
 Applying Transformation-Based Error-Driven Learning to Structured
Natural Language Queries

Alan Woodley, Shlomo Geva
School of Software Engineering and Data Communications

Faculty of Information Technology
 Queensland University of Technology

ap.woodley@student.qut.edu.au, s.geva@qut.edu.au

Abstract

XML information retrieval (XML-IR) systems aim to
provide users with highly exhaustive and highly
specific results. To interact with XML-IR systems,
users must express both their content and structural
requirement, in the form of a structured query.
Traditionally, these structured queries have been
formatted using formal languages such as XPath or
NEXI. Unfortunately, formal query languages are very
complex and too difficult to be used by experienced, let
alone casual users. Therefore, recent research has
investigated the idea of specifying users’ content and
structural needs via natural language queries (NLQs).
In previous research we developed NLPX, a natural
language interface to an XML-IR system. Here we
present additions we have made to NLPX. The
additions involve the application of transformation-
based error-driven learning (TBL) to structured NLQs,
to derive special connotations and group words into an
atomic unit of information. TBL has successfully been
applied to other areas of natural language processing;
however, this paper presents the first time it has been
applied to structured NLQs. Here, we investigate the
applicability of TBL to NLQs and compare the TBL-
based system, with our previous system and a system
with a formal language interference. Our results show
that TBL is effective for structured NLQs, and that
structured NLQs a viable interface tor XML-IR
systems.

1. Introduction

Information retrieval (IR) systems respond to user
queries with a ranked list of relevant results.
Traditionally, these results have been whole documents
but since XML documents separate content and

structure, XML-IR systems are able to return highly
specific information to users, lower than the document
level. However, to take advantage of this capability
XML-IR users require an interface that is powerful
enough to express their content and structural
requirements, yet user-friendly enough that they can
express their requirements intuitively.

Historically, XML-IR systems have used two types
of interfaces, keyword-based and formal query
language-based. Keyword-based systems are user-
friendly, but lack the sophistication to properly express
users’ content and structural needs. In comparison,
formal query language-based interfaces are able to
express users’ content and structural needs, but are too
difficult to use, especially for casual users [24,27] and
are bound to the physical structure of the document.
Recently, investigation has begun into a third option for
interfacing with XML-IR systems via a natural
language interface that will allow users to fully express
their content and structural needs in an intuitive and
easy to use manner.

We have previously presented NLPX [29,30], an
XML-IR system with a natural language interface.
NLPX accepts natural language queries (NLQs) and
translates them into NEXI queries. NEXI is an XPath-
like formal query language that is used as a frontend to
many existing XML-IR systems. NLPX participated in
the natural language processing track of the 2004
INitiative for the Evaluation of XML Retrieval
Workshop. INEX [14] is comparable to TREC and is a
benchmark for the evaluation of XML-IR systems.
INEX evaluates two types of queries: Content Only
(CO) and Content and Structure (CAS). CO queries
express users’ information need solely in terms of a
subject area, while CAS queries specify both a subject
area and location within the document where the area
might be present.

Proceedings of the 2005 International Conference on Cyberworlds (CW’05)
0-7695-2378-1/05 $20.00 © 2005 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10875329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Since the 2004 INEX workshop we have made two
changes to NLPX. First, we replaced our existing
method of identifying significant terms in a NLQ from
basing them solely on their word value to a method that
also takes into account a word’s context. Second, we
introduced a shallow parser that groups individual
words into an atomic unit of information. Both of the
changes are based upon an approach called
transformation-based error-driven learning. This is an
approach that has shown promise in other areas of
natural language processing and we have investigated if
it is also applicable to structured NLQs. Our results
indicate that it is a beneficial addition.

The rest of this paper is organised as follows.
Section 2 lists the motivation for development of a
XML-IR natural language interface. Section 3
summarises our previous work. Section 4 describes the
paradigm of transformation-based error-driven
learning. Sections 5 and 6 detail the extensions we have
made to our system. Sections 7 and 8 describe how our
extensions interact with our existing system. Finally,
Section 9 reports the results of our extensions, using
the standard INEX 2004 dataset.

