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Abstract – This research is investigating the feasibility of 
using computer vision to provide a level of situational awareness 
suitable for the task of UAV “sense and avoid.” This term is used 
to describe the capability of a UAV to detect airborne traffic and 
respond with appropriate avoidance maneuvers in order to 
maintain minimum separation distances. As reflected in 
regulatory requirements such as FAA Order 7610.4, this 
capability must demonstrate a level of performance which meets 
or exceeds that of an equivalent human pilot. 
 Presented in this paper is a comparison of two initial image 
processing algorithms that have been designed to detect small, 
point-like features (potentially corresponding to distant, collision-
course aircraft) from image streams, and a discussion of their 
detection performance in processing a real-life collision scenario. 
This performance is compared against the stated benchmark of 
equivalent human performance, specifically the measured 
detection times of an alerted human observer. 

The two algorithms were used to process a series of image 
streams featuring real collision-course aircraft against a variety 
of daytime backgrounds. Preliminary analysis of this data set has 
yielded encouraging results, achieving first detection times at 
distances of approximately 6.5km (3.5nmi), which are 35-40% 
greater than those of the alerted human observer. Comparisons 
were also drawn between the two separate detection algorithms, 
and have demonstrated that a new approach designed to increase 
resilience to image noise achieves a lower rate of false alarms, 
particularly in tests featuring more sensitive detection thresholds. 

Index Terms – collision avoidance, UAV, computer vision, 
target detection, sense and avoid 

I. INTRODUCTION

 One of the greatest challenges facing the introduction of 
UAVs into unrestricted airspace is the development of a 
collision avoidance capability that meets the standards 
provided by a human pilot. Current research in this field has 
experimented with a variety of sensor technologies, such as 
radar [1], computer vision [2], transponders [3, 4] and data-
link information exchange (e.g. ADS-B [5, 6]). While future 
technology, particularly the introduction of ADS-B, will 
facilitate high performance collision avoidance systems, it will 
also introduce a reliance on external factors such as equipment 
onboard neighboring aircraft and the integrity of the GNSS 
constellation. It may therefore be argued that such systems are 
undesirable as a sole-means of collision avoidance onboard a 
UAV. Computer vision offers a fully self-contained 
alternative, or “backup,” approach which emulates the “see 
and avoid” mechanism of a human pilot.  

This research is investigating the feasibility of using 
computer vision to provide robust sensing capabilities suitable 

for the purpose of UAV collision avoidance. Such an approach 
must provide a level of performance which is at least 
equivalent to that of human “see and avoid,” as stated in FAA 
Order 7610.4 [7].  

Much research has been published on the topic of 
automatic target detection using computer vision. Approaches 
to this problem include spatial techniques, such as 
mathematical morphology [8, 9], median subtraction filters 
[10], and high pass filters [11], and temporal-based methods 
such as 3D matched filtering [12, 13], dynamic programming 
[14-16] and the recursive max filter [17]. In this paper, a 
combination of morphological filtering and dynamic 
programming techniques is implemented. 

To date, our research has focused on the development of 
an image processing “front end” that will serve to extract 
small, point-like features (potentially corresponding to distant, 
collision-course aircraft) from image streams. A subsequent 
tracking algorithm, such as the one proposed by Gandhi [2], 
can then be used to identify features that exhibit motion and 
expansion properties corresponding to genuine airborne 
threats.  

To this end, we present a morphological close-minus-open 
(CMO) filter that is used to extract point-like features from 
large-scale clutter such as clouds. The output is then passed 
through a dynamic programming algorithm, enhancing 
detection performance in images with poor signal to noise 
ratios. An alternative approach is also presented, whereby the 
CMO filter was modified in order to retain information 
regarding the sign of the values of detected features, with the 
aim of increasing resilience to image noise. 

A detailed description of these detection algorithms, and a 
comparison of their performance in processing a sequence of 
real-life data, is presented. 

