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Oft-Line Unconstrained Handwritten Word Recognition

Jinhai Cai Zhi-Qiang Liu

Abstract—In this paper, we describe our system for writer independent, off-line uncon-
strained handwritten word recognition. We have developed a new method to automat-
ically determine the parameters of Gabor filters to extract features from slant and tilt
corrected images. An algorithm is also developed to translate 2D images to 1D domain.
Finally, we propose a modified dynamic programming method with fuzzy theory to rec-

ognize words. Our initial experiments have shown promising results.

keywords—Unconstrained handwritten word recognition, Writer independent, Slant and

tilt correction, Gabor filter, Dynamic programming, Fuzzy logic.

1 INTRODUCTION

Automatic recognition of handwriting is important in many applications, for instance,
postal address and code reading in postal offices, data acquisition in banks, etc. This topic
has gained the considerable attention from industry as well as research community. After
intensive research for several decades, many algorithms have been proposed and impressive
progress has been made in unconstrained handwritten character recognition. According to
recent reports [1,2], the recognition rate of 86.05% to 99.50% has been achieved for hand-
written numerals. But, the writer independent, off-line, unconstrained handwritten word
recognition still represents a considerable challenge. Depending on different experimental
conditions, recognition rate ranging from 42.5% [3] to 92.6% [4] has been reported. Even for

writer dependent cursive word recognition [5,6], an average recognition rate of seven writers
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is about only 86% for learning files and 76% for testing files [5], which is much lower than

that of the human. This is mainly due to three difficulties:

e Off-line recognition deals with two-dimensional images because the dynamic informa-

tion of strokes is not available;
e Unconstrained handwritten word recognition must deal with all possible writing styles;

e Noise, deformation and different writing tools further deteriorate the performance of

the off-line recognizer.

For off-line handwritten word recognition, there are two basic approaches. One is to segment
the word into characters or sub-character parts, and then recognize the individual characters
with character (or pseudo-character) models [8]. Because many character combinations
are not legible, contextual post-processing is performed to detect errors and correct them
with the aid of a dictionary [4]. The advantage of this approach is that only few models
or references are needed for any words, and the major drawback is that the approach is
susceptible to segmental errors. In order to reduce segmental errors, some methods use
implicit segmentation techniques. They perform recognition and character segmentation at
the same time [11]. However, they cannot totally avoid segmental errors. This is because the
overlapping and the interconnection of neighboring characters occur in many handwritten
words (see Fig.1). Further, the individual character models ignore the relationship among
neighboring characters in a cursive word. For instance, the character “u” in Fig.2(a) & (b)

is influenced by their preceding characters.

Figure 1: Examples of the overlapping and the interconnection of neighboring characters.



Figure 2: Examples of characters are influenced by their preceding and following characters.

Another type of methods is the global approach which recognizes a word as a single entity.
The global approach can avoid segmental errors, but it needs at least one template or model
for each word. As this approach does not deal with characters and uses the relationship
among neighboring characters, they are usually considered to be tolerant to the dramatic
deformations that affect unconstrained cursive scripts [12]. One major drawback of global

methods is that the lexicon can only be updated by training word samples.

Feature extraction is a key step in handwritten word recognition. Many researchers extract
features from binarized images by skeletonization. However, when a image is binarized, some
important information is lost. Thinning algorithms [13,14] introduce some distortions, such
as false skeletal branches. Wang and Pavlidis developed an algorithm [15], which extracts
features directly from gray-scale images. Its limitations are that the skeleton is not unit
width and the algorithm tends to break connectedness at corners and crosses. Instead, we
extract orientation features using Gabor filters that are orientation selective and optimal in

joint spatial-spectral information resolution.

2 PRE-PROCESSING

In this section, we describe the pre-processing in our off-line handwritten word recognition
system. Pre-processing is designed to reduce noise and variations caused by different writing

styles. It comsists of slant and tilt correction, baseline finding, image normalization, and



line-width calculation.