2. Motivation

We have already outlined the motivations for an
XML-IR natural language interface in our previous
work [29, 30]; however, for completeness we include
them here. The motivations stem from the problems
with formal XML-IR query languages and are two
fold: first, formal query languages are difficult to use,
and second, they are too tightly bound to the physical
structure of documents.

First, formal query languages are too difficult for
many users to correctly express their information need.
Two very good examples of this have occurred at the
2003 and 2004 INEX Workshops. In 2003 INEX used
the XPath [10] formal language to specify structured
queries; however, 63% of the proposed queries had
major semantic or syntactic errors. Furthermore, the
erroneous queries were difficult to fix, requiring 12
rounds of corrections. In response to this problem,
O’Keefe and Trotman [24] designed a simplified
version of XPath called NEXI, which was used in
INEX 2004. When NEXI was used, the error rate
dropped to 12%, with the number of topic revision
halved [27]. While these figures are limited to two
formal languages, O’Keefe and Trotman investigated
other structured query languages such as HyTime,
DSSSL, CSS and XIRQL and concluded that all of
them are very complicated and difficult to use.
Therefore, if experts in the field of structured

information retrieval are unable to correctly use
complex query languages, one cannot expect an
inexperienced user to do so. However, we feel that
users would be able to intuitively express their
information need in a natural language.

Secondly, formal query languages are too tightly
bound to the physical structure of documents; hence,
users require an intimate knowledge of documents’
composition in order to express their structural
requirements properly. So, in order for users to retrieve
information from abstracts, bodies or bibliographies,
they will need to know the actual names of those tags in
a collection (for instance: abs, bdy, and bib). While this
information may be obtained from a document’s DTD
or Schema there are situations where the proprietor of
the collection does not wish users to have access to
those files. Or, in the case of a heterogeneous
collection, a single tag can have multiple names (for
example: abstract could be named abs, a, or abstract).
Alternatively, structural requirements in NLQs are
expressed at a higher conceptual level, allowing the
underlying document’s structure to be completely
hidden from users.

3. Previous Work by Authors

This paper expands on the previous work of the
authors presented in [29, 30]. We submitted our
system, NLPX, to the 2004 INEX Natural Language
Processing Track where it performed very successfully
(1st in CAS, 2nd in CO). INEX’s NLP track used the
same topics and assessments as its Ad-hoc track;
however, participating systems used a natural language
query as input, rather than a query a formal language
(NEXI) query. Examples of both query types are
expressed in Figure 1. Note that the query actually
contains two information requests, first, for sections
about compression, and second, for articles about
information retrieval. However, the user only wants to
receive results matching the first request. We refer to
the former as returned requests/results and the latter as
support requests/results.

Figure 1. A NEXI and Natural Language Query

NEXI: //article[about(.,‘information retrieval’)]
//sec[about(./, compression)]

NLQ: Find sections of articles about image and text
compression in articles about efficient information
retrieval

Proceedings of the 2005 International Conference on Cyberworlds (CW’05)
0-7695-2378-1/05 $20.00 © 2005 IEEE

We had previously participated in INEX’s Ad-hoc
track with GPX, a system that accepted NEXI
formatted queries. Therefore, we decided to use GPX
as a backend system. This allowed us to concentrate on
developing a frontend that translated natural language
queries to NEXI. Translation involved three steps that
derived syntactic and semantic information from the
natural language query (NLQ). These three steps are
outlined below:

1. First we tagged words in the NLQ as either a
special connotation or by their part of speech.
Special connotations are words of implied
semantic significance. We differentiated between
three types: Structures (such as section, abstract)
that specified structural requirements, Boundaries
(such as contains, about) that separated structural
and content requirements, and Instructions (such
as find, retrieve) that indicated if we had a return
or support request. Words corresponding to
special connotations were hard-coded into the
system and matched to query words by a
dictionary lookup. Remaining words were tagged
by their part of speech (such as noun, verb,
conjunction) via a Brill Tagger [4].

