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Abstract

In this thesis we study the noise in Coulomb blockaded quantum dots in the vicinity of the
peak of conductance in a full quantum treatment using the Keldysh technique. In previous
work on this system, the emphasis have been on master equation approaches in the shot
noise regime. In the vicinity of the peak of conductance it remained unclear if this classical
approach is valid since we have two strongly interacting charging states and a full quantum
treatment is necessary. Using our full, quantum mechanical approach we find an analytical
expression for the noise valid from the low bias regime all the way to the shot noise regime
valid in the vicinity of peak of conductance. In the shot noise regime we recover the result

from the master equation approach.
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Chapter 1

INTRODUCTION

1.1 Structure of the thesis

This thesis is focused on noise in mesoscopic systems. In chapter 1 we give a non-technical
introduction to the basic concepts covered in this thesis. The basic knowledge needed
about path integrals and Green functions is covered in chapter 2. The first new results are
introduced in chapter 3, where the tunneling density of states is derived in an approach
introduced by Sedlmayr et al. [1], and then re-derived within a new approach developed for
making the generalisation to noise possible. Chapter 4 is the core of this thesis, where the
noise of a Coulomb blockaded quantum dot in calculated using the method developed in
chapter 3. Constructive bosonisation is introduced in chapter 5 and will be used in chapter
6 where we discuss noise in Kondo system and suggest a new interesting problem for the
future. We will in this thesis set A = kg = 1. We have also used the standard notation that

unless the limits of the integrals are given they are from -co to co.

1.2 Mesoscopic systems

In this thesis we will study quantum transport in mesoscopic systems. These are systems
that are sufficiently big for statistical physics to hold, but small enough to contain signifi-
cant fluctuations. These length scales are today accessible thanks to the great development

1



in nano-fabrication technologies [2, 3, 4, 5]. In these structures the most important type
of experiments are transport measurements. These experiments are an average of many
readings from a measuring device. In these experiments each individual reading is random.
This randomness has several sources, for example imperfections in the measuring device,
temperature fluctuations or fluctuations that are due to quantum effects. The last type of
fluctuations are the most interesting ones and the source of a lot of information about the

correlations in electron systems.

1.3 Counting electrons

At this stage there are two approaches: either we average out all fluctuations or we study
the whole statistics. The first alternative is the most common since it is the simpler to per-
form experimentally. For transport it gives the average current in the system. The second
approach is to measure the statistics of the transported charge. This requires a lot more
data, but has the benefit that it provides a lot more information about the system than the

average current.

1.3.1 Some probability theory

To build a theory of the statistics of the fluctuations in the electron transfer in nano-
structures [6] we start with reminding the reader about some basic concepts from probability
theory. If we want to perform a measurement counting a random event during a time
interval At, the outcome of the measurement, N, is a random number. If we perform several
experiments we can obtain the average, (IV), by adding all the outcomes and dividing by the
number of measurements. Even more useful than the average is the probability distribution

of the outcomes. The distribution gives the probability Py to obtain an outcome N if a



measurement is performed on the system. The distribution is obtained by performing a
number of experiments M,,; on a system. The probability to obtain outcome N is then the
number of experiments, My, with the outcome N divided by the total number of experiments

Miot, Le. Py = MN/Mtot-

> Py=1 (1.3.1)

N

Using the distribution we can now calculate the average

(N) =) NPy, (1.3.2)

and the variance of the distribution also know as the second cumulant is given as

((N2)) = {(N = (N))?) = 3 NPy — (Z NPN> . (133)

In quantum transport theory, where N refers to the number of electrons that passes through
the system in a given time interval At, the variance is usually referred to as the noise.
In most situations this description of the distribution is not the most convenient. Let us

introduce the characteristic function

A(x) = (eXVy =3~ Py, (1.3.4)

where we have introduced the measuring field y. We can now obtain all the cumulants by
taking derivatives of In A(x) with respect to x at the point x = 0. In appendix B we discuss
what information can be gained from the different cumulants for a non-interacting electron

systems. The characteristic function also has the convenient property that if two processes



are statistically independent, i.e.

N
PR = PPy, (1.3.5)

M=0

where P}, denotes the probability to obtain the value M in a measurement of process,
1 = 1,2. The total characterisitic function is given by the product of the two characteristic

functions, A (x) = A1(x)A2(x).

1.4 Noise

In a nano-structure we are interested in counting the number of electrons that transfer from
one reservoir to another during a time interval At. The quantity we count is the charge @
and on average (Q = Atl where [ is the average current. We start with a simple system
where electrons can only be transferred from the left to the right. The probability for one
electron to be transferred during a small time interval, dt, is I'dt < 1, and the probability
that it will be reflected is 1 — I'dt, where we have introduced the transfer rate I'. In this
simple example we chose to neglect processes where more than one electron is transferred

at the same time. The characteristic function is now given by
Aa(x) = <eiXQ/e> = (1 — Idt) + Tdte’. (1.4.1)

Since the electrons, with charge e, pass through independently, we can rewrite the charac-

teristic function as a products of the individual events,

An(x) = (Aa(x)™™" = exp (TAE (X = 1)) = exp <N (e = 1)) : (1.4.2)

where N = T'At is the average number of electrons transferred. If we go back to the

probabilities Py by taking the inverse Fourier transform on the characteristic function we



obtain

2m 2 o
Py = / d_XA(X)G_iNX z/ d_Xe_iXN+N(eZX_1)
0 27 0 2

SN i
— N_e—iNAtQ(N)7 (143)

NI

which is the Poisson distribution. Here () is the unit step function. This idealised system
does is fact exist in the form of tunneling junctions where the intervals between successive
tunneling events are so long that the electrons are effectively non-interacting. The opposite
limit is where we have perfect transmission T=1. In this situation the noise is zero. In
this thesis we are interested in the intermediate regime where the tunneling is small but
interactions play a large role. We start by defining the noise power spectrum [7, 8, 9] in

terms of the current operator, I,

S(w) = /_ et ({81(1), 61(0)}). (1.4.4)

[e.9]

Where {.,.} denotes the anti commutator. The noise power spectrum consists of two parts
one coming from thermal fluctuations called Nyquist-Johson noise [10, 11]. The other is the
shot noise that originates the discreteness of the charge of the electrons [12]. Thermal noise

in equilibrium is related to the conductance G' by the fluctuation-dissipation relation
S =4kgTG, (1.4.5)

as long as hw < kgT'. From this it is clear that beyond the conductance we cannot obtain

any new information about the transport from the thermal noise.

In contrast to the thermal noise, shot noise in a system driven out of equilibrium by an
applied bias voltage V' contains useful information about the correlations of the electrons

which is not included in the conductance. In non-interacting fermionic systems we obtain
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the maximal shot noise value

SPoisson = 26[7 (146)

which is proportional to the average current I. This Poisson limit is used as a reference

point in interacting systems, and the Fano factor is defined as

5(0)
F=50 (1.4.7)

In most systems the interactions suppress the noise, and we obtain a Fano factor less then 1.
For instance, macroscopic conductors have zero shot noise because inelastic electron-phonon
scattering averages out the current fluctuations. It is also common that the deviation from

Poisson statistics is characterised by an effective charge

e =2 (1.4.8)

This is discussed in more detail in chapter 6, where Kondo systems are studied. For non-
interacting systems the Pauli principle, which forbids multiple occupancy of the same single-
particle state, will introduce correlations. A typical example is a ballistic point contact where
S = 0 because the stream of incoming electrons is completely correlated by the Pauli prin-

ciple.

Over a very wide range, both the thermal and shot noise power do not depend on fre-
quency, also known as a white noise spectrum. At low frequencies there is a third source of
noise, the 1/f noise (or flicker noise) caused by random motion of impurities, which produce
time-dependent fluctuations in the conductance. For low frequencies this noise is completely
dominant and thus it is important to take into account when experiments are performed.

But of course other types of noise will of also be present in experiments, and should be taken



into account.

1.5 Quantum dots

A quantum dot [4, 5, 6, 13, 14] is a small conducting device where up to several thousands
electrons are confined in a region of linear size of about 0.1 —1um. It is constructed by form-
ing a two-dimensional electron gas in the interface region of a semiconductor heterostructure
and applying metallic gates to further confine the electron number and size of the dot, see
Fig.1.1. Since the electron motion is confined in all spatial directions we will consider the
dot zero-dimensional in this thesis. To measure the transport properties of the dot it will
be coupled to leads, and a current will be driven through the system by an applied bias
voltage V. The coupling to the leads can be experimentally controlled. There are two in-
teresting situations, open and closed dots. In an open dot the coupling to the leads is very
strong and the transport of electrons through the dot is classically allowed. In the closed or
isolated quantum dot the point contacts are pinched off and effective barriers are formed,
so that transport is only possible through tunneling. The number of electrons on the dot
is described classically by the capacitance, C, of the dot. The energy required to add one
electron is given by €?/C. In a typical quantum dot made of GaAs, the charging energy for

adding one additional electron E, = ¢2/C ~ 1meV [13].

In this thesis we will focus on closed quantum dots, where the barriers are big enough
for the transmission to be small, i.e. G < e€?/h. The second condition that kT < E, ~
ImeV = 12K is to guarantee that the charging energy is not washed away. This condition

is always fulfilled in the low temperatures used in experiments.

The quantisation of the energy levels in the closed quantum dot is one of the key differ-

ences between classical and quantum mechanics. We will take a look at the statistics of the



point contacts

gl
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Figure 1.1: Micrograph of a quantum dot, taken from [15]. Here V;, and V,, are gate voltages
used to control the size and number of electrons on the dot. To drive the system out of
equilibrium we will later add a bias difference over the point contacts, that are connected
to the leads.

quantum states of a quantum dot consisting of many electrons. We will start by analysing
how non-interacting electrons distribute over the quantum dot. Each level, £, is either empty
or filled, with occupancy n; = 0, 1: all other occupancies are forbidden by the Pauli princi-
ple. A many-electron state is now described by the set {n}, and the energy of many particle
the state is £ =), Eyn; where E}, is the energy of each level. In the ground state the elec-
trons occupy the lowest available energy levels. To create excitations in a dot with a fixed
number of electrons we take one electron in state k& and move it to an empty level k’. This
gives an excitation energy F, = Fj — Ej. In the first generation we have one electron-hole
pair excitation, in the second generation we add one more particle-hole excitation, and so
on. If the lowest excitation has excitation energy J,, a basic question is how fast the number
of states grows, when we allow a certain excitation energy E? The answer to this question
is that this number grows exponentially. So far we have only considered non-interacting
systems and the next question is of course what happens when we allow interactions? For a
system with weak interactions the answer is not much. The reason for this is that there are
still discrete states when interactions are taken into account, and the rules for occupation
is essentially the same as for non-interacting systems. So at an increasing number of levels
the excitation spectrum becomes continuous, and the dot is nothing but an isolated piece of
metal. We know from Fermi liquid theory that the interaction effects can be disregarded and
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we can expect the same behaviour as for a non interacting system. To see when interactions
do play a role [13, 14] let us start from a formal Hamiltonian where the interactions are

taken into account and spin degeneracy is assumed,

H= Z EiCIUCw + Z Z CIUCjUUijlmC;[U/CmUH (151)

ijlm oo’

where 7, 7,1 and m are orbital levels of the dot and ¢;, is the electron annihilations operator in
the level ¢ with spin 0. The first sum gives the contribution of the non-interacting electrons
and F; is the energy of level i. The second sum gives the contribution from the Coulomb

interaction and Ujj,, is the matrix element of the interaction U(ry — ry):

Usjim = /drldrgw(rl)w*(rl)U(m — o))t (re)h* (1a), (1.5.2)

where ¢ (r;) are the wave functions of the corresponding levels. To simplify the interaction
we assume that the energy spectrum consists of a randomly spaced set of levels with a mean
level spacing A, which is small compared to all other relevant energy scales. We start by
neglecting all the off-diagonal terms of U, which is a good approximation if the dimensionless
conductance g = Ep/A ~ VN = o [14, 16], where Er is the Thouless energy. Neglecting
the off-diagonal terms means that we have three types of interactions left: spin interaction,
Cooper interactions and finally charging effects. Of these the first two can be neglected if
the level spacing is larger than the energy of these interactions. Then the most important
interaction is the charging energy. It provides the dominant energy difference between states
that differ in the number of particles. Hence the interacting part of the Hamiltonian now

takes the form

Hint = s EN?, (1.5.3)



where N is the total number operater and E, = €%/2C is the charging energy of the dot

from the total capacitance C. In term of eq. (1.5.2) we can write E. in the form

1 [ d?r
E.~ 5/FV(T), (1.5.4)

where V(r) is the Coulomb interaction. We now recover the expression in terms of the
capacitance if we insert the Coulomb potential into the integral. The total Hamiltonian of

the system is now
H— ¥ =3 Eicle; + 2o N (15.5)
i 1~ 1 2 Y
where p is the chemical potential.

1.5.1 Coulomb blockade

The tunneling of one electron onto the dot is usually blocked by the classical Coulomb re-
pulsion of electrons already on the dot, and the conductance is exponentially suppressed.
This phenomenon is known as Coulomb blockade. By tuning the gate voltage, V;, we can
reach the situation where the energy of having N or N +1 electrons on the dot is degenerate.
At the degeneracy point, the charge of the dot will fluctuate between N and N + 1, and at
this point we will obtain a finite conductance. In Fig. 1.2 we see the dependence of the con-
ductance on the gate voltage. Each peak corresponds to a degeneracy point. At sufficiently
low temperature these peaks will be spaced almost uniformly in the gate voltage, V,, by an

amount essentially proportional to the charging energy, E..

Coulomb blockade was first observed in tunneling junctions containing a small metallic
particle which corresponds to the classical regime A < T < FE¢. In this regime where
the tunneling occurs through a large number of levels, (~ T/A), a transport theory was

introduced by Kulik and Shekhter [17] and further developed by Averin and Likharev [18].
10
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Figure 1.2: Conductance peaks in a Coulomb blockaded quantum dot, taken from [20]

In this thesis we are mainly interested in the quantum Coulomb blockade regime, which
today is accessible in low temperature experiments in semiconductor quantum dots. In the
quantum regime the tunneling takes place through a single resonance in the dot, see Fig. 1.3,

which requires a different treatment.

Using Fermi’s golden rule we will now calculate the conductance [19] for the quantum

dot attached to non-interacting leads is described by a Hamiltonian

H = Hlead + Hdot + Ht7 (156)

where Hg,; describes the isolated quantum dot

F N
> endid, + 7C(N — N,)2. (1.5.7)

Where eN, is the neutralising background charge (governed by the gate voltage, V,, for
the standard quantum dot), €, is the energy of the levels on the dot and d,, the associated

annihilation operator. The tunneling and the leads are described by

Ho=>" (tancgkdn + h.c.> , (1.5.8)

akn

11



(a)

e

N-2 N-1 N+1 N+2 N+1 N+2

Figure 1.3: On the left we have the situation in a conductance valley, with /N electrons on
the dot. The cost of adding or removing one electron from the dot is very large. On the right
we have the situation around one of the peaks of conductance, see Fig. 1.2, where having
N or N + 1 electrons on the dot is energetically degenerate. The electrons can now easily
tunnel through the dot.

and

Hlead = Zékclkcaka (159>
ak

respectively, where t,,, is the tunneling coefficiaent, &, = ¢, — u, and a = L, R signifies the
left or right lead. We will now calculate the conductance near the degeneracy point [19] ,

where N, is a half integer, so that
|EN — EN+1| < T, (1510)

where F is the charging energy of a state with N electrons. This will be calculated in the

region

A< T < E, (1.5.11)

12



where E, is the charging energy, and A the level spacing. The condition in eq. (1.5.10) means
that we only need to take two charge states into consideration and eq. (1.5.11) enables us to
treat the discrete set of particle states as a continuum with the density of states 1/A. We
also assume that we are in the sequential tunneling regime where transitions between the
discrete levels happen before the electron has the chance to escape into the dot. This means
that tunneling events between the two junctions are independent. Using Fermi’s golden rule

the current can now be written as

2
]a = 6? kz |tin|6<§k + eVa —&p+ EN — EN—‘,—I)

X{PN f(E)(1 = fen)) = Pyiaf(en) (X = f(&))}, (1.5.12)

where Py is the probability to find N electrons on the dot, V' is the applied bias voltage
and f is the Fermi distribution. If we replace the summation over k and n with integrals

and integrate over the corresponding continuum we obtain the following expression

el

Io = — < (PvF(Ex — Eny1 = €Va) = Py F(eVa + By — Bn), (1.5.13)

where I'; = 7wty |? and Ty = mipltg|? with vy is the mean Tunneling density of states for

non-interacting electrons and

w

In the Coulomb blockade regime the dot cannot acumulate charge and therefore current

conservation holds,

[=1I,=—Ig. (1.5.15)

13



where I,/ is the current through the left /right contact, respectively. Combining eqs. (1.5.13)
and (1.5.15) and the obvious normalisation condition Py 4+ Pyy; = 1 we can calculate the
current through the system in response to the applied bias voltage V =V, — Vi. In our
system we add the bias voltage symmetrically so the bias voltage in the left, V;, and right
lead, Vg, have the same magnitude but different size, i.e. V, = —Vg = V/2. This give us

the linear conductance through the dot,

. dl 47 F1F2 (EN - EN+1)/T
G=lm-—=— - ,
v=odV ~ h I sinh(2(Ex — Ent1)) /T

(1.5.16)

where I' = I'y 4+ I'y In chapter 3 we reproduce this result of the conductance with the
help of tunneling density of states. A gap in the tunneling density of states corresponds
to a suppression of the conductance, since there are no states to tunnel into. Around the

degeneracy point this gap is starting to close, and this corresponds to a finite conductance.

