adhesion to the ECM — a fundamental process in haptotaxis.

Adhesion to the ECM is important for cell migration. Factors involved in cell-
ECM adhesion include the particular cell line, ECM composition, the ECM
degrading process of proteolysis, and the functionality of the cell’s integrins
(Aplin et al., 1998). Cell-ECM adhesion also plays an important role in cell-
ECM signalling which can modify cell dynamics, adhesion and death (Aplin
et al., 1998).

Integrins, a family of transmembrane glycoproteins, act as receptors for spe-
cific ligands that may be constituents of the ECM (Aplin et al., 1998), effecting
cell adhesion to the matrix. In defining haptotaxis, Carter (1965) stated that
it was the movement of cells on an adhesion gradient, in the direction of
increasing substrate adhesion. With the introduction of integrins, we model
the haptotactic response of cells to gradients in insoluble ECM macromole-
cules through a response to gradients in functionally active integrins. These
functionally active integrins represent locations of cell-ECM adhesion where
the integrins are actively bound to ligands in the ECM. On the other hand,
functionally inactive integrins are those which are simply present in the cell
membrane and have no external attachments.

In this paper we develop a mathematical model which, through the inclusion
of integrins, describes the underlying processes of cell-extracellular matrix
adhesion which are essential in haptotactic cell migration and indeed cell sur-
vival. The model offers a theoretical framework with which to test hypotheses,
explore experimental strategies and seek descriptions of behaviours that are
outcomes of nonlinear interactions which may be difficult to manipulate ex-
perimentally. While the model is different from previous “ECM-mediated”
haptotaxis models, it is possible to show a direct relationship between the two
model types. We note that through the inclusion of integrins, it will be possi-
ble to investigate in the future, the phenomenon of anoikis, or apoptotic cell
death due to incorrect or insufficient ECM attachment (Frisch and Ruoslahti,
1997), and the inhibition of haptotaxis through integrin—blocking.

In the following sections, we develop the new mathematical model of hap-
totaxis before conducting a nondimensionalisation and presenting numerical
simulations of the model behaviour. Then we develop a simplification of the
integrin—mediated model which identifies a limiting case relationship between



integrin—mediated and ECM-mediated haptotaxis models. A comparison of
the full and simplified integrin-mediated models and an ECM-mediated model
is presented with regard to the exhibited cell migration speeds. Finally, a fur-
ther model simplification is presented that allows for a phase plane analysis
which confirms the existence of travelling waves of cell migration.

2 Mathematical Model

The model proposed employs a mass conservation approach to determining
the temporal and spatial behaviour of the five species deemed relevant in this
examination of the process of cell migration. We begin by denoting N(x, ),
E(x,t), P(x,t), A(x,t) and I(x,t) to be the density of cellular material, ex-
tracellular matrix density, protease concentration, and the densities of func-
tionally active and functionally inactive integrins respectively. It should be
noted that by functionally inactive integrins, we refer to those integrins which
are simply present in the cell membrane and do not have any connection to
ECM resident ligands. On the other hand, by functionally active integrins,
we refer to those integrins which have formed a complex with an appropriate
ECM resident ligand.

In the model presented here we describe both the active and inactive integrins
as continua in space and time, in contrast to the concept of “bound receptors
per cell”, as employed by Sherratt et al. (1993) and MacArthur (2002) in
their models of chemotactic and haptotactic cell migration. We now develop
equations describing the evolution of both classes of integrins.

2.1 Functionally Active and Inactive Integrins

As defined above, functionally active integrins are those which are actively
bound to the ligands of the extracellular matrix, and it is for this reason that
we consider the active integrins to be immobile. In the locomotion of cells,
a number of processes are observed which are common to most cell types
(Maheshwari and Lauffenburger, 1998). These include membrane extension
(lamellipod extension), formation of attachments, contractile force generation,
cell detachment and front/rear asymmetry. Here, we model the formation
of attachments through the interaction between inactive integrins and the
extracellular matrix. Detachment of cells from the ECM is modelled through
a term for natural decay of active integrins. Hence the kinetic terms for active
integrin conservation are similar to those presented in Lauffenburger (1989)
and DiMilla et al. (1991), and the conservation equation for active integrins



is given by
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where k1 and ko are the rate constants for attachment and detachment, re-
spectively.

