

COVER SHEET

Decker, Gero and Zaha, Johannes M. and Dumas, Marlon (2006)
Execution Semantics for Service Choreographies.

Copyright 2006 (please consult author)

Accessed from http://eprints.qut.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10875702?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Execution Semantics for Service Choreographies

Gero Decker1, Johannes Maria Zaha2, and Marlon Dumas2

1 SAP Research Centre, Brisbane, Australia
g.decker@sap.com

2 Queensland University of Technology, Brisbane, Australia
(j.zaha,m.dumas)@qut.edu.au

Abstract. A service choreography is a model of the interactions in
which a set of services engage to achieve a goal, seen from the perspec-
tive of an ideal observer that records all messages exchanged between
these services. Choreographies have been put forward as a starting point
for building service-oriented systems since they provide a global picture
of the system’s behavior. In previous work we presented a language for
service choreography modeling targeting the early phases of the devel-
opment lifecycle. This paper provides an execution semantics for this
language in terms of a mapping to π-calculus. This formal semantics
provides a basis for analyzing choreographies. The paper reports on ex-
periences using the semantics to detect unreachable interactions.

1 Introduction

As the first generation of web service technology based on XML, SOAP, and
WSDL reaches a certain level of maturity, a second generation targeting collab-
orative business processes is gestating. In the first generation, web services are
equated to sets of operations and message types. This conception reflects an em-
phasis on single request-response interactions. Meanwhile, the second generation
of web service technology targets “conversational interactions”, with service de-
scriptions capturing not only individual message exchanges, but also dependen-
cies between these exchanges, most notably behavioral dependencies. This trend
is evidenced by the emergence of languages for describing interaction behavior
such as the Business Process Execution Language for Web Services (BPEL) [1]
and the Web Service Choreography Description Language (WS-CDL) [7].

Two complementary approaches to capture service interaction behavior can
be elucidated from previous work: one where interactions are seen from the
perspective of each participating service, and the other where they are seen from
a global perspective. This leads to two types of models: In a global model (also
called a choreography) interactions are described from the viewpoint of an ideal
observer who oversees all interactions between a set of services. Meanwhile, a local
model focuses on the perspective of a particular service, capturing only those
interactions that directly involve it. Local models are suitable for implementing
individual services while choreographies are useful during the early phases of
anlysis and design, where domain analysts need a global picture of the system.

2 Gero Decker, Johannes Maria Zaha, and Marlon Dumas

This paper reports on ongoing work aimed at bridging these two viewpoints
by defining a service interaction modeling language (namely Let’s Dance) as
well as techniques for analyzing and relating global and local models of service
interactions. In previous work [14], we defined this language informally. This
paper introduces a formal execution semantics for the language using π-calculus
and discusses the analysis of models using this semantics.

The paper is structured as follows. Section 2 gives an overview of the Let’s
Dance language. The semantics of the language and an example are given in
Section 3 while Section 4 discusses the analysis of choreographies. In Section 5
related work is presented and section 6 concludes.

2 Language overview

2.1 Language Constructs

A choreography is of a set of interrelated service interactions corresponding to
message exchanges. At the lowest level of abstraction, an interaction is com-
posed of a message sending action and a message receipt action (referred to as
communication actions). Communication actions are represented by non-regular
pentagons (symbol for send and for receive) that are juxtaposed to form
a rectangle denoting an elementary interaction. As illustrated in Figure 1, a
communication action is performed by an actor playing a role, specified at the
top corner of a communication action. Roles are written in uppercase and the
actor playing this role (the “actor reference”) is written in lowercase between
brackets. The name of the message type for the receive actions can be omitted
(since the same type applies for both send and receive).

Fig. 1. Relationships in Let’s Dance

Interactions can be inter-related using the constructs depicted in Figure 1.
The relationship on the left-hand side is called “precedes” and is depicted by a
directed edge: the source interaction can only occur after the target interaction
has occurred. That is, after the receipt of a message “M1” by “B”, “B” is able
to send a message “M2” to “C”. The middle relationship is called “inhibits”,
depicted by a crossed directed edge, denotes that after the source interaction

Execution Semantics for Service Choreographies 3

has taken place, the target interaction can no longer take place. That is, after
“B” has received a message “M1” from “A”, it may not send a message “M2”
to “C”. Finally, the relationship on the right-hand side, called “weak-precedes”,
denotes that “B” is not able to send a message “M2” until “A” has sent a message
“M1” or until this interaction and all preceding interactions have been inhibited.
That is, the target interaction can only occur after the source interaction has
reached a final status, which may be “completed” or “skipped” (i.e. “inhibited”).