1.6 Kondo effect

In 1936 de Haas and van den Berg [21] found a resistance minimum as a function of tempera-
ture in a disordered metal with a finite concentration of magnetic impurities. This was very
surprising since theory stated that resistance in metals was due to phonon and impurity
scattering. While impurity scattering is strongly temperature independent we know that
phonon scattering is temperature dependent and can be estimated by the Debye model. At
low temperatures the phonon scattering is suppressed and it vanishes at zero temperature.
Later experiments showed that the effect had to depend on magnetic impurities since chang-

ing this concentration made the effect more or less pronounced.

A step forward to understand the phenomena was done when Anderson introduced an impu-
rity model [22] that was designed to model isolated magnetic impurities in a non-magnetic
environment. Using this model Anderson succeeded in estimating a parameter range where

14



such isolated impurities could exist in a metallic environment. The big breakthrough came
in 1964 when Kondo [23] did perturbation theory on a model of a localised magnetic moment
represented by an isolated spin which interacts with the collective spin of the conduction
electrons via a Heisenberg coupling. By performing perturbation theory in the coupling
strength J, he found that for low temperatures the scattering amplitude for electrons in-
creases sharply towards the Fermi energy. This increases the electron scattering, which in
a metal increases the resistance. Kondo also succeed in explaining the connection to the

impurity concentration and obtained agreement with the experimental results.

In the original solution there is a logarithmic divergence in the perturbation theory at
T = 0. This problem turned out to be very hard to solve. The first progress towards the
solution was done by Abrikosov who identified the most divergent diagrams of each order
of the perturbation theory and did a resummation of these terms. This solved the problem
for the ferromagnetic case, J > 0, but for the anti-ferromagnetic case the divergence now

occurred at a finite temperature, Tk, which is known as the Kondo temperature.

The explanation for the failure of perturbation theory was provided by Anderson in his
poor man’s scaling approach [24]. Anderson reduced the bandwith cut-off in J and found
that this increased the coupling strength for the anti-feromagnetic case. Roughly speaking
this means that the low temperature physics is dominated by virtual scattering processes
and these processes get more and more profound when 7" — 0. From this analysis it is clear

that perturbation theory in J is doomed in this limit.

Wilson refined this result using a numerical approach [25]. Nozieres derived an effective
low energy theory [26] that reproduces the results of Wilson. He used a simple scattering
description close to the strong coupling fixed point of the Kondo model and obtained an

effective Fermi liquid theory.

15



Finally a non-pertubative solution of the problem was derived using the Bethe ansatz by
Andrei [27], Wiegman and Tsvelik [28, 29, 30]. From the Bethe ansatz solution it is possible
to extract thermodynamic properties such as the magnetic susceptibility and heat capacity.
The downside is that it is not possible to extract dynamic or non-equilibrium properties.
The Kondo effect was predicted theoretically in quantum dots in 1988 [31, 32] and verified
experimentally 10 years later [3, 33]. The Kondo effect is very different in quantum dots and
metals. The reason for this is that in a metal, electron scattering lowers the conductivity.
Hence the Kondo result explains why we obtain an increase in the resistivity. In a quantum
dot the only accessible transport mechanism is electron scattering. Hence in a quantum dot

the increased scattering leads to an increase in the conductivity.

16



Chapter 2

GREEN FUNCTIONS

An exact solution of a quantum field theory corresponds to knowing all the correlation
functions of the field variables. A correlation function measures the overlap between our
initial state and a state where we insert a particle or a hole at a specific time ¢ and place x
and try to extract it at a later time ¢’ and position z’. With the knowledge of all the cor-

relation functions of a system we know how the correlations in the system will evolve in time.

There are three different main types of Green functions that are useful for different prob-
lems in condensed matter theory. For zero temperature we have zero temperature Green
functions [34], for finite temperature in equilibrium we have Matsubara Green functions
[34] and for a non-equilibrium system at finite temperature we have Keldysh Green func-
tions [35, 36, 37, 38]. Keldysh Green functions of course work also for equilibrium and
zero temperature problems but their algebraic structure is slightly more complicated then

the other two Green functions which, often makes them unsuitable for equilibrium problems.
We will in this chapter introduce the different types of Green functions, but the emphasis in

the remaining part of this thesis will be on non-equilibrium systems, so we will concentrate

on the Keldysh formulation.
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2.1 Green functions: the basics

We start from the basics with the definition of the single particle zero temperature time

ordered Green function, also known as the causal Green function,

¢0|T¢H(l‘7 t)i}}{(xla t/) |¢0>0
o{%olto)o .

Gz, t;a' ) = ol (2.1.1)

Here [t)g)¢ is the ground state in the interacting system and 7" is the time ordering operator.

The time ordering operator always moves the operator with the earlier time to the right
TA)B(t") =0t —t')A@t)B(t') £ 0(t' — t)B(t') A(¢), (2.1.2)

where +/— corresponds to bosons/fermions. The operator &H(t) is in the Heisenberg rep-

resentation, and so its time dependence has the form

~

O (t) = et = 0)e . (2.1.3)
This definition can be extended to equilibrium systems at finite temperature
Gz, t; 2, ') = —iTr <pT@/A)H(a:,t)zZAJL(a:’,t’)> . (2.1.4)

where p is the density matrix operator and T'r is the sum over all diagonal elements. Now
that we have introduced the Green function in an equilibrium system it is time to show that

it is useful for calculating real physical quantitites such as the particle density

(n(z)) = (¥ ()v(2)). (2.1.5)
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This is equivalent to eq. (2.1.4) if ¢ is before ¢'. So we can now define the particle density as

(n(z)) = —iG(z,t; 2, tT), (2.1.6)
where
th = lii%(t +e). (2.1.7)

This fixes the time ordering since ¢* is always infinitesimally larger then t. In an homogenous
system the Green functions always depend only on the difference in time and space and not

on each variable individually. So we write the Green function as
Gz, t; 2", t) = Gx — o', t —t). (2.1.8)
In this case it is more convenient to work in Fourier space
G(k,w) = /d3x/dtei”(tt/)eik(zx/)G(a: — 2 t—1t). (2.1.9)

We will now introduce 4 additional Green functions, the retarded, advanced, lesser than and

greater than:

Gz t:2/ 1) = —i0(t —t){(x,t), dT (2, 1)), (2.1.10)
CGMa, t:2' ) = 0@t —t){(x,t), 0T (2, )}, (2.1.11)
GS(z,t; 2/ 1) = i@ )i(x,t)), (2.1.12)
Gz, t: 2 1) = —i(ih(z, )0 (2, 1)), (2.1.13)
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where {.,.} is the anti-commutator. The four Green functions are not independent and can

easily be seen to fulfil the relation
GF - G4 =G> -G~ (2.1.14)

The reason we bother with introducing all four of them is that they have different properties
and are useful in different situations. G have a nice analytic structure and are well suited
to calculate physical response. Information about spectral properties, density of states and
scattering rates are all contained in the retarded and advanced Green functions. The lesser
and greater Green functions are linked to physical variables such as particle densities and
currents. The benefit of the time ordered Green function, G, is that is has a systematic
perturbation theory. We note that the time ordered Green function can be written in terms

or lesser and greater Green functions
Gla,t; 2 1) =0t —t")G™ (x,t; 2", t') + 0(t' —t)G=(x,t; 2", t'). (2.1.15)

Also the retarded and advanced Green functions be can expressed in terms of lesser and

greater Green functions:
GRA(z, t; 2 V) = £0(+t F 1) (G™ (2, t; 2/, 1)) — G=(x,t;2,1)). (2.1.16)

where the upper/lower sign in in eq. (2.1.16) corresponds to the retarded/advanced Green

function, respectively.

2.2 Keldysh Green functions

The building block of constructing a perturbation theory in an equilibrium system is that

both the initial and final states are the same. In a non-equilibrium system this can no longer
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Figure 2.1: The standard closed Keldysh time contour. The upper/lower branch is the
forward /backward branch

be assumed. To construct a non-equilibrium theory one therefore needs to avoid reference to
asymptotically large times. In the Keldysh technique [35, 36, 37] we start at a distant past
and evolve the system forward to a time ¢ and and then evolve the time backwards so that
we end up at our initial state. In this way we will construct a more abstract time evolution
since we can have evolution along both the forward part , ¥, , and backward part, ¢ _, of
the time contour, see Fig.2.1. We can now introduce contour ordered Green function with
matrix structure
G (t,t") Gt (t,t)

G(t,t") = : (2.2.1)
G~ *(t,t") G~ (t,t)

where

Go(t,t) = GV (t,1) = =iy (1)L (1)), (2.2.2)
G (1) = G M) = —i{d-(OPL(1)),

GT(t,t) = GH(t) = —i(Tdy (L), (2.2.3)
GT(t,t) = G (1) =—i(Tdh_()d' (). (2.2.4)

where T denotes anti-time ordering. If we now note that

GT(t,t) =0(t —t)G™ (t, V') + 0t —t)G=<(t,1), (2.2.5)

GT(t,t) =0t —t)G=(t,t) + 0t — )G~ (t,1), (2.2.6)
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we obtain the relation
GT+GT =G +G<, (2.2.7)

So the four components are not independent. This redundancy can be removed by perform-

ing the Keldysh rotation to the Larkin-Ovchinnikov basis [39]:

(B (8) + 9L (1)) (2.2.8)
Performing the Keldysh rotation eq. (2.2.8) on eq. (2.2.4) we obtain

R / K !
o GR(t,t)) GX(t,t) 2.25)
0 GA(t,t)

where

Gt = % (GT +G< -G - GT> =0t —t) (G=(t,t") — G~ (t,)),  (2.2.10)
ar = % (67— G+ 6"~ GT) = —0(t — 1) (G~(t.) ~ (1)), (22.11)
GK = G<(t,t)+ G (t,1). (2.2.12)

The form of the Green function in eq. (2.2.9) can also be obtained directly from eq. (2.2.1)

by performing the operation [37, 39|

1
G = Lo,GL, where L=—I-1i0,), (2.2.13)

V2

and using the relation eq. (2.2.7). In equilibrium the situation is simplified and we can find
a relation between the three Green functions G, G4 and G¥. To do this we make the

observation that in equilibrium the Hamiltonian does not dependent on ¢ directly so all our
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Green functions depend on t — t' only, rather than on both times independently. If we now

take the Fourier transform with respect to t — ¢’ we obtain

i (GR(w) — GMw)) = /_ " dte Ty (e*ﬁH {ethq/}e*th,z/}T}) , (2.2.14)

iGK (W) = / dte™ Ty (aﬁH [eimzﬁe*mt,zﬁb . (2.2.15)
We now take a closer look at eq.(2.2.14), by splitting the integrals into two parts [; =
J75 dte™! Tr (e‘ﬁHe"H%e_iH%g and I, = [ dte™"Tr (e‘ﬁH@TeiH%ﬁe—im). We start
with /; and make the substitution ¢ — ¢ — i3 and use the property tr(XY) = tr(Y X)

of the trace to obtain

o

/ At Ty <€7ﬁH6th1$€7th,@T) _ eﬁw/ dte“tr <€th,(&efthz;T>

—00 o0

e / dte“!tr (e~ gleige 1T (2.2.16)

o0

We see that eq. (2.2.16) is equivalent to the statement I; = % I,. By using this relation we

obtain

Il_IQ €ﬁw—1 ﬁu)
= =tanh [ — ). 2.2.17
Il‘i‘lg €Bw+1 an ( 2 ( )

Using egs. (2.2.14) and (2.2.15) we can rewrite eq. (2.2.17) as

G¥(w) = tanh <%ﬂ> (GF(w) — GA(w)) . (2.2.18)
In general we can write the Keldysh component:

GK=gt.r—-r.g4, (2.2.19)

where F' is a Hermitian matrix that can be found from a quantum kinetic equation [36, 38].
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2.3 Functional field integrals

Quantum field theory can be formulated in two different ways: the formalism of canonically
quantised field operators [34] and functional integration. Functional path integrals provide
an entire spectrum of novel routes toward approaches to quantum mechanical problems (con-
trolled semi-classical limits, analogies to classical mechanics, statistical mechanics, concepts
of topology and geometry, etc.), for a review of this topic see the recent book by Altland
and Simons [40]. In this section our goal is to construct the many-body path integral [40].
The basic idea is to segment the time evolution of our system into infinitesimal time slices
and absorb as much of the quantum dynamical phase accumulated during the short-time

propagation into a set of suitably chosen eigenstates.

2.3.1 Coherent states

A coherent state is an eigenstate of the annihilation operator

ailn) = niln), (2.3.1)

where 7; is the eigenvalue of a;. We can write the general state

) = exp (Z nz-dI) 10). (2.3.2)

One thing that complicates things at this stage is the anticommuting properties of the
fermionic operators {a;,a;} = 0 if ¢ # j, since this implies that the eigenvalues of the

coherent states also have to anti-commute

ninj = —n;ni- (2.3.3)
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Clearly these objects, called Grassmannn variables, cannot be normal numbers. To be able
to define the coherent states we first have to define the Grassmann numbers and study
their properties more carefully. Grassmann numbers are elements of the Grassmann algebra
which consists of elements that all anti-commute. This condition implies that the square of

a Grassmann number is zero since

{nimi} = nf +nf =0. (2.3.4)

Functions of Grassmann numbers are defined via their Taylor expansion

f(&, &, &) = Z Z n' 85 Eiv iy Cinso- &y, €A, (2.3.5)

n=0 i1, in=1 £=0

where f is an analytic function and A is the Grassman algebra. From eq. (2.3.4) it follows

that any function of a Grassmann number is must be linear. So in the one variable case
f(n) = £(0) + f'(0)n. (2.3.6)
Now let us turn to differentiation of Grassman numbers, which is defined by
O = 0. (2.3.7)

If this definition is to be consistent with the anti-commutation relations, the derivative has to
be anti-commutative itself. In particular 0,,n;nm;, = —n; if ¢ # j. Finally we have integration

over Grassmann fields [40]
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If we take a closer look at egs.(2.3.5)-(2.3.8) we observe that the action of Grassmann

integration and differentiation is the same,

/ dnf(n) = / dn(£(0) + £/(0)n) = £(0) = By (1). (2.3.9)

The Grassman version of the Gaussian integral [ dndije™™ = 1 does not contain the factors
of m of the standard Gaussian integrals. We end the introduction of coherent states with

some useful indentities

/dndne‘ﬁ‘”’ = a, (2.3.10)

and the multidimensional generalisation of the Gaussian integral
/d(qs, $)e? 4% = det A. (2.3.11)

2.3.2 The functional integral Green function

In the two coming chapters we will work in the functional integral approach, so we will need
to define Green functions within this approach. This will be done in this section using the
knowledge we have just gained about Grassmann numbers. Let us start from the standard

definition of a Green function

Glt.#) = & S [Tl e O, 23.12)

n

where the time integral is over the Kelsdysh contour C' in Fig.2.1. Now we insert the

resolution of identity

- / L, df g e S 1) (), (2.3.13)
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into the definition in eq. (2.3.12)
1 - 7 2t
G(t.t) =2 / T iy i€ 17~ (n| Topibtet S HOW ) ().

The next step is to get rid of the sum over n by swapping the order <n|Tczﬁ1ﬁTei Je

and using that

> fn)n| =1.

Since there are elements of anti-commuting Grassmann variables

(n|Tapptet e HO® 0y (nin) £ (n|n) (n|Tabdte! Jo HOW ),

and we have to be a bit more careful. We start with calculating the overlap (n©®

the definitions eq. (2.3.2) and defining the state

we can write the overlap

(7On) = <0,e—2pdpﬁpd;1df ...d;r]n|0>

p2
= (Ol(=ap ) - (—ap,75))a}, af, - - af, |0)
= (=" (=020, - 7, (Oléy, - ap,af, -+ al, 0)

R LI )
So when we want to pull eq. (2.3.18) through the expression
(n|Teapiplet o 0% ),
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(2.3.14)

H®dt ) (n|n)

(2.3.15)

(2.3.16)

|n). Using

(2.3.17)

(2.3.18)

(2.3.19)



we see that the expansions of all parts contain pairs of elements that anti-commute with the
np; terms with one exception (n|, which has n annihilation operators which each contribute

a (—1)™ when we pull then n; through. So in total we get a sign of (—1)"2. We obtain

1 _ Nl
Gtt) = 3 / Hmdﬁmdnmeim"m"mZ(n!Tcw*e”OH(”dt!n><nln>
= —/H A dn, eXem nmnmz "(nln)|( n|T¢¢T ZfCH(t)dtm)

= Z / 1L, Ay e2=m T (— | Toapiptel Jo Ot ). (2.3.20)

We now split the time contour into N parts with the width 9;

Gt t) == / DDy (| Tudbe S|, (2.3.21)

We now split the exponential into N parts and insert a resolution of identity in between

each term,

G(t,t) = _% / DN+ DN+ fetoro =300, ik
(nale®™  on) (nle®™ [on ) - Gnrmar € Dlonm)  (2.3.22)
(WDt [Wngm1) - (ul P [on) (Gsa| DT H 1))
(i [thyun) - - (1| [thy).