The dynamic interaction between active and inactive integrins is demonstrated
through the attachment and detachment terms in the following equation, both
of which are the same as those in equation (1), with reversed sign. Furthermore,
new inactive integrins are created while the total density per unit volume of
integrins is less than some maximum level. One of the novel aspects of this
model is its description of lamellipod protrusion. To model the flux of unbound
or inactive integrins caused by the extension of lamellipodia, we include a
nonlinear diffusion term for the inactive integrin density. We take the nonlinear
diffusion coefficient to be D;I for simplicity and note that other forms may be
used. As the amount of cell matter in the protrusion is negligible compared
with the great number of integrins contained therein, we assume that the
coefficient of inactive integrin diffusion is much larger than that of cell matter.
Furthermore, there is a contribution to the flux of inactive integrins due to
the flux of the cells to which they are connected. This gives the following
conservation equation for functionally inactive integrins
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protrusion and convection binding unbinding creation

where Dy is assumed to be constant, vy is the as yet unspecified cell matter
velocity at which the inactive integrins are convected as part of the cell mem-
brane, with convection coefficient D,. The parameter ks is the constant rate of
increase in the inactive integrins density per unit volume, and ko represents
the integrin—carrying capacity of cells.

Combining the detachment term, kA, into the integrin production term in

the above equation gives
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Now, by assigning

o ks 1 1
ks = ks koo, ky=—=——— —, ky=—
3 3 20, 4 kgk’zo k20 ) 5 k’QO ;
equation (3) may be written as
oI
55 =V (DIIVI = DoIvy) = kiIE + ks (N + kA = o). (4)

where k4 is related to the increase in the new inactive integrin production rate
due to recruitment and endocytosis, or active integrin recycling, as well as the
decrease in the production rate due to integrin crowding, and ks reflects the
relative packing density of the unbound integrins per unit of cellular material.

In the above equation it should be noted that the constant k4, may take on
positive or negative values. Note also that if k; > 0, the presence of active
integrins increases the possible inactive integrin density — this models endo-
cytosis and also recruitment of new inactive integrins to points of cell-ECM
adhesion.

Returning to the inactive integrin convection coefficient, D,., we now explain
the implications of its variation. Recall that in this model we consider I and
N to be local densities (rather than volume fractions) of inactive integrins and
cellular material. As such, the local density of inactive integrins may convect
independently from the local density of cell matter, thus leading to values
of D. < 1. On the other hand, there is the possibility of perfectly efficient
integrin convection, where we see convection of all inactive integrins which
are connected to migrating cell matter. This would imply D, = 1. Finally we
note that D, > 1 would imply that more than the available density of inactive
integrins convects with migrating cells, and therefore this case is ignored.

2.2 Cell Matter, Extracellular Matriz and Protease

Coupled with the integrin equations are the three conservation equations for
the densities of cellular material and extracellular matrix, and the protease
concentration. We consider the density of cell matter at some point in space
x to be dependent on cell migration, proliferation and death. As discussed
earlier, we focus on haptotactic cell migration and small scale random cell
motility, leading to a cell matter flux given by

Iy = —Dn(-)NVN + n(-)NV A, (5)



where Dy (+) is the diffusion coefficient, n(-) is the haptotactic coefficient, and
(+) indicates the possibility that the coefficients may be functions of any of the
independent and dependent variables. For the purposes of equation (4), this
implies a cell velocity of

vy = —Dn(-)VN + 5(-)VA. (6)

Here we note one of the most important differences between this novel model
and previous haptotaxis models. Previous models of haptotactic migration (for
example Maini (1989), Tracqui (1995), Perumpanani et al. (1996), Anderson
and Chaplain (1998) and Anderson et al. (2000)) have used a cell flux of the
form

Iy = k(- )NVE, (7)

with k() used to represent the haptotactic coefficient function. This implies
that the haptotactic response of cells is directed by the concentration gra-
dient of the extracellular matrix. In most cases k(-) is taken to be constant
and as such, these models essentially neglect any adhesion receptor (integrin)
involvement.

The role of receptors in cell migration has been taken into account implic-
itly in some models of chemotaxis through the use of the receptor—kinetic law
(Lauffenburger and Linderman, 1993) in the coefficient function of the active
migration term (see for example, Sherratt (1994); Olsen et al. (1995, 1996)).
Others have described mathematically, the role of receptors in chemotactic
migration of amoebae in response to cAMP gradients (Hoefer et al., 1995a,b;
Othmer et al., 2000). Dallon and Othmer also considered cell-to-cell signalling
in relation to cAMP signals in Dictyostelium discoideum (Dallon and Othmer,
1997, 1998), although these models use quite different approaches from that
used here. Both of these models consider the signalling process through in-
tracellular and extracellular dynamics with quite interesting observations pro-
duced in Dallon and Othmer (1997) where a discrete-cell continuous-chemical
approach is used.

Rather than including the effects of receptors or integrins into the coefficient of
haptotactic migration as in the above models, here the integrin effects are in-
corporated through the response to the gradient in active integrins. In this way,
rather than altering the magnitude of the haptotactic response, the integrins
produce an explicit effect on the direction of motion. Given that haptotaxis is
the phenomenon by which cells on an adhesion gradient are directed towards
higher adhesion site concentrations, we consider the gradient of functionally
active integrins to model the gradient of “recognised” adhesion sites. As such,
the haptotactic response of cells is assumed to depend on the concentration



gradient of functionally active integrins. Hence, through the incorporation of
functionally active integrins, the model presented in this paper allows for a
more mechanically sound description of haptotaxis than ECM-mediated mod-
els.