Fig. 2. Constructs of Let’s Dance

Interactions can be grouped into composite interactions as shown on the left-
hand side of Figure 2. Composite interactions can be related with other interac-
tions through precedes, inhibits and weak-precedes relationships. A composite
interaction is completed if all sub-interactions have been executed or inhibited.
The composite interaction in Figure 2 is completed if “A” has exchanged a mes-
sage “M1” with “B” and a message “M2” with “C”, since there is no way for
the elementary interactions in question to be inhibited. The upper-right corner
of Figure 2 shows a guard attached to an elementary interaction: The respective
interaction is only executed if the guard evaluates to true. The actor evaluating
the guard is named between brackets next to the guard. The last construct is
depicted in the lower-right corner of Figure 2. It corresponds to the repetition of
an interaction. Repetitions can be of type “while”, “repeat until” or “for each”
(the example shown in the figure is a “repeat until”). Repetitions of type “for
each” have an associated “repetition expression” which determines the collec-
tion over which the repetition is performed. A repeated interaction (regardless of
its type) has an associated stop condition. The actor responsible for evaluating
the stop condition (and the repetition expression if applicable) is designated be-
tween brackets. Let’s Dance does not impose a language for writing guards, stop
conditions or repetition expressions. In this paper, we treat these as free-text.

2.2 Example

Figure 3 shows a simple order management choreography involving an actor “b1”
playing the role “Buyer” and an actor “s1” playing the role “Supplier”. Each

4 Gero Decker, Johannes Maria Zaha, and Marlon Dumas

interaction has a label assigned to it for identification purposes (e.g. “P” for
exchanging message “PaymentNotice” in the example). The first interaction to
be enabled is “O”, whereby a supplier receives a message from a seller (and thus
these actor references are bound to specific actors). Following this interaction,
two elementary interactions (“OR” and “CO”) are enabled: one where the buyer
receives a number of “Order Responses” from the supplier, and another where
the buyer receives a “Cancel Order” message from the supplier.

Fig. 3. Order Management Scenario

Interaction “OR” has an associated stop condition which is evaluated by ac-
tor “s1” (the supplier). This repeated interaction is of type “repeat . . . until”
and it completes once the supplier has no more “Order Response” messages to
send (i.e. once all the line items in the purchase order have been processed). If
all order responses are exchanged before a “Cancel Order” message material-
izes, interaction “CO” is inhibited. This entails that any interaction that follows
it in the “Precedes” graph can no longer be performed. If on the other hand
the “Cancel Order” message materializes while “Order Response” messages are
still being exchanged, the supplier may either reject or accept the cancelation
request. In case of acceptance, a “Cancel Order Response” is exchanged and all
other potentially active interactions are inhibited (namely “OR” and “P”). If the
cancelation is rejected, the supplier notifies it to the buyer (interaction “RCO”)
and all remaining interactions are allowed to complete. The choreography (in-
stance) completes normally after the buyer and the supplier have exchanged a
payment notice (interaction “P”).

3 Formalization

3.1 Abstract Syntax

The abstract syntax of the language is formally captured by the following defi-
nition of a Let’s Dance choreography.

Execution Semantics for Service Choreographies 5

Definition: A Choreography is a tuple (I , RI , RT , GI , A, c0, Precedes,
WeakPrecedes, Inhibits, Parent , Performs, Evaluates, Executes) such that:

– I is a set of Interactions
– RI ⊆ I is a set of Repeated Interactions
– A function RT : RI → {w, r, fs, fc} linking repeated interactions to a rep-

etition type, which is either While, Repeat Until, For-each Sequential or
For-each Concurrent

– GI ⊆ I is a set of Guarded Interactions
– A is a set of Actors
– c0 ∈ I is the top-level interaction of the choreography
– Precedes, WeakPrecedes, Inhibits ⊆ I × I are three binary relations over the

set of interactions I.
– Parent ⊆ I × I is the relation between interactions and their direct sub-

interactions.
– A function Performs: I → ℘(A) linking interactions to actors
– A function Evaluates: GI → ℘(A) linking guarded interactions to actors
– A function Executes: RI → ℘(A) linking repeated interactions to actors