II. IMAGE PROCESSING ALGORITHMS

A. Morphological Filtering 
Spatial filters based on greyscale morphology are useful 

for extracting small, point-like features that are present within 
an image frame, amongst larger scale clutter such as clouds. 
Such filters are derived from two fundamental operations 
known as dilation and erosion.  

The dilation of a greyscale image, I(x,y), by a 
morphological structuring element, S(x,y) is defined [18]  by 
the equation: 

        (1) 
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Where the ranges of 'x and 'y  are set by the size of the 
structuring element. Similarly, the erosion of a greyscale 
image I(x,y) by a morphological structuring element S(x,y) is 
defined by the equation: 

       (2) 

These two fundamental equations can be combined to 
form two secondary equations, known as opening and closing,
which are highly useful for target detection applications.  

The morphological opening of greyscale image I(x,y) by 
structuring element S(x,y) is defined as an erosion followed by 
a dilation: 

ISI (= SS ⊕)                              (3) 

Conversely, the morphological closing of greyscale image 
I(x,y) by structuring element S(x,y) is defined as a dilation 
followed by an erosion: 

)( SISI ⊕=• S                              (4) 

Conceptually, the morphological opening procedure can 
be described as the darkening of small bright areas (which are 
too small to accommodate the given morphological structuring 
element) to the values of their neighbouring pixels. 
Conversely, morphological closing is used to brighten small, 
dark areas to match the values of their neighbours. 

Given these basic definitions, it is clear that the difference 
between an image and its morphological opening is useful for 
identifying positive (brighter than neighbouring pixels) 
targets. Accordingly, the difference between a closed image 
and its original may be used to identify negative (darker) 
targets. Both of the morphological filters investigated in this 
paper are based on this concept. 

1.) Close-Minus-Open (CMO) Filtering Approach 
The first approach implemented was a simple close-

minus-open (CMO) filter, as defined in (5), which generates a 
non-negative response that simultaneously identifies point-like 
targets of both positive and negative nature. 

)()(),( SISISICMO −•=                      (5) 

This implementation was based on the approach suggested 
by Casasent [8], which takes the minimum response of a pair 
of CMO filters, using horizontal and vertical 1D slits as 
structuring elements. This dual-filter approach reduces the 
probability of false detections due to jagged boundaries on 
larger scale clutter. 

2.) Preserved-Sign (PS) Filtering Approach
While the CMO approach is attractive due to its relative 

simplicity, its output is non-negative in nature and thus false 
responses generated by zero-mean image noise are no longer 

characterised by a zero mean. This reduces the effectiveness 
of the subsequent temporal averaging process using dynamic 
programming. For this reason, an alternative approach was 
implemented and compared against the performance of the 
CMO algorithm.  

The new approach adds the differences between the image 
frame and its morphological opening and closing, which 
amounts to a doubling of the image intensity values followed 
by a subtraction of both the opened and closed images.  

(6)

                    (7) 

In this manner, positive features generate a positive-value 
response and negative features generate a negative response. 
Thus, information regarding the polarity of detected features is 
maintained at the expense of minor computational burden 
(essentially a left-shifting of image intensity values and an 
additional image subtraction). As with the previous approach, 
a dual-filter configuration was implemented in order to reduce 
the probability of false detections due to jagged boundaries on 
larger clutter. 

While morphological filtering is effective at detecting 
small target signals, it is also susceptible to false detections 
due to random noise on individual pixels. The output of the 
morphological filter is thus passed through a dynamic 
programming algorithm, which reduces the effects of random 
noise as discussed in the following section. 

B. Dynamic Programming 
The dynamic programming algorithm averages the image 

sequence of morphological filter outputs along possible target 
trajectories, with a decision on the presence of targets being 
made only after the summation of multiple frames. The 
number of possible target trajectories can be reduced by 
considering the possible target state transitions between 
consecutive frames.  