2.1 Slant and tilt correction

A. Slant Correction

Word slant is defined as the average slope of word referring to the vertical direction. The word
slant is one of main variations in handwriting styles. In order to cope with this variation, we
normalize all images to a standard form with no slant [7,8]. The corrected image will produce
a more consistent set of features that are used to improve the performance of the system.
In addition, slant correction significantly reduces the difficulties encountered in character

segmentation that is necessary for segmentation-based techniques.

There are several slant correction algorithms. Bozinovic and Srihari [8] estimate the word
slant from binarized images. They remove all horizontal lines by horizontal strip bars and
discard all short lines. These strip bars also divide the image into parts. The slope of the
word is defined as the average slope of all parts. This algorithm may fail when a word has an
obvious ascender or descender. Recently, Buse, Liu, and Caelli [7] proposed to use Fourier
transform to convert an image into frequency domain. Because the global orientation of the
word is exhibited in its spectrum, the slope of the word can be calculated from the angular

histogram of the spectral magnitude image.

In this paper, based on the idea of horizontal line removal from Bozinovic and Srihari (8],
we develop a new efficient and robust algorithm to determine the global slope of a word.
For a given image, we first binarize the grey-level image using an adaptive threshold method

[16], then detect edges. Fig.3 gives an example for edge detection.

However, the edge of image cannot be directly used for slope estimation, as it contains
cross points and prominent corners where the orientation of the edge changes dramatically.
The cross points are detected according to neighbor numbers of pixels, Ng(p) [13], in the

8-neighborhood. If Ng(p) > 2, the nonzero point is a cross point. Corner detection is



(a) (b)
Figure 3: Examples of edge detection. (a) binarized image; (b) edge of the binarized image.

performed using the method [17] proposed by Cheng and Hsu. After deleting cross and
corner points, an edge curve is represented by line segments. Now, the global slope of a word
can be calculated by

> 1ib;

slope = %5 (1)

> L’

0;,€8
where, [; is the segmented line length, 6; is the angle between the segmented line and the
x-axis, and the support, S, is in the range [30°, 150°]. The designed support range excludes

all horizontal lines. Some results of slant correction are shown in Fig.4 and Fig.5.

B. Tilt Correction
Tilt of a word is defined as the general ascending or descending trend of the writing with
respect to x-axis. The tilt correction is necessary to reduce the variation in writing styles.

Tilt estimation is based on the method in [7]:
tilt = argmax{max F'D;(c, )}, (2)

where T is the set of angle values, Y is the range of vertical coordinate, and FD,(c, ) is
the first derivative of smoothed projected density histogram of slant corrected image at the
angle of o and the position of ¥y = j. The range of support Y is selected from the bottom
to the centroid of the image. As tilts in most words do not exceed 10° and the maximum
word tilt angle in our database is 13°, we set the allowable tilt range, T, as [—15° 15°].
However, that the horizontal lines will strongly interfere the tilt estimation. This is because

they may produce undesired peaks in smoothed projected density histograms. In order to
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avoid such interference, we remove all of the horizontal lines by using Gabor filters which

will be discussed in the following section. The horizontal line removal criterion is defined as:

0, if E%(z,y) > 2E% (z,y),
plz,y) = (3)
p(z,y), else,

where p(z,y) is the gray value of image at (x,y), E* (z,y) and E*”(z,y) are the output
energies of Gabor filters with the orientations of 0° and 90° and at the position (x,y). Fig.4

shows the results of tilt detection and correction with or without horizontal line removal.

Figure 4: The influence of horizontal line removal on tilt correction. (a) The slant corrected
image. (b) The projected density histogram calculated from (a), where the estimated tilt is
3°; (c) The image of (a) after horizontal line removal; (d) The projected density histogram
calculated from (c), where the estimated tilt is —5°; (e) The tilt corrected image of (a),
where the tilt is estimated from (b); (f) The tilt corrected image of (a), where the tilt is

estimated from (d).



