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ABSTRACT 
Lexical constraints on the input of speech and on-line 
handwriting systems improve the performance of such 
systems.  A significant gain in speed can be achieved by 
integrating in a digraph structure the different Hidden 
Markov Models (HMM) corresponding to the words of the 
relevant lexicon.  This integration avoids redundant 
computations by sharing intermediate results between 
HMM's corresponding to different words of the lexicon.  In 
this paper, we introduce a token passing method to perform 
simultaneously the computation of the a posteriori 
probabilities of all the words of the lexicon.  The coding 
scheme that we introduce for the tokens is optimal in the 
information theory sense.  The tokens use the minimum 
possible number of bits.  Overall, we optimize 
simultaneously the execution speed and the memory 
requirement of the recognition systems.  

1. INTRODUCTION 

A number of pattern recognition problems like hand gesture 
recognition, on-line and off-line Hand Writing Recognition 
(HWR) and Automatic Speech Recognition (ASR) can be 
solved by performing an elastic matching between an input 
pattern and a set of prototype patterns. In all these 
applications, the a posteriori probabilities of a number of 
different words are computed given a sequence of frames 
(feature vectors). These a posteriori probabilities are 
computed by running Viterbi Algorithm (VA) [14, 3] on the 
Hidden Markov Models (HMM) corresponding to the 
different words [10].  

 
Most cursive HWR and ASR systems use a lexical 

constraint to help improve the recognition performance.  
Traditionally, the lexicon is stored in a trie [4].  This 
approach has been extended with solutions based on a more 
compact data structure, the Directed Acyclic Word Graph 
(DAWG) [5, 13, 6].  The non-deterministic node-automata 
we use to represent the lexicons can be significantly more 
compact than their deterministic counterparts [7]. Figure 2 

shows a non-deterministic node-automaton generating the 
same language as the trie of Figure 1.  

 
Node-automata are better at HMM factorization 

because in a node-automaton the processing is done in the 
nodes and the routing is done with the arcs, whereas with 
traditional automata (that we call arc-automata), these two 
tasks are not separated.  In a nutshell, the nodes of our 
automata encapsulate HMM corresponding to letters.  The 
resulting super-structure is called a lexicon-HMM.  
 
 b 
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Figure 1.  A toy example showing the node-automaton associated 
to a trie.  This node-automaton represents the six word lexicon 
{‘ab’, ‘ba’, ‘bb’, ‘bc’, ‘bcd’, ‘c’} of 12 letters.  This automaton is 
a trie with an added common sink for all the leaves.  The 
automaton contains 10 nodes.  

 
The rest of the paper is structured as follows. In 

Section  2, we recall the basics of Viterbi algorithm, 
describe token passing methods, and present some methods 
to optimize the time and space complexity. In the same 
section, optimized computations of the -best solutions are 
presented. In Section 

n
 3, we introduce a path coding system 

that provides an optimal token tagging scheme for Viterbi 
algorithm.  
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Figure 2.  The six word toy lexicon of Figure 1 as DAWG node-
automaton.  The automaton contains 9 nodes.  Nodes are labeled 
with a reverse topological sort index (superscript of the node 
letter) (see Section  2.2) and with their  values (subscript 
of the node letter) (see Section 

)suff(x
 3.1).  Arcs are labeled with their 

PPH increments.  

2. VITERBI ALGORITHM 

Viterbi Algorithm computes the likelihood that a given 
HMM generates a given string of symbols by using 
Dynamic Programming [1, 9].  

As illustrated in Figure 2, each path in a lexicon-
HMM joining the start state to a terminal state corresponds 
uniquely to a word of the lexicon and reciprocally.  

Let  be the transition probability from state i  to 

state  in the lexicon-HMM, and let  be the emission 

probability of symbol o  in state .  Finally, let 

ija
j )(obj

j )( jtδ  be 
the maximum log probability (score of the most likely 
sequence of hidden states) of the HMM model being in 
state  after generating the sequence of symbols 

.  
j
),...,( 1 too

The time series )( jtδ  satisfy the following recurrence 
relation, called the Standard Viterbi Decoder Equation 
(SVDE) 
 { } ))(log()log()(max)( 1)pred( tjijtjit obaij ++= −∈

δδ   

If for each state , we record its maximizing 
predecessor, we can easily determine the sequence of states 
that is the most likely to generate the sequence of observed 
symbols , by first identifying which state  
maximizes , then tracing back (backtracking) the rest 
of the most likely sequence of states with the sequence of 
maximizing predecessors starting from state .  

j

),...,( 1 Too Tĵ
)( jTδ

Tj
 

2.1.  Basic token passing implementation (arbitrary 
sort) 
As Young et al [15] pointed out, at any time step, only a 
single value )( jtδ , and the corresponding best partial path 

 from the initial state to , needs to be stored in state 
.  A token passing approach is best viewed as a systolic 

propagation of tokens over a network.  