If we demand that the Hamiltonian is normal ordered we can now write the element
(ni1|e™M [1hn) = (Y ga| 1 — G H [tpn) = e Wrarbm) o, (2.3.23)
We can now write the Keldysh Green function in the functional integral representation

G(t,t) = % / DN LY DN e’ (2.3.24)
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where

iS = Za {@ml %“ —iH(@EiH,@/})} (2.3.25)

= z/cdt{maqp—ﬁ(w(t),w(t))}. (2.3.26)

2.4 Some matrix identities

In the previous section we derived the functional integral form of the Keldysh Green function.

A typical functional integral takes the form
/ DyDipeVaMas¥s, (2.4.1)
We know from the basic theory of Grassmann algebra that this takes the form
/ DyyDipe¥eMas¥s = det M. (2.4.2)

We will in this section have a look at some special cases that will turn out to be useful in

the later chapters. We assume that M is a Matrix of the form

—1 0 0 AN+1
ay 1 o .- 0
—an 1

where the matrix element a; = 1 —id;¢;, ¢ labels the time and ¢; is the Hamiltonian at time

t;. Using eq. (2.4.2) we can write the path integrals as a function of the M matrix in the
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form:

N+1

— / DyDpe ™V = —det M =1 + I @ (2.4.4)
=1

T e it k>

(2

L T e if k<

—/DwDiﬁe‘@M%m/?z = (2.4.5)

Look at how the typical example where a; = 1 — id,¢; ~ €% . Inserting this relation into

egs. (2.4.4) and (2.4.5) we obtain the very usual path integral relations

/ DyYDpe MY = 1 4 71/ o)t (2.4.6)

B / DUDU ()t )™M — e tuotnar R
Lot ot =i [N ehar ey
2.4.1 Analytic continuation
In coming chapters we will encounter many terms with the structure
C(t, t/) = / dtlA(t, tl)B(tl, t/) (248)
c

In this section we will derive rules about how we can write C< in terms of lesser, greater,
advanced or retarded A and B components [38]. We will start to derive the identity for C'<.
This means that we have fixed ¢ on the forward branch and ¢’ on the backward branch. The
first step is to deform the standard contour in the way illustrated in Fig. 2.2 so that we can

now write eq. (2.4.8) in the form

30



G

<

Figure 2.2: The deformed Keldysh time contour split in two parts C; and Cy. Time ordering
is such that all times on (' are before any time on Cj.

Co (1) = / At A 1) B(1, ) + / dt A= (£ 1) B, ). (2.4.9)
Cl C2

Here we have used that if ¢; is on the C; contour then it is always less than ¢’ in the contour
sense. In the same way anything on contour C5 is greater than ¢. Taking the first term in

eq. (2.4.9) we can split the integration into two parts

t —00
C<(t,1) = / A% (t,0)B<(tn, ) + / A<(t, 1) B= (11, )
t

—00

/OO ARt 1) B=(t,, 1), (2.4.10)

—00

where we used the definition of G in eq. (2.1.16). Using a similar argument on the second

term we obtain the following relation

C<(t,t) = /Oo dty [AR(t, 1) B=(t1, ') + A~(t,t1) B (t1, )] - (2.4.11)

o0

It is easy to see that if we swap the order of the external times to obtain C~ we just need

to swap < for > in eq. (2.4.11) so that

C”(t,t) = /oo dt: [AR(t,t1)B” (t1, ) + A7 (t,t1) B (t1, t')] . (2.4.12)

[e.o]
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For the case of products of three, i.e. D = ABC, we obtain [3§]

D< = ARBRCO< + ARB<C4 + A<BAC4.

2.5 Noise in a resonant level model

(2.4.13)

We will close this chapter by calculating the noise in a resonant level model. This will enable

us to use most of the theory introduced in this section. The key motivation for doing this

calculation is that the result will be used when we study the noise in a Coulomb blockaded

quantum dot. In this strongly interacting system we can rewrite part of the problem as a

resonant level model and use the results from this section with small modifications. But

more about this in chapter 4. We start by defining the model
H =Ho + H: + He,

where

_ T
Hy = E EkCLCak)
a,k

H, = Z (takclkd + h.c.) ,

o,k
H, = e,d'd.

where ¢,, is the energy of the resonant level. We start from the current operator:

[L = 1€ Z [théTLkCi — tZCZTéLk] .
k

We want to calculate the noise power spectrum

[e.9]

S(e) = /_ d(t — )= gt — ),

[e.9]
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(2.5.5)
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so we start calculating the non-equilibrium noise correlator given by

S(t,t) = ({01u(t), 61L(t)})
= ({Ip(t), 1L(t)}) — 2(I1)*

= (ie)) [tkt%él(t)c?(t)élf ()d(t")) — i (@ () d(0)d (t')én (1) (2.5.7)

kK

— it (dT e (t)el, () d() + titp (dE e (t)d () éw (1) + h.c.] —2I.)?,
and
61 =1—(I). (2.5.8)

From now on we drop the the index L on the operators of the leads and put it back on in the

end of the calculation when it is needed. We now define the two particle Green functions

Gi(t,t) = —(TeL()d(t)el, (#)d(t)), (2.5.9)
Go(t,t") = —(Tel@)d)d (t)ew(t)), (2.5.10)
Ga(t,t') = —(Td'(t)é(t)e, (t)d(t)), (2.5.11)
Gu(t,t) = —(Td (t)ent)d (t)ew (). (2.5.12)

Now we can rewrite the noise in the form

Stt) = (ie)* Y [tatyGi(t,t) — titp, Ga(t, 1)

k. k'
— GGt t) + it Ga(t, t)] + he. — (1) (2.5.13)

We start by writing the operators in the interaction picture such that we can perform an S

matrix expansion. We perform the calculations on G5 but the treatment of all other terms
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is identical. We start from the definition

Go(tt') = —(Toel(t)d(t)d (t')en (1))

= (Teel@)d@)d () (t)S), (2.5.14)

where ¢ indicates that we have written the operator in the interaction picture and Ty is
the timer ordering operator that orders over the Keldysh contour in Fig.2.1. The S-matrix

is given by

S = i S /dt1 /dt (ToHy(t) - - - Hy(ta)), (2.5.15)

j=0

where H; is the tunneling Hamiltonian in eq. (2.5.4). We expand the S-matrix to the second

order in the tunneling Hamiltonian and the Green function takes the form

Go(tt') = —(Tegi(t)d(t)d (t)aw (1)

tklck (t)d(t,) + tkldT(tl)ckl(tl)) (2.5.16)

X
—~—

S
M

+ —~

X
/N
~
ol
N
N
??‘——F
/-\
~
2O
S—
A,
—~
~
2o

b (12) (1))

In the interaction picture the operators acting on the level and on the leads are independent
and we can therefore split up the expectation value in a resonant level and a lead part. So

eq. (2.5.16) can be simplified as

Go(t,t)) = —0uwGr(t Gt T)
+ /dtlfdtgz Toeh(t)ew (t)E, (t1)én, (ta)) (2.5.17)
X (Tod (t)d(t')d' (t)d(t2)).
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We have also introduced the full single particle Green Gy (t,t') = —i(Tcl(t)cx(t')) and the
expanded Creen function Gy(t, ') = —i(T¢.(t)é&(t')) . The definitions of the single particle
Green functions of the dot are equivalent. Up to this point the noise calculation is the same
for both non-interacting systems and interacting systems. The change comes when start to
try to split up the two particle Green functions into single particle Green functions. In this
section we deal with non-interacting electrons: so we can just split them up using Wick’s
theorem without complication. For the interacting problem things are more complicated
but we get to that in chapter 4. In both cases we have non-interacting leads so we start by

factorising the two particle Green function for the leads:

(Tl (e ()], (1)) = (Toal(t)aw (N Ted, (b (k)
— (Tod(t)en, (t)){Ted, (t)a (1)
= _5kzk’5k1kzék(tlat)é/ﬂ(t?’tZ) (2'5'18)

+ Okko Ok, Gt 1) G (1, 1),
We can now combine the first term of eq. (2.5.18) and combine it with eq. (2.5.17) to obtain

—(Skk/Gk(t/, t)

Glt.t) = St [ty [ dtaGy (3, Tl (i () (12)ds 1)

The terms in the square bracket we recognise as the first two terms of a series expansion of the
full Green function of an interacting central region. If one carefully does the combinatorics
of the terms of the full expansion of the tunneling Hamiltonian one obtains the full series
expansion G(t,t'). So these terms sum up to Gi('t,t)G(t,t'). The second term in eq. (2.5.18)
gives the zeroth order term of the expansion of the full two particle Green function and the

higher order terms of the S-matrix expansion will give the full two particle Green function.
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Putting all this together we now write eq. (2.5.17) in the form:

Go(t,t') = —dGi(t' t)G(t, )
— /dtl/dtztk,t;Gk(tQ,t)Gk,(t,t’)ng(t,t’,tl,tz), (2.5.19)
where
G (L.t 11, 1y) = (Ted(t)d'(¢')d(ty)d! (L)) (2.5.20)

Performing the same analysis for the other terms in eq.(2.5.13) and introducing the two

particle Green functions:

Gttt ts) = (Ted(t)d(t)d! (t,)d (t2)), (2.5.21)
Gt 1 by, 1) = (Ted (#)d()d(ty)d (t2)), (2.5.22)
GI(t, 1 1y, ts) = (Ted (£)d () d(t1)d(ts)), (2.5.23)

we can now write the noise in the form:

St = 4{Z\tk|2[G’k(t’,t)Gn(t,t’)+Gk(t,t’)Gn(t’,t)]

k

s Sl [ [
kK’
X [_Gk(tlat)Gk<t2at/)Gclld(t7t,7tlat2)
+ Grlty, )Gr(t, 1) GI(t, ' 1, t5) (2.5.24)
— Gilt, 1) Gilta, ) GE(t, T 11, o)

— Gt t)Gr(t, t2)GIH(t, 1y, t) ] } + hee. — 2(I1)°.

where we have introduced the index n on the single particle Green functions of the dot to

make them easier to separate from the lead Green functions. Using Wick’s theorem we can
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now split the two particle Green functions into single particle Green functions

GU(t, 1ty ty) = Gu(t, t2)Gn(t' 1)) — Go(t, t1)Gn(t', t2), (2.5.25)
GU(t, 1ty ts) = Gu(t,t)Gy(t1, ta) — Go(t, t2)Gn(t1, 1), (2.5.26)
Gt 11, ty) = Gu(ty, )Gu(t' ts) — Gt , 1) Gp(ty, ta), (2.5.27)
Gt 11, ty) = G(ta, )Gr(t, ') — Gulty, t)Gr(ta, ). (2.5.28)

Inserting eqs. (2.5.25)-(2.5.28) into eq. (2.5.24) we obtain a large group of unconnected terms
and a large group of connected terms. The treatment of both types of terms are similar with
the difference that the unconnected terms are cancelled exactly with the —2(I1)? and the

connected terms give interesting contributions to the noise.

2.5.1 Unconnected terms

We start with analysing the unconnected terms

Sun(t, 1) = eQ{Z\tk|2|tk/|2/dt1/dt2
k,k!
X [Gk (tla t)Gk <t27 t/)Gn (ta tl)Gn (tla t?)
Gt )Gt 1) Gt 1) G (11, ) (2.5.29)
_Gk(tatl)Gk(t27tl)Gn(t17t)Gn(t/7t2>

+Gr(t, t1)Gr(t', t2) G (t1, )G (t2, )]},

where the standard analytic continuation rules are ill-defined since we only have one time
label. This can be solved by carefully taking a look at the origin of each term. Take the

term
/ dt Gty )Gt 1), (2.5.30)

37



as an example, we see that t in Gy, has to be greater than ¢ in G since cL(t) should be left

of d(t). We can now rewrite eq. (2.5.30) as
/dthk(tl,ﬁ)G(t,tl). (2.5.31)

Rearranging the terms we once again have a form where we can use the analytic continuation

rules

{/dthn(t,tl)Gk(tl,ﬁ)r = /dt1 (GR(t, )G (t,t) + G=(t, 1) G (t1, 1))

Gt t). (2.5.32)

Performing this analysis on all the terms in the eq. (2.5.30) we obtain the final results for

the unconnected terms

Sun(t,t) = &Y [P GG (1) = Gt G, (¢, 1)

kK
— G, )G (U, 1) + G (8, )G (', 1)} (2.5.33)
= 2% ) [t [ (G (8, 1) — GRu(E O] (G (1) = G, (8 )]}
kK’
= 2<[L>2

Wee see that the unconnected terms exactly cancel with the 2(I7)? term in the definition of
the noise. This is an important result since without this cancelation the unconnected terms
would cause a anomalous zero frequency delta peak. This is equivalent to the cancellation of

the diamagnetic terms in the Kubo formula by the unconnected current-current correlators.
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2.5.2 Connected terms

What now remains are the connected terms which are the terms that will contribute to the

noise:

St,t) = & [Z|tk]2(Gk(t,t’)Gn(t’,t)+Gn(t,t’)Gk(t’,t))

- Z\tk|2ltk/12/dt1dt2
e k!
X A{=Gr(t1, )G (to, )Gt ta)Go(t' 1)
+ Gilte, )G (t' 1) Gr(t, )Gty t2) (2.5.34)
+ Gk (ta tl)Gk’ (t27 t/)GTL(t/7 t)Gn(t17 t2)

—  Gr(t,t) Gt t2)Gp(ta, t) Gy (ty, t')} + h.c]

Fixing t > ' we can use the analytic continuation rules derived in the previous section. We

start with the trivial case
(Gr(t,t)Gu(t' 1) + Gu(t, )Gt 1)) oy = G (T, )G (6,1) + Gy (4, 1) G (1) (2.5.35)

In the case of terms that have products of 4 Green functions we have two type terms. The

first type is of the form

[/ dthn(t’,tl)Gk(tl,t)/dtQGn(t,tQ)Gk(tQ,t’)} . (2.5.36)

t>t

In this case we can treat the product as two separate integrals and use the relationship

eq. (2.4.11) to obtain

U dthn(t’,tl)Gk(tl,t)/dtQGn(t,tg)Gk(tQ,t’)} (2.5.37)

t>t!

— /dtl [GE( )Gt t) + G (¢, 1) Gy (4, 1)]
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X /dt2 [GE(t,42)GF (ta, ') + G (t,t2) Gy (a2, )] - (2.5.38)
The second type is of the form

{Gn(t,t')/dtl/dtQGk(t',tl)Gn(tl,tg)Gk(tg,t)} : (2.5.39)

t>t!

which is of the structure D = ABC, so we insert eq. (2.4.13) into eq. (2.5.39) and obtain

|:Gn(t,t/)/dt1/dtQGk(t/,tl)Gn(tl,tg)Gk(tQ,t)}

t>t!
= G>(t,t’)/dt1/dt2 (Gt t1)GE(t1,t2) Gy (t2, 1)
+GEW )G (b1, 1) G (Lo, 1)

+GE (1) GA(t, 1) G (ta, 1). (2.5.40)

Applying the analytic continuation techniques on eq. (2.5.34) and taking the Fourier trans-

form and then the zero frequency limit we obtain

SO = 2 [ SZ{iATL [6"6) - 6@ +i21u(e) - 1 G0
+ [GM(e) = G [l [GF(e) — GA(e)] T
+ [G(e) = G e)] (2fule) = DTG (e)T,
— L@ = fu@)] [GH LG T L + GR(e)TL,GR(e)TL]  (2.5.41)
+ G [GR(e) — GAe)] Ty

+ G<(€)FLG<(5)FL} ,
where we have introduced

Ty =21 |tl*d(c — ex), (2.5.42)
k
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and inserted the non-interacting lead Green functions [38]

?
Samnl€) = zk: 162G = A% F 5T Lo (2.5.43)
Eé,m,n<8> = Z |tk’2G< = iFLmnfL(E:); (2544)
k
Ez,m,n<€) = Z ’tk’2G> = _7fFLmn(1 - fL(g)) (2545)

k

Introducing the identities

G<(e) = G [fu(e)lr + frTR] GY(e), (2.5.46)

GT(e) — GA(e) = —iG™(e)[T'L + Tr]GA(e), (2.5.47)

GA(e)T LG + G ()T LGR ()T, (2.5.48)

= [GE(c) — GA)TLIGE(c) — GA(e)]T'L, + 2GE ()T L. GA(e)T ), (2.5.49)
T(e) = T GA(e)TrGE(e). (2.5.50)

where T'(¢) is the transmission probability. The results can finally be written in the standard

form [§]

S(0) = 2¢2 / E {0 — J2l2) + o)1~ Fale)} T()
L (o) - fa@)T(E)(1 - T())}. (2.5.51)

The first term is the thermal noise since it vanishes at zero temperature, and the second

part is the non-equilibrium contribution that vanishes at zero bias.

