

COVER SHEET

Gauravaram, Praveen and Millan, William (2004) Improved Attack on the Cellular
Authentication and Voice Encryption Algorithm (CAVE). . In Proceedings
International Workshop on Cryptographic Algorithms and their Uses, pages pp. 1-13,
Goldcoast, Australia.

Accessed from: https://eprints.qut.edu.au/secure/00004701/01/cave_final.pdf

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10875995?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Improved Attack on the Cellular Authentication

and Voice Encryption Algorithm

Praveen S.S Gauravaram and William L. Millan

Information Security Research Centre,
Queensland University of Technology,

GPO BOX 2434, Brisbane, QLD, 4001, Australia
praveen@isrc.qut.edu.au,millan@isrc.qut.edu.au

Abstract. We present new cryptanalysis of the Telecommunications
hash algorithm known as Cellular Authentication and Voice Encryp-
tion Algorithm (CAVE). The previous guess-and-determine style recon-
struction attack requires 291 (resp. 293) evaluations of CAVE-4 (resp.
CAVE-8) to find a single valid pre-image (one which satisfies the input
redundancy). Here we present a new attack that finds all valid pre-images
with effort equivalent to around 272 evaluations of the algorithm for both
CAVE-4 and CAVE-8.

1 Introduction

CAVE is a cryptographic primitive approved by the Telecommunication
International Association (TIA) to be used for authentication, data pro-
tection and anonymity of the second generation Code Division Multiple
Access (CDMA) networks [7]. It is also used to provide security for North
American IS-41C mobile phones [2] and IS-54 dual mode cellular sys-
tems [1]. It had been known in the telecommunications industry for some
time that CAVE has weaknesses [4]. The first known attack on the CAVE
algorithm in the open literature was presented by Millan [3] in 1998 de-
tailing a reconstruction attack that demonstrated that CAVE can not
be considered a secure hash function. The other CDMA encryption algo-
rithms broken during that period were ORYX [5], a stream cipher used
for the protection of cellular data transmissions and CMEA [6] a block ci-
pher which protects a user’s confidential keypad data during a telephone
call.

The CAVE algorithm authenticates a legitimate subscriber to the
CDMA network1 and prevents the network and customers of mobile
phones from the cloning fraud [7]. CAVE is designed to deter radio access

1 CAVE is used in a similar fashion on other wireless communication networks

to the 32-bit Electronic Serial Number(ESN), Mobile Identification Num-
ber(MIN) and the 64-bit Authentication key (A-Key) of a CDMA mobile
phone. CAVE uses ESN, A-Key and a random number(RANDSSD) gen-
erated by the Home Location Register(HLR), an integral component of
a CDMA network which permanently stores subscriber information, to
generate a 128-bit intermediate key called “shared secret data”, SSD-A
and SSD-B. The 64-bit SSD-A is used for signature authentication and
SSD-B is used for cryptographic key generation.

CAVE uses SSD-A and a broadcast random number(RAND) gener-
ated at the Mobile Switch Center(MSC) to produce an 18-bit random au-
thentication signature (AUTH SIGNATURE). Base station verifies this
signature allowing the legitimate subscriber to access the network. CAVE
uses the 64-bit SSD-B data to generate a private long code mask which
is used for voice scrambling for data privacy over the CDMA interface of
the mobile phone. SSD-B is also used to generate keys for other encryp-
tion algorithms like ORYX(32 bits) and CMEA(64 bits). CAVE is also
used to verify A-Key by truncating the 128-bit hash output to 18 bits
and comparing this value with the A-key checksum. The initial loading
of CAVE for A-key verification and SSD generation is shown in Table 1.
Figure 1 shows different applications of CAVE and Figure 2 shows how
CAVE is used in reality in IS-41C and IS-54 communication systems.

Our new attack on 4-Round CAVE uses pre-computed look-up tables
(LUTs) to exploit the additional weaknesses (discussed in Section 4) to
obtain the set of all valid pre-images for any given output. This is in con-
trast to the previous attack on CAVE [3] which finds a single pre-image
with expected effort equivalent to evaluating 211 instances of 4-Round
CAVE. That method must be repeated around 280 times in order to gen-
erate just one example of input data that has redundancy consistent with
the input processing stage of the specific CAVE applications (for example
A-key verification and SSD generation as shown in Table 1). The total
complexity for the attack [3] on a 4-Round CAVE is 211 ∗ 280 = 291 to
find a single valid input for a given 128-bit hash result, where the unit of
effort is an evaluation of 4-Round CAVE. In comparison, the complexity
of our new attack is less effort than computing 272 evaluations of 4-Round
CAVE to obtain a list of all valid pre-images, including those which sat-
isfy the linear input redundancy required by the various applications.
Against 8-Round CAVE, the method of [3] requires effort equivalent to
the evaluation of 213∗280 = 293 instances of 8-Round CAVE, just to find a
single pre-image that satisfies the application specific redundancy (which
is eight times the absolute effort required to fully break the 4-Round ver-