A target signal in an image frame may be represented by a 
state ),,,( vuji , consisting of a 2D image 

position ),( ji  and a 2D image velocity ),( vu . The velocity 
space is discretized and limited to the range of possible target 
velocities, with separate branches in the dynamic 
programming algorithm used to process each possible ),( vu .
For the problem of airborne collision avoidance, the near-
stationary nature of the target signal [19] allows us to limit the 
discrete velocity space to  pixels per frame. This corresponds 
to a continuous target velocity of anywhere between 0 and ±1 
pixels per frame. The discrete position space ),( ji  corresponds 
to the row-column index of pixels in each frame.  

Assuming velocity is constant, it can been shown [14] that 
for each discrete target state ),,,( vuji  at frame k, there are 4 
possible state transformations corresponding to frame k+1. 
Given the velocity space for this problem, four velocity 
branches are sufficient to accommodate possible target 
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motion. Their ranges of valid state transformations are shown 
in Fig. 1. 

Fig. 1 Possible State Transitions for Dynamic Programming Algorithm. 

The dynamic programming implementation used in this 
paper is based on the approach of Yang [16]. The algorithm is 
divided into three stages – Initialisation, Recursion, and 
Decision.  

Initialisation 
An intermediate merit function, ),,( kjiFuv  which 

recursively tracks possible target states on a frame-to-frame 
basis is created for each discrete velocity branch and 
initialized with a value of zero. 

For all ),( vu :
)0,,( jiFuv
  =  0                                  (8) 

Recursion  
 The merit function for frame k is defined as a weighted 
sum of the current incoming frame and a value taken from the 
previous merit function at frame k-1. More specifically, the 
latter value is the maximum response from the four-pixel 
window of valid state transitions for target state ),,,( vuji .

For all ),( vu :
][][ ))1(,','(max),,()1(),,(

),,,()','(
−×+−=

∈
kjiFkjifkjiF uvvujiQjiuv αα    (9) 

Where: 
),,( kjif  is the filtered image received at frame k

represents a memory factor 
),,,( vujiQ  represents the four-pixel window of valid 

rearward transitions for target state ),,,( vuji .

Since this addition is performed recursively, ),,,( vujiQ  is 
equivalent to the reflection around  ),( ji of the possible 
forward transitions which are shown in Fig. 1. 

Decision 
At frame K, the maximum output on a pixel-to-pixel basis 

is taken from the four discrete velocity branches. 

   ),,(max),,(
),(max KjiFKjiF uvvu

=                   (10) 

This output may be converted to a binary image with the 
threshold τ set to achieve appropriate probabilities of 
detection and false alarm. 

The algorithm described above is designed to detect 
positive-value responses extracted from the initial 
morphological filtering stage, and will suffice for the simpler 
CMO approach described previously. However, the alternative 
preserved-sign approach may contain negative-value 
responses which would be suppressed by the max filter during 
the recursion stage of the dynamic programming algorithm. 

In order to accommodate these negative-value responses, 
a separate implementation of the above algorithm may be 
processed in parallel, slightly modified in that the incoming 
frame ),,( kjif  is multiplied by -1 during the recursion phase 
before addition. Detection of positive and negative features 
may then be combined using a logical OR on a pixel-to-pixel 
basis. 

III. DATA COLLECTION

The camera used for this series of trials was a PointGrey 
Research Dragonfly. Designed specifically for industrial 
machine vision tasks, the Dragonfly communicates via an 
IEEE1394 IIDC interface and is capable of producing a colour 
(Bayer tiled) or greyscale image of up to 1024x768 pixels. The 
camera was equipped with a Pentax C-Mount lens with a field 
of view (FOV) of approximately 17  x 13 , an aperture set to 
f/8 and focus set to infinity. 

A sensor platform was constructed, consisting of the 
Dragonfly camera and lens, a GPS receiver, and an inertial 
measurement unit [20] which was used to measure camera 
pose. This was mounted atop a ridge near Mary Cairncross 
Reserve, a location with an elevation of approximately 1000ft, 
around 2nmi SE from the township of Maleny.  

