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Summary: This research is investigating the feasibility of gsecomputer vision to provide
robust sensing capabilities suitable for the purpose of ddllision avoidance. Presented in
this paper is a preliminary strategy for detecting coflicourse aircraft from image sequences
and a discussion on its performance in processing difecddta set.

Initial trials were conducted on image streams featuad) collision-course aircraft against a
variety of daytime backgrounds. A morphological filteringpeach was implemented and
used to extract target features from background clutteeden performance in images with
low signal to noise ratios was improved by averaginggéngeatures over multiple frames,
using dynamic programming to account for target motion.

Preliminary analysis of the initial data set haddgd encouraging results, demonstrating the
ability of the algorithm to detect targets even inaions where visibility to the human eye
was poor.
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I ntroduction

One of the greatest challenges facing the introducfi®™¥s into unrestricted airspace is the
development of a collision avoidance capability thaetmehe standards provided by a human
pilot. Current research in this field has experimentéith & variety of sensor technologies,
such as radar, computer vision, transponders and datadimknation exchange (e.g. ADS-
B). While future technology, particularly the introductioh ADS-B, will facilitate high
performance collision avoidance systems (such as TIMASthe reliance on factors such as
equipment onboard neighbouring aircraft and the integritthef GNSS constellation make
such systems undesirable as a sole-means of coliismdance for a UAV. Computer vision
offers an alternative, fully self-contained approachbackup”, which emulates the “see and
avoid” mechanism of a human pilot. This research v&stigating the feasibility of using
computer vision to provide robust sensing capabilitiesalsieit for the purpose of UAV
collision avoidance. Such an approach must provide a ¢tdvyaeérformance which is at least
equivalent to that of human “see and avoid”.

Much research has been published on the topic of autotaagiet detection using computer
vision. Approaches to this problem include spatial teples, such as mathematical
morphology [1, 2] and Gabor filters [3, 4] and temporal-Basethods such as maximum
likelihood [5], 3D matched filtering [6-8] and dynamic programg9-12]. In this paper, we
implement a combination of morphological filtering anahawyic programming techniques.



In this phase of research, it was desired to investigja performance of existing target
detection algorithms under collision course scenari@sder to gain an understanding of their
strengths and limitations. To this end, we have imptéetea morphological filter to extract
small, point-like targets from large-scale clutter susttlauds. The output of this filter was
then passed through a dynamic programming algorithm, whidmaneed detection

performance in images with poor signal to noise ratlgdescription of this preliminary

detection strategy, and its performance in processieguesce of real-life data, is presented.

Target Detection Algorithm
Morphological Filtering

Greyscale morphological filtering for the purposes ofj¢ardetection generally involves two
morphological operations known agpening and closing The morphological opening
procedure can be generally described as the darkening tf lsnggnt areas (which are too
small to accommodate the given morphologs@aicturing elementto the values of their
neighbouring pixels. Conversely, morphological closingsisd to brighten small, dark areas to
match the values of their neighbours. These proceduseteacribed graphically in Fig. 1.
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Fig. 1: Opening and Closing Example

Given these basic definitions, it is clear that th#ference between an image and its
morphological opening is useful for identifying positiveighter than neighbouring pixels)
targets. Accordingly, the difference between a closey@rand its original may be used to
identify negative (darker) targets. A Close-Minus-Open @@Mlgorithm [1] outputs targets
of both positive and negative nature.

The target detection strategy presented in this papetheesorphological filtering approach
suggested by Casasent [1]. This approach takes the mininMith r€sponse of a pair of
morphological filters, using horizontal and vertical lBssas structuring elements. This dual-
filter approach reduces the probability of false detestidue to jagged boundaries on larger
clutter as demonstrated in Fig. 2.
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Fig. 2: Demonstration of Dual Morphological Filter Approach

While the CMO algorithm is effective at detecting drteiget signals, it is also susceptible to
false detections due to random noise on individual piX¢is.output of the CMO algorithm is

thus passed through a dynamic programming algorithm, whigmsiéses the algorithm to the

effects of random noise as discussed in the followintcse

Dynamic Programming

The dynamic programming algorithm averages the image sef#dnCMO outputs along
possible target trajectories, with a decision on tlesgmce of targets being made only after the
summation of multiple frames. The number of possiblgetatrajectories can be reduced by
considering the possible target state transitions legtwensecutive frames.

