

COVER SHEET

Lifchitz, Alain and Maire, Frederic and Revuz, Dominique (2006) An Optimal Path
Coding System For DAWG Lexicon-HMM. In Proceedings The 2006 European
Signal Processing Conference, Florence, Italy.

Copyright 2006 (please consult author)

Accessed from http://eprints.qut.edu.au

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10876242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AN OPTIMAL PATH CODING SYSTEM FOR DAWG LEXICON-HMM

Alain Lifchitz* Frederic Maire Dominique Revuz

Laboratoire d'Informatique de Paris 6 School of S.E.D.C. Laboratoire d'Informatique
Université P. & M. Curie & CNRS (UMR 7606) Faculty of Information Technology Institut Gaspard Monge

8, rue du Capitaine Scott 2 George Street, GPO Box 2434 bât. Copernic, 5, boulevard Descartes
75015 Paris, France Brisbane Q4001, Australia 77454 Marne-la-vallée Cedex 2, France

alain.lifchitz@lip6.fr f.maire@qut.edu.au dominique.revuz@univ-mlv.fr

* Correspondence to : A. Lifchitz

ABSTRACT
Lexical constraints on the input of speech and on-line
handwriting systems improve the performance of such
systems. A significant gain in speed can be achieved by
integrating in a digraph structure the different Hidden
Markov Models (HMM) corresponding to the words of the
relevant lexicon. This integration avoids redundant
computations by sharing intermediate results between
HMM's corresponding to different words of the lexicon. In
this paper, we introduce a token passing method to perform
simultaneously the computation of the a posteriori
probabilities of all the words of the lexicon. The coding
scheme that we introduce for the tokens is optimal in the
information theory sense. The tokens use the minimum
possible number of bits. Overall, we optimize
simultaneously the execution speed and the memory
requirement of the recognition systems.

1. INTRODUCTION

A number of pattern recognition problems like hand gesture
recognition, on-line and off-line Hand Writing Recognition
(HWR) and Automatic Speech Recognition (ASR) can be
solved by performing an elastic matching between an input
pattern and a set of prototype patterns. In all these
applications, the a posteriori probabilities of a number of
different words are computed given a sequence of frames
(feature vectors). These a posteriori probabilities are
computed by running Viterbi Algorithm (VA) [14, 3] on the
Hidden Markov Models (HMM) corresponding to the
different words [10].

Most cursive HWR and ASR systems use a lexical

constraint to help improve the recognition performance.
Traditionally, the lexicon is stored in a trie [4]. This
approach has been extended with solutions based on a more
compact data structure, the Directed Acyclic Word Graph
(DAWG) [5, 13, 6]. The non-deterministic node-automata
we use to represent the lexicons can be significantly more
compact than their deterministic counterparts [7]. Figure 2

shows a non-deterministic node-automaton generating the
same language as the trie of Figure 1.

Node-automata are better at HMM factorization

because in a node-automaton the processing is done in the
nodes and the routing is done with the arcs, whereas with
traditional automata (that we call arc-automata), these two
tasks are not separated. In a nutshell, the nodes of our
automata encapsulate HMM corresponding to letters. The
resulting super-structure is called a lexicon-HMM.

 b

 a a

Figure 1. A toy example showing the node-automaton associated
to a trie. This node-automaton represents the six word lexicon
{‘ab’, ‘ba’, ‘bb’, ‘bc’, ‘bcd’, ‘c’} of 12 letters. This automaton is
a trie with an added common sink for all the leaves. The
automaton contains 10 nodes.

The rest of the paper is structured as follows. In

Section 2, we recall the basics of Viterbi algorithm,
describe token passing methods, and present some methods
to optimize the time and space complexity. In the same
section, optimized computations of the -best solutions are
presented. In Section

n
 3, we introduce a path coding system

that provides an optimal token tagging scheme for Viterbi
algorithm.

< >b b

c d c

mailto:alain.lifchitz@lip6.fr
mailto:f.maire@qut.edu.au
mailto:dominique.revuz@univ-mlv.fr

Figure 2. The six word toy lexicon of Figure 1 as DAWG node-
automaton. The automaton contains 9 nodes. Nodes are labeled
with a reverse topological sort index (superscript of the node
letter) (see Section 2.2) and with their values (subscript
of the node letter) (see Section

)suff(x
 3.1). Arcs are labeled with their

PPH increments.