2

sion). In comparison, the new attack applied to 8-Round CAVE requires
an effort equivalent to less than 272 evaluations of that algorithm, or twice
the overall effort to break CAVE-4. As the number of rounds of CAVE is
increased, the relative advantage of our attack over the previous method
also increases. The significant reduction in effort makes this new attack
more threatening for CAVE in practice.

This paper is organised as follows: In Section 2 we review the structure
and operation of the CAVE algorithm. In Section 3 we discusses the
previous attack on CAVE and point out some relevant properties of that
approach. Our new attack is described in detail in Section 4. Section 5
analyses the expected complexity of the new attack. Finally we make
some concluding remarks in Section 6.

A-Key

A-Key

Verification

Shared Secret Data
Generation

Generation

Generation

SSD A SSD B

Authentication
CMEA Key

Voice Privacy Mask

CMEA KEY

VPM

Fig. 1. Many roles of CAVE

Table 1. Initial loading of CAVE

CAVE Component A-key Verification SSD Generation

LFSR 32 MSBs of A-key 32 LSBs of RANDSSD
sreg[0,1, . . . , 7] A-key A-key
sreg[8] Algorithm version Algorithm version
sreg[9,10, 11] 24 LSBs of A-key 24 MSBs of RANDSSD
sreg[12, . . . , 15] ESN ESN
offset 1 128 128
offset 2 128 128

3

Mobile
System

INPUT PROCESSING

Known
Constants

data bytes

data bytes LFSR

LFSR

Offsets

Offsets

CAVE
ALGORITHM

OUTPUT PROCESSING

A KEY
Verification Shared

Secret
Data Data

Data

CMEA KEY

VPM
Or

Fig. 2. Usage of CAVE in IS-41C and IS-54 phone systems

2 CAVE Algorithm

A report describing the CAVE algorithm and its various applications is
available at [1]. In this paper we follow the notation used in [3].

The main components of the algorithm are sixteen 8-bit data regis-

ters, two 8-bit offsets offset 1 and offset 2 and a 32-bit Linear Feedback
Shift Register (LFSR). CAVE operates in four or eight rounds as per the
requirements of a specific application with each round having 16 regis-
ter update phases. The 32-bit LFSR contains four separate register bytes
LFSRA, LFSRB , LFSRC and LFSRD with a primitive feedback poly-
nomial whose feedback function is defined as:

Lt+32 = Lt ⊕ Lt+1 ⊕ Lt+2 ⊕ Lt+22

For each phase, CAVE uses bytes from the LFSR, the offsets and two
8*4 LUTs or SBoxes2 to modify one of the registers. The offsets offset 1

and offset 2 act as pointers into the low and high CAVE tables which
are represented as CT low[·] and CT high[·]. The steps that take place
in the low segment of CAVE are expressed as

offset 1 = offset 1 prev + (LFSRA ⊕ sreg[i]) mod 256 (1)

temp low = CT low[offset 1] (2)

2 each table has 256 nibble values

4

and the steps for high segment are similar. This segment operation is
shown in Figure 3.

REGISTER

LFSR

OFFSET

TEMP
NIBBLE

CAVE

TABLE

CAVE−IN

Fig. 3. Segment operation in CAVE

The byte offset 1 prev represents the previous value of the offset byte
initialized as a constant (See Table 1). CAVE cycles the LFSR linearly to
the right when the nibbles become equal to the corresponding low/high
order bits of sreg[i], where i is a particular phase in a round. When they
become unequal, CAVE computes temp byte by concatenating the nibbles
temp low and temp high and moving to the next phase of a round. If the
compared values get equal, there would be an extra cycle of the LFSR
and the above calculation is repeated with the latest LFSR byte and
offset values. In the very rare event that the count of these extra cycles
reaches thirty-two, then byte LFSRD is incremented modulo 256. After
the completion of a phase, the LFSR cycles once resulting in a minimum
of sixteen LFSR shifts in each round of CAVE. Between rounds, bits in
the registers are shuffled by using the low CAVE table to define a byte
permutation followed by a 1-bit rotation on the 128-bit register block as
a whole.