)(ˆ jpt j
j

In a token passing implementation of VA, each node 
j  holds a single token )( jtτ , containing )( jtδ  and some 

information (called Path History) to represent the optimal 
partial path , from the root node to , via the 
sequence of maximizing predecessors.  
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Pseudo-code 1.  Basic token passing implementation of 
VA 
Initialize the token of the root. 

for Tt :1=  

for each ( )Njjjj ,,, 21 K∈  // arbitrary order 

Compute )( jtτ  using the  on SVDE )(1 it−τ . 

endfor 
endfor 

In practice, the values of )( jtτ  and )(1 jt−τ  are stored 
in two different flip-flop pointed arrays. Although the 
running time of this implementation of VA is optimal, some 
memory space is wasted.  

 
2.2.  Memory space optimized token passing 
implementation (reverse topological sort) 
If we ignore the loops of the states, the HMM that we 
consider are acyclic.  Recall that a sequence  of 
states is compatible with the Topological Sort [

),...,( 1 Njj
12] if the 

sequence is an indexing of the states such that if ba <  
then  is not a descendant of .  The superscripts of the 
nodes of the toy DAWG node-automaton in 

aj bj
Figure 2 come 

from such a sequence.  A simple change in the order which 
the tokens are passed halves the memory requirement of 
VA:  
Pseudo-code 2.  Space optimized token passing 
implementation of VA1  
// PRE: ( )Njjj ,,, 21 K  is a sequence compatible  

// with the topological sort. This sequence is  
// computed only once for a given HMM. 
Initialize the token of the root. 

for Tt :1=  
// Scan states in reverse topological sort. 

for each ( )11 ,,, jjjj NN K−∈  

Compute )( jtτ  using the SVDE on )(1 it−τ . 

endfor 
endfor 
Because we visit the states in reverse topological order, 

the same memory variable can be used to store )( jtτ  and 

)(1 jt−τ .  When )(1 jt−τ  is overwritten by )( jtτ , the value 
of )(1 jt−τ  is no longer needed.  Whereas, if the states were 
scanned in the order ( )Njjj ,,, 21 K , then )( jτ  would 
require two distinct memory variables; one for time t  and 
one for time 1−t .  This ordering problem is a special case 
of the scheduling problem with precedence constraints in 
DAG [12].  Moreover, if node data are stored in reverse 
                                                 
1 A more detailed, and improved, form of loop internal pseudo-
code is presented later for the -best case and can apply as well 
to 1-best. The computational complexity stays the same. 

n



  

topological order, VA update steps can be done by simply 
incrementing a memory address pointer (thereby achieving 
optimal memory access speed).  

 
2.3. n -best Token Passing Viterbi Algorithm 
It is often desirable in practice to determine not just the best 
path (sequence of states or nodes depending the resolution) 
that maximizes the total score, but the n -best different 
paths [8].  In the context of this paper, different paths mean 
different words. Indeed, considering hypotheses other than 
the one corresponding to the best path increases the 
chances of finding the correct word.  In many applications, 
some information not used in the HMM recognizer, such as 
a more precise grammar or a language model or other 
contextual clues, is used to re-rank the candidate words 
(improving the recognition rate).  

 
Thanks to Bellman principle of optimality [1], it is 

sufficient to keep the list of the best n  tokens at each state 
in order to determine the -best paths. This list is a sorted 
list of  tokens 

n
n ( )),(),...,1,(),( njjnj ttt ττ≡τ  where 

)1,( jtτ  is the best token.  
 