2. VITERBI ALGORITHM

Viterbi Algorithm computes the likelihood that a given
HMM generates a given string of symbols by using
Dynamic Programming [1, 9].

As illustrated in Figure 2, each path in a lexicon-
HMM joining the start state to a terminal state corresponds
uniquely to a word of the lexicon and reciprocally.

Let be the transition probability from state i to

state in the lexicon-HMM, and let be the emission

probability of symbol o in state . Finally, let

ija
j)(obj

j)(jtδ be
the maximum log probability (score of the most likely
sequence of hidden states) of the HMM model being in
state after generating the sequence of symbols

.
j
),...,(1 too

The time series)(jtδ satisfy the following recurrence
relation, called the Standard Viterbi Decoder Equation
(SVDE)
 { }))(log()log()(max)(1)pred(tjijtjit obaij ++= −∈

δδ

If for each state , we record its maximizing
predecessor, we can easily determine the sequence of states
that is the most likely to generate the sequence of observed
symbols , by first identifying which state
maximizes , then tracing back (backtracking) the rest
of the most likely sequence of states with the sequence of
maximizing predecessors starting from state .

j

),...,(1 Too Tĵ
)(jTδ

Tj

2.1. Basic token passing implementation (arbitrary
sort)
As Young et al [15] pointed out, at any time step, only a
single value)(jtδ , and the corresponding best partial path

 from the initial state to , needs to be stored in state
. A token passing approach is best viewed as a systolic

propagation of tokens over a network.

)(ˆ jpt j
j

In a token passing implementation of VA, each node
j holds a single token)(jtτ , containing)(jtδ and some

information (called Path History) to represent the optimal
partial path , from the root node to , via the
sequence of maximizing predecessors.

)(ˆ jpt j
0

1

5
3

2

0

0

1

0
0

0

0

0 7
1c 8

4b 4
1d 9

6<

6
1a 3

1b

5
1c

2
1a

1
1>

Pseudo-code 1. Basic token passing implementation of
VA
Initialize the token of the root.

for Tt :1=

for each ()Njjjj ,,, 21 K∈ // arbitrary order

Compute)(jtτ using the on SVDE)(1 it−τ .

endfor
endfor

In practice, the values of)(jtτ and)(1 jt−τ are stored
in two different flip-flop pointed arrays. Although the
running time of this implementation of VA is optimal, some
memory space is wasted.

2.2. Memory space optimized token passing
implementation (reverse topological sort)
If we ignore the loops of the states, the HMM that we
consider are acyclic. Recall that a sequence of
states is compatible with the Topological Sort [

),...,(1 Njj
12] if the

sequence is an indexing of the states such that if ba <
then is not a descendant of . The superscripts of the
nodes of the toy DAWG node-automaton in

aj bj
Figure 2 come

from such a sequence. A simple change in the order which
the tokens are passed halves the memory requirement of
VA:
Pseudo-code 2. Space optimized token passing
implementation of VA1
// PRE: ()Njjj ,,, 21 K is a sequence compatible

// with the topological sort. This sequence is
// computed only once for a given HMM.
Initialize the token of the root.

for Tt :1=
// Scan states in reverse topological sort.

for each ()11 ,,, jjjj NN K−∈

Compute)(jtτ using the SVDE on)(1 it−τ .

endfor
endfor
Because we visit the states in reverse topological order,

the same memory variable can be used to store)(jtτ and

)(1 jt−τ . When)(1 jt−τ is overwritten by)(jtτ , the value
of)(1 jt−τ is no longer needed. Whereas, if the states were
scanned in the order ()Njjj ,,, 21 K , then)(jτ would
require two distinct memory variables; one for time t and
one for time 1−t . This ordering problem is a special case
of the scheduling problem with precedence constraints in
DAG [12]. Moreover, if node data are stored in reverse

1 A more detailed, and improved, form of loop internal pseudo-
code is presented later for the -best case and can apply as well
to 1-best. The computational complexity stays the same.

n

topological order, VA update steps can be done by simply
incrementing a memory address pointer (thereby achieving
optimal memory access speed).