2.6 Summary

In this chapter we have introduced the basic theory of Green functions. The focus was

on non-equlibrium Green functions and we derived the functional integral form of Keldysh
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Green functions. We also introduced analytic continuation rules and closed the chapter by
calculating the noise in a resonant level model. The noise consists of two parts: one that
comes from thermal fluctuations and one that comes from non-equilibrium effects. The
second type of noise is the important type and will give us important information about the
interactions in the chapters to come. The main formula of this section, eq. (2.5.51), will be

very useful in chapter 4 when we study the noise of a Coulomb blockaded quantum dot.
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Chapter 3

TUNNELING DENSITY OF STATES

The goal of this chapter is to calculate the tunneling density of states (TDoS) near the
degeneracy point in a Coulomb blockaded quantum dot using two different approaches. The
first method, developed by Sedlmayr et al. [1], is defined using a functional integral approach
in the Keldysh technique. This reproduction of the key results from Sedlmayr et al.[1] will
then be used as a reference point when we develop a new method to calculate the Green
functions and TDoS for this system. This new technique will be crucial in the next chapter,
for our ability to find the pair correlations functions that appear in the noise of a Coulomb

blockaded quantum dot.

3.1 The Sedlmayr-Yurkevich-Lerner method

Keeping only the charging term in the universal Hamiltonian [14] of a zero dimensional

system our Hamiltonian takes the form

E. /- 2
H=Ho+ =" (V-n,) (3.1.1)
Where
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Figure 3.1: The interaction Keldysh contour.

is the Hamiltonian of free electrons in a random potential, due to electron motion, V, N is
the number operator and e, is the neutralising background charge (governed by the gate
voltage, V;). This system can also be described in terms of its action S| = Sy[¢] + Se[]

given by

2

Solt] = /Kdt/dm(r, 0o -uee), é=L 1v-g (3.1.3)

sc[w]——% /K GNZ(D),  N(t) = / dri(r, (). (3.1.4)

where K is the interaction Keldysh contour [37], see Fig.3.1. To calculate the observables
of the system we start from the definition of the Green functions in the functional integral

formulation in the Keldysh technique
WGt 1) = 271 / DEDY(r, )i, )] (3.1.5)
where

7 = / DY DipeS], (3.1.6)
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is the partition function. In the zero-dimensional regime we can expand the Grassmann

fields in terms of free electron eigenfunctions ¢, (t) and ¢,(t) that depend on time only,

rt) = an(r)cn(t), 5%(7”) =&an(r), &n=¢en— i (3.1.7)

We can now rewrite the Green function as

Glr, t;r' ) = Zz/;n U ()G (t, 1), (3.1.8)

Since we are considering the quantum dot as a zero dimensional object the two positions r

and " are indistinguishable so the observable quantities can be found from

G(t,t) E/der ot ) ZG (t,t) (3.1.9)

To be able to calculate the Green functions we have to decouple the charging term in the
action and make it quadratic. This is done by the Hubbard-Stratonovich transformation by

introducing the identity

E, '
L= %/dqbexp (_%¢Eic¢> , (3.1.10)

and we make a shift in the bosonic field ¢ — ¢ + iE.N to rewrite Eq.(3.1.10) as

_ E. U 9 . E.
1= QW/dgbexp( 3F. i“¢N + 5 N ) . (3.1.11)

Multiplying the Green function by eq.(3.1.11) we obtain a quadratic form of the Green

function

J DO [ DYDYy (#) i ()14
[ DpeiSeldl [ DypDypeiSw.dl ’

iGo(t,t) = (3.1.12)
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where we have split the action into two parts. One that contains both a fermionic and

bosonic part

Sold, n, n] = / (1) [0, — i — E1] en(t), (3.1.13)

K

and one contains a purely bosonic part:

S.lg = —2}196 /K dto3(b), (3.1.14)

where K is the interacting Keldysh contour, see Fig.3.1. We now have an action that is
quadratic in the fermionic fields so we can integrate them out and leaving only the bosonic

part to be solved. In the previous chapter, see eq. (2.4.6), we proved the following identities

Zy* / De, Deye’ Jic denlidetelen(t) - — 1 4 et e dtelt), (3.1.15)

ZO1/DEnDcncn(t)En(t’)eifKdt"’"[iét*‘p}c’l(t) = sgn(t,t')et Jo e, (3.1.16)

Using these identities we see that after doing the fermionic field integrals we can write

eq. (3.1.12) in the form

Goltt) — _isgn(t, ) / Depel Jir dr(=€n=id(n)) (iSld] H (1 L det(—iqﬁ(t)—En))
Z m#n
sgn(t, t' o :
_ _% / Dtttz (4)eiSI9l (3.1.17)
where
7 = /DgzseiSWE(gbO). (3.1.18)

Here we have defined the grand-canonical partition function, Z(¢y), and the grand canonical

partition function with the n-th level excluded, Z,(¢g), with energy levels in both shifted
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by the charging effects:

[T (1 +e %ty =,(00) = Z(eo) (L+e %) (3.1.19)

m

Z(¢o)

where

Po = /K dto(t). (3.1.20)

It is now convenient to expand the grand canonical partition functions in terms of the

canonical partition functions

> . do . .
= — E 7 (Bi4-¢o)N T — f —iNO | | 1 —Be+i0 3.1.21
(¢0) Foawd NE€ ) N 271'6 . ( +e ) ) ( )
s . do . ,
- _ (Bii+¢o)N _ —1NO —Be+i6
En(¢o) = NEZOZN(en)e AN 7 () —7{—27Te m|7ﬁ|n(1 +e ). (3.1.22)

Inserting the canonical partition functions into the Green functions in eq. (3.1.17) we obtain

Gn(t,t’> — _M Z /ngeff, dr(—ié+¢(7))
N=0
do _. . _ .
%%B—ZNG ];;[ (1 + e—ﬁém-‘rl(ﬁo) 6(,@#+¢0)N€ZS[¢O]

_ isgn(t,t) d BN
- =) ]VZ_:()ZN(gn)eu (3.1.23)

/cheff/ dr(—ig+¢(7)) i [k dT(—’i(ﬁ(T)N—ﬁcqg(T))‘

We now just have to make the bosonic field integral Gaussian. This is straightforward to do

if we define the order of the time components ¢ and t’. For the TDoS we are interested in
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G~ and G< so we define

GS(t,t) t' >t
Gt,t) =) Gult,t) = (t.) : (3.1.24)
n G>(t,t) t>t

the time ordered Green function. Let’s start with the G~ and we complete the square
i N
Gitt) = —5 3 Zuee™
N=0
X /D¢€Z IK dT(_i¢(T)N—i(9(T—t/)—G(T—t))(_Z‘§+¢(T))_ﬁc¢2(7_))

_ _% Z ZN(gn)eﬁN(ﬁf%NEc)efi(t*t/)(@FEcNJr%) (3.1.25)
N=0

" /nge‘m@c Jic dr{@(r)HiE(N+(0(r—t) =0(r—1)}*

Then we can now easily do the ¢ integral since it is Gaussian and we then take the Fourier

transform and obtain

Goe) =~ D Inlen)e 6t [agleso )
N=0
. [o¢] _ L E

— _% Z Zn(en)e®N (A=2NE) § (g —¢— E,N — 7) (3.1.26)
N=0

= —% Z Zn(e— QN)e’ﬁEN(S(g —&n—Qn),
N=0

where
B 9 . 1

The calculation for G< is identical but we will instead use a trick to get it from the greater
then Green function instead. In equilibrium we know that G5 (g) = —e PG> (¢). But in

the Coulomb blockade regime both of these functions are very sharp so it is not a very good
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relationship to use. Instead we use that Zy = Zy(g,) + e " Zy_1(e,) which follows from

egs. (3.1.21) and (3.1.22). After a straightforward transformation we arrive at the result
Gole) = —— Z Zn(e = Qn_q)e PENBEmg (e — e —Qny). (3.1.28)

The formal definition of Zx(e,) is

Zn(en) B Try (cnc};e’ﬁHO)
v Trye bBHo

=1— Fy(ep), (3.1.29)

where Fy(g,,) is the distribution function of a system of N non-interacting electrons. Now
we can average over disorder simply by replacing the mean TDoS of non-interacting electrons
v, with ) 6(e —e, —Qn), with the assumption that the TDoS is smooth in any realisation
of disorder, which is valid when the mean level spacing is much smaller then T. We now

obtain

21Ty

G”(e) = D e PN (1= Fy(e — Q). (3.1.30)

Z

Since the number of electrons is large, N < 1, the distribution function is approximatively
the same as the Fermi-Dirac distribution function f(e — Qy) with the chemical potential
of order N¢, which is negligible compared to £25. This gives the final form of the Green

functions of the dot,

G (e) = —2”2”0 Ze*ﬁEm e —Ow)), (3.1.31)
27”/ 2D e (f(e = Q). (3.1.32)

N

The TDoS can now be obtained from the standard relationship

V() = o L (GR(e) - GA(e) = - L (G (e) - G<(e)). (3.1.33)
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Figure 3.2: The dependence of the TDoS on the energy, measured in FE,, is plotted in three
different regions: (a) in the valley, (b) through an intermediate region, and (c) at the peak.
Taken from [1]

Substituting the Green functions egs. (3.1.31) and (3.1.32) into eq. (3.1.33) we obtain

ve) _

% Z e PEV (f(e — EJ(N —1/2 = N,)) +1— f(e — E.(N +1/2 = N,))) (3.1.34)

We keep the leading order terms in the sum over N since all other terms will be exponentially
suppressed,
v(e) Ule—Qn)+ePulU(e - Qni)

= 3.1.35
120 1+ 67&;“ ’ ( )

where we have defined U(e — Qy) = f(e — Qn_1) + 1 — f(e — Qn). In figure Fig.3.2(a)
we are away from the degeneracy point and we are down in the conductance valley. At
this point the e #% term is suppressed so we only get contributions from one of the terms
in eq. (3.1.35), this give us the gap that we see in Fig.3.2(a). This gap is them smeared
when we approach the degeneracy point when we get contributions from both the terms in
eq. (3.1.35), as can be seen in Fig. 3.2(b). At the peak of conductance the TDoS is finite for

all energies but shows a half gap at |¢| < E..
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3.2 The new approach

For the TDoS this approach works very well, but for the noise the bosonic field introduced
in the Hubbard-Stratonovich transformation cause problems. In the next chapter we will
discuss how this happens in detail. But in this section we will introduce a new method to
calculate the Green functions without doing a Hubbard-Stratonovich transformation. This
can be used to circumvent the problems caused by it when we calculate the noise in the next

chapter.

The starting point is to rewrite the universal Hamiltonian [14] by connect the tunneling
to a single level of the quantum dot and separate this level from the rest of the Hamiltonian

in the following way:

Ho = D &nn(t)dm(t), (3.2.1)
m#n
H(Ey) = %(N—Ng)Q, (3.2.2)

Ho = Eudidy(t) + QAN V() dn(t) + D tandn(®)car(t) + hoc.  (3.2.3)

Héead _ ngclkcak (324)
ak

The point of the Hamiltonian in this form is that we get two parts: one that depends on
the number of particles and one that depends on the distribution of the quantum dot. To
illustrate how this redefinition can be used we start from the definition of the Green function
of the dot:

Tr (e PHd,(t)di ("))
Tr (e=BH)

Ga(t, 1) = (3.2.5)

Since the term H(FEy) is the only term that depends on the number of electrons on the dot

it will commute with the rest of the Hamiltonian and we can use the properties of the trace,
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ie. Tr(X ®Y) =Tr(X)Tr(Y), and pull the interaction term out front. Using the result

that
Tr(e PHEN)) Z e PEN, (3.2.6)
we can write the Green function of the dot as
Gn(t,t') = %Z e PENTry (e77M0) T, (e‘ﬂ(Héead+H”)dn(t)dL(t’)) . (3.2.7)
N

The first trace is a sum over all the levels except level n and this is equivalent to the canonical

partition function with level n removed, i.e.,
Zn(en) = Try (e7PM0) . (3.2.8)

In the second trace we can multiply and divide by the canonical partition function of a

resonant level model to obtain

Tr, ( BRI 1 H) g (t)d;g(t'))
TT‘ ( (Hlead+'H ))

ZRL = GRL(t,t,)ZRL. (329)

where Zg; is the partition function of the resonant level model and Gy, is the Green function
of the resonant level discussed in chapter 2. At this stage we see that we have succeed in
rewriting the problem as a resonant level model and the interaction plays the role of weights

of the different charge states. We can now rewrite eq. (3.2.7) in the form

/ 1 - /
Gun(t,1) = > e N Zy(en)Grit ) Zny, (3.2.10)
N
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where the partition function now can be written as
Z=) e "PNZyN(e) Zns. (3.2.11)
N

Using this form of the Green functions, we can now calculate the TDoS and compare this
to the results of Sedlmayr et al. [1]. The starting point is to neglect the off diagonal terms

of the Green function i.e. we define the retarded Green function as

GRe) =) _G.(o). (3.2.12)

This assumption is reasonable for a non-interacting system where this is simply equivalent
to resonant tunneling [13]. When we have a weak coupling to the dot resonant tunneling is
the regime where the average distance between the resonances, A, is much greater than the
width of the resonance. Only the level that is closest to the scattering energy is contributing

to the transport. The partition function of the resonant level model can be written
Z =1+ e Plentin), (3.2.13)

We now split the Green function into the two situations where the nth level is either empty

or occupied.

GRe) = Z% {Z Zn(en) (e PENGR (2, Qn) + e PENTFIGR (o) QN))} , (3.2.14)

N

n

where

Z=Y Zn(e) (PPN 4 e PENnEN)) (3.2.15)
N
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We remind the reader about the relationship between the energy of N and N + 1 electrons

on the dot

Ens1=Ey+0,, (3.2.16)

where we have defined d, = 2y — . We tune the gate voltage near the degeneracy point
which means that the energy is the same for having N or N + 1 electrons on the dot. All
other electron numbers of the dot are exponentially suppressed, so these terms are neglected.
The Green functions have 4 terms in total since each electron number N or N + 1 has two
possibilities that energy level ¢, is empty or filled. The retarded Green function of the dot

can now be written

1
Gie) = Y 2 {e PG (e, QN 1) (3.2.17)
+ (14 e PEtNGR (e, Qn) + e PHGR (e, Qn11) } (3.2.18)
where
Z=(14+e")(14+e ). (3.2.19)

The standard resonant level retarded Green functions is given by [38, 34]

1

3.2.20
e—e¢g,— Oy +ily, ( )

G%L (57 QN) =

where T',, is the the tunneling rate for the resonant level. Inserting this into eq. (3.2.18) we

obtain the final expression for the retarded Green function

1 e~Pen
G = —
() ;Z{e—sn—QNl%—iFn
1 + efﬁ(€+6l‘« 6766#
) 3.2.21
+ 5—6n—QN—|—iI‘n+5—5n—QN+1+z’Fn ( )
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Now we can do the same calculation for G4. Inserting the result into the standard definition

of TDoS, we obtain

e) = %(G%)—GA(@))

N ™ - 7 (€—€n—QN71)2+F% o
. Ta(leiont)) D
(5—€n—QN)2+F% <€—€R—QN+1)2+F%

In the limit we are interested in, I', <K A < T < F,. , we are allowed to approximate the

Lorentzian with a delta function,

1 T,
ey WAL Z(S — Q). (3.2.23)

Performing the sum over n and taking temperature smearing into account we can substitute
the sum over the delta functions with the TDoS of non-interacting electrons, 1, which is
valid when the mean level spacing, A, is much smaller then the temperature. Putting it all

together we can now write the TDoS in the form

,/(5) 1 6—5(8—91\1—1) 1+ 6—5(8—9N+5u) e~ Pou
V - 1 + e_ﬁéu { 1 _|_ e_ﬁ(E_QNfl) + 1 + e_ﬁ(E_QN) + ]_ + e_ﬁ(E_QNJrl)

} . (3.2.24)

Using the definition of the Fermi-function we can rewrite this in the more compact from

vie) Ule—Qn)+e P U(e — Qnia) (3.2.25)
vo 1+ e B ’ o

where

Ul —Qn)=fle=Qn_1)+1— f(e = Q). (3.2.26)
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Comparing the result to the one obtained by Sedlmayr et al. [1], eq. (3.1.35), we see that
we have successfully reproduced the correct result of the TDoS in the vicinity of the peak of
conductance. We will now use this technique to calculate the noise in a Coulomb blockaded

quantum dot in the next chapter.