Here, as in Perumpanani et al. (1999), proliferation of cells is assumed to occur
in a logistic manner, bounded above by some maximum cell matter level k7.
Hence the conservation equation for cell matter is given by

aajj = V- (Dy(-)NVN — n(-)NVA) + kgN(k; — N), (8)

diffusion haptotaxis proliferation

where kg and k7 are constants representing the rate of proliferation and max-
imum cell density, respectively.

Next, consider the density of the extracellular matrix. As the ECM is com-
posed of a cross—linked network, or matrix, of proteins, its motility is negli-
gible compared with the other species considered in this model. Hence, the
ECM density varies due to degradation and production only. To allow cells to
migrate, the matrix may be degraded to some extent by cell secreted prote-
olytic enzymes (proteases), in a tightly controlled process known as proteolysis
(Stetler—Stevenson et al., 1993). In itself, proteolysis is a complex process in-
volving a sequence of events including (but not limited to) the secretion of the
enzymes in inactive forms, and their subsequent activation. Here, as in Ander-
son et al. (2000) and Perumpanani et al. (1999), we adopt a simplified view
of the process whereby proteolytic degradation is modelled by the product of
the densities of protease and ECM representing the frequency of interaction
between the same two species.

It is assumed that cells may produce ECM proportional to the level of cellu-
lar proliferation, in order to form a framework for migration and adhesion—
mediated survival. Thus, the ECM conservation equation is

ok

5 = ksN(kr = N) = kyPE, (9)

cellular secretion proteolysis

where kg and kg are constants representing the rate of production of ECM by
cells and the rate of proteolytic degradation, respectively.

Proteases are responsible for the depletion of the extracellular matrix that
leads to the invasion of tumour cells into surrounding tissue. As protease
molecules are small we assume that they diffuse naturally throughout the
spatial domain. Furthermore, we consider only natural decay of protease. In
past models, such as Anderson et al. (2000) and Perumpanani et al. (1999),
it has been assumed that invasive cells secrete proteases to decay the ECM



either independently of ECM density or when they come in contact with the
matrix. Here we adopt the strategy used by Perumpanani et al. (1999) and
assume that the invasive cells secrete proteases when they come in contact
with the ECM. Hence, the conservation equation for protease is given by

oP
5 = DpV?P + kywNE — ki P, (10)

diffusion production natural decay

where Dp is the constant coefficient of natural protease diffusion, kiy and ki;
are constants representing the rate of production of protease and the rate of
natural protease decay, respectively.

Hence, equations (1)—(10) form the model equations for integrin—mediated
haptotactic cell migration and for clarity, the complete system is rewritten as

0A
Fri kiIE — koA,

I
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ON
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We note that appropriate boundary and initial conditions are required for
completion of the model and these are discussed in the following section.

3 Numerical Simulations
3.1 Nondimensionalisation

Here we consider the model equations (11) in a one dimensional spatial do-
main where x € [0,L], with L a constant domain length, and Dy and 7
are taken to be constants. We first introduce the dimensionless variables
A* I N* E*, P* x* and t*, and dimensioned constants 121, I, N, E, ]5, )2', and
T, such that

1
A*:T, [*:7, N*:
I



By assigning

—I=" N=E=k, P=F2
ks
, 1
X=L 7=—. (13)

and upon dropping the asterisks from the dimensionless variables, we have a
dimensionless system of equations given by
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3.2 Boundary and Initial Conditions and Parameter Values

We now specify appropriate boundary and initial conditions for the dimension-
less model equations (14)—(18). In reality, the spatial and temporal domains
are effectively infinite, though for computational purposes we consider a one
dimensional region with « € [0, 1]. In addition, we impose no flux boundary
conditions on all five variables of interest. That is, at x = 0 and z = 1 we
have

A OE 0P

P M
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Furthermore, we assume that the initial conditions reflect a cluster of cell
matter migrating from left to right as ECM is proteolysed to aid in the hap-
totactic migration. Initially, no protease is present in the system and cells are
not actively adhered to the ECM. This is reflected by the absence of active
integrins and an inactive integrin level which is proportional to the cell matter
density. Hence we have A(z,0) = 0, I(z,0) = I,N(z,0), N(z,0) = e 100+,
E(z,0) = Ex(1—N(x,0)), P(x,0) = 0, where Ey represents the normal density
of the extracellular matrix, and I, is the initial number of inactive integrins
per unit of cell matter.