Pseudo-code 3.  Naïve merging of n -best solutions in 
token passing VA 
// Update of the -best tokens  of state  n ),( njtτ
//  at time t. j
Initialize  to void. ),( njtτ
for each // Scan the predecessors of . )pred( ji∈ j
for  // if any nk :1=
On the token ),(1 kit−τ  use update equations 

( ) ))(log()log(),()( 1 tjijtt obakij ++= −δδ  

jtt skij += − ),(p̂)(p̂ 1  

to build a candidate token )( jtτ  to be merged 

in sorted list .  Keep only, if any, n  

tokens with different  

),( njtτ
)(ˆ jpt

endfor 
endfor 

 
In the above naïve implementation of the n -best VA 

the inner loop, including merging, is executed 
systematically )pred( jn×  times.  So the time complexity 

is  times the 1-best complexity plus the complexity of 
merging operations.  

n

 
The order of execution of the loops does matter. A 

slightly more efficient implementation is obtained by 
changing the loop order as illustrated in the pseudo-code 
below:  

 

Pseudo-code 4.  Improved merging of -best solutions in 
token passing VA  

n

// Improved update of the -best token  n ),( njtτ
// of state  at time t . j
Initialize  to void. ),( njtτ

for nk :1=  

for each )pred( ji∈  

From token ),(1 kit−τ  calculate 

)log(),()( 1 ijtt akij += −δδ  

Test if )( jtδ  has to be merged in  

( )),(),...,,( njkj tt ττ  

If "merged", update the token )( jtτ  with  

jtt skij += − ),(p̂)(p̂ 1  and if needed, delete  

the worst token with same  )(p̂ jt
endfor 

))(log(),(),( tjtt obkjkj += δδ  in ),( kjtτ  

endfor 
 
Some update operations can be conditional or extracted 

from the most internal loop leading to significantly more 
efficient computations:  
• Incrementation of best partial path is restricted to merged 

tokens.  
• Final incrementation is only, and usefully, done on the -

best tokens for the step.  
n

• Due to the principle of optimality [1], a simplified 
merging operation occurs “from the  element to the 
end of the list” only if needed.  

thk

 
2.4. Time and space complexities 
Let  be the total number of characters of a lexicon-
HMM: the number of states of the HMM is just few time 
this number. The factor is the mean number of states per 
character, typically in 3 in ASR and 3-7 in HWR.  Let 

N

T  
be the length of the input sequence of symbols.  It is easy to 
see that the time complexity (theoretical worst case) of the 
tabular (basic) implementation of VA is ( )TNO 2 .  The 
factor  is the product of the number of states ( ) times 
the maximum in-degree ( ).  However, the maximum in-
degree of a lexicon-HMM derived from real languages is in 
practice independent from , and much smaller than .  

2N N
N

N N
 

The relevant factor is ∑= )pred(1 j
N

p .  For 

example, an actual 130 K words French lexicon [6] gives:  
 

 N  p  
trie 297701 1 
DAWG 17908 5.22 

Table 1.  Lexicons at http://webia.lip6.fr/~lifchitz/FLCVA.  
 

http://webia.lip6.fr/%7Elifchitz/FLCVA


  

So the average time complexity is , as for the 
space one, as summarized below:  

(NTO )

 

 time 
(worst) 

time 
(average) space best path 

tabular ( )TNO 2  ( )NTO  (NTO ) backtracking
token 

passing ( )TNO 2  ( )NTO  ( )NO  path history 

Table 2.  Time and space complexities of the different 
implementations of VA.  

3. AN OPTIMAL PATH CODING SYSTEM 

The order in which the full paths (from the root to the sink) 
of an automaton are completed in a Depth First Search 
(DFS) [12] provides a canonical indexing of the full paths 
of the automaton [11].  We call this index the Perfect Path 
History (PPH) as it is a Minimal Perfect Hashing [2] and is 
perfectly suited to the management of path history.   

This PPH index is naturally extended to partial paths 
(paths from the root to an internal node), and constitutes an 
optimal coding scheme for the paths followed by the 
tokens.  

Each partial path p is canonically extended to the full 
path p  that is an extension of p and has the smallest PPH 
index.  In other words, p  extends p  by always choosing 
the first successor to go to the sink. Therefore, we can 
extend the PPH()  function defined originally on the full 
paths to the partial paths by defining  as )PPH( p

)PPH( p .  
 
In the rest of this section, we show how to compute 

two variations of the PPH.  The first one (forward PPH) 
considers the successor links whereas the second one 
(backward PPH) considers the predecessor links.  