3.3 Conclusion

In this chapter we have developed a new method to calculate the TDoS. We have compared
to and found a complete agreement with the result rigorously derived by Sedlmayr et al. [1].
We have now built the foundation necessary to tackle the much harder question about noise

in a Coulomb blockaded quantum dot.
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Chapter 4

NOISE IN A COULOMB BLOCKADED QUANTUM

DOT

We have now reached the core chapter of this thesis where we will calculate the noise power
spectrum in a Coulomb blockaded quantum dot. As we discussed in the introduction and in
the previous chapter there are a number of different parameters that describe the quantum
dot. The key parameters that are of interest in this chapter are the charging energy FE.,
temperature T, applied bias eV = u; — ueo, level spacing A and level width I' =Ty 4+ I's of
the quantum dot and the tunneling rates T',, = Tug|to|?>. All these parameters give a large
number of different regimes and some of them have already been studied. We will start by

discussing the current state of the literature on this topic.

In the zero bias regime the noise follows the fluctuation dissipation theorem, S(0) = 4kTG,
where G is the linear conductance. In the coming examples we set 7" = 0 and will focus on
the dimensionless Fano factor in the zero frequency limit, f = S(0)/2el. Without interac-
tions the noise follows Poisson statistics and the Fano factor is 1. In the large bias limit,
E. < eV, the quantum dot can be viewed as two tunneling junctions in series. In this limit
the Fano factor is given by [41, 42, 43]

:G%+G§

f cz (4.0.1)
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where G = G1+Gy with G, = me?vyyy|ts|?, with vy the bare density of states of the leads and
vp the density of the dot states. This implies that the noise is suppressed below the Poisson
statistics value and we have a Fano factor in the interval, 1/2 < f < 1, with the minimum
for a symmetric coupling to the leads, G; = G3. The low bias regime A < eV < E.
is normally treated using the so called single particle “orthodox” theory. It is a method
based on a classical master equation approach. The assumption necessary for this approach
is that A < eV. The Fano factor in this limit at the peak of conductance is given by
42, 43, 44, 45, 46]

f= @ (4.0.2)
where v = v; 4+ 7 and
" o= % AL (1,N)|, (4.0.3)
Vo = %|A_(2,N +1)|, (4.0.4)
with
Ai(a,N)=E(N £1)— E(N) F ptq. (4.0.5)

So in our model, when we apply the bias voltage symmetrically around the dot, the Fano
factors in eqgs. (4.0.1) and (4.0.2) are identical. In the limit of very low bias I' < eV <« A
the spectrum of the dot is now discrete. In this limit the single-particle picture still applies

and a master equation approach is used in [47] to calculate the Fano factor

TP +T3

f T (4.0.6)
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In this chapter we will calculate the noise in the Coulomb blockaded regime using a full
quantum treatment of the problem in the Keldysh technique. The motivation for this is
that around the peak of conductance the charging levels are degenerate and interacting. It
is therefore not clear that the classical master equation approach will work for this situa-
tion. This work will give an answer whether or not the master equation approach gives a
reasonable result and we will also be able to study the intermediate region in between the

low bias regime and shot noise regime.

As a starting point we begin by calculating the current and the conductance. This will
be useful for the checking the noise in some standard limits. Next we show why a naive
extension of the method developed by Sedlmayr et al. [1] doesn’t work for the noise. We

then go on to calculate the noise using the new approach developed in section 3.2.

4.1 Current and conductance
We start from the universal Hamiltonian [14]

H:Ho+% (N—Ng>2. (4.1.1)

Here H, is the non-interacting Hamiltonian of the electrons confined to the dot in a random
potential. FE. is the charging energy of the dot, N is the number of electrons on the the dot
and N, is proportional to the gate voltage that is used to control the number of electrons
of the dot. To be able to drive the system out of equilibrium we attach two non-interacting

leads to the quantum dot and connect them through tunneling contacts

Ho=Y (tanclykdn + h.c.) . (4.1.2)

a,k,n
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Here CL i/ Cak creates/annihilates one electron with momentum k in lead o = 1,2 and
dL’k /dax creates/anhiliates a electron on level n on the dot. The parameter ¢, is the tun-
neling rate and we assume that it is independent of the momentum of the electron, £ and

what energy level, n, involved in the tunneling.

In this chapter we are interested in the strong Coulomb blockaded regime. This means
that the charging energy dominates over all other energy scales and we also require that the
temperature is greater than the mean level spacing, A, which in turn is greater than the
tunneling rate, I',. To summarise we are in the regime 'y, < A < T < E.. When we start
driving a current through the system we apply a bias voltage eV'. In this chapter we will not
put any restrictions on the bias voltage but we will mainly be interested in the shot noise
regime, T" < eV, which is the regime where thermal fluctuations are small and quantum

fluctuations the most important.

The definition of the current is

Io =i (tanch o + e (4.1.3)
n,k

In appendix A we derive the following standard expression for the current in the Keldysh

technique from [74, 75],

L=l [0 ({65 - (1= 210 (6*0) - G*E)}). (4.1.4)

o AT
where Iy = 2704 |tan|? and v, is the bare density of states for the non-interacting lead

electrons. We can now use the fact that we are in the strong Coulomb blockade regime where

the dot is not allowed to accumulate charge. Since we only have two leads we have current
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conservation, I; + Is = 0, which we use to remove the Keldysh component in eq. (4.1.4),

= T (e - ) (670 - 6e)
evpl'1I'y

o RSO RSACIERS (4.15)

where we have introduced I' = I'; 4+ I's. In the linear response regime we can also calculate

the differential conductance

. dl . Fng o (9f(5) V(g)
G = W = 62]/0 T / de (— e ) y_o (416)

—00

At this stage in the calculation it is clear that we so far have not needed the new ap-
proach derived in the previous chapter since we can insert the result from either of the two
egs. (3.1.35) or (3.2.25) above and we obtain the result without problems. So it is time to
take a closer look at where the old approach developed by Sedlmayr et al. [1] goes wrong

when we calculate the noise.

4.2 Why the Sedlmayr-Yurkevich-Lerner approach to
TDoS does not work for noise

In section 3.1 we calculated the isolated Green functions for a Coulomb blockaded quan-
tum dot. To make the action quadratic in the fermionic fields we performed a Hubbard-
Stratonovich transformation and made the fermionic fields quadratic at the expense of in-
troducing a bosonic field. In the single particle Green function case this doesn’t cause any
problems. But in the case of the noise we also have two particle Green functions and in this
case the bosonic field causes problems and the method becomes more or less impossible to
use. The reason for this comes when we have introduced the bosonic field and we now have

a quadratic action in the fermionic field. We can pull the integral over the bosonic fields out

61



front to use Wick’s theorem and split the two particle Green function into two single particle
Green functions. The problem that now occurs is that we don’t have two independent single
particle Green functions since the bosonic field couples the Green function together. More
problematic is that this also cause all the 4 times to be connected and when we have to
time order the 4 times over the Keldysh contour, the number of terms explodes. We also
have the problems that the standard single particle Green function relations are not valid
anymore. We now focus on using the new method we developed in chapter 3 to calculate
the noise instead. In this approach we don’t have to introduce the bosonic field to make the

action quadratic and we can therefore circumvent all the problems caused by it.

4.3 The Model

We simplify the universal Hamiltonian of a quantum dot in eq. (4.1.1) by connecting the tun-
neling to only one level of the dot. This level is then removed from the universal Hamiltonian

and treated separately. Putting this together lead to the following form of the Hamiltonian:

H = Ho + H(Exr) + M, + Hic, (4.3.1)
where
Ho = Z fdin(t)dm(t)v (4'3‘2)
m#n

is the kinetic part of the dot with level n removed. The charging term

H(Ey) — %(N’—NQ)Q, (4.3.3)

62



only cares about the number of electrons on the dot and not their configuration. Finally the

part of the Hamiltonian depending on n is given by

Mo = Eudldy(t) + QN )AL () dn(t) + D tamdh(t)car(t) + h.c. (4.3.4)

4.4 Noise

The first step in the calculation of the noise is the same in the interacting case as for the
resonant level in section 2.5. The resonant level result will also be part of the interacting
system calculation since we will succeed in writing part of the noise as a resonant level

model. We once again start from the current operator:
I;, =ie Z [tkczdn — tZdILck ) (4.4.1)
k

we suppose the index @ = L in the following and suppress it. In terms of the current operator

I;, the noise is now given by

S(t,t) = ({0Lu(t),61L(t)})
= ({Ie(t), 1L(t)}) — 2(I1)”

= (i) 3 [atileh (0 (0)cly () (1)) = it chdn(t)d] () (1)

kK

— titw (dhen(t)el () dn (1) + titp (dh () er ()] () ew (1)) | = 2(11)°, (4.4.2)
where

5T =T —(I). (4.4.3)
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The next step is to define the two particle Green functions:

Grom(t,t)) = —(Tcl(t)dn(t)ck, (') dm (1)), (4.4.4)
Gomm(t,t)) = —(Tck(t)dn(t)dm (') ew (t)), (4.4.5)
Gamm(t,t) = —(Td, () cr(t)cl, (#)dn (1)), (4.4.6)
Ganm(t,t) = —(Tdy(t)Ter(t)dm (t) er (1)), (4.4.7)

To be able to solve the Greens functions we need to make the approximation

D Gt t) =D Gnlt,t). (4.4.8)

As we argued in section 3.2, this assumption is reasonable for a non-interacting system. We
can now write the two particle Green functions in the same form as the single-particle Green

function in section 3.2,

(Tre*ﬁHc,z(t)dn(t)ck/ (t’)dn(t’)>

Gon(t, 1) = Tr (e—0H)

(4.4.9)

We see that E'y once again provides weights to the different charging states of the quantum
dot. Using the same method developed in the previous chapter we can now write the two

particle Green’s function in one resonant level part and one interacting part

1
Gon(€) = = %: e PPN 70 (62)Gri (e, On) Zgi, (4.4.10)
where
Z=) e "NZNZpy. (4.4.11)
N
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Using the same technique for all the Green functions, eqgs. (4.4.4)-(4.4.7) we can rewrite the

noise in the form:

1
YN € PENZpr(en, QN)

S(0) = > e Zii(en) S (g0, Q). (4.4.12)

This makes things much simpler since we can now use the results from section 2.5 about the
resonant level noise with small modifications. Assuming that we are in the vicinity of the
peak we can truncate the sum over N to the two terms closest to N; + 1/2, and all other
terms will be exponentially suppressed. After this truncation we can write the noise in the

form

1
S(0) = Z 7 {e PSR, Qny) + (14 e ety SRE(2 Q)

+ e PSR (e Qnp) ), (4.4.13)
where the partition function is now given by
Z=(1+e"")(14e ). (4.4.14)

Using the definition of the Fermi functions we can now write the noise in the much nicer

form

5(0) = Zﬁ{f(an)SnRL(oaQNl) (4.4.15)

+ (1 — f(ffn) + G_BQNf(Sn))SnRL<O, QN) + 6_6QN(1 — f(gn))SnRL(()) QN+1} .

Here S, pr, is the standard result for the noise in a resonant level that was derived in section

2.5,

Sune(0.03) = 2% [ {1~ 0D + FaE)(1 ~ Fal&)] Tules )
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+ [fu(e) = fr(E) Tule, Q) (1 = Tole, ) } - (4.4.16)

In eq. (4.4.15) the strength of the method becomes clear since we can easily see the origin of
each terms in the noise. In the first term we have the configuration of the dot that level n is
occupied and we have N — 1 electrons on the remaining levels of the dot. In the second term
we have N electrons on the dot if we don’t count level n, we therefore have two situations
for level n, it can be either empty or filled. If it is filled we get a N+1 electrons on the dot
and therefore this terms get the weight, e #?~ . The empty n level get the weight 1. Finally
we have an empty level n and N + 1 electrons on the remaining of the levels. Now that we
have a full expression for the noise we need to take a closer look at the tunneling rates to

see if we can simplify the noise expression. We start with the linear term

> Tu(e,Qv) = Tila Y Glp(e,Qn)GigL(e, Q) (4.4.17)
I
= IF 227T;V7LRL(€,QN), (4418)

where

;VnRL(@QN) = %; (6 e, — g}{j F/Q 25 — QN) = 1. (4419)

In this approximation we write the Lorentzian as a delta function which is valid, if I" is
small, ' < A < T' < E,.. Substituting eq. (4.4.19) into eq. (4.4.18) we now find a simple
form for the tunneling rate

41
r

D T(e, Qn) = 27wy (4.4.20)

We now evaluate the quadratic term in a similar fashion

S (Tule, n))? = (F FQ) 22 (nrr(£.08))7, (4.4.21)

n
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Here the square density of states can be written in the form

1 (I'/2)*
2 (e~ en — Q) + (T/2)?)°

D (nre(e08))* =

n

I 2 1 d 1
- (5) R/ 2 (=2, = )+ (/2P

N1 d 2
- ~(2) marmer Lo -a -

1
= —. 4.4.22
I/O’]TF ( )

Comparing this result to eq. (4.4.21) we otain the relation

D (Tu(e. ) = 47w0(rlrl;2> :2(F1££2>2Tn(g,QN). (4.4.23)

n

From this relation it is also clear why there are potential dangers in just expanding to t?
order and throwing away all other terms. Since terms that appear to be of t* can in fact
be of t due to eq. (4.4.23). Inserting eqgs. (4.4.16), (4.4.20) and (4.4.23) into, eq. (4.4.15),
we obtain the final form of the noise we calculated in the previous chapter and where

U(E — QN) = f(ff — QNfl) +1-— f(€ — QN)

5O = 202 [ a2 (00— f0) + IO~ fale) + () - Fale)]
NIy

- 2
r

11(6) = )} (4.4.24)

To obtain the tunneling density of states

Ve _ Ul — Q) e PO (e — Q) (4429
0 o 1+ e*ﬂ(QN*H) ’ o

we use the delta functions ) d(e — e, — Q) and combine them with the Fermi function

depending on ¢, in eq. (4.4.15). The Fano factor, f = S(0)/2el, can now be expressed in
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the general case as

a2 @0 - i) + fR<a><1 - fR<a>> +(fule) - fale)? (M
[ =42 (£1(6) = fale))

>}.(4.4.26)

We will start by looking at the noise and the Fano factor in two simple limits 7' = 0 and

V = 0. We start with 7" = 0 where the noise takes the simple form

S(0) = zeﬁyorlrF2 / d5”<5){{(fL(g)—fR(e))2 (rf;rg)”. (4.4.27)

%)

At zero temperature we can approximate the Fermi function with a unit step function and

using that (0(z) — 6(y))? = 6(x) — O(y). We can now write the Fano factor eq. (4.4.26) as

2 +r13

f==5 (4.4.28)

This is the standard result obtained in the shot noise limit at using the two state approxi-
mation in the orthodox theory [42, 43, 44, 45]. In this limit the noise is always suppressed
below the Poisson value, 1/2 < f < 1, with the maximal suppression taking place in the
symmetric dot, i.e. I'y = I'y. Next we look at the zero bias limit of the noise where we only

have thermal noise. We start by writing the noise in this limit in the form

S(0) = ze%% / de%){[ﬁ(a)(l—h(s))+fR(s)(1—fR(e))]}. (4.4.29)

When we applied the bias voltage we did it in the form eV/2 on the left and subtracted

eV /2 on the right so that we can write the fermi functions as

fi(e) = % %tanh (5(8 - (M;_ eV/Q))) : (4.4.30)
fr(e) = % %tanh (ﬁ(g — <N2— eV/2))> : (4.4.31)
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The noise in equilibrium, i.e. when eV = 0, reduces to

5(0) — GZVOF}FQ/%%O@) (1—tanh2 (%))

_ %VOF}FQ / dsyii) (—8];(;)), (4.4.32)

which is exactly the fluctuation dissipation theorem, i.e. S(0) = 4kTG, where G is the
conductance. We see that in these two simple limits the standard results are reproduced,
we now take a look at the general case. Inserting eqs. (4.4.25), (4.4.30), and (4.4.31) into

eq. (4.4.24) we obtain the full expression for the noise

rr
S(0) = 2e%y }Q/dg

3 B(Su
1 33, tanh (%) — tanh <T>
X ¢ 1+ —tanh

2 1 — tanh (%) tanh %)

2
1 tanh (%) — tanh <B(6”+EC)

2

oo () o (2522) s
1 — tanh ( 5 ) tanh (ﬂ(‘s“*Ec)> h

X{lll tanh? (£) — tanh? (% ))]

1 — tanh? (%) tanh? (
_ 2 (pe 2
WDy tanh (56‘/) 1 —tanh (2)
4 1 — tanh? (%) tanh? (’BZV)

This general expression is to complicated to simplify analytically, so we will investigate a
couple of limits and then plot the Fano factor at the peak of conductance, 6, = 0. We start
by writing the current by substituting A = tanh(5eV/4) and x = tanh(fe/2). We can write

the current in the form

1
I= eF1F2/ gl A (4.4.34)



where we have written the TDoS in the form

1 S x — tanh ( )
—V(x) = 1+ —tanh <ﬁ “) ’ (4.4.35)
Yo 2 2 1 — z tanh (%)
1 x — tanh ( 5“+EC > x — tanh (6(5“2_&))
+ — e P
2(1 + 6_56H) 1 — 2 tanh <18(6,U«+EC)> 1 — rtanh </3(5M;Ec)>

We can now write the full expression for the noise in the form

T e
S0) = 25w /1d:ryo

1 1+ A2 F1F2 1-— ZIZ'Q
- -2 A? . 4.4.
8 {2 {1 - x2A2] 2 | (1= a2A2) (4.4.36)

4.4.1 At the peak of conductance

Our original motivation for using this full quantum treatment of the noise was to check if
the master equation approach was this valid at degeneracy point where the charging levels
are strongly correlated. We will in this section calculate the Fano factor at this point in the

shot noise regime and compare this to the master equation result [47],

3 +13
f= 1r2 2, (4.4.37)
At the degenarcy point, i.e. §, = 0, the TDoS take on the much simpler form
1 —F E
ve) =14z {tanh <M> — tanh (M)] . (4.4.38)
2 2 2 2

Inserting eq. (4.4.38) into eq. (4.4.36) we obtain the noise as

2 1 _ BEc BEc
5(0) = QQVOPIFQ/ i L[ tanh ( 2E) @+ tanh ( 2E)
1 2 \1—aztanh (%=) 1+ ztanh (222)
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Figure 4.1: Fano factor at the peak of conductance with the thermal noise removed as a
function of eV/T the lower curve is for I'y = I'y and the upper is I'y = 10T'5. In both cases
we have chosen the charging energy in units of temperature as, E./T = 100.

