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Abstract

Mobile robots today, while varying greatly in design, of-
ten have a large number of similarities in terms of their
tasks and goals. Navigation, obstacle avoidance, and vision
are all examples. In turn, robots of similar design, but with
varying configurations, should be able to share the bulk of
their controlling software. Any changes required should be
minimal and ideally only to specify new hardware config-
urations. However, it is difficult to achieve such flexibil-
ity, mainly due to the enormous variety of robot hardware
available and the huge number of possible configurations.
Monolithic controllers that can handle such variety are im-
possible to build.

This paper will investigate these portability problems,
as well as techniques to manage common abstractions for
user-designed components. The challenge is in creating
new methods for robot software to support a diverse va-
riety of robots, while also being easily upgraded and ex-
tended. These methods can then provide new ways to sup-
port the operational and functional reuse of the same high-
level components across a variety of robots.

1. Introduction

Robotic control software has come along way since early
sense, plan and execute systems [17] in the early 80s. Faster
and more robust reactive styles were introduced [6], but
were unable to execute complex plans. Deliberative systems
that combine reactive and sense-plan-execute approaches
have been built with varying degrees of success ([8], [11],
[4], [2] and [16]). Decision-making and execution of robot
activities are complex tasks to manage.

Hardware limitations and diversity have resulted in very
specialised and inflexible software. Autonomous robots
were traditionally faced with limitations in size, battery
power, CPU speed, and memory. Hence controlling soft-
ware was written to run as efficiently as possible to max-

imise the power of such hardware. The software had to fo-
cus on extracting the most from the hardware. This required
very specialised solutions. In the past typical approaches
to robot software construction produce monolithic systems
using ‘brute force’ methods. This approach has made ex-
tensions, upgrades, and software reuse difficult.

Today, embedded processors are far more powerful. Au-
tonomous robots with embedded CPUs are able to com-
pute and react faster then ever before. This increased ca-
pacity reduces the need for low-level specialisation of soft-
ware in order to gain critical speed optimisations. The in-
creased capacity allows satisfactory computational speed to
be achieved even when using more generic software.

This work leverages on the ability to use more generic
software to address the need for more flexible and reusable
robot code in the face of diverse hardware configurations.
This is achieved via the specification and implementation of
a framework that supports abstractions of robot hardware.
The framework is constructed using component-based soft-
ware techniques and the use of fuzzy logic enables a flexible
and versatile manipulation of robot abstractions.

2. Issues

The most notable challenge with robot abstraction is that
of the sheer diversity of robot hardware design. Secondly,
the problem of moving code between systems is difficult as
the translation is at best tedious or at worst impossible, even
when the robot hardware can support all required functions
of the code.

2.1. Diversity

The diversity among robots is extraordinary - both in
their design (eg. hardware, size, shape) and their configura-
tion (eg. orientation, position, facing). The matrix of possi-
bilities creates a diversity that is unmanageable using exist-
ing techniques. There is very little standardisation between
robots from different vendors. Even robots of the same type



can be easily altered and reconfigured - so there are no cer-
tainties in how their hardware is configured. The problem
with this diversity is two-fold. Firstly, software support is
required to interact with each piece of hardware. Usually a
device specific driver is provided for this. Even though the
device driver offers some level of abstraction from the hard-
ware, there is no interface standardisation between drivers
even when the driver is for the same type of device, such as
a servo. Thus the use of drivers does not address the issue
of diversity. Secondly, higher-level algorithms that combine
different hardware elements to achieve an overall result still
need to handle various and changing configurations. How
can the algorithms be written and packaged to operate un-
changed on different robots?

2.2. Software portability

Software development for robotic systems faces many
difficulties. The diversity of hardware and performance
constraints has made the production of satisfactory solu-
tions difficult. Prior to the relatively recent improvements
in processing capacity, software development could only af-
ford to address the essential requirements. This has led to
the use of software engineering practice that does not con-
sider the need for software reuse. Even if software reuse
were considered, the diversity of hardware and its config-
urations would have probably restricted reuse to a single
robot. This situation does not provide the motivation to
commit additional resources required to develop reusable
software.

Software development for robots is relatively immature
in both time and scale compared with software develop-
ment for more established environments such as the desk-
top computer. The standardisation of desktop platforms and
the sheer scale of development have expedited the improve-
ment of the software development process. This has left
the software development process used for robotics plat-
forms lagging behind. More modern software processes use
component-based techniques. It is proposed that the lack of
use of such techniques hinders the portability of software
for robots.

3. Proposed Solution

To address these problems the concept of a Virtual Robot
Layer is introduced in this paper. The VRL has arisen to
address these issues:

� the abstraction of hardware devices; and

� to manage the diverse variety of possible robot hard-
ware and its configurations; and

� to act as a translator of a common instruction set to
robots of different configurations.