To demonstrate the possible behaviours described by this model, the para-
meter values were estimated using experimental results and values used in
other mathematical models whenever possible. Sherratt and Murray (1990)
have estimated that random cell motility ranges from 3 x 10~ %cm?s~! to
6.9 x 10" em?s!. Various length scales are appropriate depending on the
particular area of application of the model. Here we will consider a length
scale of approximately 3mm. This is the distance considered to facilitate suc-
cessful angiogenesis for transplanted tumours (Orme and Chaplain, 1996) -
one example of cell migration. Owen and Sherratt (1997) and others (Sherratt
and Nowak, 1992; Marusic et al., 1994) state that the cell cycle time can be
taken as around 100 hours, which we take as our representative timescale.
With these key dimensional estimates in mind, we estimate the dimensionless
cell matter diffusion coefficient to be in the range 1073 to 107

Where experimental data was lacking, parameter values were chosen to fit
known qualitative behaviour of the species in question. Given that protease
dynamics occur on a much shorter timescale than cell proliferation and migra-
tion (Mignatti and Rifkin, 1993), the coefficients of proteolysis and protease
decay were taken to be relatively large. Following similar models of chemo-
tactic and haptotactic cell migration due to Perumpanani et al. (1998, 1999),
here we consider a protease coefficient of order 1072 or less. Furthermore, in
a manner similar Anderson et al. (2000) we take the coefficient of haptotactic
migration to be similar to, or an order of magnitude greater than, that of
random cell motion. This relationship stems from experimental results due to

Terranova et al. (1985), Stokes and Lauffenburger (1991) and Bray (1992).

With regard to the rate constants for integrin production, binding and un-
binding, we take a similar approach to Sherratt et al. (1993). That is, the
kinetic terms for integrins are quite fast compared with the timescale of cell

11



migration. The “diffusion” coefficient for inactive integrins, d;, was taken to
be quite large when compared with the random cell motility coefficient, dy.
This reflects the protrusion of lamellipodia, carrying with them large numbers
of inactive integrins while only minute amounts of cell matter are disturbed.

3.3  Simulations

Examples of model solutions are now presented including consideration of
parameter value variations. All solutions have been calculated using Numerical
Algorithms Group fortran routine DO3PCF.
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Fig. 1. Plot of all five species for dimensionless time ¢ = 15 using equations (14)—(18).
Parameter values used here and in Figure 2 are 7 = 0.01, dy = 0.001, dp = 0.005,
d; =10, dey = 0.001, dgy = 0.01, a = b = u = v = 1000, ¢ = 2000, d = 0.1, f = 20,
g:?)O,EO:l,IO:l.

Figure 1 shows an example of the state of the system at a particular dimen-
sionless time value, t = 15, with the indicated parameter values. Over time
the front of cell matter has steepened, although not to a sharp front for this
particular parameter set. The effect of the protrusion term in the inactive in-
tegrin equation is clearly visible, with the integrin populations edging in front
of the cell matter front. The protruded inactive integrins are quickly activated
through adhesion to ligands in the ECM. This has the effect of creating an
appropriate gradient in A(z,t) to allow haptotactic cell migration from left to
right.

In Figure 2(a) we present what appears to be travelling wave behaviour in the
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Fig. 2. (a) Plot of cell matter profiles for dimensionless times ¢t = 5,10, 15, 20, 25,
using equations (14)—(18), with parameter values as in Figure 1. Solutions are calcu-
lated using At = 0.01 for ¢t = [0, 25], and 210 spatial nodes. (b) Cell migration depth
vs haptotactic coefficient for various values of the integrin activation coefficient a
(a = 0,250,500, 750,1000), at dimensionless time t = 15.

cell matter density. After an initial setup time, cells migrate from left to right
with an approximately constant wavespeed and shape, leaving behind them
the maximum scaled cell density of N(z,t) = 1. This hypothesis regarding
travelling wave solutions will be investigated further in Section 5.
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Figure 2(b) shows the effect on migration depth of different haptotactic coeffi-
cients, for various integrin activation coefficients. Here the depth of migration
is defined to be the point in space at which N(z,t) = 0.5. It is observed
that for all curves with a > 0, the use of small haptotactic coefficients results
in a decrease in migration depth compared with the case of solely diffusion—
driven cell movement, which has a migration depth identical to that of the
a = 0 case. This is due to the fact that for small 7, nonlinear diffusion is
the dominant migration process. The cell front diffuses to a location ahead
of the maximum level of active integrins, and as such, small increases in the
haptotactic coefficient cause increases in backwards (from right to left) cell
migration. As 7 is increased, the migration depth reaches a minimum value
for each a curve, before increasing in an approximately linear manner. With
these higher 7 values, the backwards migration due to haptotaxis has caused
sufficient sharpening of the cell front to place it to the left of the maximum
density of active integrins and thus, any increase in the value of 7 results in
an increase in the haptotactic migration from left to right.