1 1+ A2 F1F2 9 1-— $2
{5 {m} i YAy } (4.4.39)

We start by plotting the Fano factor in Fig.4.1 for different two different couplings to the

leads. In the shot noise limit, T < eV, we obtain the expected 1/2 for a symmetric coupling
to the leads, I'y = T's. In the shot noise limit A = tanh(Bel//4) — 1 so we take the
asymptotic limit and insert A = 1 in the expression for the noise and the current at the
degeneracy point and we now see that the Fano factor in this point is

TP+ 13

f = (4.4.40)

The master equation give the correct result also for these strongly correlated levels, so the
master equation is valid both in the valley of conductance and at the peak of conductance in
the shot noise regime. The strength of the full quantum treatment is that we can calculate

the noise for any value of the bias voltage.

4.5 Conclusion

In this chapter we have used the method developed in chapter 3 to analytically calculate

the noise in a Coulomb blockaded quantum dot. We obtain an exact solution valid in the
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parameter range A < T < E, as a function of distance to the peak and bias voltage. In
equilibrium we recover the fluctuation dissipation theorem and at the degeneracy point the
Fano factor is suppressed to 1/2 compared to the Poisson value (if the coupling to the leads

are symmetric).
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Chapter 5

BOSONISATION

We will in this chapter move to one-dimensional systems. One can easily realise without
calculations that these are systems where interactions are important. The reason for this is
simple, in one dimension as electrons cannot propagate through the system without push-
ing other electrons due to electron-electron interactions. Therefore no individual motion is
possible and any individual excitation has to become a collective excitation. This is very

different from higher dimensions where almost free quasi particle excitations are possible.

The early contributions to bosonisation were done by Tomonaga [48] and Luttinger [49]
who introduced one of the first exactly solvable models in one dimension. It was later solved
by Mattis and Lieb [50]. Other important contributions to the basic understanding of 1D sys-
tems was made by Dzyaloshinskii and Larkin [51], Efetov and Larkin [52] and Haldane [53].
The foundation of modern bosonisation, also known as the operator approach, started with
the paper by Haldane in 1981 [53] where he proved rigourously how to construct Fermion
creation-anihilation operators out of Bose ones. In this paper the concept of a Luttinger
liquid was also coined and an interacting four-fermionic part was diagonalised in the bosonic

description.

There are today several flavours of bosonisation and a number of good reviews [54, 55, 56, 57].
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ke

Figure 5.1: In the left figure we see an illustration of a simple particle hole excitation where
we move one particle from below the Fermi energy to above. The excitation energy for this
type of excitations is illustrated in the right hand figure and we see that for low energy and
momentum the spectrum is linear. Taken from [55]

We will work with the version developed by von Delft and Scholler [54] also known as con-
structive bosonisation. In the remaining of this chapter we will start by diagonalising a
generic interacting model of spinless fermions by rewriting them in terms of bosonic oper-
ators. This will provide a good introduction to why and how bosonisation work but to be
able to calculate the correlation functions in the next chapter we also need to introduce and

prove the identities for the fermionic operators described by bosonic operators.

The basic idea of bosonisation is that particle-hole excitations are bosonic in character
and that most of the low lying excitations can be exhausted from these excitations. The
reason for this is simple: If we take a look at Fig. 5.1 a particle-hole excitation is illustrated
in the left hand figure and £ is measure from the Fermi level, kr. In the right of Fig.5.1
wee see that this excitation has a linear spectrum. Because of this linear one-particle dis-
persion near the Fermi-level, the pairs have a narrow quasi-particle like dispersion near zero
momentum, they can propagate coherently. This means that the particle and the hole have
nearly the same group velocity and can propagate together. Any weak particle-hole attrac-
tion is bound to have a dramatic effect, i.e. bind the particles together into a coherently

propagating entity: a new particle that will behave as a boson.
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Figure 5.2: In two dimension the picture is very different and we see that it is possible create
an excitation with momentum k that has a continuous spectrum of energies starting from
zero. Taken from [55]

In higher dimension the situation is very different. For example in two dimensions we
have a circular Fermi surface, illustrated in Fig. 5.2, which implies that a particle-hole pair
with momentum k can have a continous spectrum of energies, starting from zero. Thus,
the particle-hole spectrum is a continuum throughout and interactions have a harder time
forming coherently propagating particle-hole pairs. All this implies that we can’t construct

a theory where we can rewrite fermionic fields as bosonic fields in 2D.

5.1 Some basic properties of fermions and bosons

Before we start introducing bosonisation we will start by introducing some basic properties

of bosons and fermions that will be of importance later in this chapter.

The prerequisites that all the fermion creation and annihilation operators have to fulfil
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to enable us to bosonise the theory, is the canonical anti-commutation relations

{CIW?’ 011;’17’} = 5777]'514716’7 (511)

where k is the unbounded momentum index, k € |00, 0], and n = 1,2,--- M is the species

index. The momentum index has the discrete form

2m 1

with ny, € Z, 8, € [0, 2) determines the boundary condition and L is the length of the system.
Where the simplest cases are 9§, = 0,1 for periodic and anti-periodic boundary conditions.
Starting from a given set of creation and annihilation operators that fulfils egs. (5.1.1) and

(5.1.2) we define the fermionic field operators as follows:

o 1/2 k=00 ‘
Yp(z) = (f) Z e e, (5.1.3)

k=—o0

with the inverse

1 b2 ikx

~L/2
Given a set of given discrete k’s, the field operators satisfy the boundary condition
Yz + L)2) = ®ip(x — L)2), (5.1.5)

The vacuum state |0)g is defined as the state that fulfils the relation

éen|0)o =0 for k>0, (5.1.6)

&0 =0 for k<O0. (5.1.7)
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So all states up to the Fermi level are filled and all above are empty. A function of c;rm /Cn
operators is normal ordered, denoted : :, with respect to the vacuum state if we move all

operators cg, with & > 0 and czn with £ < 0 to the right of all other operators so that
: U e — o0 .0 ol
: ABC = ABC 0<O|ABC |0>0 for A B,C e {Ckm Ckn}' (518)

We now define the number operator, N,, that counts the number of electrons relative to the

vacuum state

o0 oo

Z : CLann = Z clnckn - 0(6|anc;m|6>0. (5.1.9)

k=—00 k=—o00

Ny

The set of states that have the same Nn—eigenvalue, N = (N1, No, -+, Ny) € Z, is defined
as the N particle Hilbert space, H . This space contains an infinite number of states that
correspond to different configurations of particle-hole excitations. A general state in this
space will be denoted |N) while the ground state in this space is the state, |N)o, that
contains no particle-hole excitations and therefore is lowest energy state. This state is

defined as follows:
[N = (C)M(Cy)™ -+ (Car) [ 0)o, (5.1.10)

where

CNynCNy—1° " C1y for Ny >0
(Cy)" =11 for N, =0 - (5.1.11)

CNynCNy—1,n * ** C1,y for Ny <0

From this ground state we can create all other states through particle-hole excitations.

For this purpose it is sufficient to consider the following bosonic creation and annihilation
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operators.

AT = AT o 7 = —i AT ~
by = > Z};Clﬂrq:nck”’ bey = o >k ChgnCrny @ >0, (5.1.12)

We now have the necessary tools to prove some properties of the operators qu /bag and we

start by the commutation relation for two operators on the same branch

oo

1
T T T
[bqnv bt]’ﬂ] = 5,777/ k:z:oo m <Ck+q—q’,nck77 — Ck+q,nck+Q’y77> . (5.1.13)

We now have two cases ¢ = ¢’ and ¢ # ¢’. In the case when ¢ # ¢ both of the terms in
eq. (5.1.13) are normal ordered and no subtleties can arise when we shift k£ — k — ¢/ in the
second term to cancel out the two terms. When q=q’ we have to be more careful and first

we have to normal order the two terms

= 1
[bqn,b:;n] = Oy Ogq Z - { (: cznck,, P— chqmckJrq,,, :) (5.1.14)

k=—0co0 4

+ <0<0|C£nckn‘6>0 - 0<6|Cz+q,nck+qn|6>0>} .

The first terms are now normal ordered so we can now cancel them out. From the definition

of the vacuum in egs. (5.1.6) and (5.1.7) we obtain

—ng .
[bqn’b; 77] nn’éqq ( E : § ) Oy Oqq n —Ng = Oy Ogq - (5.1.15)
q

nj=—00 nj=—00

It is also straightforward to prove that the Eqn and Bgn obey the remaining commutation

relations

[l;qn,l;qn] [l;qn,b;n]—O for all ¢,q,n,7, (5.1.16)
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[qu Bq’n’] = [-/\A/’qna BZW]'] for all ¢, q,a 77777/a (5'1'17)

where A is the number operator.

From eq. (5.1.10) it is casy to verify that |N)y serves as a vacuum state for each N in

N -particle Hilbert space, H g for the bosonic excitations
bgy|N)o =0 for all q,n. (5.1.18)
We can now define normal ordering also for bosonic operators
tABC -+ := ABC -+ — o(N|ABC---|N)y for A,B,C,--{by, bl }. (5.1.19)

It is obvious that every state in H g can be created by acting with a bilinear combination
of fermion operator |N) = f (c,tm, ckn)\ﬁ )o. It is much les obvious that the same is true for

bosonic operators but in fact there exist a function f(bt) for every |N) such that
INY = f(b1)|N)o. (5.1.20)

We will not prove this highly non-trivial statement here but the interested reader can consult

[54).

5.1.1 Bosonic fields

When we bosonise the fermionic operator 1, (z) later in this chapter the bosonic field we will

introduce in this chapter will be extremely useful. We start by defining the bosonic fields

1 )
o(x) = —Z e, e /2, (5.1.21)
q>0 nq
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1 .
cpjy(x) = —Z—equbzne_QQ/2, (5.1.22)

q>0 q

and their Hermitian combination

by = y(z) +oh(x) ==

n
q>0 q

(e—iqqun + eiqxb:fm) e—a4/2 (5.1.23)

Here a is a mathematical regularisation parameter that is useful to prevent ultraviolet di-
vergent momentum sums that occur in non-normal ordered expression and commutators.
Using these definitions we can now write the normal-ordered electron densities using these

bosonic operators

21 —iqx
pn(z) = wg(x)zﬁn(x) = Ze a Z : Cl—q,nckn ; (5.1.24)
q k

27 . —iqx qx 27

= T2 iV (€7, — €™ bjm) + T Z ; CLan:n : (5.1.25)
q>0 k
2T -

Op () + an, (5.1.26)

where the last equality is valid if we insert the a — 0 limit in eq. (5.1.23). The bosonic fields

obey the commutation relations

[on(x), 0 ()] = [@l(x), ) (2")] =0, (5.1.27)
and
t oo 1 —dlie—a)+a)
[on(@), 05 ()] = Guyy p_—e (5.1.28)
¢>0 9
= Syl (1—6*12%[(9:%'1%1) (5.1.29)
5, (z’z%[(x—x/)—m]), (5.1.30)

where the last limit is valid when L — oo.
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5.2 Luttinger model

It is now time to introduce the Luttinger model which is one of the basic and most important

1D models for interacting electrons

H— / dai () <—%@ - u) () + % / doda'V(z — 2)p@)p).  (5.2.1)

Where )t /i) are the standard creation/annhiliation field operators, p(z) = 9’ (x)i(z) is the
electron density operator and finally V' (z — 2') describes the electron-electron interaction.
In one dimension we have two Fermi points, &k, and near these two points the parabolic

spectrum of our generic model can be described as linear

e(k) =vp(k—kp), around k = kp, (5.2.2)

e(k) = —vp(k+ kr), around k = —kp. (5.2.3)

The first step towards the Luttinger model is to linearise the spectrum. This provides a good
approximation around the Fermi points but we add an infinite number of energy states, see
Fig.5.3. Since the chemical potential is fixed this also means that we add an infinite number
of particles to the model. However as long as the temperature is less then the Fermi energy
the low lying excitations will be unaffected by states far away from the Fermi level. We will
now introduce the index R and L to distinguish between electrons which live on the left or
right moving branch. Right moving electrons count their momentum from the right Fermi

point and left moving electrons count it from the left Fermi point

CkR = Chp+k; (5.2.4)

ékL = é—kF—k- (525)
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Figure 5.3: Illustration of the linearised spectrum of the Luttinger model. In the darkly
shaded area in the negative energy sector we see the infinite number of negative states that
we added when we linearised the spectrum.

The original field operators can now be written

O(a) = hp(x)e™r® 4 i)y (z)e *r, (5.2.6)
where
R . eikx
Yr(x) = d CkRﬁ, (5.2.7)
e—ikx

(5.2.8)

and L is the length of the system. For the low lying excitations in the vicinity of the Fermi

points the fields ¥/, varies slowly on the scale of 1/kp. We can therefore throw away all

+2ikpx

the rapidly oscillating terms of the type e since they will only provide small corrections
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when they are integrated. With this assumption we arrive at the Luttinger model

- 0
H = ivp Z /dmbj,(x)n%gbn(x) (5.2.9)
n=R/L=+
1 / / ~ /
+= Z /dxdx Vix —a")py(z)py (2),
n,n'=R/L=%+

where p, = ¥} (x)dy(z), n = R/L = +.

5.3 Diagonalisation of the Luttinger model

We will now illustrate that we use bosonic operators to rewrite the interacting electron
Hamiltonian as a quadratic bosonic Hamiltonian. We start by writing the Luttinger model

in the form ‘H = Hy + H;,: where H, is the Kinetic part

—op Y ke, ¢
HO = Vfp kcknckn, (531)
k.n
and H;,; is the interacting part
m AT A At 4 N
Hint = 7 E V(q) {Ck+q,RckRCkfRCk’+q,R t Cht g, RCKRCly 1Ok —q,L

k.k.q

+él el e +eébenpdl, e (5.3.2)
k—qL“kLCk RCK +q,R k—q, LYk, LCk LCK —q,L (> e

of the Hamiltonian and V' (q) = (1/27) [ V(x)e"*. Next step is to introduce the operators

b:;n = \/Ln*q Zk éL-l—q,nékﬂ?’ q>0 (5.3.3)
bon = — = 2o Gy 4> 0, (5.3.4)

83



where ¢ = 27n/L and n, is an integer. In these operators the interacting part of the

Hamiltonian is quadratic

V(g =0)

o T T T
Hins = = S V(@)ny (8o + BLgbos = B} bl, — bosbyn) + (NL + Ng)?,

q>0

(5.3.5)

where Nj, and Ng are the number of left and right moving electrons. We have also omit-
ted the operator independent constant in the Hamiltonian. The fact that the Hamiltonian
is quadratic in these new operators is encouraging.This shows that the interacting part of
the Hamiltonian can be written in terms of bosonic operators that make the Hamiltonian
quadratic. The remaining question is whether we can write the kinetic part of the Hamilto-

nian in these operators. The starting point is the Hamiltonian

Ho=> M. (5.3.6)
n

where the Hamiltonian on each branch is

Moo = Y kel crn- (5.3.7)
k=—0o0
Since [Hon,Nn/] = 0 for all n,n" every particle ground state is an eigenstate to H,, i.e.

Hyo|N)o = EN|N)o. By simple inspection we see that the eigenvalue in the ground state is

Y = (N[HaolN)y = 22 St (n=0,/2) =GNy + 5Ny (1= 6)  if Ny >0
a0 — o =
P S == 0/2) = INZ 4 4IN |1 = 8) i N, <0

- %N,,(Nn +1-5). (5.3.8)
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We now note that the operator szm increases the energy of any eigenstate |E,) by q units.