2.3. n -best Token Passing Viterbi Algorithm
It is often desirable in practice to determine not just the best
path (sequence of states or nodes depending the resolution)
that maximizes the total score, but the n -best different
paths [8]. In the context of this paper, different paths mean
different words. Indeed, considering hypotheses other than
the one corresponding to the best path increases the
chances of finding the correct word. In many applications,
some information not used in the HMM recognizer, such as
a more precise grammar or a language model or other
contextual clues, is used to re-rank the candidate words
(improving the recognition rate).

Thanks to Bellman principle of optimality [1], it is

sufficient to keep the list of the best n tokens at each state
in order to determine the -best paths. This list is a sorted
list of tokens

n
n ()),(),...,1,(),(njjnj ttt ττ≡τ where

)1,(jtτ is the best token.

Pseudo-code 3. Naïve merging of n -best solutions in
token passing VA
// Update of the -best tokens of state n),(njtτ
// at time t. j
Initialize to void.),(njtτ
for each // Scan the predecessors of .)pred(ji∈ j
for // if any nk :1=
On the token),(1 kit−τ use update equations

()))(log()log(),()(1 tjijtt obakij ++= −δδ

jtt skij += −),(p̂)(p̂ 1

to build a candidate token)(jtτ to be merged

in sorted list . Keep only, if any, n

tokens with different

),(njtτ
)(ˆ jpt

endfor
endfor

In the above naïve implementation of the n -best VA

the inner loop, including merging, is executed
systematically)pred(jn× times. So the time complexity

is times the 1-best complexity plus the complexity of
merging operations.

n

The order of execution of the loops does matter. A

slightly more efficient implementation is obtained by
changing the loop order as illustrated in the pseudo-code
below:

Pseudo-code 4. Improved merging of -best solutions in
token passing VA

n

// Improved update of the -best token n),(njtτ
// of state at time t . j
Initialize to void.),(njtτ

for nk :1=

for each)pred(ji∈

From token),(1 kit−τ calculate

)log(),()(1 ijtt akij += −δδ

Test if)(jtδ has to be merged in

()),(),...,,(njkj tt ττ

If "merged", update the token)(jtτ with

jtt skij += −),(p̂)(p̂ 1 and if needed, delete

the worst token with same)(p̂ jt
endfor

))(log(),(),(tjtt obkjkj += δδ in),(kjtτ

endfor

Some update operations can be conditional or extracted

from the most internal loop leading to significantly more
efficient computations:
• Incrementation of best partial path is restricted to merged

tokens.
• Final incrementation is only, and usefully, done on the -

best tokens for the step.
n

• Due to the principle of optimality [1], a simplified
merging operation occurs “from the element to the
end of the list” only if needed.

thk

2.4. Time and space complexities
Let be the total number of characters of a lexicon-
HMM: the number of states of the HMM is just few time
this number. The factor is the mean number of states per
character, typically in 3 in ASR and 3-7 in HWR. Let

N

T
be the length of the input sequence of symbols. It is easy to
see that the time complexity (theoretical worst case) of the
tabular (basic) implementation of VA is ()TNO 2 . The
factor is the product of the number of states () times
the maximum in-degree (). However, the maximum in-
degree of a lexicon-HMM derived from real languages is in
practice independent from , and much smaller than .

2N N
N

N N

The relevant factor is ∑=)pred(1 j
N

p . For

example, an actual 130 K words French lexicon [6] gives:

 N p
trie 297701 1
DAWG 17908 5.22

Table 1. Lexicons at http://webia.lip6.fr/~lifchitz/FLCVA.

http://webia.lip6.fr/%7Elifchitz/FLCVA

So the average time complexity is , as for the
space one, as summarized below:

(NTO)

 time
(worst)

time
(average) space best path

tabular ()TNO 2 ()NTO (NTO) backtracking
token

passing ()TNO 2 ()NTO ()NO path history

Table 2. Time and space complexities of the different
implementations of VA.

3. AN OPTIMAL PATH CODING SYSTEM

The order in which the full paths (from the root to the sink)
of an automaton are completed in a Depth First Search
(DFS) [12] provides a canonical indexing of the full paths
of the automaton [11]. We call this index the Perfect Path
History (PPH) as it is a Minimal Perfect Hashing [2] and is
perfectly suited to the management of path history.