Not captured in the above definition are the notions of “conditional” and “rep-
etition” expressions since these can be abstracted away when formalising the
control-flow semantics of the language. However, it is useful to have these in
mind to understand certain choices in the semantics. Each guarded interaction
is associated to a conditional expression (i.e. a boolean function) that determines
whether the interaction is performed or not. In the abstract syntax, we only cap-
ture the actor responsible for evaluating this conditional expression (function
Evaluates) and not the expression itself. Likewise, every repeated interaction is
associated with a conditional expression (called the “stop condition”) that when
evaluated to true implies that the iteration must stop (in the case of “repeat”
and “for each”) or must continue (in the case “while”). Again, the abstract syn-
tax only captures the actor responsible for evaluating this expression (function
Executes). Finally, “for each” repeated interactions have a “repetition expres-
sion” attached to it that, at runtime, is used to compute the ordered collection
over which the iteration is performed. The actor responsible for evaluating the
“repetition expression” is the same that evaluates the “stop condition”.

The constraints below are assumed to be satified by any Let’s Dance model.

– Each interaction has one and only one parent: ∀i ∈ I | ∃!j ∈ I[j Parent i]
– No relation crosses the boundary of a repeated (composite) interaction:
∀i, j ∈ I ∀k ∈ RI[(k Ancestor i ∧ (i Precedes j ∨ i WeakPrecedes j ∨
i Inhibits j)) → k Ancestor j ∨ k = j] (where Ancestor = Parent+).

3.2 Background on π-calculus

The π-calculus is a modern process algebra that describes mobile systems. As
described in [8] and [9] communication takes place between different π-processes.
Names are a central concept in π-calculus. Links between processes as well as

6 Gero Decker, Johannes Maria Zaha, and Marlon Dumas

messages are names. This allows for link passing from one process to another.
The scope of a name can be restricted to a set of processes but may be extruded
as soon as the name is passed to other processes.

We will use the following syntax throughout the paper:

P ::= M | P |P ′ | (ν z)P | !P
M ::= 0 | π.P | M + M ′

π ::= x〈y〉 | x | x(y) | x | τ

Concurrent execution is denoted as P |P ′, the restriction of the scope of z to
P as (ν z)P and an infinite number of concurrent copies of P as !P . Inaction
of a process is denoted as 0, a non-deterministic choice between M and M ′ as
M + M ′, sending y over x as x〈y〉, sending an empty message over x as x and
receiving an empty message over x as x. The prefix x(y) receives a name over x
and continues as P with y replaced by the received name. τ is the unobservable
action. Communication between two processes can take place in the case of
matching send- and receive-prefixes. Furthermore, we denote the parallel and
sequential execution of the prefixes πi, i ∈ I as Πi∈I πi and {πi}i∈I , respectively.
In the case of restricting the scope of the set of names zi, i ∈ I we use the
abbreviation [zi]i∈I .

For better readability we will omit the inaction symbol 0 where possible.

3.3 Formalization

In order to come to a slim formalization of all control flow aspects of chore-
ographies we chose to introduce four different levels for formalizing interactions
where each level covers only one aspect of the interaction. The four levels are
depicted in figure 4.

Fig. 4. Formalization levels for interactions

– Basic Control Flow covers the coordination between different interactions.
The three different relationship types Precedes, WeakPrecedes and Inhibits
and the notion of propagating skipping are formalized here.

– Guard Condition formalizes the possibility to skip an enabled interaction
instance if a guard condition evaluates to false. Since evaluating the condi-
tions themselves is not formalized, we introduced a non-deterministic choice.
Guard Condition only applies to guarded interactions.

Execution Semantics for Service Choreographies 7

– Repetition covers the repetition types “while”, “repeat”, “for each (sequen-
tial)” and “for each (concurrent)”. It only applies to repeated interactions.

– Interaction Behavior contains the formalization for elementary interactions
and composite interactions. In the case of composite interactions enabling
and skipping sub-interactions are formalized in this layer.

A π-process is introduced for each of these levels and for each interaction in
a choreography. Communication between π-processes realizes the coordination
between different interactions as well as between the different layers of each
interaction. For inter-level-communication we introduce the private links enable,
complete and skip. Figure 5 illustrates how these private links are used.