2. Second, we matched the tagged NLQ to query
templates. The templates were derived from the
inspection of previous INEX queries. Since the
NLQs occurred in shallow context they required
only a few templates, significantly less than if one
wished to capture natural language as a whole.
Each template corresponded to an information
request. Each request had three attributes:
Content, a list of terms/phrases expressing content
requirements, Structure, a logical XPath
expression expressing structural requirements,
and an Instruction, “R” for return requests, and
“S” otherwise.

3. Finally, the requests were merged together and
output in NEXI format. Return requests were
output in the form A[about(.,C)] where A is the
request’s structural attribute and C is the request’s
content attribute. When all return requests were
processed, support requests were inserted. The
insert position was located by comparing the
structural attributes of return and support requests
and by finding their longest shared descendant.
The output of support requests had the form
D[about(E,F)] where D is the longest matching
string, E is the remainder of the support’s
structural attribute and F is the support’s content
attribute.

The rest of this paper concerns extensions we made
to the first step, that is, the lexical and semantic tagging
of the natural language query. Readers wanting
extensive overviews of the other steps or the GPX
backend are recommended to read our previous work.

4. Transformation-Based Error-Driven
Learning

Transformation-based error-driven learning (TBL)
has been applied to many areas of natural language
processing such as part of speech tagging [4],
propositional phrase attachment [5], shallow parsing
[26], word sense disambiguation [21] and syntactic
parsing [6]. TBL works by recognizing and remedying
its weakness, thereby incrementally increasing its
performance. Figure 2 was originally presented in [7]
and illustrates the learning process.

Figure 2: Transform-Based Learning

The paradigm is explained as follows:

1. A corpus is manually annotated with metadata.
Examples of metadata are a word’s part of speech
or meaning. We refer to the manually annotated
corpus as the truth, and the unannotated corpus as
the free text.

INITIAL STATE
ANNOTATOR

LEARNER

FREE
TEXT

ANNOTATED
TEXT

TRUTH

RULE
TEMPLATES

LEARNED
RULES

Proceedings of the 2005 International Conference on Cyberworlds (CW’05)
0-7695-2378-1/05 $20.00 © 2005 IEEE

2. The free text is input into an initial state
annotator, which appends metadata to each word
in the corpus. The initial state annotator can be as
simple as assigning the same metadata value to
each word, or as complex as assigning the output
of a stochastic annotator.

3. The learner compares the annotated text with the
truth. The learner applies a set of transformation
templates to the annotated text to make it better
resemble the truth. The transformation that best
corrects the annotated text is saved to a rules file.
This transformation is applied to the annotated
text.

4. Step 3 is reiterated until no transformations can be
found that improve the annotated text beyond
some pre-specified threshold.

To learn a specific application of TBL one must
specify: the initial state annotator, the transformation
templates and the scoring function for comparing the
annotated text to the truth, and choosing a
transformation. Once a list of rules is learned new text
can be annotated, first, by applying the initial state
annotated, and then by applying each of the rules, in
order.

5. Part of Speech Tagging

Part of speech tagging is the process of augmenting
words in a corpus with their form grammatical class
(for example noun; verb; adjective). Part of speech
tagging is a fundamental first step in many
computational linguistic applications. There exist many
automatic part of speech taggers that can be used to tag
a corpus, and they are loosely grouped into two classes:
grammatical-based and statistical-based. Here, we
describe the part of speech tagger we used and how we
incorporated it into NLPX.