As can be seen in this example, there is an 8° difference between two estimated tilts of the
same word. Although the procedure described in (2) is simple and effective, the horizontal
lines in words may lead this simple procedure to significant errors. Therefore, the horizontal
line removal can improve the tilt correction. We estimate word tilts from the images after
horizontal line removal. Fig.5 shows more examples of the results of our slant and tilt

correction algorithms.

Figure 5: The example of slant and tilt correction. (a), (c) and (e) are the original images
and (b), (d) and (f) are the slant and tilt corrected images. In (a), the slant is 61° and tilt

is 12.4°; In (c), the slant is 104° and tilt is —3.3°; In (e), the slant is 51° and tilt is 1.7°.

2.2 Baseline finding

We know that spatial positions of word features are very important for word recognition,
because this information can greatly narrow the choice of words [8]. In this paper, spatial
positions are defined with respect to four baselines: top, upper, lower, and bottom, as

illustrated in Fig.6. Bozinovic and Srihari [8] proposed to use thresholds to determine the



~—_ Top basdline (%)
< Upper basdline (Y)
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Figure 6: Top left: original image; Top right: slant corrected image Bottom left: slant and

tilt corrected image; Bottom right corrected image with four baselines.

shoulders of the density histogram. However, there are two major problems with their
algorithm. One is that k of the highest density values have to be discarded. Different words
and writing styles produce different number of peaks in density histogram, therefore there
is no simple and reliable way to make a good choice for k. Another problem is that there is
no obvious shoulder in density histogram for some words after discarding £ highest density
values. As a result, it is very difficult to adaptively choose suitable thresholds for baseline

determination.

In this paper, our proposed algorithm is based on the first derivative of the smoothed vertical
density histogram F'D(0,7)(j € H) of the slant and tilt corrected image after horizontal
line removal. F'Dy(0,7)(j € H) is equivalent to F'Dy(tilt,j)(j € H) of the slant corrected
image after horizontal line removal, and H is the height of the image. As a consequence, we
avoid the selection of £ by horizontal line removal. The vertical density histogram is slant
invariant, but it is very sensitive to ascenders and descenders of words. After tilt correction,
we are able to remove this influence. As a result, the shoulder in vertical density histogram
becomes more prominent (Fig.4(d)). The position of lower baseline is determined by the

gradient of smoothed vertical histogram and the threshold:

w = argmax{FDu(0, )| Da(0, 5) > Ta}, (4)



where

Td = min{Dst, M-Dst/2}7

Dy(0,7) is the smoothed vertical density histogram, Ty is the threshold, H; is the range
from the gravity center of an image down to the first point where Dy (0, ) < Ty, Dy is the
average value of the vertical density function over the range where Dy (0,7) > 0, and M Dg;

is the highest density value. Another reference line of the main body is the upper baseline

which is determined by locating negative peak in the histogram:
Yy = arg}g}{n{FDst(():j)|Dst(07j) > Td}7 (5)

where H, is the range from the gravity center of the image up to the first point where
Dy(0,7) < Ty. The top and bottom baselines are found based on the negative and positive

peak of F'D(0, j) in the outside of the main part.

2.3 Word-box size normalization

Because word sizes differ significantly, this makes it difficult to compare spatial positions
of different words. Images are normalized to a standard size of 200 x 128 pixels. In the
normalized image, the lower baseline is located at y; = 64. The scales are determined by the

image width and the distances between baselines. The scales, S, and S, are calculated by

200
Sy = ——
CIwW
( 64
if all baselines exist,
max{y: — Y1, Y1 — Yo}
64
if the top baseline is nonexistent,
S, =< max{2 X (Yu — Y1), Y1 — Yo}
64 . .
if the bottom baseline is nonexistent,
e — if there are no top and bottom baselines.
(2 X (yu - yl)

where, IW is the image width, y;, y.,y; and y, are the y-axis coordinates of the top, upper,

lower and bottom baselines (Fig.6).