The increase in haptotactic migration continues until it is no longer possible
to compute solutions with the computational techniques used for this work.
Given that the numerical solution method used here is the Numerical Algo-
rithms Group (NAG) routine DO3PCF, a parabolic PDE solver, increases in
the haptotactic coefficient that cause the system to become dominantly hy-
perbolic (the haptotaxis term far outweighs the diffusion term in the cell and

integrin equations) lead to the model equations being incompatible with the
NAG routine.

Variations to other system parameters were also considered. The successful
migration of cells is quite sensitive to the protease diffusion coefficient, dp.
For small values of the parameter, the protease distribution is localised at the
cell migration front and thus aids in the construction of an adhesion gradient
upon which cells may migrate. For larger values of dp, the adhesion gradient
is lower and the cells undergo far less migration.

Similarly, for values of the dimensionless proteolysis coefficient, g, that are
large in comparison with the dimensionless protease production coefficient f,
decreased migration is displayed. While modest increases in ¢ can lead to
increased migration of cells, when the parameter is too high in relation to f
the ECM is degraded too quickly, and the resulting gradient in active integrins
is too small to aid migration to any great extent. A comparable result is found
when investigating the protease production and decay coefficients, which must
also be kept closely balanced.

It is also important to consider the ratio of the dimensionless integrin bind-

ing and unbinding coefficients, a and b. Continual binding and unbinding of
integrins is necessary for cells to migrate successfully. This is indicated in the

14



numerical solutions of the model developed in this chapter by increasing a
and decreasing b. Such parameter changes away from those used in the suc-
cessful migration shown in Figure 2(a), result in decreased migration. With a
low value for the dimensionless unbinding coefficient the positive gradient in
active integrins, behind the front of cells, is not able to form and the excessive
adhesion of cells to the ECM causes a decrease rather than an increase in
migration.

4 Implications of Fast Integrin Kinetics Assumptions

In this section we consider the possibility of simplifying the five equation model
of Section 2, through the assumption of fast integrin kinetics. These simplifi-
cations allow the development of a relationship between this novel integrin—
mediated haptotaxis model and previous ECM-mediated models.

4.1 Fast Integrin Kinetics and a Simplified Model

Returning to the dimensionless system of equations (14)—(18), we now consider
a model simplification based on the assumption of fast integrin kinetics. Inte-
grin binding and production occur on a much shorter timescale than processes
such as cellular proliferation and migration. With this in mind, consider equa-

tions (14) and (15), and let a = g, b= é, c = l, where we take o, 5 and
€ 3

5
v~ O(1) and € < 1. By multiplying equations (14) and (15) by &, then rear-
ranging the resulting equations and considering only the terms of O(g°), we
have

olF — BA =0, (21)
—alE+~y(N +dA—-1)=0. (22)

Rearranging the first of these equations gives

A= %]E. (23)

Substituting the above expression for A into the second of the O(£°) equations
and rearranging, gives

[ N (24)

1+“E<1_Cd>
c b
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Now consider the case where activation of integrins occurs slower than integrin

a
production, that is — < 1, integrin binding and unbinding occur at similar
c

d
rates, that is % ~ O(1), and 0 < d < 1 sufficiently small that 2@

Parameter relationships such as these give rise to the numerical results shown
in Figures 1 and 2, and also produce the inequality

ab <1 - C:) <1 (25)

C

Hence, given the above inequality, we may consider the first order approxima-
tion of I to be, in dimensionless form

I=N. (26)

Substituting equations (23) and (26) into the third, fourth and fifth of equa-
tions (11), using the scalings given in equations (13) and dimensionless para-
meters in equations (19), gives the following three equation model, valid in
the case of fast integrin kinetics:

aajj =V - (DY()NVN —n°()NV(NE)) + N(1 - N),
%’f — fN(1—N) — gPE, (27)
68]; =dpV?’P +uNE — vP.

Dy (- Ok
where D3 (+) = k;vlg) and n¥() = 11772 <k?25 L12 are the scaled, undetermined cell

matter diffusion and haptotaxis coefficients.

To investigate this simplified model numerically, we again set 7(-) and Dy(+)
to be constants, n and Dy, and restrict our attention to one spatial dimension,
with x € [0,1]. Again, this leads to the dimensionless cell matter diffusion
nk1