5.1. The Brill Tagger

Originally, automatic part of speech taggers used
manually engineered grammatical rules [18, 16].
During the 1980s, large corpora became available and
researchers developed trainable Markov-based
stochastic taggers [8, 9, 11, 17, 20, 23]. These
stochastic taggers were very accurate, but did not
perform any syntactic analysis. Instead, they assigned a
sentence the tag sequence that maximises
Prob(word|tag) * Prob(tag|previous n tags). The
advantages of stochastic taggers over manually built
taggers include eliminating the time-consuming manual
rule construction and possibly capturing useful

information that might have been missed by a human
engineer. However, they have the disadvantage that
linguistic information is calculated indirectly, in large
tables of statistics.

Brill developed a grammatical-based tagger that
performed comparably to stochastic taggers [4, 7]. This
was a significant breakthrough, since previous
grammatical-based taggers [15, 18] had error rates
substantially higher than state of the art stochastic
taggers. Training the tagger was fully automatic, and
used Transformation-Based Learning (TBL). Thus,
unlike stochastic taggers, linguistic information was
captured directly in a set of rules, rather than large
tables of statistics. Further improvements over
stochastic taggers included better portability from one
tag set or corpus genre to another and ease of finding
and implementing improvements to the tagger.

Here we describe the algorithm for the final version
of the Brill tagger [7], which extended his previous
work [4].

1. The corpus is tagged by the initial state annotator.
Known words are assigned the most likely tag as
derived from the training corpus. Unknown
words are naively tagged as nouns or as proper
nouns if they begin with a capital.

2. Lexical based transformations are performed on
unknown words derived from their suffixes,
infixes and adjacent word co-occurrence.

3. Lexical and syntactic based transformations are
performed on words using an ordinal set of
templates, based upon from their neighbouring
words and tags.

5.2. Application to NLPX

We choose to apply the Brill tagger within NLPX as
opposed to a stochastic tagger for several reasons.
First, it is easier to port to another genre than stochastic
taggers. This is important since we were working with
structured natural language queries, a genre that part of
speech taggers are not specifically designed for.
Second, it requires much smaller copra for training.
This is important since structured NLQ copra currently
suffer from a sparse data problem. We used
approximately one hundred INEX queries during
training, totally 1,500 words. However, tens of
thousands of words are needed to train stochastic
taggers Finally, the Brill tagger makes decisions based
on features of localised context, this is fortunate, since
the majority of our queries are relatively small
(between 25-50 words).

Proceedings of the 2005 International Conference on Cyberworlds (CW’05)
0-7695-2378-1/05 $20.00 © 2005 IEEE

The Brill tagger defines tags as specified by the
Penn Treebank [22]. We augmented these tags with our
own set of special connotations to specify structures
(e.g. article, section, paragraph), boundaries (e.g.
about, containing) and instructions (e.g. find, retrieve).
Figure 3 presents some of the tags used in the Penn
Treebank and Figure 4 presents the tags that denote a
special connotation.

Figure 3: Some Penn Treebank Tags

Figure 4: Special Connotation Tags

The Brill tagger was used in our previous work [29,
30]; however, it was only used to define standard parts
of speech. Special connotations were transformed at a
later stage by a simple dictionary lookup. The
dictionary was hard-coded to contain words assumed to
be special connotations. So after annotating our natural
language query (NLQ) using the Brill tagger, the
dictionary was searched for each query word. If the
query word was found in the dictionary, then its tag
was transformed into a special connotation regardless
of its context. This caused problems for ambiguous
words. For instance, in both of the following NLQs the
word abstract would be tagged as a structural
connotation, although the second instance should
remain tagged as a noun.

Retrieve articles’ titles from documents with abstracts
that discuss personal privacy concerns.

Retrieve figure captions about abstract paintings.

However, we could correct this error by using the
following rule.

Change the tag from structure to noun if the previous
tag is boundary.

To correct this problem we extended the Brill tagger
to classify special connotations as well as parts of
speech. This required us to retrain the Brill tagger
using the process discussed in section 4. Our training
corpus consisted of manually annotated INEX queries.
Each year INEX participants propose a set of topics,
called candidate topics, to be used as evaluate systems,
and each year a subset is chosen as official INEX
topics. For training we used the INEX 2003 CAS
candidate topics and the 2004 INEX candidate topics
not chosen as official topics. Our test set consisted of
the INEX 2004 official topics. Figure 5 is the NLQ
introduced earlier, after it has been tagged.