Fig. 5. Inter level communication

Sending a message over enable indicates that the interaction instance is en-
abled. Sending a message over complete back indicates that the interaction has
executed successfully. skip is used to propagate skipping to sub-level-processes.

Formalization of Basic Control Flow For every A ∈ I the formalization of the
corresponding interaction instances is:

A = (ν perform, enable, complete, skip)({doA}i∈P . perform (1)
| (perform . (enable . (complete . Acompleted (2)

+skipA . (Askipped | !skipA))) (3)
+skipA . (perform . Askipped | !skipA)) (4)

| InnerProcess(enable, complete, skip)) (5)
Acompleted = {skipi}i∈Q . (doneParent(A) | Πi∈R doi) | !skipA (6)

Askipped = skip . {skipi}i∈S . (doneParent(A) | Πi∈R doi) (7)

8 Gero Decker, Johannes Maria Zaha, and Marlon Dumas

where P = {x ∈ I | x Precedes A ∨ x WeakPrecedes A ∨ x = Parent(A)}
Q = {x ∈ I | A Inhibits x}
R = {x ∈ I | A Precedes x ∨A WeakPrecedes x}
S = {x ∈ I | A Precedes x}

InnerProcess =
{

GuardA if A ∈ GI
NoGuardA if A /∈ GI

The names doA and skipA are introduced for the coordination between A
and all interactions that are the source of a relation where A is the target:

– Precedes: If the source interaction has completed an empty message is sent
over doA. If the source interaction was skipped then first a message is sent
over skipA and then another message over doA. This order is crucial for
ensuring that first skipping is propagated before enabling takes place.

– WeakPrecedes: A message is sent over doA if the source interaction has com-
pleted or was skipped.

– Inhibits: A message is sent over skipA if the source interaction has completed.

For every Precedes and WeakPrecedes relation a message over doA has to
arrive before anything else can happen inside the interaction instance. That is
why the private name perform was introduced (lines 1, 2, 4). Even if a message
over skipA arrives before all messages over doA have arrived (line 4) the process
still has to wait for the remaining messages because only then a message can be
sent over perform.

In the case where all doA-messages arrive before a skipA-message arrives,
the interaction instance is enabled and an empty message is sent over enable
to the process of the layer below (line 2). Once the interaction instance is en-
abled, the instance either completes (a complete-message is received) or a skipA-
message arrives. The latter causes the instance to be skipped immediately with-
out waiting for the completion of the execution. In the first case, i.e. the in-
stance completes, the follow-up actions in Acompleted apply which consist of first
sending skipA-messages to all target interactions of outgoing Inhibits-relations.
Then do-messages are sent to all target interactions of outgoing Precedes- and
WeakPrecedes-relations. done-messages will be explained in the section “Inter-
action behavior”.

In the case where a skipA-message arrives before all doA-messages have ar-
rived, the alternative in line 4 is chosen. After the perform-message has arrived
(i.e. that all doA-messages have arrived) the follow-up actions in Askipped ap-
ply. After skipping is propagated to the lower levels, skip-messages are sent to
all target interactions of Precedes-relations. Finally, do- and done-messages are
sent like it was already the case in Askipped.

!skipA serves as a “garbage collector” for skipA-messages that arrive without
causing any effect: After the instance has already completed (line 6) or after a
skipA-message has already caused skipping the instance (lines 3, 4).

Execution Semantics for Service Choreographies 9

Example. Interaction OR from Figure 3 is not guarded and has one incom-
ing Precedes-relation, one incoming Inhibits-relation, one outgoing Inhibits-
relation and one outgoing WeakPrecedes-relation which leads to the following
π-processes:

OR = !(ν perform, enable, complete, skip)(doOR . perform

| (perform . (enable . (complete . ORcompleted

+skipOR . (ORskipped | !skipOR)))
+skipOR . (perform . ORskipped | !skipOR))

| NoGuardOR(enable, complete, skip))
ORcompleted = skipCO . doP | !skipOR

ORskipped = skip . doP

Interaction instance lifecycle When observing the communication between the
Basic-Control-Flow -layer-process and the process of the level below we can easily
identify the state an interaction instance is in. Figure 6 depicts the life cycle of
an interaction instance.