2.1 Previous attack on CAVE

The previous attack on CAVE [3] shows that CAVE is not a secure one-
way hash function. For a given 128-bit hash value, it was shown that an in-
put (pre-image) to the algorithm can be found with effort equivalent to 213

5

executions of an 8-Round CAVE or 211 executions of a 4-Round CAVE.
The attack works by first guessing a 32-bit LFSR value and generating a
sufficient number of LFSR cycles required for the attack using the known
primitive feedback polynomial. The last round (Round 0) is reconstructed
forward by guessing the two offset bytes and sreg[0] and validating the
guesses using the “sanity check” equation ereg[15] ⊕ temp[15] = sreg[0]
where sreg[0] is the value of the data register 0 at the start of the last
round and ereg[15] is the final value of the data register 15 at the end
of that round. Once the final values of the offsets are established by the
forward reconstruction of Round 0, the previous rounds (Rounds > 0) are
reconstructed in the reverse direction of the algorithm by guessing first
the sreg[15] value of Round 1 (4-Round CAVE operates from Round 3 to
Round 0). The validity of this guess is checked by using the sanity check
equation temp[15] ⊕ ereg[15] = sreg[0] and once this is valid it means
that particular round has been reconstructed correctly. In this fashion,
the other rounds are reconstructed in the backward direction. This algo-
rithm results in a single data set that is a CAVE input producing the
given 128-bit hash value.

3 Weakness of CAVE

This section discusses some of the weak properties of CAVE that we use
in the improved attack, which we present in the following section. These
properties of CAVE were not exploited by the previous attack [3]. By
searching the maximum likelihood data first would have improved the
efficiency of the previous attack.

Imbalances in the CAVE tables

The rows of the CAVE table are permutations but the columns are not.
So, for a given nibble output of the CAVE table, the low order input offset
bits to the CAVE tables are not uniformly distributed. We call this im-
balance in the low order input offsets as “nibble imbalance”. Given some
input data or a small guess, this property of CAVE assists in determining
unknown values with a higher probability than just guessing. The nibble
imbalances in the low and high CAVE tables are represented in Tables 2
and 3. Our attack (Section 4) directly uses this property.

Table 2 shows the frequencies of low nibble input bits to the low CAVE
table giving a particular temp low nibble output. Similarly, Table 3 shows
the frequencies for the high CAVE table. On average, there are six low

6

Table 2. Imbalances in the LOW CAVE table

Frequency of low nibble inputs giving specified low nibble output

low nibble output 0 1 2 3 4 5 6

0 0,3,6,8,A,B 1,4,5,7,D,E 2,9,F - C - -
1 1,2,4,7,9,A,B,E,F 5,6 8,D 0,C 3 - -
2 1,2,5,6,C,D 0,3,4,A,E,F B,7 8,9 - - -
3 0,3,8,9,B,F 1,4,7,A,C,D 5,E 2,6 - - -
4 4,8,A,C,F 0,1,2,3,7,9,D,E 5 6,B - - -
5 1,2,5,6,C,F 0,3,4,9,A,D,E 7 B 8 - -
6 4,6,7,8,9,A,B,C,F 0,2,E 3,5 D - - 1
7 7,9,B,D,E,F 0,2,6,8,A,C 1,3 4,5 - - -
8 3,6,7,8,9,C,F 0,1,4 2,5,A,D,E B - - -
9 2,4,9,A,D 1,3,5,7,8,B,C,E F 0,6 - - -
A 5,6,8,A,B 1,4,9,D,E,F 0,2,3,7,C - - - -
B 1,3,5,7,B,C 0,2,4,6,A,E D,F 8,9 - - -
C 0,1,2,5,8,C 3,4,7,9,B,D,E 6,F - - A -
D 0,4,5,8,C,D 1,2,3,6,B 7,9,A,F E - - -
E 1,3,9,A,D,E 0,2,4,5,6,8,B 7 C F - -
F 0,3,6,D,E,F 1,2,5,7,8,B 9,A,C - 4 - -

order input bits to the low CAVE table, with five being the minimum
and nine being the maximum, which do not give a particluar temp low
nibble output. Similarly, on average, there are six low order inputs to
the high CAVE table, with four being the minimum and eight being
the maximum not giving a temp high nibble output. These observations
indicate a strongly non-uniform probability distribution of data in the
CAVE tables when worked backwards. Our attack uses this information
to check the most likely candidate values before less likely ones.