Figure 5: Tagged NLQ

6. Shallow Parsing

Shallow parsing, also called text chunking, is the
process of dividing sentences into atomic, non-
overlapping segments (called chunks), and then
classifying them into grammatical classes. Shallow
parsing is usually performed after part of speech
tagging, and as demonstrated by Abney [1] can be used
as a precursor to full parsing. Alternatively, it can be
used in other tasks such as index term generation,
information extraction, text summation and bilingual
alignment. Initial research into shallow parsing
focused on identifying noun phrases; however, more
recent work has extended its reach to include general
clause identification. Here we describe the shallow
parser we used, and how we incorporated it into NLPX.

6.1. Ramshaw and Marcus

Initial shallow parsing techniques focused on
identifying low-level noun chunks, either using
linguistic techniques that combined lexical data with
finite state or other grammar constraints [3, 28], or
stochastic techniques that automatically constructed a
language model from a labelled and bracketed corpus
[9]. As pointed out by Pla et al. [25] it is difficult to

XIN Instruction Word

XST Structural Word

XBD Boundary Word

CC Coordinating Conjunction
DT Determiner
IN Preposition / Subordinating

Conjunction
JJ Adjective
NN Noun, Singular or Mass
NNS Noun Plural

Find/XIN sections/XST of/IN articles/XST
about/XBD image/NN and/CC text/NN
compression/NN in/IN articles/XST about/XBD
efficient/JJ information/NN retrieval/NN

Proceedings of the 2005 International Conference on Cyberworlds (CW’05)
0-7695-2378-1/05 $20.00 © 2005 IEEE

compare the effectiveness of these techniques since
each had different definitions of what constituted a
valid chunk, used different test collections or even
performed evaluation manually. However, Ejerhed [13]
reported that the stochastic techniques outperformed
linguistics techniques both in terms of identifying noun
phrases (97.8% to 93.5%) and general clauses (98.6%
to 97.8%).

Ramsaw and Marcus [26] conducted landmark
research that approached shallow parsing as if it was a
tagging task. While previous methods encoded chunks
using non-recursive bracket markers Ramshaw and
Marcus encoded chunks using a separate tag, so that
each word had both a part of speech tag and a chunk
tag. They used the chunk tag set {I,O,B} where I
indicated that words were in a chunk, O indicated that
words were outside of a chunk and B indicated that
words were inside a chunk, but the preceding word was
in another chunk. This approach was advantageous
since chunk structure could be derived solely from tag
sequence, whereas methods using the previous
encodings had the additional complexity of correctly
pairing brackets. This new method of encoding meant
that many more machine learning algorithms could be
applied to shallow parsing than previously thought [2,
12, 19].

Like Brill, Ramsaw and Marcus applied a
transform-based learning algorithm. Their initial state
annotator assigned the most likely chunk tag according
to a word’s part of speech. During their training phrase
they used 100 templates built from the cross product
between 20 word and part of speech patterns and 5
chunk tags patterns. While Ramshaw and Marcus were
the first to envision shallow parsing as a tagging task,
research by Pla et al. indicates that their approach is
not as accurate as later approaches. However, we
wanted to investigate how well the transformation-
based learning paradigm would apply to structured
natural language queries; hence, we decided to use both
a TBL tagger and shallow parser.

6.2. Application to NLPX

We waned to use Ramshaw and Marcus’ shallow
parser to recognise three types of chunks: instruction
chunks, structure chunks and content chunks. Not
surprising these are logical extensions of the same three
special connotations introduced earlier. In particular,
recognising content chunks allowed us to perform other
interesting lexical analysis by deriving phrases based
on the nouns, verbs and adjectives that occur in the
chunk. In order to recognise these chunks we had to
retrain Ramshaw and Marcus’ shallow parser. We input

the same training data used to retrain the Brill tagger,
but it was manually annotated with the specified chunk
tags (I,O,B). We also used the same test set that we did
for the Brill tagger. From this process, the Ramshaw
and Marcus’ shallow parser was able to learn several
new rules to identify chunks. Figure 6 is what the
NLQs introduced earlier would look like after
processing by the shallow parser.