The concept aims to provide a standard means of access-
ing a robots functionality, as well as providing a protocol for
communicating between high-level software and low-level
executions, allowing the high-level instructions to remain
unchanged across different robots with different hardware
or configurations. Note that the VRL concept is limited in
that it can only extend its services to the group of robots
that have been targeted by a particular VRL framework,
such as mobile-wheeled robots for example. Other groups
of robots (such as humanoid) can be subsequently targeted
with VRLs designed for those groups.

4. Benefits

The VRL framework can provide the following benefits.

4.1. Portability

Methods for robot abstraction and creating independent
robot software, will improve the system’s portability. In op-
erational terms, the components and abstraction framework
will work on various robot run-time environments. In func-
tional terms, the components will be able to control various
robots using the same infrastructure and high level instruc-
tions.

4.2. Code Reuse

By making a set of software components that are com-
pletely portable, new robots could be quickly configured
using existing software with minimal effort. These compo-
nents can be shared between robots of similar types. They
can even remain unchanged when the robot hardware is re-
configured (for instance a sensor is moved to a different po-
sition) as they will adapt with support from the architecture
using the metadata available for the current configuration.
More code reuse will then be possible and the configuration
and deployment time of robots will be reduced.

5. Methods and Approaches

Here we describe the techniques used in the design.

5.1. Software Components

Technologies are emerging today that allow applications
to be built from reusable components more than ever be-
fore. Component-Based Software Engineering (CBSE) has
become recognised as a new sub-discipline of software en-
gineering and should equally apply to robotics software.

The major goals of CBSE are the provision of support for
the development of systems as assemblies of components,



the development of components as reusable entities, and the
maintenance and upgrading of systems by customising and
replacing their components [13].

Components, quite broadly speaking, are units for com-
position. In terms of software, a precise definition by
Szyperski is frequently used today:

A software component is a unit of composition with con-
tractually specified interfaces and explicit context depen-
dencies only. A software component can be deployed in-
dependently and is subject to composition by third parties.
[18]

We are using software components as, by definition, they
bring modularity and well-defined interfaces and explicit
context dependencies to the design and implementation of
the abstraction framework and the sub-systems. The use of
component-based software improves software development
by enabling a design-by-composition environment and pro-
moting software reuse [3].

5.2. Abstraction Principles

The essence of hardware abstraction is to decouple the
users of the hardware from the non-essential details of its
use. The user need only know how to manipulate the sin-
gle abstraction, which in turn can be applied to a variety of
hardware.

In software terms, hardware abstraction broadly means
a separation of software from device dependencies or the
complexities of underlying hardware. For instance, it en-
ables programs to focus on a task, such as communications,
instead of on individual differences between communica-
tions devices.

A hardware abstraction layer (HAL), in computing sys-
tems, is a layer of programming that allows a computer op-
erating system to interact with a hardware device at a gen-
eral or abstract level rather than at a detailed hardware level.
Windows is one of several operating systems that include a
hardware abstraction layer. The hardware abstraction layer
can be called from either the operating system’s kernel or
from a device driver. In either case, the calling program can
interact with the device in a more general way than it would
otherwise.

In robot systems, the same approach is sometimes used.
HALs exists for a few current robotic architectures ([10],
[12], and [7]). The controlling software makes calls on
hardware in only abstract terms, and the HAL then con-
verts these calls into concrete signals to the hardware. To
illustrate, a servo command such as setspeed(byte
speed), could be converted by the HAL to a series of
ASCII characters to achieve that speed on the servo. When
hardware is replaced or changed the HAL will also change
the required signals, but the setspeed(byte speed)
function call remains the same.

5.3. Degrees of Abstraction

Robotic software requires an even greater level of robot
abstraction than provided by HALs. This is because robots
interact with the real world. They are given commands
that embody notions of position and direction, for example:
moveForward(), and turnRight(). However, mod-
ern HALs have no information on relative placement of ser-
vos or sensors, making any abstraction involving location or
direction impossible. This also precludes even higher lev-
els of hardware abstraction to provide answers to questions
such as:

� Is there an obstacle in that direction?

� How far away is the obstacle?

� Can I get through that gap in the wall?

� Where are my sensors pointing?

Most robot HALs only achieve the simpler level of hard-
ware abstraction: the basic interface to the actual hardware.
Higher-level algorithms still require built-in knowledge in
to co-ordinate the hardware. It is far more useful (but com-
plicated) to also abstract the configuration of hardware.

Most high-level algorithms use explicit knowledge of the
hardware, such as where sensors are positioned and what
the return values mean. This knowledge is usually encoded
at a level higher than the HAL, which prohibits portabil-
ity. For the higher-level algorithm to be portable, any such
knowledge must be provided as a service from the HAL.