Correlations between LFSR bytes

The bits of LFSRA ({L0, L1, . . . , L7}) before the start of a phase used
again in LFSRB ({L8, L9, . . . , L15}) after 8 LFSR cycles as L7 jumps into
the MSB position of LFSRB for every cycle. The LFSR bytes also do not
depend on offsets and registers. So given the set {L0, L1, . . . , L7} at time
t, the set {L8, L9, . . . , L15} is completely specified after time t + 8. These
relations are expressed as follows.
For ∆t = 1, Ln(t) = Ln−1(t − 1)
For ∆t = 4, Ln(t) = Ln−4(t − 4)
For ∆t = 8, Ln(t) = Ln−8(t − 8)
Our attack uses the known values of LFSR from the pre-computed look-
up tables and test the above equations for every cycle of the LFSR.

7

Table 3. Imbalances in the HIGH CAVE table

Frequency of high nibble inputs giving specified high nibble output

high nibble output 0 1 2 3 4 5

0 1,4,6,9 3,5,7,8,A,B,C,D,F 0,2 E - -
1 0,1,2,A,F 5,6,7,8,9,B,D 3,C,E 4 - -
2 0,3,7,9,A,E 1,2,4,5,B,D 6,C 8,F - -
3 0,2,3,6,7,D,F 4,5,A,E 8,9,B,C - 1 -
4 2,5,8,A,B,C,D,E 3,4,9 0,1,6 F 7 -
5 4,7,9,D,E,F 1,2,5,8,C 0,3,6,B A - -
6 0,2,3,8,9,D,F 1,A,C 4,5,6,B,E 7 - -
7 0,4,7,C,E,F 2,3,5,6,8,A,B 9 1 D -
8 4,C,D,F 0,1,2,6,8,9,A,B,E 3,5 7 - -
9 8,A,B,D,F 1,2,3,6,7,9,C 0,5,E 4 - -
A 0,1,3,4,7,A,C,E 6,8,B,D 5 2,9 F -
B 3,5,6,8,A,B,E 1,2,4,7,9,F C 0 - D
C 0,1,2,5,F 3,4,8,9,B,D,E 7,A,C 6 - -
D 1,4,6,7,B,C 0,2,5,8,9,A D,F E,3 - -
E 1,4,6,7,9,D,E 3,5,8,C 0,2,B,F - A -
F 5,6,7,D,F 0,1,3,A,B,C,E 2,8,9 4 - -

4 An Improved Attack on CAVE

In this section we present our new approach to attacking CAVE3. We first
use a precomputation to establish look-up-tables (LUTs) that define the
operation of a segment in CAVE. Then, given a 128-bit hash output (the
final values of the register bytes), these tables are used to guide a process
which maintains lists of all data that is self-consistent. We generate these
lists across consecutive segments within a phase, then consecutive phases
within a round. Our experiments reveal that the resulting data sets af-
ter only two phases can specify about half of the unknown LFSR bits.
Similarly, the process may be extended across more phases back to the
start of the algorithm. Considering the big picture, the CAVE algorithm
hashes the fixed input of 176 bits down to 128 bits. So it is expected that
each output to have 248 preimages. We make a 24-bit guess each time, so
we expect to have 224 elements in the list on each occasion. To decrease
practical running times, we first compute LUTs representing the set of
the most frequently repeated operations in CAVE. Firstly we explain the
generation of these LUTs, then we present the attack algorithm.

3 Note we do not consider any case where there were thirty-two continuous “extra” cy-
cles in the segment operation of CAVE, since the probability of this event happening
is around 2−128.

8

4.1 Precomputing the CAVE Tables Backwards

Each segment (see Figure 3) of CAVE takes 24 input bits: it carries out
an exclusive-OR operation on a byte from the input data register and
an LFSR byte followed by a mod 256 addition of this result with the
respective low/high offset byte. This gives the new offset byte which is
the input to the low/high CAVE table giving low/high temp nibble.

The LUTs (1 and 2) can be constructed using exhaustive computation
on the essential operations in the segments of CAVE. The offset, LFSR
byte and the input data register add up to 24 bits giving 224 different
possible values. This computation on these 224 possible input values re-
sults in an offset byte in each segment which is input to the CAVE table.
The output of the CAVE table is a 4-bit candidate temp low nibble or
temp high nibble and an “extra cycle” counter which acts as a flag. A
flag value of one indicates the values of input to the CAVE table, for
which the low/high temp nibble gets equal to the low/high order bits of
sreg[i] where i represents a particular phase of a round in CAVE. The
temp nibble value is a candidate since, if an extra cycle is indicated, then
CAVE cycles the LFSR once, thus changing the respective LFSR byte
used in the above calculation by losing the LSB bit, gaining the MSB bit
and shifting the other 7 bits by one bit. When the extra cycle count is
zero, then the current temp nibble is used. Thus these two LUTs consist
of 24-bit entries, an output offset byte, a temp nibble and an extra cycle
counter.