Fig. 6. Interaction instance life cycle

Each interaction instance starts in the state initialized. Now a message over
either enable or skip can be sent. In the case of skip the interaction instance
is skipped and cannot execute any more. In the case of enable a message over
complete or skip can be sent. As already mentioned complete indicates that
the interaction has executed successfully. Therefore, the instance changes to the
state completed. A message over skip results in skipping the instance.

Formalization of Guard Conditions

GuardA(e, c, s) = (ν enable, complete, skip)(s . skip (1)
| (e . (τ0 . skipA + τ0 .(enable . complete . c (2)

| InnerProcess(enable, complete, skip))))) (3)
NoGuardA(e, c, s) = InnerProcess(e, c, s) (4)

where InnerProcess =


WhileA if A ∈ RI ∧RT (A) = w
RepeatA if A ∈ RI ∧RT (A) = r
ForEachSeqA if A ∈ RI ∧RT (A) = fs
ForEachConcA if A ∈ RI ∧RT (A) = fc
NoRepetitionA if A /∈ RI

10 Gero Decker, Johannes Maria Zaha, and Marlon Dumas

The links e, c and s are used for the communication with the Basic Control
Flow layer. The new names enable, complete and skip serve as communication
links to the process of the layer below.

A guard will not be evaluated until the interaction instance is enabled. That
is why a message has to be received over e before the non-deterministic choice can
take place (line 2). If the first alternative is chosen a skip-message is sent back
to the Basic-Control-Flow -layer-process which causes the interaction instance to
be skipped. If the second alternative is chosen the layer below is enabled.

Example. Interaction COR from Figure 3 leads to the following π-process:

GuardCOR(e, c, s) = (ν enable, complete, skip)(s . skip

| (e . (τ0 . skipA + τ0 .(enable . complete . c

| NoRepetitionCOR(enable, complete, skip)))))

Interaction OR from Figure 3 is translated as

NoGuardOR(e, c, s) = RepeatOR(e, c, s)

Formalization of Repetitions “While” and “For each (sequential)” have identical
semantics at the level of abstraction of control flow. In both cases the interaction
instance is executed an arbitrary number of times. We assume that the repetition
will terminate at some point in time. “Repeat until” repetitions have similar
semantics as “While” except that in this case the interaction instance is executed
at least once. The formalization below is based on recursion.

WhileA(e, c, s) = ForEachSeqA(e, c, s) = (ν enable, complete, skip)
(s . skip | e . R)

R = τ0 . c + τ0 . (enable . complete . R

| InnerProcess(enable, complete, skip))
RepeatA(e, c, s) = (ν enable, complete, skip)(s . skip | e .

(enable . complete . R

| InnerProcess(enable, complete, skip)))
R = τ0 . c + τ0 . (enable . complete . R

| InnerProcess(enable, complete, skip))

where InnerProcess =
{

ElementaryA if A /∈ CI
CompositeA if A ∈ CI

“For each (concurrent)” is the most complex type of repetitions. All interac-
tion instances are executed concurrently. Informally, when a repeated interaction
is performed, one instance of the contained interaction is started for each element

Execution Semantics for Service Choreographies 11

in the collection obtained from the evaluation of the repetition expression. These
instances execute concurrently. Each time that one of these instances completes,
the stop condition is evaluated. If the stop condition evaluates to true, the exe-
cution of the remaining instances is stopped and the execution of the repeated
interaction is considered to be completed.

The formalization of the “For each (concurrent)” construct below is inspired
from the π-formalization for the workflow pattern “Multiple Instances with a-
priori Runtime Knowledge” given in [10]. We introduce a linked list of processes
that use links c for notifying the previous process in the list that the interaction
instance has completed successfully and sk to notify the next process that the
instance has been skipped. Figure 7 illustrates this. There can be cases where
not all instances have to completed before the repetition is considered to be
completed. Arbitrary stop conditions can be defined for a repetition and after a
given instance completes a non-deterministic choice either leads to waiting for
complete or sending a message over st right away. The latter results in propagat-
ing stop-messages that lead to the completion of the repeated interaction. The
formalization of this construct is given below. Note that symbol InnerProcess is
defined as for “While” repetitions (see above).

ForEachConcA(e, c, s) = (ν comp, sk)(e .R(comp, comp, sk) | comp . c | s . sk)
R(c, st, s) = (ν comp, stop, sk)(τ0 . c + τ0 . (R(comp, stop, sk)

| (ν enable, complete, skip)(s . (sk | skip)
| enable . (stop . (st | skip) + complete .