From this location, a series of image streams were 
recorded featuring a target aircraft that was made to fly on a 
direct collision course with the sensor platform for a period of 
time, before gradually pulling away to maintain safe distance 
from terrain. For comparative purposes, an ‘alerted’ human 
observer was present at the site and was made to record the 
times at which the target aircraft could be detected via the 
human visual system. This observer was equipped with 
binoculars to allow precise determination of target bearing 
before attempting to locate the aircraft with the naked eye. It 
should be noted that this represents a very favourable estimate 
of human “see and avoid” performance. In a typical real-life 
cockpit scenario, much of the pilot’s time is spent performing 
a thorough scan for traffic, a factor which as been identified as 
one of the major limitations of the “see and avoid” principle 
[19]. 

In each of the trials, data from the camera was recorded at 
a frame rate of 7.5 Hz using the Linux-based program 
Coriander and later processed offline. A log of GPS location 
onboard the target aircraft was also recorded in order to 
determine the range at which the target aircraft could be 
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detected, by either the image processing algorithms or the 
human observer. 

IV. RESULTS AND ANALYSIS

The target detection algorithms described previously were 
used to process the data collected from the field trials, with the 
memory factor α set to a value of 0.75 and the threshold 
value τ varied to compare the subsequent effect on detection 
performance. Results presented in this section describe the 
transformation of an image frame as it passes though the 
morphological CMO filter and subsequent dynamic 
programming and thresholding phases. Comparisons are made 
against the performance of the alerted human observer, and 
between the performances of the two morphological filtering 
approaches in terms of false alarm rates and detection times. 

A. Target Detection Example: CMO Approach 
The effect of each intermediate phase of the close-minus-

open detection algorithm is demonstrated via the images 
shown in Fig. 2. Represented in these images is a small 
window taken from one of the recorded image frames, 
featuring a target aircraft in the bottom right corner against a 
background of cloud clutter. For viewing purposes, the outputs 
displayed in Fig. 2(b) and (c) have been gamma-corrected 
with a factor of 0.25 to enhance the detail present in the dark 
images. Brighter areas in the outputs of the CMO filter and 
dynamic programming responses indicate the possible 
presence of targets. Fig. 2(d) corresponds to the binary 
conversion of the dynamic programming output with a fixed 
threshold of 0.030 (on a 0-1 brightness scale). 

(a) original grayscale image 

(b) CMO filter output 

(c) dynamic programming output 

(d) binary output with threshold τ = 0.030 
Fig. 2 Image outputs at different stages of the target detection algorithm  

As can be seen, the output of the morphological CMO 
filter shown in Fig. 2(b) has extracted point-like features from 
the greyscale image frame. There is a particularly strong 
feature, surrounded by the red box, which corresponds to the 
target signal. However, there are also numerous other features 
of similar strengths that correspond to noise on individual 
pixels. A threshold decision made at this point in the algorithm 
would be overly susceptible to false alarms due to such noise. 
Hence, this output is subject to dynamic programming before 
a decision is made on target presence. 

Fig. 2(c) shows that the dynamic programming algorithm 
has averaged out the effects of noise while maintaining the 
strength of the target signal. Note that the edges of the target 
appear less defined as a result of the recursive phase of the 
dynamic programming algorithm. Non-maxima suppression 
could be used if single-point detection is desired, however it 
was not necessary for this experiment. The binary conversion 
of the dynamic programming output serves as the final 
decision on the presence of a target, and is observed in Fig. 
2(d) to have successfully detected the genuine target while 
suppressing potential false alarms due to image noise. 

B. Comparison Against Human Detection Performance 
One of the major goals of this research is to demonstrate a 

target detection algorithm that achieves a level of performance 
which is equivalent or superior to that of a human pilot. In this 
section, comparisons are made between the detection times 
and corresponding distances achieved by the algorithms 
described previously and those recorded by the alerted human 
observer. Detection times are presented in terms of frame 
index, or approximate frame index in the case of the human 
observer. Detection distances were calculated using GPS data, 
which was collected both onboard the target aircraft and at the 
test location. 