4.2 The Attack

The overall attack algorithm could be described as follows.

Pre-computation Calculate the high and low LUTs.

– Init: Repeat, for all 224 values of sreg[15] and the pair of offset bytes:

– Step 1: Use the LUTs to find lists of valid inputs to both segments
in two consecutive phases.

– Step 2: For each phase, combine the two segment data lists into a
list of valid data for that phase.

– Step 3: Combine the adjacent phase lists into a single list for the pair
of phases.

Final: Combine the remaining lists, filtering for consistency, to determine
the list of all possible valid inputs.

Let’s look at each of these operations in detail.

9

Init This step involves choosing a 24-bit value that makes up the two
offsets and the start register byte. For a 4-Round CAVE, using the known
128-bit hash value, the values of end registers ereg[0, 1, 2 . . . 15] of Round
0 are found using the reverse round byte permutation on the 128-bit hash
value followed by a left circular shift of the mixing registers. By guessing
the value of the input data register of phase 15 (sreg[15]) of Round 0 to
CAVE, the temp14 output byte of phase 14 can be determined using the
following expression:

ereg[14] ⊕ sreg[15] = temp14

The value temp14 is the concatenation of low/high temp14 nibble
outputs of low and high CAVE tables. These nibbles are represented as
temp low14 and temp high14 respectively. Since these nibbles are the final
outputs of the low and high segments of phase 14 of Round 0 for the
CAVE algorithm, the offsets offset 1 14 and offset 2 14 that have given
these nibbles could not have produced extra cycles.

It means that

temp low14 6= sreg[14]&0x0F

and

temp high14 6= sreg[14]&0xF0.

There are 16 different possible values of offset 1 14 and offset 2 14 that
can give these nibbles because of the row permutations of the CAVE
tables. Our attack involves testing every value of these offset bytes.

Step 1. The first step in the main analysis process is the evaluation of
different possible 24-bit values accessed from the LUTs 1 and 2 for each
value of the data choice in the segments satisfying Equation (1). This
test is performed simultaneously on both the low and high segments.
The considered 24-bit values in the low and high segments should have
the same byte of sreg[14]. This key condition on the selection of 24-bit
values results in a shorter list of 24-bit vectors evaluating Equation (1)
acquiring the offsets offset 1 14 and offset 2 14. Our experiments show that
this equality condition on the register bytes results in around a list of 224

values performing the equation (1) which is a 50% reduction from the
original set of 2 ∗ 224 values (considering two segments of CAVE). The
previous offset bytes offset 1 14prev and offset 2 14prev that resulted in the
chosen offsets offset 1 14 and offset 2 14 can be extracted from the assumed
24-bit values of low and high CAVE segments.

10

Step 2. The previous offsets are used to calculate the corresponding
temp nibbles as follows:

CT low[offset 1 14prev] = temp lowprev

CT high[offset 1 14prev] = temp highprev

The temp prev is calculated by concatenating these temp nibbles. The
validity of our guess on the 24-bit data obtained from the LUTs is checked
using the “sanity check” equation:

temp 13 = ereg[13] ⊕ sreg[14].

The sanity check equation, in general is represented as:

temp i = ereg[i] ⊕ sreg[i + 1].

Our experiments show that during this step the lists get reduced to
about 216 values which is a significant 99.8 % reduction from the original
pre-computed list of 2*224 values.

Step 3 The above steps are repeated for the last two adjacent phases
of the last round to get the reduced lists of each phase. The lists are
checked for compatibility using the property of correlation between LFSR
bytes as described in Section 3 and also the use of final offsets of one
phase as the starting offset values in the following phase. Our experiments
show that backward reconstruction of the four segments of two phases is
enough to establish the values of about half the bits of the LFSR and
the two offsets used in those particular phases! The attack then proceeds
backwards on other phases with much more known information which
reduces the complexity for these subsequent iterations. In this process
the lists will be reduced until finally ending up with a set of valid data
used at the start of Round 3.