coefficient dy = Tk 2
P

K/JZV?’ the dimensionless haptotactic coefficient 7; =
and all other parameters are as stated in Section 3.1.
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Fig. 3. Plots (a), (b) and (c) show cell matter N(x,t), ECM E(z,t) and protease
P(z,t) at the dimensionless time value ¢ = 15. Plot (a) is produced using the
full model, equations (14)—(18), with parameter values of 77 = 0.001, dy = 0.001,
dp = 0.005, df = 10, dey = 0.001, dey = 0.01, a = b = u = v = 1000, ¢ = 2000,
d = 0.1, f =20, g = 30. Plot (b) uses equations (27), the reduced three equation
model, with the equivalent parameter values of 73 = 0.001, dy = 0.001, dp = 0.005,
u = v = 1000, f = 20, g = 30. Plot (c) is produced using similar equations and
parameter values to plot (b), though an altered cell flux, proportional to N %—f, is
employed. Plot (d) shows the depth of migration vs time for the three models. Full
model (a), reduced model (b), ECM—mediated model (c).
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Numerical simulations show that the simplified model is a good approximation
to the full, integrin—mediated haptotaxis model, provided we are considering a
case where integrin kinetics are indeed fast. Shown in Figure 3 is a numerical
comparison between the full, five equation model, the simplified version and a
traditional ECM—mediated model (identical to equations (27) with the excep-

tion of the cell flux, which is given by n/N——), with parameter values which

indicate fast integrin kinetics. We note that the simplified model produces a
cell matter profile (and protease profile) which is slightly steeper at the front,
than the profile displayed in the full model simulation. This is due to the in-
troduction of a “backwards diffusion” term as a result of the simplification

A= %N E. Both the full model and the simplified model produce reduced cell
migration depths when compared with the traditional ECM-mediated model.

Figure 3 (d) provides a comparison of the depth reached over time, by pop-
ulations of migrating cells described by each of the three models in (a)—(c).
We note that, compared with the full integrin-mediated model, the simplified
V(N E) haptotaxis model has a slightly lower speed of migration due to the
introduction of a backwards diffusion term in the cell matter flux. On the
other hand, the ECM-mediated haptotaxis model has a much higher speed
of migration as it is similar to the simplifed model without the backwards
diffusion term. The result shown suggests that previous ECM-mediated hap-
totaxis models overestimate the speed of haptotactic cell migration when com-
pared with the integrin-mediated model which takes into account cell adhesion
processes.

4.2 A Relationship Between Integrin—mediated and ECM-mediated Hapto-
tazis Models

In this section, we use the pseudo—steady state assumptions described above,
along with specific choices for the cell diffusion and haptotaxis coefficients
to show that the ECM-mediated haptotaxis models of other researchers in
this area can be derived using simplifications of the novel, integrin—mediated
haptotaxis model developed in this paper.

Consider the cell matter flux from the simplified system of equations (27),
given by
Jn=—D()NVN +7n°()NV(NE)
=—DX()NVN +n°(-)NEVN +n°(-)N*VE. (28)

We will show that through using equations (23) and (26), along with specific
choices for D(-) and 7°(-), we are able to reduce the migration terms for

19



the cell matter equation of the new integrin—mediated model to those of a
general ECM-mediated haptotaxis model. For later reference, we introduce
the migration terms for cells in a general ECM-mediated haptotaxis model
(including both diffusive and haptotactic components):

Jo = —d(-)VN + h(-)NVE, (29)

where d(-) is the unspecified, non—constant cell diffusion coefficient and h(-)
is the unspecified, non—constant haptotactic coefficient.

We note that to match coefficients of V E in the above expression and equation
(28), we require

) = (30)

Substitution of this expression for n°(-) into equation (28), and then matching
the coefficients of VN requires the scaled diffusion coefficient of the integrin—
mediated model to be

d(-) + h(')E‘

D3 =14

(31)

That is, through careful definition of the haptotactic and diffusion coefficients
using equations (30) and (31), coupled with the assumption of fast integrin ki-
netics, ECM—-mediated haptotaxis models can be thought of as simplifications
of the integrin—mediated haptotaxis model presented here.

For example, the ECM-mediated haptotaxis model of Perumpanani et al.
(1999) has in its cell equation, migration terms of the form

J, = kNVE,

where k is the constant coefficient of haptotactic migration, and the model
does not include cell diffusion (that is, d(-) = 0). This form for the migration
terms can be arrived at from that of the full integrin—mediated haptotaxis
model through the assumption of fast integrin kinetics, the definition of the

k
scaled haptotactic coefficient as 7°(-) = — and the diffusion coefficient as

N
s kE : ,
D () = ~ Furthermore, if we were to set ks = 0 and Dp = 0 in the

fast integrin kinetics model, that entire model can be simplified to the model
described by Perumpanani et al. (1999).
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5 Further Simplification and Travelling Wave Analysis

It was noted earlier that the cell matter profiles displayed in Figure 2 appear to
be moving as a travelling wave of constant speed and shape. Here we consider
further simplifications to the integrin—mediated haptotaxis model which has
been reduced to the three equation, fast integrin kinetics model described
in dimensionless equations (27). Further simplifications allow an analytical
investigation of the existence of travelling waves of migrating cells, described
by the model. Once more we consider a single spatial dimension, z, and take
n(-) and Dx(-) to be constants. The model to be investigated is then

IN 0 ON  _O(NE)
O~ IN(L=N)~ gEP, (33)
oP 0*P

To simplify the above model we consider a situation where protease production
and decay, as well as ECM production and proteolysis occur on a shorter
timescale than that of cellular proliferation and migration. Furthermore, with
only small-scale protease diffusion, we consider the following pseudo—steady
state equations resulting from equations (33) and (34).