This yields that
[Hyo, Y] = abh, 6, (5.3.9)
which implies
Haobb | Ey) = (B, + q)| Ey). (5.3.10)

Since the Hilbert space Hy is completely spanned by operators bfm acting on the ground
state | V)¢ it follows that H,( must have a representation purely in bosonic operators. From
egs. (5.3.8) and (5.3.10) it is clear that the only representation that fulfills both these con-

ditions is

Hoo = D @blyban + 7 Ny(Ny + 1 = ). (5.3.11)

g>0
We now finally have a Hamiltonian that only depends on bosonic operators and before
we find a Bogoljubov transformation to make it quadratic we neglect the constant term
in eq. (5.3.11) and the V(g¢ = 0) since these terms only contribute to processes that don’t
exist in the pure Luttinger liquid. It is backscattering processes turns left movers into right
movers and vice versa and this requires impurity scattering which we will treat later in this

thesis. So the final form of the Hamiltonian for the Luttinger model is

2mv V
H = LF Z Ng |:b:gquR + b:;quL + —U(;I) (b:;quR - b:f]quR - bleqL + blquL>} .(5.3.12)

q>0
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This Hamiltonian is quadratic in the boson operators me /by and we can diagonalise it by

the following Bogoljubov transformation

1 1

Bu= K% + \/g) (ber, F ber) £ (\@ - \/§> (bjIL ¥ b;R)] , (5.3.13)

where g = vy/v and v = vpy/1+2V (g =0)/vp. We can now write the Hamiltonian in

terms of these new operators in the diagonal form

2 fLon
H=v" > ) nyBl,By. (5.3.14)

v=% ¢>0

To summarise we have showed that it is possible to take a strongly interacting electron

model and rewrite it as a non-interacting bosonic theory.

5.4 Bosonisation identities

In the previous section we diagonalised the Tomonaga-Luttinger model, but to be able to cal-
culate correlation functions we have to be able to express the Fermionic creation/anhiliation

operators in terms of bosonic ones. From the definition of the operators

27T C —ikx
Py(x) = fk_z e M ep, (5.4.1)
and
7: o
byy = — Z CL_mc;m, (5.4.2)

it follows that

g, V()] = Spyyanthn(), (5.4.3)
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[b:g’q’ w”(@] = Oy iyh(), (5.4.4)

where o, = \/%e"‘qx. From the definition of the N-particle ground state, | V), it follows that

bgn|N)o = 0. Starting from the commutation relation eq. (5.4.3) we see that

[bqn’> d’n(@] IN)o = bqn’¢n|N>0 = 5nn/aq¢n(l‘)|N>o, (5.4.5)

from which it follows that w,(z)|N)o is an eigenstate of by, with the eigenvalue c,. This

implies that ¢, (x)|N)o has an coherent state expansion in the form [58]

Py (2)|N)o = exp <Z aq@)bgn) Foh|NYo = e %' @ E X [N, (5.4.6)

q>0

Where we have introduced Klein factors, F;,, that satisfy the commutation relations

[bqn,FJ,] = [bf FJ,] = [bgy, Fy] = [bl,), Fy] =0 for all ,77',q. (5.4.7)

qn’

Taking a careful look at what this actually implies, one can start by writing ¢, (z) in the

Fourier expansion form

Un(x) = (2%) " > e ey, (5.4.8)

k

Applying this to the state |N)o we create a infinite linear combination of states ¢, (z) =
(25) 12 S e " e | N)o. In the right hand side of eq. (5.4.6) F,, removes the top n-electron to
form the new state cy, x| V)¢ and we form an infinite linear combination of states by operating
with e=#'(®), The statement that these set of states are equivalent is highly non-trivial since
naively one would expect that the exponential e~ #'(®) would create a much larger set of
states. However exploiting the properties of coherent states eq. (5.4.6) guarantees that of all

the combinations of particle-hole states combined in e~ only those states contribute,
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when acting on cy,,|N)o, that fills its empty NV,-level by moving to the later a single 7-
electron from a lover filled state. Remarkably all other combinations (that would leave
a n-electron above N,) cancel out to zero. To evaluate the operator 5\77 we calculate the

expectation value
o(N[Efy(2)|N)o = Ny (@), (5.4.9)

where we have used eq. (5.4.6) for ¢, (z), commuted e='(*) past F,, and finally used o(N|e—i#'@ —
o(N| by eq.(5.1.18). If we insted use the Fourier expansion of v, (x) and insert it into
eq. (5.4.9) we note that neither |N)o nor o(N|F} contain any particle-hole pairs, we realise

that only terms in the sum with ny = N}, can contribute, i.e. k = 2T”(N77 — %55),

2 1/2 27 1
(N|Elpy ()| N)o = (f) et T (M=3d)e, (5.4.10)
So we can conclude
2 1/2 - 27 1
A() = (%) et T (M=38)e, (5.4.11)

The next step in the derivation of the Bosonisation indentities is to investigate the action
of 1, on a arbritary state |N) in the Fock space which by eq.(5.1.20) we can write as

IN) = f ({bjm,})|N ). Before we start we introduce two very useful idenities

U ({0l ) = 0L, — S (2) 1)y (), (5.4.12)

F{BL, = Sppas(@)}) = @ F({B] e, (5.4.13)
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We start by applying the fermionic field operator on a arbitrary state, |N), in Fock space

and then we use eq. (5.1.20) to obtain:

G@IN) = (@) F({Bl DN (5.4.14)
= F{Bhy — By (@) )y (@) [N (5.4.15)
= J{B, — Sa(@) e HO AN, (5.4.16)

where eq. (5.4.15) follows by inserting eq. (5.4.12) into eq. (5.4.14) and then we obtain eq. (5.4.16)
from eq. (5.4.6). We now use the commutation relations for the Klein factors eq. (5.4.7) to

move the Klein factor up front:

Uy(2)|N) = ﬂ%a%@ﬂwg—%wmwMNm (5.4.17)
= F e i@ et p((pl pyeten@| Ny, (5.4.18)
= Fyhe @ et p((ph 1IN, (5.4.19)
= FAe o @emien@)| ). (5.4.20)

Eq. (5.4.18) follows from eq. (5.4.13) and next we use the definition of the vacuum state,
eq. (5.1.18), to see that eq.(5.4.18) can be rewritten into eq.(5.4.19). Finally eq. (5.4.20)
follows from eq. (5.1.20). Since |N) is an arbitrary state in Fock space these formulas, also

known as bosonisation formulas for ¢,, hold as operator identities in Fock space valid for

all L.
Up() = Fphye i#h@emien@ (5.4.21)
27T 1/2 - 27 N 15 . ;
- F, (f) e~V (Ny—=30p)z ,—ipn(x) o —ipn(z) (5.4.22)
_ Fna_l/ge_i%"(N7]—%5b)$6—i¢n(1’) (5423)
— Fna—l/Qe—i%(z). (5.4.24)
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Where eq. (5.4.22) follows from eq. (5.4.11). To show eq. (5.4.23) we need to use the Baker-

Hausdorff formula from which it follows

2
i (@) pmion(@) _ p—ilehten @ —lign@iidh @] _ [ L\ o) (5.4.25)

2ma
using the commutations relation eq. (5.1.29). This concludes the derivation of the Bosoni-
sation identities and they are all equivalent. The strength of the constructive bosonisation
approach is that since we derived the formulas step by step from first principles there is no

need to check their validity by calculating correlators ,(wan]) or anti-commutators, {1, w:g}

5.5 Summary

In this chapter we have studied the basic properties of electrons and bosons in one dimension.
The first main result we derived was the introduction of the Luttinger model a strongly in-
teracting electron model which can be rewritten using bosonic operators as a non-interacting
bosonic theory. The main achievement was the derivation of the bosonic identities. This
method of writing fermionic creation and annihilation operators in terms of bosonic ones

will be used in the chapter to come.
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Chapter 6

NOISE IN KONDO SYSTEMS

In this chapter we will discuss noise in Kondo systems. We start by familiarising ourselves
with Kondo systems and how to deal with impurities in one dimension by studying the
Schiller and Hershfield [59] solution of a non-equilibrium Kondo system. We start by map-
ping this system on to a solvable resonant level model. After we find a solvable model we
discuss how the mapping of the original system affects the noise calculations. Since much
of the principles involved in calculating the noise in this system is similar to the Coulomb
dot we focus on discussing how to calculate the noise and the results rather then giving all
the details. The next step is to discuss the results of Sela et al. [60] and the generalisation
of this result by Fujii [61]. Finally we discuss a new system that would be interesting to

generalise these results to.

6.1 The solvable model

We will in this section reproduce the derivation by Schiller and Hersfield [59] of a solvable
non-equilibrium Kondo model in the Toulouse limit. The starting point is a spin 1/2 impurity
that we place in between two one dimensional non-interacting leads that are attached via

tunneling. The one dimensional fields, 1,,, interact with the impurity via the conduction-
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electron spin densities

= 1 o
Saﬁ = 5 Z wlgaaa’d),@a“ (611)

The operators Sy, and Sgg are independent spin densities of the left and rights leads while
Srr, and Sp g induce tunneling in between the leads. The full Hamiltonian of the system has

the form:
H=Ho+Hp+ Vo + Hg, (6.1.2)

where

Ho = i >, >, / Azl ()0, 0a0, (6.1.3)

a=R,L o=1,]
Hp = —ht?, (6.1.4)
Y = 5 3 [ e [ulo @) - vl (@)vns(a)] (615)
o=1.1

Hie = > > LS, (6.1.6)

af=L,Rv=z,y,z

where 7= &/2 and & = (0%, 0Y, 07) is the vector of Pauli matrices
o’ = , oY= , 0° = . (6.1.7)

We have also introduce a magnetic field, h, and an applied bias voltage, V', to drive the
system out of euilibrium. Schiller and Hershfield [59] showed that this model is solvable also

for non-equilibrium situations if we choose the following set of parameters:

JeP = Jgef = o7, (6.1.8)

JLE — Jof (6.1.9)
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JH = JEL = (6.1.10)

JH = JEE = ], = 2r. (6.1.11)

Why this set of parameters, known as the Toulouse limit, is special will be clear as we
continue diagonalising the Hamiltonian and this set of parameters will guarantee that the
final Hamiltonian is quadratic. We can now rewrite the Kondo part of the Hamiltonian in

the more convenient form

Hi = HI + HEk, (6.1.12)
where
1 N A
Ml = 5[q@(o)JZ\IJT(O)—\IJI(O)JZ\IJL(O) 7,
1 - 1 5
Hie = SUH0)LT,(0)7 + W[ (0)Ju¥; (0)7, (6.1.13)
and
) JRR JRL R JfR JfL
A IR (6.1.14)
JER i JER i

We have also introduced the spinor notation

U, (z) = Yio(o) , (6.1.15)

wRa (IL‘)

and the standard raising and lowering operators for impurity spins, 7% = 7% +47Y. The non-
equilibrium term of the Hamiltonian, ), means that we have to be careful when we map this
problem on to a non-interacting one. Normally this requires a canonical transformation that

reduces the Hamiltonian to a quadratic form. In the non-equilibrium situation the transfor-
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mation also has to preserve the quadratic form of ) otherwise the problem will remain a
truly many-body problem. For our Hamiltonian we will use the bosonisation identities that
we derived in the previous chapter. We will follow the tranformation introduced by Emery
and Kivelson [62] and we start by introducing four bosonic fields ¥,, where o = L, R and

o =1, ]. Using eq. (5.4.24) we can now write the fermionic operators in the form

———e P (®) (6.1.16)

where we have written the Klein factor in the form F,, = e*?ee which is a standard notation
in field theoretical bosonisation. Writing the Klein factor in this form can lead to some
subtleties but we refer the reader to [54] for details. Driving the system out of equilibrium
can also cause problems for the validity of the bosonisation identities since it can make
the assumption that the spectrum is linear invalid. In our case this is not the case and
we can safely use the bosonisation technique since we have the whole system at the same
temperature. For an introduction to what happens if one starts to drive one dimensional
systems out of the linear spectrum regime we recommend the work by Gutman et al. [63,

64, 65]. We choose the following phases of the Klein factors

err = [ (Wbt + vkt + o ] o (6.1.17
oLy = /_ Z [%mequ} dz, (6.1.18)
PRt = /_ngmidx, (6.1.19)
¢r, = 0. (6.1.20)

We also introduce new bosonic fields from the four bosonic field, ®,, ,

1

o, = E(CI)LT‘F(I)Ll‘i‘(I)RT‘F(I)RL); (6.1.21)
1

o, = §(®LT_®LL+(I)RT_(I)R1)’ (6.1.22)
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1
o, = §(¢LT+¢L1_¢)RT_¢RL)7 (6.1.23)

1
Csp = 5 (Prp = oy — Py + Pry) (6.1.24)

where the new bosonic fields correspond to collective charge, spin, flavour and spin flavour
respectively. Doing the rotation also in the Klein factor phase fields and writing them in

terms of the bosonic fields [59] we obtain:

oy = % / BV®,(2) — Vb, () — 2V, (2)] da. (6.1.25)
oo = 1 [ [V00) - VL) do, (6.1.26)
or = 3 [ V) - VOs(a) - VO (o) da, (6.1.27)
oy = [ IVea) - VO @) da, (6.1.28)

It is now time to insert the bosonic identities 6.1.16 into the Hamiltonian and using the short
hand notation y, = ®,(0) — ¢, and writing the bosonic field in the charge, spin, flavour and

spin flavour form we obtain the bosonic version of the Hamiltonian

. hwp > 2
V:C,S,f,fs
J+
—l—% [—7%sin(xs) + 77 cos(xs)] cos(Xsf)

_J_a [7% cos(xs) + 7Y sin(xs)] sin(xsy) (6.1.29)
™
JLER

- [7% cos(xs) + 7Y sin(xs)] sin(x )

S,
+—=V&,(x)r* — h7?,
27

and
Yo = ;—V/V@f(a:)dx, (6.1.30)
T
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where we have introduced

JE = (JP I (6.1.31)

N | —

We see that the Hamiltonian only depends on the bosonic field x; in certain angles. Perform-
ing a rotation of the system we can get rid of Y. The rotation we use is [62]: H' = UHUT,
Y = UYUT, with U = exp(ix,77). Since Y is proportional to V®(x) it is unaffacted by

the canonical transformation and we can rewrite the Hamiltonian in the simpler form

B hvp > 2
Ho= > /OO(W”) dx

V:C,S,f,fS B
J+ J'— JLR
y o) — 7T sin(yep) — 7" si 6.1.32
+7mT cos(xsf) T sin(xsy) —a sin(xy) ( )

+ (£ - hvp) Vo, (x)r* — h7?.
2m

The goal of this rotation is not only to make the Hamiltonian look nicer it also makes the
equivalent fermionic model quadratic. So we now take a step back to a fermionic description

with the use of the refermionisation identities:

eind'd

U(z) = \/%67%’ (6.1.33)
e—iﬂde )

Un(z) = e, (6.1.34)

where

d=ir" —1¥=1ir", (6.1.35)

describes the impurity spin. For a spin 1/2 eq. (6.1.35) assures that d and d' satisfy the
anti-commutation relationship {d,d'} = 1. The phase factors in eqs. (6.1.33) and (6.1.34)

takes care of different species v, anti-commutation with d and df, while y, guarantees that
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the 1, obey the commutation relations. We now obtain a Hamiltonian in a new fermionic

form
H = thup dgjq/}T ()
v= ;sf/
s (510 + s 0 ))(d*—d)
b5 (5}00) = ,00)) (' + (6.1.36)
= (0140 = v 0) (@ +0)
+ [h = (J. = 2mvp) : Pl (0) ] (did — 1/2),
and

Y=V [ wla)is(a)de. (6.137)

If we set J, = 2mvp both the non-equilibrium component )’ and the full Hamiltonian H’
reduce to a quadratic form. In this limit the 1. and 1, fields de-couple from the d-fermions
and we just need to consider ¢ and ¢,y when we want to study impurity quantities such as
the charge and spin current. Restricting our attention to the flavour and spin flavour field

we introduce the Fourier transform

Pl \/_Z¢Vke v=Ffsf, (6.1.38)

where k = 27n/L and L is the length of the system. The fermionic operators satisfy the

standard anti-commutator relationship

{5 1o i} = OB (6.1.39)

97



We now introduce the Majorana Fermions

T R T
dtdt g _d—d (6.1.40)
V2 iv?2

a =

which satisfy the relationship a? = =1 /2 instead of zero which is the case for standard

fermions. Combining egs. (6.1.38) and (6.1.40) we can rewrite the Hamiltonian in the form

Z Z €k¢;k%,k - hfbi)

stfk

2\/% Z <wsfk + %f,k) b
Qm Z (whe —ra) @ (6.1.41)
+m ; <wlf,k - %f,k) a

and
Vo=eV > bl (6.1.42)
k

6.1.1 Noise in the Toulouse limit

The spin and charge number operators are given by

ZZ /d:mp ) o (), (6.1.43)
ZZaa/dm/J T)Wao (), (6.1.44)

where « = L, R = +1. We now obtain the spin and charge currents from the Heisenberg

equation of motion

Ljs = —i[H, N,s). (6.1.45)
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Performing the commutation relation we see that the charge current is given by