A target signal which is present in an image frame beyepresented by a stafej,u,Vv),
consisting of a position that resides in the 2Dgengosition spacdi,] pand a velocity
residing in the 2D velocity spade,v . The velocity space is discretized and limitedvithin

the range of possible target velocities, with safgabranches in the dynamic programming
algorithm used to process edclv . Hor the problem of airborne collision avoidante

near-stationary nature of the target signal [1®Wad us to limit the discrete velocity space to
—-1<u,v<1 pixels per frame. This corresponds to a contimaoget velocity of anywhere

between 0 and 1 pixels per frame. The discretéipospace(i, j )corresponds to the row-
column index of pixels in each frame.

Assuming velocity is constant, it can been show@] [that for each discrete target state
(i, J,u,v) at framek, there are 4 possible state transformations qooreing to framek+1.
Given the velocity space for this problem, fouroedtly branches are sufficient to accommodate
possible target motion. Their ranges of valid stedasformations are shown below in Fig. 3.
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Fig. 3: Possible State Transitions for Dynamic Programming Algorithm

The dynamic programming implementation used in this pagssied on the approach used by
Yang [14]. The algorithm is divided into three stages +alisaition, Recursion, and Decision.

Initialisation

An intermediate image,, (i, j,k Yvhich recursively tracks possible target states sarad-to-
frame basis is created for each discrete velocitydbra

For all(u,v):
F.0.i0) = (0 @)

Where f (i, j,k )is the image received at frarke

Recursion

For all(u,v):

R 1K) =[W=-a) £, K] +lax  max F, (] (k=D)] @
Where0 < a <1 represents a memory factor a@d, j,u,v represents the four-pixel window
of valid rearward transitions for target stafe j,u,v . Bince this addition is done recursively,
Q(i, j,u,v)is equivalent to the reflection aroufndj oj the possibléorward transitions which
are shown in Fig. 3.

Decision

At frame K, the maximum output on a pixel-to-pikealsis is taken from each of the discrete
velocity branches.

P12 1,K) = maxF,, 1, ], K) ®)



This output may be converted to a binary image wittthihesholdr set to achieve appropriate
probabilities of detection and false alarm.

Data Collection

Sensor Hardware

The digital camera used for this series of trials wBeiatGrey Research Dragonfly. Designed
specifically for industrial machine vision tasks, thea@onfly communicates via an IEEE1394
interface and is capable of producing a colour (Bayed)tie greyscale resolution of up to
1024x768 pixels. The camera was equipped with a Pentax C-Maosnivith a field of view
(FOV) of approximately 17° x 13°, an aperture set to f/8fands set tac.

Camera Calibration

Ideally, the imaging sensor would show a uniform respoodaightness on a pixel-to-pixel
basis. In reality, this is not the case. This pa@sssrious problem for the detection algorithm
since particularly dark or bright pixels are likely tofatsely detected by the CMO procedure.
Furthermore, the static nature of this error meaasithwill not be averaged out by dynamic
programming. Brightness calibration data was therefecerded as part of the data collection
campaign. Information on the relative brightness gamagch pixel was obtained by detaching
the lens from the camera and creating a uniform brggistover the entire area of the imaging
sensor. The effect of noise was reduced by averagingtieé/ed images over multiple frames
and the subsequent output was used to create the approprelteggix matrix for the
correction of recorded images. The spread of brightmtsasities returned by the imaging
sensor under homogeneous illumination is shown in Figferd® and after calibration.
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Fig. 4: Image histograms before and after calibration

Note that the standard deviation of the spread has teskiced from 1.1408 to 0.5719,
indicating the success of the calibration process.