Figure 6: Chunked NLQ

Figure 6: Chunked NLQ

7. NLPX Backend

Once the NLQ is tagged and chunked it is
transformed into a NEXI query using the existing
NLPX system. This is a two stage process. First,
information requests are derived by matching the NLQ
to a set of query templates outlined in Figure 7. Then
the information requests are merged, and output in
NEXI format. Figure 8 shows a NEXI query derived
from the earlier NLQ. Notice that the query has been
expanded to included several phrases that do not occur
in the actual NLQ, based on the grammatical properties
of each phrase.

Figure 7: Query Templates

Figure 8: NLQ-to-NEXI Queries

Query: Request+
Request : CO_Request | CAS_Request
CO_Request: NounPhrase+
CAS_Request: SupportRequest | ReturnRequest
SupportRequest: Structure [Bound] Content+
ReturnRequest: Instruction Structure [Bound] Content+

//article[about(.,‘efficient information retrieval’
‘information retrieval’)] //sec[about(./, ‘image text
compression’)]

[Find/XIN] [sections/XST of/IN articles/XST]
about/XBD [image/NN and/CC text/NN
compression/NN] in/IN [articles/XST]
about/XBD [efficient/JJ information/NN
retrieval/NN]

Proceedings of the 2005 International Conference on Cyberworlds (CW’05)
0-7695-2378-1/05 $20.00 © 2005 IEEE

8. GPX Backend

When the NLQs have been translated into NEXI
format we send them to our existing GPX system for
processing. GPX accepts NEXI queries, and returns a
ranked list of XML elements. To produce results GPX
collects leaf elements from its index and dynamically
creates their ancestors. GPX’s ranking scheme rewards
leaf elements with specific terms and penalises leaf
elements with common terms. It also rewards ancestors
with multiple relevant children and penalises ancestors
with a single relevant child. Finally, phrases are heavily
rewarded, where an occurrence of a phrase in a result is
defined as all phrase words in the query occurring in
the leaf element, even if they do not occur
continuously.

9. Results

We conducted our test experiments using the 2004
INEX dataset. INEX is comparable to TREC and is the
most authoritative benchmark for XML retrieval. The
INEX collection consists of a set of IEEE journal
articles, topics, relevance assessments and an
evaluation module. INEX accepts two types of topics:
Content Only (CO) and Content and Structure (CAS).
Both types contain hints about a user’s requested
subject matter (content); however, CAS topics are
referred to as structured queries since they also contain
hints about the elements that are most likely to satisfy a
user’s information need. Here we present the results of
the CAS topics. We preformed four experiments, (1)
the NLPX system that incorporated the TBL additions;
(2) an upper-bounds baseline that simulated a ‘perfect’
TBL system, were manually tagged and chunked NLQs
were submitted to NLPX; (3) a baseline that used
NLPX without TBL and (4) a second baseline that used
NEXI input into GPX.

Figure 9 shows the Recall-Precision plots for our
experiments. There are four lines of significance. The
dashed line is the NLPX baseline, without TBL
(NLPX04), the solid line is the new NLPX system with
TBL (NLPX-TBL), the dotted line is the NLPX system
with perfect input (NLPX-Perfect), and the dashed-
dotted line is the GPX system using NEXI input
(NEXI). The grey lines are the plots of the other
participants. Table 1 shows the Mean Average
Precision of all runs and the system rank they would
have received if they had participated in the INEX
2004 Ad-hoc task.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1
Recall

P
re

ci
si

o
n

NLPX - Without TBL
NLPX - With TBL
NLPX - With TBL and Perfect Input
NEXI

Figure 9: Recall-Precision Curve

Table 1. Mean Average Precision

The results presented here are interesting. Both of
TBL systems outperform the NLPX system we
produced for INEX 2004; however, they are
outperformed by the NEXI system. The fact that the
‘perfect’ TBL outperforms the ‘automatic’ TBL shows
that TBL is an imperfect technology. However, with
more training it is possible that the gap between these
two systems could close. Particularly encouraging was
the fact that all of the systems performed well in
comparison with the other INEX participants. This
shows that structured NQLs are a viable alternative to
formal query languages.