Table I presents a performance comparison for one of the 
recorded image streams, denoted Stream A. This dataset was 
captured in bright lighting conditions and features a 
background of heavy cloud clutter and natural terrain. The 
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target detection algorithm featured in this comparison is the 
CMO approach, with parameters α=0.75 and τ=0.035. 

As can be seen in Table I, the target is first detected by the 
algorithm at a distance of 6.7km, 36.7% greater than the 
distance achieved by the alerted human observer. However, 
consistent detection is arguably a more meaningful 
performance metric, since at this point a subsequent tracking 
algorithm may be used to distinguish genuine threats from 
residual false alarms due to point-like clutter (e.g. distant 
houses, individual trees etc.). This is defined as the point at 
which no missed detection frames are encountered for the 
remainder of the collision scenario, and is achieved at a 
distance of 6km, 22% further than that of the first human 
observation. 

TABLE I 
COMPARISON AGAINST HUMAN DETECTION PERFORMANCE: IMAGE STREAM 

A

Frame # 
Target 

Distance 
(km) 

First Detection 56 6.7 (3.6 nmi) 

Consistent Detection 164 6.0 (3.2 nmi) 

Human Observer Detection 273 (approx) 4.9 (2.6 nmi) 

Table II presents a performance comparison, using the 
same algorithm with identical parameters, for another of the 
recorded image streams, denoted Stream B. This dataset was 
captured in dimmer lighting conditions than in Stream A, with 
a similar background. In this example, the target was first 
detected at a distance of 6.6km, approximately 40.4% greater 
than the first human observation. Consistent detection was 
achieved at a target distance of 5.6km, 19% further than the 
human detection distance. Note that the distances required for 
successful detection, both for the computer vision algorithm 
and the human observer, are slightly shorter for Stream B than 
in Stream A. This is due to the decrease in target contrast as a 
result of the dimmer lighting conditions. 

TABLE II 
COMPARISON AGAINST HUMAN DETECTION PERFORMANCE: IMAGE STREAM 

B

Frame # Target 
Distance (km) 

First Detection 83 6.6 (3.56 nmi) 

Consistent Detection 258 5.6 (3.0 nmi) 

First Human Detection 333 (approx) 4.7 (2.5 nmi) 

C. Comparison of Morphological Filtering Approaches 
In this section, performance comparisons based on four 

key criteria are made between the close-minus-open and the 
preserved-sign approaches. These criteria are the total rate of 

false alarms, the rate of intermittent false alarms, the times of 
first detection and the times of consistent detection. 
Intermittent false alarms are defined as incorrect target 
detections that do not appear on consecutive frames. These are 
presented separately to the overall rate of false alarms in order 
to exclude persistent responses due to point-like clutter. As 
defined previously, consistent detection is the point at which 
no missed detection frames are encountered for the remainder 
of the collision scenario. 
 For the most effective comparison, a dataset was chosen 
featuring a relatively smooth background in an effort to reduce 
the number of false alarms due to point-like clutter. As a 
consequence, the rate of false alarms, particularly at lower 
detection thresholds, is dominated by image noise and the 
results achieved by the preserved-sign morphological filter 
become more evident.  

This dataset was processed by the target detection 
algorithms, with the memory factor α set to 0.75, and the 
detection threshold τ varied between 0.025 and 0.035 in order 
to investigate the resulting effects on performance. Table III 
presents a summary of results for comparison.  

Note that a significant number of false alarms are 
generated by both algorithms, even at higher values for 
detection threshold τ. These will be suppressed in a 
subsequent feature tracking stage, whereby genuine collision 
threats are identified based on characteristics such as a low 
rate of image translation and a high rate of image expansion 
[2].  