(τ0 . (comp.c + stop.st) + τ0 . (st | sk)))
| InnerProcess(enable, complete, skip))))

Fig. 7. Linked list of processes realizing three concurrent interaction instances

Example. π-processes for interaction OR from Figure 3:

RepeatOR(e, c, s) = (ν enable, complete, skip)(s.skip | e.(enable.complete.R

| ElementaryOR(enable, complete, skip)))
R = τ0 . c + τ0 . (enable . complete . R

| ElementaryOR(enable, complete, skip))

12 Gero Decker, Johannes Maria Zaha, and Marlon Dumas

Formalization of Interaction Behavior Elementary interactions are assumed to
be atomic. Since we only focus on the control flow aspects of choreographies we
do not incorporate an actual communication between two business partners in
the π-formalization. We simply denote this interaction as τinteract.

ElementaryA(e, c, s) = e . τinteract . c | s

CompositeA(e, c, s) = (ν [doi]i∈Q, [donei]i∈Q, [skipi]i∈Q)(ΠB∈Q B

| e .(Πi∈P doi | {doneA}i∈P . c)
| s . (Πi∈P skipi . doi))

where P = {x ∈ I | A = Parent(x)}
Q = {x ∈ I | A ∈ RI ∧A Ancestor x

∧¬∃y ∈ RI(A Ancestor y ∧ y Ancestor x)}

Sub interactions of composite interactions must not execute until the parent
interaction has been enabled. In the formalization of Basic Control Flow we have
seen that do-messages are expected from all source interactions of Precedes- and
WeakPrecedes-relations as well as from all direct parent interactions.

As soon as an interaction instance has completed or is ready for propagating
skipping a done-message is sent to the direct parent interaction. These done-
messages are collected in the CompositeA process and as soon as all messages
have arrived the complete-message is sent to the super-level-process. This be-
havior guarantees that all sub interaction instances are already in one of the
states completed or skipped before further enabling and skipping takes place for
outgoing relations from A.

In case of the receipt of a skip-message, skip-messages are sent to all sub
interactions. If a sub interaction has already completed or has been skipped,
this message does not have any effect.

If A is a repeated interaction we have to start executing the π-processes
for all sub interactions at this point in time. That way we create multiple in-
teraction instances for each sub interaction (one instance per repetition cycle).
By creating new do- and skip-names we make sure that the inter-interaction-
instance-coordination takes place within the same repetition cycle.

Creating new names only in the case of repeated interactions also imple-
ments the fact that Precedes-, WeakPrecedes- and Inhibits-relations can cross
the boundaries of a composite interaction i if i is not repeated.

Example. Interaction OR from Figure 3 leads to the following formalization:

ElementaryOR(e, c, s) = e . τinteract . c | s

Putting it all together We have shown how the behavior of individual interaction
instances can be expressed using π-calculus. It now only takes a small step to
come to a π-formalization of a whole choreography C:

Execution Semantics for Service Choreographies 13

C = (ν [doi]i∈P , [donei]i∈P , [skipi]i∈P) ΠA∈P A

where P = {x ∈ I | ¬∃y ∈ RI(y Ancestor x)}

The π-processes for all interaction instances that are not sub interactions
of repeated interactions are executed in parallel. Sub interactions of repeated
interactions are executed in the CompositeA-process.

4 Reachability analysis for choreographies

The translation of Lets Dance choreographies into π-processes as it is shown
in the previous section allows for reasoning on these choreographies. A typi-
cal means to examine π-processes is to use bi-simulation equivalence. The first
definitions for bi-simulation, namely early and late bi-simulation, were intro-
duced by Milner, Parrow and Walker ([8]). However, the most prominent def-
inition for bi-simulation was introduced by Sangiorgi ([11]) and is called open
bi-simulation. Using this bi-simulation equivalence relation ∼o we know whether
two π-processes have the same transition behavior and thus simulate each other.

In the case of weak open bi-simulation the non-observable transitions are
ignored. This bi-simulation definition is suitable for our purposes: We want to
focus on certain interactions in our choreographies and consider everything else
as non-observable to the bi-simulation analysis.