A HAL is useful because it allows code to be more
portable. The more portable the code, the more diverse are
the platforms on which it can be deployed. A HAL that sup-
ports even higher-level abstractions can remove platform
dependence even further. This means that controlling soft-
ware can run on different types of robots. How different the
robots can be will depend on the sophistication of the HAL.

Even more sophisticated HALs in current robot archi-
tectures still only support robots from the same vendor,
such as the ERP1 from Evolution Robotics [10]. Evolution
Robotics has a proprietary robot architecture called ERSP
[10]. This incorporates a HAL that uses XML specifica-
tions to support changes in the physical structure of their
ER1 robot [9]. Hardware such as extra cameras and sen-
sors can also be added. However, it is unable to support
the abstraction of a completely different robot, such as the
Khepera [15] for example.

The OROCOS project [7] also uses a hardware abstrac-
tion layer. They describe a layer between hardware and the
framework, which translates calls from the framework to
the present operation system and hardware drivers. ORO-
COS uses a suite of device drivers, which provide the hard-
ware functions. There is no configuration specification or



means for understanding higher level instructions or seman-
tics such as left, right or forward.

The Player/Stage [12] abstracts hardware using inter-
faces that use TCP/IP socket communication from control-
ling software to the robot client. As for OROCOS, the level
of abstraction is at a low level with basic interface on device
driver support for the hardware.

In computing terms, the extension of the HAL towards
higher-level abstractions can be served by a ‘virtual ma-
chine’. The equivalent concept in robotics would be a ‘vir-
tual robot’. The notion of a virtual robot as a translator for
abstraction is new. Following is a broad description of this
with respect to the traditional concept of a virtual machine.

5.4. The Virtual Robot

A virtual machine is a hypothetical computer, whose
characteristics are defined by its machine language, or in-
struction set. In general, a real machine with the same char-
acteristics could be constructed with hardware. In its popu-
lar use today, the virtual machine is a software emulation of
a physical computing environment used to execute instruc-
tions on the real machine. The virtual machine is a level of
abstraction even greater than a typical hardware abstraction
layer. It defines a set of rules for what it can execute, and
can provide feedback and results.

A natural extension of a virtual machine is a virtual
robot. The virtual robot would be an abstraction of a no-
tional robot. It would be configurable so it can change its
virtual shape, size and accessories. It would define its vir-
tual capabilities and return information from virtual sensors.
It could reply to queries about its specification. Most impor-
tantly, it would also translate and execute instructions that
make sense on a real robot. See section 6.1 for the elabora-
tion on the idea of a virtual robot.

5.5. Fuzzy Mechanisms

The forms of the abstractions used by the VRL are fuzzy.
In that, crisp (non-fuzzy) values acquired by the VRL from
sensors, are fuzzified according to the specifications and
membership profiles, and these are provided to the higher
level components that make use of the values according to
fuzzy rules that guide its navigation and other functions. In-
structions to the VRL are usually in a fuzzy format and these
are defuzzified for the hardware to use. The abstractions are
described more fully in section 6.3.

6. System Design

The hardware abstraction problem has been partially ad-
dressed in some architectures ([7], [10], [14] and [19]),

where hardware abstraction layers (HAL) have been de-
signed to allow basic control functions to be ported to differ-
ent robots. These control functions allow low-level abstrac-
tions such as setting a servo speed, or requesting a sensor
value.

However, a high-level command to move forward, turn
left, or scan an area, can have radically different implemen-
tations on different robots. A mechanism to provide consis-
tent interpretation of these high-level commands on various
robots would be useful. These high-level commands need to
be defined in a fuzzy format to allow algorithms to manipu-
late them at their highest abstract level. Then the high-level
functional components can be completely portable because
they only deal with the fuzzy handlers. The lower level im-
plications of the fuzzy manipulations are left to the abstrac-
tion mechanism (the VRL).

6.1. Virtual Robot Layer

The VRL is the layer that provides the interfaces of a
‘virtual robot’ for the high-level functional components to
use - concealing how these commands are translated into
hardware calls. The VRL will also reply to high-level
queries about the robot’s configuration. This is useful when
initialising a component.

For example, a high-level Navigation component
may plan a path based on sensory input. Then a low-level
Motion component may manage the servos of the robot to
achieve certain types of locomotion - for instance ‘turn left’,
and ‘set speed’. The Navigation component should not
need to change between robots, yet the Motion component
almost certainly would. The robotic framework’s VRL will
support this portability by:

� Translating high-level commands into a standard low-
level protocol;

� Providing a specification of the configuration of the
robot for any component to use; and

� Converting robot specific output or results into pre-
defined standards used throughout the architecture.