TABLE III 
COMPARISON BETWEEN MORPHOLOGICAL FILTERING APPROACHES

τ CMO 
Approach 

PS
Approach 

%
Change 

0.025 5 5 - 
0.030 20 20 - 

First 
Detection 
(Frame #) 0.035 53 53 -

0.025 144 144 -
0.030 171 171 -

Consistent 
Detection 
(Frame #) 0.035 190 190 -

0.025 15.9 11.9 -24.8% 
0.030 4.86 4.85 -0.3% 

Total False 
Alarms 
/ Frame 0.035 2.62 2.62 - 

0.025 4.82 1.4 -70.9% 
0.030 0.585 0.60 2.5% 

Intermittent 
False Alarms 

/ Frame 0.035 0.34 0.34 - 

 The upper half of Table III shows that the first detection 
and consistent detection frame numbers are equivalent, thus 
indicating that detection sensitivity is not affected by the 
implementation of the preserved-sign approach. The lower 
half of Table III provides a performance comparison between 
the approaches in terms of the total number of false alarms per 
frame and the number of intermittent false alarms per frame, 
averaged over 200 frames. As anticipated, the preserved-sign 
approach performed very well in comparison to the CMO 
approach at the lower threshold value of 0.025, achieving a 
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70.9% reduction in intermittent false alarms. At this threshold 
level, the CMO algorithm is particularly susceptible to false 
alarms, since they can easily be generated by zero-mean noise. 
The non-negative nature of the CMO output means that such 
noise is no longer characterised by a zero mean, thus reducing 
the effectiveness of subsequent temporal averaging via the 
dynamic programming algorithm. 

The change in false alarm rates between the two 
approaches becomes negligible as the threshold value is 
increased to the point where image noise alone is unlikely to 
generate false alarms. In this case, the majority of false alarms 
take the form of persistent responses generated as a result of 
strong, point-like clutter, or intermittent responses due to 
weaker clutter with the coherent addition of noise. Because 
such responses are primarily influenced by the presence of 
clutter, they are characterised by a non-zero mean and are 
unlikely to change sign over multiple frames, diminishing the 
impact of preserving the sign of detected features. 

V. CONCLUSIONS & FUTURE WORK

This paper has presented a comparison of two image 
processing target detection algorithms with a view to 
developing UAV “sense and avoid” capabilities.  

Comparisons were made between the performance of the 
detection algorithms in processing a real-life collision 
scenario, and that of an alerted human observer present at the 
test site. Results indicated that the target could be first 
detected at ranges 35-40% greater than those measured from 
the human observer, even amongst heavy cloud clutter. Such 
results are important, given current “sense and avoid” 
regulatory requirements for a level of performance equivalent 
or superior to that of a human pilot [7]. 

Comparisons were also made between the two 
morphological filtering approaches in terms of detection times 
and false alarm rates. Results have shown that, while little 
difference can be observed between the two approaches at 
higher values of detection threshold, the preserved-sign 
approach offers greater resilience to noise-based false alarms 
as the detection sensitivity is increased. This advantage does, 
however, come at the expense of additional computational 
burden, specifically an extra subtraction and left shift 
operation for each pixel during morphological filtering and a 
separate, parallel implementation of the dynamic 
programming algorithm for the identification of negative 
targets.  

In future work, the scope of this research will be 
broadened to include a post-detection feature tracking stage, 
where genuine collision threats are distinguished from residual 
false alarms. This will be based on characteristics such as a 
low rate of image translation coupled with a high rate of image 
expansion [2]. Additionally, the eventual use of cameras 
onboard moving platforms will require the development of a 
strategy to compensate for ego-motion effects. This may be 
achieved through integration with inertial sensors. 

Ultimately, this research endeavours to develop a 
computer vision based system that delivers appropriate UAV 
“sense and avoid” capabilities under a wide range of 

scenarios, including variations in lighting, weather and 
background conditions. Such a system would make a 
significant contribution towards the large-scale introduction of 
UAV technology for use in civilian applications. 
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