 
3.1. The forward PPH 
Consider a DAWG of a lexicon of W  words.  For a node 
x  of the automaton, let  denotes the number of 
paths (suffixes) from this node to the sink.  In particular 

 and 

)suff(x

Wroot =)suff( 1)suff( =sink . Let  denote 
the  successor.  We have the recursive definition:  

),(succ ix
thi

⎪⎩

⎪
⎨
⎧

= ∑ otherwise )),suff(succ(
  theis if1

)suff(
i

ix
sink x

x  

The value of  is by construction in the range 
 and  as the first full path 

completed in a DFS has index 0.  Let 

)PPH( p
]1,0[ −W 0)PPH( =root

)p(x  be a partial path 
from the root to a node x . We define the PPH increment 

 from )),succ(,PPH( ixxΔ x  to its  successor as thi
 )),(succ(suff)),succ(,PPH( jxixx

ij
∑
<

=Δ  

By construction, we have the following relation on the 
PPH  

 

 )),succ(,PPH())PPH(p()),succ()PPH(p( ixxxixx Δ+=+  
 

The above formula is used to update the token PPH 
when it is passed from node x  to node .  ),(succ ix

A useful property of the PPH is that if 
( )kxxxp ,,, 10 K=  is a full path, then  

∑
−

=
+Δ=

1

0
1),PPH()PPH(

k

i
ii xxp  

Given a PPH value  in the range v ]1,0[ −W , the 
corresponding path can be reconstructed as follows,  
 
Pseudo-code 5.  Path reconstruction from a PPH value 
// PRE: is a PPH value in the range v ]1,0[ −W  

Set x  as the root. 
while x  is not the sink 
Determine the largest i  such that  

vixx ≤Δ )),succ(,PPH(  

Set )),succ(,PPH( ixxvv Δ−=  

Set ),succ( ixx =  

endwhile 
// The nodes visited by x  constitute the path  
// coded by . v
 

The PPH increment )),succ(,PPH( ixxΔ  can either 
be computed dynamically (minimizing memory space 
requirement), or can be cached in each arc  
(maximizing speed) as in 

),(succ ixx →
Figure 2.  Thanks to its recursive 

definition,  can be computed with a recursive DFS.  
The complexity of this traversal is linear in the number of 
nodes.  This computation needs to be done only once for a 
given DAG, during an initialization phase.  

)suff(x

 
The management of the tokens according to SVDE 

requires only the knowledge of the predecessors of the 
nodes. However, the forward PPH requires pointers to the 
successors.  In order to only rely on the predecessor 
information, we consider, in the next sub-section, the 
forward PPH of the mirror DAWG (where the arcs have 
been reversed). 

 
3.2. The backward PPH 
With the backward PPH, we consider paths from the sink to 
the root.  The PPH increment becomes  

)),(pred(pref)),pred(,(PPH jxixx
ij
∑
<

=Δ  

where  denotes the number of paths (prefixes) from 
the root to node 

)pref(x
x .  Although the backward PPH code 

paths from the sink to the root, and not from the root to the 
sink like the forward PPH, the backward PPH is well suited 
for the coding of full paths from the root to the sink. With 



  

the backward PPH, the sum ∑
−

=
+Δ

1

0
1),(PPH

k

i
ii xx , where  

is the sink and  is the root, is accumulated starting with 

0x

kx

),(PPH 1 kk xx −Δ .  The backward PPH allows the 
reconstruction of the mirror path followed by the token 
during the execution of Viterbi algorithm.  

4. DISCUSSION AND CONCLUSION 

The PPH exhibits interesting properties that makes it a 
perfectly suited for coding partial paths. In particular, the 
PPH requires only local information. The size of the PPH 
values in bits is optimal as it takes its value in the range 

.  Given the PPH value of a token at a given node, 
it is easy to trace the path followed by the token from the 
root. The computational complexity is linear in the number 
of nodes of this path.  

]1,0[ −W

In this paper, we have introduced an optimal path 
coding system for lexically constrained HMM recognition 
systems using token passing techniques.  A lexicon-HMM 
can benefit from several optimization techniques:  
• Compact DAWG in place of traditional tries with 

simultaneous gain in memory space and running time 
(typically a ratio 15-20 for a 100 K words lexicon) 
because of the large reduction of the overall number of 
HMM states to consider.  

• Non deterministic node-automata in place of classical 
arc-automata for better compacity.  

• Reverse topological sort of nodes that halves memory 
requirement.  

• Enhanced n -best algorithm.  
• Optimal token tagging scheme for path history 

management in DAWG (forward / backward PPH).  
 
To assess the benefit of using a DAWG over a trie, we 

ran a test program on the lexicon of 130 K words 
mentioned in Table 1. The test program was designed to 
evaluate the potential speed-up by simply passing tokens in 
graphs.  We observed an 18 fold reduction in the running 
time when a DAWG was used instead of a trie.  

 
Future work includes implementing all the techniques 

described in this paper for lexicon-HMM decoding.  
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