FN( = N) - gEP =0, (35)
uNE —vP = 0. (36)

Equation (36) implies that P = Y NE which can then be substituted into the
v

equation (35) to allow for an approximation of F in terms of N alone. Upon
substitution and rearrangement, we have

_ v
E = gu(1 N). (37)

This approximation may then be substituted into equation (32) to give the
following partial differential equation for V.

ot~ on \ NGy TN

ON 0 ON J(Nv1—N)
ox ox

) +N(1-N), (38)
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where 7, = Jos = Fehny ks
M gUnS k7k9k10 kaGLQ .

To continue with the travelling wave analysis, we consider the amount of cell
diffusion to be negligible when compared with cell proliferation and hapto-
tactic migration, and hence we take dy ~ 0. We now introduce the travelling
wave variable z = x — wt, where w is the positive wavespeed. Upon changing

variables, equation (38) becomes a second order ordinary differential equation
(ODE) given by

_ 3mN(N.)?
—wN, = —7,(N,)’V1I— N+ 2 _ 5 NN,.V1—-N
w 771( ) 2m Ukl

7, N?(N.)? n NN,
A1-Np2 " o /T—N

where subscript z denotes differentiation with respect to the travelling wave
variable.

+ +N(1—-N), (39)

This ODE may be rewritten as a system of two, first order ODEs using the
dN

substitution U(z) = - These two, first order ODEs may then be used to
z

conduct a phase plane analysis of the system. Upon substitution we have the
equations

N, =1,

_ 7, N? — 72

U, 7 NV1— N— ——|=wU+N(1-N)—-—n,Uv/1—-N (40
UA QM wU + ( ) st ( )

3n, NU? m,N2U?

TOVT=N a1l Ny

The steady states of the first order system are then found by solving for the
points of intersection of the NV and U nullclines, and are given by

881 : (N1, U1) = (0,0);  8Sy: (N2, Us) = (1,0), (41)

which are indicative of the normal tissue situation where the cell level is zero
(S57), and the fully migrated state where the cell level is at its scaled max-
imum (S5952). Returning to the existence of travelling wave solutions to this
system, we hence require the possibility of a connection between S.S; and S.5;
in the (N, U) phase plane.

Considering the second of equations (40), we note that the U, equation be-
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comes singular when

MNVI=N — UEEAS} (42)

WI-N

Solving this equation for N we find that singularities occur along the lines
2

N =0and N = 3’ and note that the equation is undefined for N = 1. As in

Pettet (1996); Marchant (1999); Perumpanani et al. (1999) and Pettet et al.

(2001) we will refer to these lines as walls of singularities — lines which cannot

be crossed by solution trajectories in the phase plane except at points where

the walls coincide with the U nullcline. These coincidental points were also

discussed in Pettet (1996); Marchant (1999); Perumpanani et al. (1999) and
Pettet et al. (2001) and are known as holes in the walls.

Solving the U nullcline equations with conditions imposed by the walls of
singularities, we find the following holes in the walls. Along the N = 0 wall,
solution curves may pass through the points

(Ngr, Usn) = (0,0),
(Niga, Uppa) = (0, w) . (43)

UA

2
While for the N = 3 wall, solution curves may pass through the points

(2 (s
(Ni3, Uns) = (3’ 2/37, ( + 3\/§>> ’
— 2 1 —w — wg _ 8ﬁ1
(Nizg, Una) = (3’ Ve ? ( 3¢§>) | (44)

2
Initially, the walls of singularities at N = 0 and N = - indicated that it

would not be possible for a solution trajectory to join the two steady states,

and as such no travelling wave solutions could exist for this model. However,

the existence of holes in the walls at the trivial steady state and at two points
2

on the N = — wall may allow for a connection between the two steady states.

Note that through investigation of the phase plane in Figure 4, it is evident
that the hole given by (Ngs, Ugs) is the one that leads to connection between
the steady states, and as such, for any given haptotactic coefficient we require
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wavespeeds above the minimum value of

87

For wavespeeds below this value, the coordinates of the hole in the wall are
complex—valued and hence, a connection between the steady states does not
exist.

Substituting the parameters used in Figures 1 and 2 into the above equation
produces a minimum wavespeed of w,,;, = 0.112. The wavespeed of cells shown
in Figures 1 and 2 is w ~ 0.25, which is well above the suggested minimum
and supports the consistency of the results regarding the minimum wavespeed.