10. Conclusion

Here, we presented NLPX, a natural language
interface to an XML-IR system. We also incorporated
the transformation-based error-driven learning
paradigm to structured natural language queries. We
applied TBL to two areas: part of speech tagging and
shallow parsing. The results are encouraging, and show
that TBL is worthwhile incorporating into structured
NLQs. Furthermore, our results indicate that structured

NLPX-
04

NLPX-
TBL

NLPX-
Perfect

NEXI

MAP 0.757 0.0804 0.981 0.1242

INEX
Rank

7 5 5 1

Proceedings of the 2005 International Conference on Cyberworlds (CW’05)
0-7695-2378-1/05 $20.00 © 2005 IEEE

NLQs are a viable alternative to XPath-like formal
language queries.

11. References

[1] S. Abney, “Parsing by Chunks”, In Principle-Based
Parsing, Kluwer Academic Publisher, 1991.
[2] S. Aragamon, I. Dagan, Y. Krymolowski, “A Memory
Based Approach to Learning Shallow Natural Language
Patterns”, In Proceedings of the Joint 17th International
Conference on Computational Linguistics and 36th Annual
Meeting of the Association for Computation Linguistics,
COLING-ACL, Montreal, Canada, pp. 67-73, 1998.
[3] D. Bourigault, “Surface Grammatical Analysis for the
Extraction of Terminological Noun Phrases”, In Proceedings
of the Fifteenth International Conference on Computational
Linguistics, pp. 977-981, 1992.
[4] E. Brill, “A Simple Rule-Based Part of Speech Tagger”,
In Proceedings of the Third Conference on Applied
Computational Linguistics (ACL), Trento, Italy, 1992.
[5] E. Brill, “Automatic Grammar Induction and Parsing
Free Text: A Transformation-Based Approach”, In.
Proceedings of the 31st Meeting of the Association of
Computational Linguistics, 1993.
[6] E. Brill, “A Corpus-Based Approach to Language
Learning”, PhD Dissertation, Department of Computer and
Information Science, University of Pennsylvania, 1993.
[7] E. Brill, “Some Advances in Transformation-Based Part
of Speech Tagging”, In Proceedings of the Twelfth National
Conference on Artificial Intelligence (AAAI-94), Seattle,
Washington, United States, 1994.
[8] E. Charniak, C. Henrickson, N. Jacobson, M. Perkowitz,
“Equations for Part of Speech Tagging”, In. Proceedings of
the Conference for the American Association for Artificial
Intelligence, Washington D.C., United States, July 1993.
[9] K. Church, “A Stochastic Parts Program and Noun Phrase
Parser for Unrestricted Text”, In Second Conference on
Applied Natural Language Processing, ACL, pp.136-143,
1988.
[10] J. Clark and S. DeRose, “XML Path Language XPath
Version 1.0”, W3C Recommendation, The World Wide Web
Consortium, November 1999 available at
http://www.w3.org/TR/xpath.
[11] D. Cutting, J. Kupiec, J. Pedersen, P. Silbun, “A
Practical Part-Of-Speech Tagger”, In Proceedings of the
Third Conference on Applied Natural Language Processing,
ACL, Trento, Italy, 1992.
[12] W. Daelemans, S. Buchholz, J. Vennstra, “Memory
Based Shallow Parsing”, In Proceedings of EMNLP/VLC-99,
Maryland, United States, pp. 239-246, 1999.
[13] E. I. Ejerhed, “Finding Clauses in Unrestricted Text by
Finitary and Stochastic Methods”, In Second Conference on
Applied Natural Language Processing, ACL, pp. 219-227.
[14] N. Fuhr and S. Malik. “Overview of the Initiative for
the Evaluation of XML Retrieval (INEX) 2003”, In INEX
2003 Workshop Proceedings, Schloss Dagstuhl, Germany,
December 15-17, 2003, pages 1-11. 2004.