To illustrate further, the VRL can convert infrared read-
ings from the raw voltage value to a distance in centimetres.
It specifies where the infrared sensors are and pointing. It
also defines the size and extremities of the robot. It has
information on the servo inputs required to achieve a par-
ticular speed profile. The VRL mediates communications
between high-level and low-level components and systems
as seen in Figure 1.

6.2. Operational and Functional Portability

To achieve cross-platform portability, a component must
be portable in two (2) ways:
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Figure 1. The VRL connects the high-level and
low-level systems and components.

� Operationally - in that the component can be initialised
and run using the new operating system or run-time
environment; and

� Functionally - so that the control structures and algo-
rithms that work in one robot (or configuration) con-
tinue to work on another.

In our prototype implementation, the robotic framework
and the components are written in Java. This allows them to
operate on any platform for which a suitable JVM is avail-
able. This provides the operational portability of the robot
component. JVMs are run on any Windows or Linux OS
based robot and can also be run on the Palm OS and there
are even ports for the Motorola 68k series.

Furthermore, the functional portability of a component
is supported by the VRL and operating infrastructure. Thus
components can operate on any robot that has a VRL with
a configuration that covers all required functionality.

It is important to note however, that not all components
will work on all robots (even amongst those in the target
group). For instance, before a particular component can ini-
tialised and run, sensors may be required in a certain direc-
tion. This preconditioning of operation precludes the com-
ponent running on some configurations. Thus portability of

code depends on some overlap in robot capability.

6.3. Fuzzy Abstractions

A simple illustration of the operation of the VRL will
help identify the types of abstractions used. Take the
pseudo-code for a Braitenberg styled obstacle avoidance al-
gorithm as is shown in Figure 2.

while (true) {
if (IRSensors(forward, blocked))

Rotate(speed);
else MoveForward(speed).

}

Figure 2. Simple pseudo-code for obstacle
avoidance.

Even this simple algorithm requires the robotic frame-
work to know the answers to questions such as:

� Which way is ‘forward’?

� What does ‘speed’ mean in the contexts of moving for-
ward and rotation?

� How do I ‘rotate’?

� Where are the infrared sensors pointing?

� What infrared sensor reading means ‘blocked’?

These questions are answered by the VRL in terms of
fuzzy abstractions and membership values of fuzzy sets.
The current sets are:

� Direction - Front, Left, Right or Back

� Movement - Forward, RotateLeft, RotateRight or Re-
verse

� Speed - VeryFast, Fast, Medium, Slow, VerySlow or
Stopped

� Distance - VeryFar, Far, Near or VeryNear

� Size - VerySmall, Small, Large or VeryLarge

These fuzzy constructs can then be used to describe hard-
ware placement and orientation, the direction of obstacles
or targets, speeds of travel and distances to the robot. All
fuzzy terms are relative. By this we mean robot-centric. So
an obstacle that is Near to a Large robot may only be
Far to a Small robot. The VRL of course can be config-
ured accordingly to make the correct interpretations.



The VRL is also configured with the appropriate hard-
ware placements of sensors and cameras etc. Sensors can
be grouped together to form zones of measuring (each group
having its own membership function as to its direction from
the robot). These details can be made available to the com-
ponents on initialisation to check prerequisites as well as
during run-time.

The VRL uses predefined standards within the system
and these are built into the interface contracts. An exam-
ple of this would be the Speed measurement, which is al-
ways available in cm/s before any fuzzification. Both the
crisp and fuzzy value is available on demand. Other ques-
tions are translated by the VRL and queried or executed in
the lower level components themselves. For instance, the
motion component manages the rotation and movement of
the robot. A VRL and associated low-level functional com-
ponents are implemented uniquely for each robot. Again
note, these particular components are not transferable be-
tween platforms as they are robot specific.

6.4. Configurability

The VRL provides data on the robot configuration in-
cluding servo and sensor positioning and their signal in-
put and output meanings. This function is loaded into the
VRL from a configuration file, which is written once for
each robot type and altered according to hardware changes.
An configuration file using XML is very flexible, as used
by [10] and [5]. We use XML configurations to completely
specify our robots. This way the VRL can be easily modi-
fied with changes in the robot hardware or for entirely new
robots.

7. Outcomes

The VRL concept has so far been implemented on three
indoor mobile robots in our laboratory. These robots varied
a great deal in size, performance and shape. From the small
sized Khepera [15], to the larger Koala [15] with six wheels
and many more sensors, to the Palmbot [1] with far fewer
sensors and uses holonomic motion.

An obstacle avoidance component using infrared prox-
imity measurements can operate completely unchanged on
each of the three robots. The VRL would take the high level
commands from the component and translate them into the
appropriate robot level instructions. In future we hope to
apply the VRL concept to humanoid and flying robots as
well.
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