Here we have arrived at a key finding of this research, namely that there is a
minimum wavespeed for travelling wave solutions of this model. In particular,
it has been shown that

w2 0/ (46)

Furthermore, Figure 2(b) shows that the wavespeed (or depth of migration) is
closely related to the dimensionless rate of integrin binding, a. Given that the

dimensioned form of 77, is proportional to k—l, this dependence of the wavespeed
2

k
on integrin binding includes the ratio of integrin binding to unbinding k—l That

2
is, the wavespeed of haptotactically migrating cells is closely linked to the rate
at which cells bind to ECM compared with the rate at which they release from
the matrix.

In Figure 4, the solution directions and nullclines indicate that a trajectory
may leave the (1,0) steady state, following the U nullcline to pass through the
third hole in the wall (N3, Uys) before again closely following the U nullcline
to enter the steady state at (0,0). The existence of the connection between
(0,0) and (1,0) in the (N,U) phase plane supports the hypothesis derived
from the numerical simulations of the model given in equations (14)—(18),
that the system does support travelling wave solutions.

Figure 5 shows a numerical solution of equation (39). Due to the nonlinearity
of equation (39) and its singularity at N = %, it was not possible to solve
the equation for all z. Instead, the solution was calculated in two parts: from
—oo forward toward zero, and from oo back toward zero. The solution shown
is a wave of similar shape to those in Figure 2(a). Note however that the
front of the wave is not sharp as it was in Figure 2(a) due to the earlier

assumption that dy ~ 0. Keeping in mind the lack of front-sharpness, the
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Fig. 4. Schematic view of the (IV, U) phase portrait for equations (40) demonstrating
the possibility of a connection between the steady states (diagram not drawn to
scale). The U nullclines and singular barriers are indicated and the N nullcline is
the dotted horizontal axis. The holes in the wall are shown as grey squares.
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Fig. 5. Plot of N(z) vs z from a solution of the travelling wave equations (39), with
7 = 0.01 and w = 0.25. Note the singularity at N = % where the solution was not
able to be computed.

extent of the similarity between the solution shown in Figure 5 and those in
Figure 1 is further substantiation of the existence of travelling wave solutions
and the findings above regarding the wavespeed of cells undergoing haptotactic
migration.
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6 Conclusion

Haptotaxis is an important method of cell migration in wound healing, tumour
invasion and innovative tissue engineering strategies. Here we have presented
a mathematical model which provides a description of haptotactic cell migra-
tion. The description of the model as a novel one, arises from the inclusion
of mathematical descriptions of important processes such as integrin medi-
ated cell-ECM adhesion, the functional activation of integrins by the ECM,
recruitment of inactive integrins to sites of adhesion and the protrusion by
cells of integrin—rich lamellipodia.

Numerical solutions show successful haptotactic migration over the extracel-
lular matrix and suggest travelling wave solutions exist for the model equa-
tions. Such travelling waves are substantiated through a phase plane analysis
of a simplified model. The numerical solutions show a biphasic relationship
between the depth of cell migration and the magnitude of the haptotactic
response, where for small haptotactic coefficients the migration of cells is ac-
tually slowed.

Under the assumption of fast integrin kinetics, we have developed a reduced
three equation model of haptotactic cell migration which provides a good
approximation to the full model. This reduced model differs from the novel
integrin—mediated model and the standard ECM-mediated models in that
the cells migrate in response to a gradient in the product of cell and ECM
densities. An analytical relationship between this simplified model and ECM—
mediated models was then developed, demonstrating that the standard models
can be thought of as a subset of the integrin—mediated model with fast recep-
tor kinetics, along with appropriate choices for the diffusion and haptotactic
coefficients.

Finally, a travelling wave analysis was undertaken for a further simplified
version of the cell migration model. The phase portrait constructed for this
simplified model exhibits a connection between steady states in the phase
plane and this confirms the possibility of wavelike solutions to the model
as suggested by the numerical simulations. The phase plane for this model
exhibits a number of walls of singularities and gates through which solution
trajectories may pass — one of which allows for trajectories to join the two
steady states of the system. The requirement for a real-valued hole in the wall
also provides a condition on the minimum allowable wavespeed for a travelling
wave solution. It is shown that the minimum wavespeed clearly depends on

the ratio of integrin binding to integrin unbinding, k—l This is a key finding

2
of this work in that the dependence of haptotactic migration on cell to ECM
adhesion is demonstrated through the relationship between the haptotactic
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wavespeed and the integrin binding coefficients.

With the inclusion of integrins in mathematical models of haptotaxis, in the
manner that has been shown here, it becomes possible to model adhesion re-
lated processes such as cell death due to anoikis and cancer treatment strate-
gies such as integrin blocking and to consider their effects upon the invasion
of haptotactically migrating cells. While this new model does give a more
complete description of the biological processes involved in haptotactic cell
migration, the lack of available data (for example, regarding parameter val-
ues) suggests that further experimental work in this area is required to validate
this new description of haptotaxis.
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