[15] B. Green and G. Rubin, Automatic Grammatical
Lagging of English, Department of Linguistics, Brown
University, 1971.
[16] Z. Harris, String Analysis of Language Structure,
Mouton and Co., The Hague, Holland, 1962.
[17] F. Jerlink, “Markov Space Modelling of Text
Generation”, In Impact of Processing Techniques on
Communication, Dordrecht, 1985.
[18] S. Klien and R. F. Simmons, “A Computational
Approach to Grammatical Coding of English Words”, Journal
of the ACM (JACM) 10, pp. 334-347, 1963.
[19] T. Kudo, and Y. Matsumoto, “Chunking with Support
Vector Machines”, In Proceedings of North American
Chapter of the Association for Computational Linguistics
(NAACL) 2001, Pitsberg, United States, 2001.
[20] J. Kupiec, “Robust Part of Speech Tagging Using a
Hidden Markov Model”, In Computer Speech and Language,
1992.
[21] T. Lager, “A Logic Programming Approach to Word
Expert Engineering”. In Proceedings of the First
International Conference on Artificial and Computational
Intelligence for Decision, Control and Automation in
Engineering and Industrial Applications (ACIDCA 2000):
Workshop on Corpora and Natural Language Processing,
Monastir, Tunisia, March 22-24 2000.
[22] M. Marcus, N. Santorini, and M. Marcinkiewicz,
“Building a Large Annotated Corpus of English: The Penn
Treebank”, In Computational Linguistics, 1993
[23] B. Merialdo, “Tagging Text with a Probabilistic
Model”, In IEEE International Conference on Acoustics,
Speech and Signal Processing, 1991.
[24] R. O’Keefe, and A. Trotman, “The Simplest Query
Language That Could Possibly Work”, In INEX 2003
Workshop Proceedings, Dagstuhl, Germany, December 15-
17 2003, pp. 167-174.
[25] F. Pla, A. Molina, N. Preito, “Tagging and Chunking
with Bigrams”, In. Proceedings of the 17th conference on
Computational linguistics, Saarbrukecken, Germany, pp.
614-620, 2000.
[26] L. Ramshaw and M. Marcus, “Text Chunking Using
Transformation-Based Learning”, Proceedings of the Third
Workshop on Very Large Corpora, pp 82-94, 1995.
[27] A. Trotman and B. Sigurbjörnsson, “NEXI: Now and
Next”, In Advances in XML Information Retrieval. Third
Workshop of the INitiative for the Evaluation of XML
Retrieval INEX 2004, LNCS 3493, Schloss Dagstuhl,
Germany, 6-8 December 2004, to appear in 2005
[28] A. Voutilainen, “NPTool, A Detector of English Noun
Phrases”, In. Proceedings of the Workshop on Very Large
Corpa”, ACL, June, pp. 48-57, 1993.
[29] A. Woodley and, S. Geva, “NLPX– An XML-IR
System with a Natural Language Interface” , In Proceedings
of the Australasian Document Computing Symposium,
Melbourne, Australia, December 13 2004, pp. 71-74.
[30] A. Woodley and S. Geva, “NLPX at INEX 2004”, In
Advances in XML Information Retrieval. Third Workshop of
the INitiative for the Evaluation of XML Retrieval INEX
2004, LNCS 3493, Schloss Dagstuhl, Germany, 6-8
December 2004, to appear in 2005, pp. 393-406.

Proceedings of the 2005 International Conference on Cyberworlds (CW’05)
0-7695-2378-1/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