This PPH index is naturally extended to partial paths
(paths from the root to an internal node), and constitutes an
optimal coding scheme for the paths followed by the
tokens.

Each partial path p is canonically extended to the full
path p that is an extension of p and has the smallest PPH
index. In other words, p extends p by always choosing
the first successor to go to the sink. Therefore, we can
extend the PPH() function defined originally on the full
paths to the partial paths by defining as)PPH(p

)PPH(p .

In the rest of this section, we show how to compute

two variations of the PPH. The first one (forward PPH)
considers the successor links whereas the second one
(backward PPH) considers the predecessor links.

3.1. The forward PPH
Consider a DAWG of a lexicon of W words. For a node
x of the automaton, let denotes the number of
paths (suffixes) from this node to the sink. In particular

 and

)suff(x

Wroot =)suff(1)suff(=sink . Let denote
the successor. We have the recursive definition:

),(succ ix
thi

⎪⎩

⎪
⎨
⎧

= ∑ otherwise)),suff(succ(
 theis if1

)suff(
i

ix
sink x

x

The value of is by construction in the range
 and as the first full path

completed in a DFS has index 0. Let

)PPH(p
]1,0[−W 0)PPH(=root

)p(x be a partial path
from the root to a node x . We define the PPH increment

 from)),succ(,PPH(ixxΔ x to its successor as thi
)),(succ(suff)),succ(,PPH(jxixx

ij
∑
<

=Δ

By construction, we have the following relation on the
PPH

)),succ(,PPH())PPH(p()),succ()PPH(p(ixxxixx Δ+=+

The above formula is used to update the token PPH
when it is passed from node x to node .),(succ ix

A useful property of the PPH is that if
()kxxxp ,,, 10 K= is a full path, then

∑
−

=
+Δ=

1

0
1),PPH()PPH(

k

i
ii xxp

Given a PPH value in the range v]1,0[−W , the
corresponding path can be reconstructed as follows,

Pseudo-code 5. Path reconstruction from a PPH value
// PRE: is a PPH value in the range v]1,0[−W

Set x as the root.
while x is not the sink
Determine the largest i such that

vixx ≤Δ)),succ(,PPH(

Set)),succ(,PPH(ixxvv Δ−=

Set),succ(ixx =

endwhile
// The nodes visited by x constitute the path
// coded by . v

The PPH increment)),succ(,PPH(ixxΔ can either
be computed dynamically (minimizing memory space
requirement), or can be cached in each arc
(maximizing speed) as in

),(succ ixx →
Figure 2. Thanks to its recursive

definition, can be computed with a recursive DFS.
The complexity of this traversal is linear in the number of
nodes. This computation needs to be done only once for a
given DAG, during an initialization phase.

)suff(x

The management of the tokens according to SVDE

requires only the knowledge of the predecessors of the
nodes. However, the forward PPH requires pointers to the
successors. In order to only rely on the predecessor
information, we consider, in the next sub-section, the
forward PPH of the mirror DAWG (where the arcs have
been reversed).

3.2. The backward PPH
With the backward PPH, we consider paths from the sink to
the root. The PPH increment becomes

)),(pred(pref)),pred(,(PPH jxixx
ij
∑
<

=Δ

where denotes the number of paths (prefixes) from
the root to node

)pref(x
x . Although the backward PPH code

paths from the sink to the root, and not from the root to the
sink like the forward PPH, the backward PPH is well suited
for the coding of full paths from the root to the sink. With

the backward PPH, the sum ∑
−

=
+Δ

1

0
1),(PPH

k

i
ii xx , where

is the sink and is the root, is accumulated starting with

0x

kx

),(PPH 1 kk xx −Δ . The backward PPH allows the
reconstruction of the mirror path followed by the token
during the execution of Viterbi algorithm.

4. DISCUSSION AND CONCLUSION

The PPH exhibits interesting properties that makes it a
perfectly suited for coding partial paths. In particular, the
PPH requires only local information. The size of the PPH
values in bits is optimal as it takes its value in the range

. Given the PPH value of a token at a given node,
it is easy to trace the path followed by the token from the
root. The computational complexity is linear in the number
of nodes of this path.