JLR

o= (Ul (000 t) + 0l (Y0 () = 0L Ovm () = 6L Ovm (1)) . (6:0.46)

The noise is now defined in terms of the charge current

S@) = [ e [0, 1400 - 24007 de. (6.1.47)

—00

We are now interested in how this original problem maps under the transformation that
mapped the original Hamiltonian into the solvable model. Taking a look at the charge

current operator it is clear that it maps into

. GJJL_R T ~
2L + a, 6.1.48
ohv/mal g <wf kt Vs ’“) (6.1.48)

which can be seen from eq. (6.1.13) and using eqgs. (6.1.41). So after mapping the model to a
non-interacting model we can now write the current-current correlator in terms of the single
particle Green functions Guq(t,t'), Grra(t,t') and Gy i (t,t). Since much of the analysis
of the noise at this stage is similar to previous chapters we will only quote the results and

much of the details can be found in [59]. A careful analysis of the current-current correlator

gives us
I7(t,1) = (L)L) (6.1.49)
62 1 / / / /
= (1) + —Twr > G (L )Go () = G o (t1)G2 (1, 1)]

kK

Where the single particle Green functions of the different field species are given by

Grp g (8 1) = <(w},k(t) + ¢f,k(t)) (w},k, () + g (t’))), (6.1.50)
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and

Ga,fk = <a(t) (@/J}’k,(t,) + @/Jf7k/(t,)>>. (6.1.51)

We see from eq. (6.1.49) that we get cancellation of the disconnected terms and what remains
is to calculate the Green functions explicitly. Since the goal of this chapter is to motivate
future work we choose to omit technical details and instead we choose to discuss the results
and the physics they imply. For an explicit calculation of the Green functions the interested
reader can consult the article written by Schiller and Hershfield [59] and for a discussion of
the full counting statistics of this problem see the work by Schmidt [66], Schmidt et al. [67]

and Gogolin et al. [68]

6.1.2 The zero field limit

In the limit where the external magnetic field is zero we have single particle transport
processes that involve the magnetic impurity. This implies that the effective charge is
bounded from above by the Poisson statistics result e* = e. The noise in this limit is given
by [59]

S(O) FleV
o1, ¢ (1 " arctan (VT [VE T FZ]) . (6.1.52)

So in the shot noise regime we obtain the Poison statistics result and an effective charge of

e =e€

6.1.3 Large field limit

In the large external magnetic field limit we can no longer have single particle spin flip
processes of the spin on the impurity since these states would have too high an energy. So

the only processes that are allowed are virtual double spin flips that in one step moves two
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particles and give us the effective charge e* = 2e. This result is also what is obtained in the

shot noise regime in the strong magnetic field limit [59].

6.2 Effective charge

In the previous sections we saw what happens to the effective charge in two extreme limits
where only one type of scattering process is responsible for the transport. In this section
we will discuss a more realistic situation where we have multiple scattering processes taking
place. In a recent article, Sela and co-workers [60] study shot noise in a quantum dot in
the Kondo regime. This is done using Nozieres Fermi liquid theory [26]. In this work a
quantum dot with a symmetric coupling to the leads is considered near the unitary limit
and the mixture of left and right movers is controlled by the applied bias voltage. Due to

the left and right symmetry we can write the low energy Hamiltonian of the system[19, 69]

Ho= > &l - QWSTK S (6 + &)l
ko kKo
+7TfTK Z wz‘ﬁwkﬁwlﬁwkw (6.2.1)

k1,k2,k3,kq

in terms of left and right moving electrons ¢, = \% (Lko + Ryo). The term that is propor-

tional to « is proportional to the energy of the phase shift and the terms proportional to (3
describes the quasiparticle interactions. The current transmitted through the dot consists
of two parts: the maximal unitary limit I, = Q%V and the back scattering term I,. The
back scattering terms are due to the interaction of the dot. In [60] the effective charge is

calculated in the back scattering current through the relation

e = (6.2.2)
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where S(0) is the shot noise. Performing this longwinded calculation one obtains the follow-

ing result for the current and the noise [60]:

2e? 2+ 3 (V2
v= Y 12 <TK) (6.2:3)
4 P+ 3 [V
= — — ] . 24
Inserting egs. (6.2.3) and (6.2.4) into eq. (6.2.2) we obtain
a? 4 93
o — 6.2.5
a? + 532 ( )

It is a central result in Nozieres Fermi Liquid theory that for the Kondo effect a = (3 and

for this value we obtain the Wilson ratio

W = (%)/(55) =1+§=2, (6.2.6)

where y is the susceptibility and C, is the specific heat. The Wilson ratio is very useful for

characterisation of strongly correlated Fermi liquids, for a detailed discussion of this topic
see [70]. These values for a and (3 give us the effective charge e* = 5/3. This result can be

understood by looking at the part of the Hamiltonian related to (:

g

7TI/TK

Hjy = DRGSR (6.2.7)

k1,k2,ks,kq

Splitting the field ¢ into left and right movers,

Vo = (Yiko + VREo) (6.2.8)

1
V2
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we obtain a Hamiltonian that contains scattering processes that will back scatter 0, 1 and

2 particles. We choose the term

Z wTmeszT¢TLk3ink4iy (6.2.9)

that backscatters two right movers into two left movers. The contribution this process will
make to the backscattering current is I3 = 2el'93, where we have introduced the scattering

rate

2
Pos =7 D o heyVumVhi Ho) PO + 6o = & — &) (6:2.10)

k1koksks

Now using the relationships

Wrko¥hpe) = Ouwdoar (L — fL(&)), (6.2.11)
WrroV ko) = Ouwloor (fr(ER)), (6.2.12)

we obtain the following two particle backscattering contribution to the backscattering current

22 (V\? 9
=——= | = ) 2.1
2= 73 (TK> Vp (6.2.13)

In a similar fashion we can now obtain the contribution from the single particle scattering

processes that consist of the elastic processes from the terms proportional to «,

21 [/ V\?
Ly=—=|—] Va2 6.2.14
1 h6(TK) o? (6.2.14)

in the Hamiltonian and the inelastic processes proportional to [,

(_>2 Vg (6.2.15)



Since the rates are very low, (V/Tk)? < 1, we can assume that the rates are uncorrelated

and we get the total contribution to the noise given by
S(O) = 26([1a + Ilg + 2[25), (6216)

which gives an effective charge

0&2 62 2,62

e

62622 8 2532. (6.2.17)
T T T

This result give us e¢* = 5e¢/3 for @« = (3. Sela and co-workers [60] claim that this is a
universal result and more general then the Wilson ratio. An important question is of course
if there exists a relationship between the Wilson ratio and the effective charge. In a recent
work Fujii [61] finds the following relationship between the shot noise and the Wilson ratio:

. 4(W —1)*
e :e(1+1+5<w_1)2). (6.2.18)

for a quantum dot. For our system with the Wilson ratio 2 thus give the expected e* = 5e/3.

6.3 Magnetic impurities in a Luttinger liquid

In the previous two chapters we have introduced the theory necessary to calculate the ef-
fective charge in 1D systems and discussed the current state of research in this field. We
will now close this chapter by suggesting a new direction of research for this field. We have
earlier in this chapter studied a model with non-interacting one-dimensional electrons cou-
pled to a impurity. The next step will be to add interactions to the system and study a
Luttinger liquid connected to a magnetic impurity [71, 72, 73]. This model was originally

studied by Furusaki and Nagaosa [72] and Fréjd and Johannesson [73]. The Luttinger liquid
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is described by the Hamiltonian

HLL:;_; [ (%
ool (G

> )] e
()] e

where

b, — %(cpm + Dy, + By + D), (6.3.3)
b, — ; (®r — By + By — D)), (6.3.4)
O, = % (@p; + Bpy — py — Bpy), (6.3.5)
Doy = 5 (Bu— By~ D+ ), (6.3.6)

are bosonic fields and K. and K are the Luttinger liquid parameters that control the charge
and spin sectors respectively. We now attach an impurity spin (S=1/2) at the origin. We now
need to consider two types of Kondo exchange couplings: forward and backward scattering.

These two processes are described by the Hamiltonian

J
Himp = 55+ |0 (0)Gastins(0) + ¥, (0)Fastins(0)|

JB S+ | (0)Fast15(0) + U], (0)Fastins(0)] (6.3.7)

where ¢ = (0%, 0Y,0%) are the Pauli matrices. In this model the Wilson ratio has been

calculated by Frojdh and Johannesson [73] to be

4 v,
— 14+ = 3.
w 3<+Vs)’ (6.3.8)

where v, is the velocity of charge excitations and v, the spin velocity. This model is also

solvable in the Toulouse limit with the use of bosonisation and will provide a good test of
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how general the results of Sela et al. [60] really are. Therefore we believe that it is a natural

extension of the theory presented in this thesis and provides a good project for future work.

6.4 Conclusion

In this chapter we have studied how to deal with Kondo impurities in a one dimensional
system in the Toulouse limit. This was done by bosonisation and Emery-Kivelson rotation.
Then the system was refermionised and we obtained a solvable model in the Toulouse limit.
We then discussed the limits of this model when we obtain an effective charge of e and 2e
and what kind of processes that are responsable for this. Finally we discussed the recent
result where the effective charge of, e* = 5e/3, of a Kondo dot was derived, and we suggested

a system where a further investigation of this result would be interesting.
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Chapter 7

CONCLUSION

In this thesis the main topic has been Coulomb blockaded quantum dots and the goal has
been to calculate the noise in this system. The motivation for this work is that most work
in this systems has been done using the single particle tunneling “orthodox” theory. This
theory is based on a classical master equation approach. The validity of this approach at the
peak of conductance is unclear. The reason for this is that we have two strongly interacting
charging levels and to figure out if the results from the “orthodox” theory are valid, a full

quantum treatment using the Keldysh technique is necessary.

The first part of this thesis has been dedicated to understanding the basic theory of Coulomb
blockaded quantum dots and the methods that today are accessible to study the properties
of these systems. Much of this work is a direct extension to the work done by Sedlmayr et
al. [1] where the TDoS is calculated for a Coulomb blockaded quantum dot. This method
developed and used in this work runs into problems when we start to study noise. The rea-
son for this is that the bosonic field introduced in the Hubbard-Stratonovich transformation
makes it extremely difficult to calculate the two particle Green functions of the dot that
appear in the noise. We therefore devote chapter 3 to introduce the method developed by
Sedlmayr et al. [1] and use it to calculate the TDoS. We then go on and develop a new

method to calculate the single particle Green functions and the TDoS without the need to
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perform a Hubbard-Stratonovich transformation. The key in this new method is to rewrite
the Hamiltonian such that we can separate parts depending on the particle number of the
dot and the distribution of the levels of the dot. We then attach the tunneling to one of the
levels of the dot and we can treat the problem as a resonant level problem and the interac-
tions play the role of weights to the charge states. This is easily generalised to two particle
Green functions and we can now treat most of the problem of the noise in the Coulomb
blockaded quantum dot as a resonant level and the interactions once again enter as weights

to the charge states.

Using this new method we can rewrite the noise calculations in two parts: one that treats
the interactions of the charge states and another that turns in to a resonant level model.
For the second problem we can use the results of section 2.5 with small modifications. The
main result is that we succeed in finding an analytic expression for the noise valid in the
region ' < A < T < FE.. We have checked the result in a couple of trivial limits such
as zero bias and zero temperature and we have found complete agreement with the known
results in these limits. In the shot noise regime T' < eV at the peak of conductance we
obtain the same Fano factor, f = (I' + I'3)/T'? as the master equation approach. We also
obtain results that are valid in the intermediate regime from the linear response regime up

to the shot noise noise regime.

The final chapter was motivated by recent work by Sela et al.[60] where it is shown that the
effective charge in a Kondo dot is e* = 5/3. There have also been generalisations of this work
made by Fujii [61] where the effective charge as a function of the Wilson ratio is calculated.
This is claimed to be a universal result and we introduce a new system where we think it
would be interesting to study if this is universal or not in a future project. We believe that
a natural choice for a generalisation of the results by Sela et al. [60] is a Luttinger liquid

with a magnetic impurity. The reason this is a good choice is that it is a strongly interacting
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system in 1D where we can find an exact solution of the problem.

109



Appendix A

CURRENT IN A QUANTUM DOT

In this appendix we will derive the general current expression in a quantum dot [38, 74, 75].
This expressions will be used in chapter 4 as a reference point when we calculate the noise

in chapter 4. We start from the current operator

I, = —ie([H, Ny)), (A.0.1)
where
NL = ZCLLC’CL‘ (AOQ)
k

The Hamiltonian H consists of three parts: the standard non-interacting leads Hj, the
tunneling Hamiltonian, H7, and the central region with a non-interacting kinetic part and
the interactions of the central region, H.,. Since Hy and H..,, commute with Ny the current

obtains the form

I=iey [tka<c;adn> —# (dh e ] (A.0.3)
k

Performing a S-matrix expansion in the same way as in section 2.5 but to first order in Hp,

we obtain the following expression for the current in terms of single particle Green functions
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of the non-interacting leads and the interacting central region,

Grralt,t') = / G (t, 1)t ke (t1, ). (A.0.4)
Using the analytic continuation rules we obtain
Gt 1) = Z/dt1 [GE (t,11) G (1, 1) + G (8, 1) G (81, )] (A.0.5)
Performing the Fourier transform we obtain the result in frequency space
G5 (e) Z GE (e)GE,(e) + G, (e)GA (o). (A.0.6)

Inserting the non-interacting Green functions of the leads and using the relationship between

the single particle Green functions, we find
L=ie [ 52T (0 {G7(E) + AEIG"E) - G} (A.0.7)
Using G¥ = G” + G< we can write this also in the equivalent form
I, = el, / ii (Tr {G" () — [1 — 2fa(e)] [GF(e) — G (2)]}) . (A.0.8)

In the steady state the current will be uniform and we can write the current in the form
I = (I, +1.)/2 = (I, — Ir)/2. Using this relationship we can write the current in the

standard expression for the dc current

I—ic / ;Z—jTTr (D)~ Tp) G=() + (Tufi(e) — Trfu(e) [GR(e) - GAEY . (A0.9)
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Using current conservation, Iy, = —Ig, we can rewrite this expression on the form

I=ic [ 2 10ue) - @) TE) (A.0.10)
where
T(e)="Tr {% (GH(e) - GA(g))} . (A.0.11)
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Appendix B

FULL COUNTING STATISTICS

In this thesis we have focused on studying the noise and average current in strongly in-
teracting systems. These are both properties that can be extracted from the full counting
statistics of the system [76, 77]. So in this appendix we will discuss some basic properties
of full counting statistics such that it will be easier to understand and compare the results
in this thesis to the literature. This is especially important in chapter 6 where the effective
charge is studied, as this is a property that can be calculated both from the noise/second

cumulant and as the square root of the third cumulant [78].

The starting point is to introduce the characteristic function of a simple electron system
where the transmission is in the region 0 < 7;, < 1. We introduce this without a proof since
the derivation is rather involved [76] and we believe the derivation itself will not add much
to the understanding of what information can be extracted from the first few cumulants.
For this system the characteristic function, also known as the Levitov-Lesovik formula, is

given by

InA(y) = 2At/ 2‘% ST {1+ T (6% — 1) fr(e) (1 — frle)) (B.0.1)
+T,, (e = 1) fr(e) (1 — frle))}. (B.0.2)
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The logarithm in eq. (B.0.2) comes with certain assumptions since it implies sum over the
channels which means that transmissions in different channels are independent, and the
integral over the energy implies that electrons are transmitted independently in different

energy intervals. The first derivative gives us the first cumulant as follows:

Jdln A
W= a0

= 2 [ L) (12(0) - fr(e). (B.0.3)

x=0

A quick comparison with the Landauer formula [6, 38], gives the relationship

(q) = (DAL, (B.0.4)

The second cumulant is given by

e2 At

=" > [ (06 (01 = 1u(6) + Fale)(1 = Fale)

+ To(e)(1 = To(e))(fr(e) — frl€))*} - (B.0.5)

To understand what this means we start by investigating the equilibrium situation, i.e.

fr = fr. The second cumulant now has the form
2362]€BT
(@) ==——>_Tn (B.0.6)

Comparing this to eq. (1.4.5) we obtain the relationship

({a*) = Atg(o)- (B.0.7)

In the shot noise limit, kT < eV, we obtain

(%) = AtGeV Y T, (1—T,). (B.0.8)
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If we compare this with the standard result for shot noise [7], we obtain the relationship

_ AtS(0)

() = =2, (5.0.9)

The third cumulant in the shot noise regime is given by
((q") = EVGALY T, (1—T,). (B.0.10)

If we now take the low transmission limit, 7" < 1, this can be reduced to the simple

relationship
((¢%)) = AH(I). (B.0.11)

It has been suggested by Levitov and Reznikov [78] that the third cumulant is better to use
than the shot noise when it comes to detecting the charge of quasi-particles, through the

relation

() = K (B.0.12)

The reason that this is a better measure now that the third cumulant is experimentally

accessible [78, 79, 80] is that it is less sensitive to thermal fluctuations.
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