One interesting property of an interaction in a choreography is whether it
is reachable (i.e. it may execute successfully) or if it is not-reachable (i.e. it
never executes). If we examine an elementary interaction it is sufficient to check
whether τinteract may be executed. However, according to the definition given
at the beginning of section 3 this action is unobservable. To change this we can
replace the τinteract of the interaction in question by the send-prefix interact.
The π-process would look like

ElementaryA(e, t, s) = e . interact . t | s

If we now define the link interact to be the only observable part in the
choreography then we can compare it to other π-processes. E.g. a comparison
to the π-process 0 tells us whether an interaction is reachable or not. If the
choreography is weak open bi-simulation related to 0 the interaction in question
is not-reachable otherwise the interaction must be reachable.

Doing bi-simulation analysis using tools such as the Mobility Workbench
([12]) is not possible if the choreography contains repeated interactions. The
formalizations in the previous section introduce a non-deterministic choice for
the stop condition of repetitions which causes the tool to run into an infinite
loop. However, we can simply omit the Repetition layer for the reachability
analysis while preserving correct results.

14 Gero Decker, Johannes Maria Zaha, and Marlon Dumas

5 Related work

Several industry-driven initiatives have attempted to standardize notations for
global description of service interactions. An early attempt was BPSS [5] where
global models are captured as flows of interactions using flowchart-like con-
structs. WSCI [2] represents another approach wherein global service interaction
models are defined as collections of inter-connected local models. Control depen-
dencies are described within each individual local model. A formal semantics of
a subset of WSCI is sketched in [3]. More recently, the WS-CDL initiative [7]
led to a language that follows the line of BPSS insofar as global service behavior
is described as flows of interactions. WS-CDL goes further than BPSS in the
level of details at which interaction flows are described. In fact, WS-CDL can
be seen as a programming-in-the-large language for Web services: it deals with
global interactions as the basic primitive but relies on imperative programming
constructs such as variable assignment, sequence and block-structured choice
and parallel branching. Several formal semantics of WS-CDL or subsets thereof
have been defined. Yang et al. [13] propose a small-step operational semantics
of WS-CDL. It is not clear however that this semantics provides a suitable basis
for reasoning about service choreographies, such as determining whether or not
a local model complies to a choreography, or performing reachability analysis as
discussed above. Other authors have defined subsets of WS-CDL and captured
them in terms of process calculi. This is the case of [4], where the authors define
a formal language corresponding to a subset of WS-CDL and use it as a founda-
tion to formally capture relationships between choreographies and local models.
Again, the authors do not show how far can this formalization go in terms of
providing a basis for automated analysis of choreographies.

Unlike WS-CDL, Let’s Dance does not target application developers, but
rather business analysts and system designers. Accordingly, it avoids reliance on
imperative programming constructs with which analysts are usually unfamiliar.
Still, Let’s Dance models are executable at a certain level of abstraction and can
thus be used for simulation and verification as discussed in this paper.

Several authors have considered the use of communicating state machines as a
basis for modeling global models of service interactions [6]. While state machines
lead to simple models for sequential scenarios, they usually lead to spaghetti-like
models when used to capture scenarios with parallelism and cancelation. Thus,
state machines may provide a suitable foundation for reasoning about service
interactions, but their suitability for choreography modeling is questionable.

6 Conclusion and outlook

This paper has introduced a formal semantics for a service interaction mod-
eling language, namely Let’s Dance, which supports the high-level capture of
both global models (i.e. choreographies) and local models of service interactions.
The semantics is defined by translation to π-calculus. At present, the semantics

Execution Semantics for Service Choreographies 15

focuses on control-flow aspects. However, π-calculus is well-suited for captur-
ing actor bindings and passing binding information across actors. Ongoing work
aims at extending the current semantics along this direction.

The presented semantics has been used as a blueprint for the implementation
of a simulation engine and as a basis for analyzing Let’s Dance choreographies.
We have shown in this paper how weak open bisimulation can be used to check
reachability of interactions. Ongoing work aims at applying a similar technique
to compliance checking, i.e. checking whether a local model complies to a chore-
ography. However, when interactions in the choreography and those in the local
models do not map one-to-one, or when a local model implements several chore-
ographies, pure weak open bi-simulation approaches reach their limits.