Field Trials



A preliminary set of daytime data was taken from the &b the Air Traffic Control (ATC)
tower at Archerfield Airport, Brisbane. Image streawere recorded of departing aircraft
disappearing into the distance and then reversed to stmadaapproaching target. However,
while this location provided a readily available sountelata to assist in the development of
the detection algorithm, the flight paths of the taagedraft were not directly aligned with the
tower and hence did not directly correspond to a callisituation.

A second set of data was taken from Mary Cairn Craskcation with an elevation of
approximately 1000ft, around 2nmi SE from the township ofelal In this set of data, a
target aircraft was made to fly directly at the lomatfor a period of time, before gradually
pulling away to avoid collision.

In each of these trials, data from the camera wesrded at a frame rate of 7.5 Hz using the
Linux-based program Coriander and later processed offline.

Resultsand Analysis

Data collected from the field trials was processed Hey target detection algorithm, with
parameterg (forgetting factor) and (threshold value) varied to compare differences in
performance. It was observed that the target deteelgorithm successfully detected and
tracked target aircraft throughout the image sequences5 Rgows the detected path of a
target aircraft amongst heavy cloud clutter (taken frioenArcherfield data set) as it translates
from the lower right portion of the image plane. Onenfe (#212) of the original image
sequence is displayed in Fig. 6(a), showing the natureedbdabkground and the strength of
the target signal.
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Fig. 5: Path of detected target tracked over multiple frames

Since the output of the target detection algorithm isbihary representation of the dynamic
programming response, the sizes of the detected target sreFig. 5 correspond to the
strength of the target signal rather than target 3ihes is due to the recursive stage of the
dynamic programming algorithm, where peak values are spoeaehtby pixels irQ(i, j,u,v)
with an attenuation otr. Strong features may be spread multiple times segeral frames
before their values fall below the binary threshelekl, 7 . Note that the target signal appears
relatively weak between frames 271 and 293, coomdipg to a region in the image where
there is very poor contrast between the targettlamdbackground (Refer to Fig. 6(a)). This is
a limitation that is shared with human “see and idvocapabilities [13] although
experimentation with other spectrums (e.g. inframady lead to an improvement in detection
performance. Aside from this anomaly, it can beeoled that the weak target signal is first
detected in frame 43, and becomes stronger asrtnafadraws nearer.

The effect of each intermediate stage of the algoris demonstrated via the images displayed
in Fig. 6. For viewing purposes, the outputs diggiain Fig. 6(c) and (e) have been gamma-
corrected with a factor of 0.25 to enhance theildatasent in the dark images. Brighter areas
in the outputs of the CMO filter and dynamic pragnaing responses indicate the possible
presence of targets. The images in Fig. 6(d) argl B{f) correspond to the binary
representations of these images with a fixed tlmldstf 0.035 (on a 0-1 brightness scale).



Fig. 6(a): Original image frame (#212) showing location of airborne target

Fig. 6(b): Grayscale version of original image




Fig. 6(c): CMO filter output highlighting detected target feature

Fig. 6(d): Binary representation of CMO filter output showing detecsgket & false alarms




Fig. 6(e): Dynamic programming output highlighting detected target feature.

Fig. 6(f): Binary representation of dynamic programming output.




As can be seen, the output of the morphological CMér fdhown in Fig. 6(c) has extracted
point-like features from the greyscale image frame. &hsra particularly strong feature,
surrounded by the red box, which corresponds to the taigedl. However, there are also
numerous features of varying strengths that correspontbise on individual pixels. The
binary representation of this CMO response showngn@-(d) demonstrates that a threshold
decision made at this point in the algorithm would belg\seisceptible to false alarms due to
such noise. Hence, the output of the CMO filter as displan Fig. 6(c) is subject to dynamic
programming before a decision is made on target presence.