]1,0[−W

In this paper, we have introduced an optimal path
coding system for lexically constrained HMM recognition
systems using token passing techniques. A lexicon-HMM
can benefit from several optimization techniques:
• Compact DAWG in place of traditional tries with

simultaneous gain in memory space and running time
(typically a ratio 15-20 for a 100 K words lexicon)
because of the large reduction of the overall number of
HMM states to consider.

• Non deterministic node-automata in place of classical
arc-automata for better compacity.

• Reverse topological sort of nodes that halves memory
requirement.

• Enhanced n -best algorithm.
• Optimal token tagging scheme for path history

management in DAWG (forward / backward PPH).

To assess the benefit of using a DAWG over a trie, we

ran a test program on the lexicon of 130 K words
mentioned in Table 1. The test program was designed to
evaluate the potential speed-up by simply passing tokens in
graphs. We observed an 18 fold reduction in the running
time when a DAWG was used instead of a trie.

Future work includes implementing all the techniques

described in this paper for lexicon-HMM decoding.

5. REFERENCES

[1] R. Bellman, "Dynamic Programming", Princeton University
Press, 1957.
[2] Z.J. Czech, G. Havas and B.S. Majewski, "Fundamental
Study: Perfect Hashing", Theoretical Computer Science, Vol. 182,
No 1-2, pp. 1-143, 15 August 1997.
 [3] D.G. Forney Jr, "The Viterbi Algorithm", Proceedings of the
IEEE, Vol. 61, No 3, pp. 268-278, March 1973.
[4] E. Fredkin, "Trie Memory", Communications of the ACM,
Vol. 3, No 9, pp. 490-499, September 1960.
 [5] R. Lacouture, R. De Mori, "Lexical Tree Compression", 2nd
European Conference on Speech, Communication and Technology
(Eurospeech'91), Genoa (Italy), pp. 581-584, 24-26 September
1991.
[6] A. Lifchitz and F. Maire, "A Fast Lexically Constrained
Viterbi Algorithm for On-Line Handwriting Recognition", 7th
International Workshop on Frontiers in Handwriting Recognition
(IWFHR7), Amsterdam (The Netherlands), pp. 313-322, 11-13
September 2000.
[7] F. Maire, F. Wathne and A. Lifchitz, "Reduction of Non-
Deterministic Automata for Hidden Markov Model Based Pattern
Recognition Applications", In "Advances in Artificial
Intelligence", T.D. Gedeon, L.C.C. Fung (eds.), LNCS, Vol. 2903,
pp. 466-476; Proceedings of 16th Australian Joint Conference on
Artificial Intelligence (AI'03), Perth (Western Australia), 3-5
December 2003.
[8] M. Mohri and M. Riley, "An Efficient Algorithm for the N-
Best-Strings Problem", Proceedings of the 7th International
Conference on Spoken Language Processing (ICSLP'02), Denver
(Colorado, USA), 16-20 September 2002.
[9] H. Ney, "Dynamic programming as a technique for pattern
recognition", Proceedings of the IEEE 6th International
Conference on Pattern Recognition (ICPR'82), Munich
(Germany), pp. 1119-1125, October 1982.
[10] L.R. Rabiner and B.-H. Juang, "Fundamentals of Speech
Recognition", Ed. Prentice Halls, pp. 321-389, 1993.
[11] D. Revuz, "Dictionnaires et Lexiques, Méthodes et
Algorithmes", Thèse de Doctorat Paris VII (Paris, France),
Spécialité: Informatique Fondamentale, 22 février 1991.
[12] R. Sedgewick, "Algorithms in C, Part 5. Graph Algorithms",
3rd Edition, 482 p., Addison-Wesley, August 2001.
[13] K.N. Sgarbas, N.D. Fakotakis and G.K. Kokkinakis, "Two
Algorithms for Incremental Construction of Directed Acyclic
Word Graphs", International Journal on Artificial Intelligence
Tools, World Scientific, Vol. 4, No 3, pp. 369-381, 1995.
[14] A.J. Viterbi, "Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm", IEEE Transactions
on Information Theory, Vol. 13, pp. 260-269, April 1967.
[15] S.J. Young, N.H. Russell and J.H.S. Thornton, "Token
Passing: a Simple Conceptual Model for Connected Speech
Recognition Systems", Cambridge University Engineering
Department (England), Tech. Report No TR.38, 31 July 1989.