5 Complexity Analysis

To assess the complexity of this attack in a way that can be compared
with the previous attack, we calculate the theoretical complexity of each
step using units equivalent to (or less than) evaluating a complete phase
of CAVE, and recalling that there are 16 phases in every round of CAVE.
Since list processing with pre-computed LUTs is less complex than execut-
ing a phase of CAVE, we may develop an upper bound for the complexity
of our attack using the phase-equivalent complexity as the fundamental
unit. Step 1 has complexity less than 224 of these units, for each of the 2
phases in each of 2 adjacent segments making a total effort of 226. Step 2

11

requires around 225 effort for each of the 2 phases, so that it makes 226

effort as well, for a running total of 227 phase-equivalent units. For the
first time only, Step 3 must consider all pairings from two segment lists
each of size 216 elements, for a total complexity of 232 operations. This
dominates the complexity from the first two steps, so we may safely upper
bound the complexity of finding all data consistent across two consecu-
tive phases as being clearly less than 233 phase-units. Lists become size
of 224, so combining them costs 248 effort. We use this as an upper bound
on complexity for each phase in this attack (64 phases in CAVE-4). As
all these calculations must be performed 224 times (with different initial
choices for the pair of offset bytes and the start registers in the Init stage),
so we expect the effort to find all valid data for 4-Round CAVE to be less
than 248 ∗ 26 ∗ 224 = 278 phase-units (which is about 272 calculations of
4-Round CAVE which has 64 phases). This compares favourably with the
291 effort required by the previous attack [3]. The effort to extend this
attack to 8-Round CAVE is minor: only another 248 ∗26 effort for each of
the 224 trials is an extra 278 phase-units or double the effort above what
was needed to break 4-Round CAVE. To compare, the previous attack
requires eight times the effort.

We summarize the advantages of the improved attack over the previ-
ous attack:

1. Efficient pre-computation analyses the S-boxes or look-up tables back-
wards and surrounding operations creating lists of possible datasets.
Consequently using many look-up tables is much faster than progres-
sively calculating the data.

2. The new attack exploits more information/weaknesses than the pre-
vious attack did.

3. The new attack manages an efficient time/memory trade off as it
collects lists of all possible data.

4. The complexity of the current attack is much less than that of the
previous attack in the task of finding all possible valid inputs.

6 Conclusion

Our improved attack on CAVE may threaten the security of real CAVE
implementations. Authenticating a legitimate subscriber is the main ap-
plication of CAVE (Section 1). If the different input values that hash to
a given digest are found, it is possible to illegally program ESN and MIN
into the mobile phone thereby providing a fraudulent customer with an

12

access to the wireless network. When the authentication fails, subscriber
calls to the network would not be protected even by voice encryption.

The decision to replace CAVE with Authenticated Key Agreement
(AKA) was made in 1999 [4]. The slow standardization process, added to
that slower adoption by the operators is delaying its replacement. Con-
sidering the threats we strongly recommend that where CAVE is still in
use, it should be replaced with AKA as soon as possible.

References

1. Telecommunications Industry Association. Appendix A to IS-54 Rev. B Dual-Mode
Cellular System: Authentication, Message Encryption, Voice Privacy Mask Gener-
ation, Shared Secret Data Generation, A-Key Verification and Test Data, February
1992. This document may be found at http://www.tcs.hut.fi/∼helger/crypto/

link/practice/mobile.html.
2. D.Park, M.N.Oh, and M.Looi. A fraud detection method using IS41C protocols

and its applications to the third generation wireless systems. In IEEE Globecom 98,
volume 4, pages 1984–1989, 1998.

3. William Millan. Cryptanalysis of the alleged CAVE algorithm. In The 1st Interna-

tional Conference on Information Security and Cryptology, volume 1, pages 107–119.
Korea Institute of Information Security and Cryptology (KIISC), 18-19 December
1998.

4. Greg Rose. Personal Communication, June 2004.
5. Wagner, Simpson, Dawson, Kelsey, Millan, and Schneier. Cryptanalysis of ORYX.

In SAC: Annual International Workshop on Selected Areas in Cryptography. Lecture
Notes in Computer Science, 1998.

6. David Wagner, Bruce Schneier, and John Kelsey. Cryptanalysis of the Cellular
Message Encryption Algorithm. Lecture Notes in Computer Science, 1294:526–537,
1997.

7. Christopher Wingert and Mullaguru Naidu. CDMA 1XRTT SECURITY
OVERVIEW, August 2002. This report is available at http://www.telecom.co.

nz/binarys/cdma security overview.pdf.

13