Fig. 6(e) shows that the dynamic programming algorithmakiasaged out the effects of noise
while maintaining the strength of the target signalté\ibat the edges of the target appear less
defined; this is a result of the recursive phase ofdheamic programming algorithm. Non-
maxima suppression could be used if a single point detestidesired, however it was not
necessary for this experiment. The binary versiothefdynamic programming output serves
as the final decision on the presence of a targetisavioserved in Fig. 6(f) to have suppressed
the false alarms due to noise while retaining detectidhe genuine target.

The variation of algorithm parameters and the corredipgrchanges in detection performance
are summarised in Table 1. In this case, detectionnpesfice is measured by the time to first
detection in addition to the rates of missed detectmmhfalse alarm. The image sequence that
was used to generate this data features a distant &aintriah grows from sub-pixel size to a
target of four pixels in diameter over 400 frames.

Table 1: Variation in Algorithm Parameters

T =0.025 T =0.030 T=0.035
a FD MD FA FD MD FA FD MD FA
0.7 19 0.068 40.13% 21 0.174  3.565 101 0.060 0.423
0.75 20 0.047 22.638 29 0.162  1.923 103 0.061  0.803
0.8 21 0.058 13.108 29 0.170  1.230 103 0.061 0.218
0.85 21 0.074  8.158 29 0.170  0.780 105 0.041  0.165
0.9 29 0.059 4.888 40 0.156  0.468 106 0.011 0.130

Where:

FD - The first frame in which the target is succesgfiditected

MD - Rate of missed detections per frame (after thedesection is made)
FA - Rate of false alarms per frame

Note that the variation of the forgetting factar, which dictates the strength of the dynamic
programming algorithm, has minimal effect on the rafesissed detection presented in Table
1. Lowering the threshold parameter is the only reliable means of reducing missed
detections. The main effect of increasing the valuerd the suppression of false alarms,
which is strongly evidenced in results displayed fortat¢ values of . Hence, the dynamic
programming algorithm allows the lowering of the thrddhmarameterr to minimise the rate
of missed detections without generating an otherwiseaiotpal rate of false alarm.



The main disadvantage of increasiag is the resulting increase in the number of frames
required before first detection. This is consistenbulghout the first detection results for each
value of r and is due to the emerging target having reduced influerce) (@n the dynamic
programming output.

It may be observed that the missed detection rates #00.030 are relatively high compared
to other values of . This was due to the intermittent rising and fallingtlod target signal
above and below the threshold value 0.030 between framesx@®5. Note that this is
consistent with low missed detection rates f6¥0.025 and a first detected frame of 101 for
7 =0.035.

Conclusions and Future Work

This paper has presented a computer-vision based adetefttion algorithm with a view to
developing UAV collision avoidance capabilities. Targeatfires were extracted via a
morphological filtering approach and dynamic programming wgasl to improve performance
in images with low signal to noise ratios. Prelimjnegsults, which demonstrated an ability to
detect distant aircraft even in the presence of helawd clutter, are encouraging.

In future research, we will explore further techniqueat twill allow the algorithm to
accommodate varying lighting conditions and more comm@ekdrounds with features such as
heavy terrain clutter. Of particular interest is reskaby Gandhi [15], who suggests the
distinguishing of targets from clutter based on the pragsemif low translation and large
expansion over time. Additionally, future work with caa®ionboard moving platforms will
require the development of a strategy to compensategfmimstion effects due to camera
rotations and translations, possibly through integratioin inertial sensors.

Ultimately, this research will endeavour to identle tamount of target information which can
be reliably extracted from images and how this infdaimmacan be used for the purposes of
UAV collision avoidance. Consideration will also b&egi to what, if any, supporting sensors
(e.g. radar) may be required in order to achieve a suftlgirobust solution.
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