Another problem that deserves further attention and can be addressed on the
basis of the formalization is that of local enforceability of choreographies [15]. It
turns out that not all choreographies defined as flows of interactions (which is the
paradigm adopted in Let’s Dance) can be mapped into local models that satisfy
the following two conditions: (i) these local models contain only interactions de-
scribed in the choreography; and (ii) they are able to collectively enforce all the
constraints expressed in the choreography. Existing languages for choreography
description such as WS-CDL, skirt this issue. Instead, they assume the existence
of a state (i.e. a set of variables) shared by all participants. Participants syn-
chronize with one another to maintain the shared state up-to-date. This means
that certain interactions take place between services for the sole purpose of syn-
chronizing their local view on the shared state, and these interactions are not
explicitly defined in the choreography. In the worst case, this leads to situations
where a business analyst signs off on a choreography, and later it turns out that
in order to properly execute this choreography, a service provided by one or-
ganization must interact with a service provided by a competitor, unknowingly
of the analyst. Thus, it is desirable to provide tool support in order to analyze
choreographies and determine whether or not they are enforceable by some set
of local models. In ongoing work [15], we have defined an algorithm for deter-
mining local enforceability of Let’s Dance choreographies. The formal semantics
presented in this paper can serve as a basis for validating the correctness of the
transformation rules encoded in this algorithm.

References

1. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K.
Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, S. Weerawarana: Business Pro-
cess Execution Language for Web Services, version 1.1, May 2003. http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel

2. A. Arkin et al.: Web Service Choreography Interface (WSCI) 1.0, 2002.
www.w3.org/TR/wsci/

3. A. Brogi, C. Canal, E. Pimentel, A. Vallecillo: “Formalizing Web Service Chore-
ographies”. In Proceedings of 1st International Workshop on Web Services and
Formal Methods, Pisa, Italy, February 2004, Elsevier, Electronic Notes in Theoret-
ical Computer Science Vol. 105, pp. 73–94.

16 Gero Decker, Johannes Maria Zaha, and Marlon Dumas

4. N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, G. Zavattaro: Choreography and Orches-
tration Conformance for System Design. In Proceedings of 8th International Con-
ference on Coordination Models and Languages (COORDINATION’06), Bologna,
Italy, June 2006, Springer Verlag.

5. J. Clark, C. Casanave, K. Kanaskie, B. Harvey, N. Smith, J. Yunker, K. Riemer
(Eds). ebXML Business Process Specification Schema Version 1.01, UN/CEFACT
and OASIS Specification, May 2001. http://www.ebxml.org/specs/ebBPSS.pdf

6. R. Hull, J. Su: Tools for composite web services: a short overview. SIGMOD Record
34(2): 86-95, 2005.

7. N. Kavantzas, D. Burdett, G. Ritzinger, and Y. Lafon. Web Services Choreography
Description Language Version 1.0, W3C Candidate Recommendation, November
2005. http://www.w3.org/TR/ws-cdl-10

8. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Information
and Computation, 100:1–40, 1992.

9. J. Parrow: An Introduction to the πCalculus. In J.A. Bergstra, A. Ponse, S.A.
Smolka, (eds.): Handbook of Process Algebra Elsevier, 479543, 2001.

10. F. Puhlmann, M. Weske: Using the π-Calculus for Formalizing Workflow Patterns.
In Proceedings of the 3rd International Conference on Business Process Manage-
ment (BPM), Nancy, France, September 2005, pp 153-168, Springer Verlag.

11. D. Sangiorgi: A theory of bisimulation for the π-calculus. In Acta Informatica
16(33): 69-97, 1996.

12. B. Victor, F. Moller, M. Dam, L.H. Eriksson: The Mobility Workbench. Uppsala
University, 2006. http://www.it.uu.se/research/group/mobility/mwb

13. H. Yang, X. Zhao, Z. Qiu, G. Pu , and S. Wang: A Formal Model for
Web Service Choreography Description Language (WS-CDL) Preprint,
School of Mathematical Sciences, Peking University, January 2006.
www.math.pku.edu.cn:8000/var/preprint/7021.pdf

14. J. M. Zaha, A. Barros, M. Dumas, A. ter Hofstede: A Unified Language for Service
Behavior Modeling. Preprint # 3459, Faculty of IT, Queensland University of
Technology, February 2006. http://eprints.qut.edu.au/archive/00003459

15. J. M. Zaha, M. Dumas, A. ter Hofstede, A. Barros, G. Decker: Ser-
vice Interaction Modeling: Bridging Global and Local Views. Preprint #
3970, Faculty of IT, Queensland University of Technology, April 2006.
http://eprints.qut.edu.au/archive/00003970