2.4 Line width calculation

We use the Gabor filter to extract structural features in our experiments. Parameters
of the Gabor filter are dependent on the line width of the word. The algorithm for line
width estimation is performed on the binarized word image. We assume that the length (L;)
of a line is much larger than the width (W) of the line, L; > W. For an ideal line, the
sum of its pixels is S, = L; x W. After deleting its edge points, the sum of its pixels is
S, =L, x (W —2), where W > 2. The width of the line can be easily calculated by

2 X Sum
Sum — S,

um

W = (6)

In real word images, a line can be viewed as an ideal line corrupted by noise. Fig.7 shows
an example. In this example, an ideal line is corrupted by adding noise on only one side
of its edges. For line width estimation, we proposed two different methods to define edge
points. In one method, we define the edge point as a nonzero point and its Ng(p) < 6, as
shown in Fig.7(a). Because not every edge point is real edge point, we call it pseudo-edge

[

point. In the figure, represents a pseudo-edge point, and ‘“*’ a nonzero pixel with its
Ng(p) > 7. The estimated width of the line is 5. Another method uses the same definition
of edge point as that used in slant correction shown in Fig.7(b) where the difference between
Fig.7(a) and (b) is indicated by arrows. The estimated width of the line is still 5. For a
real image illustrated in Fig.3(a), the average line widths estimated by the two methods are

7.82 and 7.86, respectively. This shows that our method for line width estimation is quite

insensitive to noise.

3 GABOR FILTERS AND FEATURE EXTRACTION

The one-dimensional (1D) Gabor filters [26] were developed for signal processing and
communication channel analysis. Gabor proved that the Gabor filter family can achieve the
theoretical lower bound of joint uncertainty in frequency and time. Daugman [10] extended

Gabor’s work to 2D case. 2D Gabor filter can reasonably model the 2D receptive field
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Figure 7: Line width calculation. (a) uses the pseudo-edge definition; (b) uses four connected

neighbors to define edge point.

profiles of simple cells in mammalian visual cortex. The parameters used in generating
Gabor filter can easily control the orientation, spatial extent, frequency and bandwidths
of the filter which can be represented as a sinusoidal plane wave of given orientation and
frequency within a 2D Gaussian envelop. The Gabor filter, g(x,y), is defined as

12 2

z Yy _
9(z,y) = exp{—7m(— + =)} exp{j27 (uoz + voy)}, (7)
02 o2
and its 2D Fourier transforms G(u,v) is
G(u,v) = exp{—m[(u — up)®0; + (v' — vp)*a, ]}, (8)
where, ' = zcos¢d +ysing, ¥y = —xsing + ycosd, v’ = ucos¢ +vsing, v = —using +
U COS @, Uf = Ug COS P+Vg Sin @, vy = —ug sin ¢p+vg cos @, ug = fcosf, vg = fsinh, 6 = $p+90°,

j=+—1and f is a constant. Fig.8 shows the spatial representation and the 2D frequency
response of a Gabor filter with ¢ = 90° and 0 = 0°. Fig.9 shows the uncertainty relation in

spatial and frequency domains.

Recently, the Gabor filter has been used extensively in texture analysis and segmentation,
image compression and motion estimation, etc. It can also be used to extract the features

of handwritten words. This is because the Gabor Filter has the following major properties:

e It is tunable to specific orientations. This allows us to extract the features of strokes

at any possible orientation.
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Figure 8: Gabor filter. (a) Spatial representation of the Gabor filter; (b) Frequency response

of the Gabor filter.

A0

—Ug Ug

AG

a u
= 0

Figure 9: The uncertainty relation in spatial and frequency domains.
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e Its orientation bandwidth is adjustable. So, we can use the least number of Gabor

filters to achieve the given accuracy of orientation.

e It optimizes the general uncertainty in both spatial and frequency domains. To all 2D
linear filters, they are constrained by an uncertainty relation [9]: (Az)(Ay)(Au)(Av) >
1/1672, where Az, Ay, Au and Av are the position uncertainties and frequency uncer-
tainties, respectively. Therefore, their resolutions simultaneously attainable in spatial
and frequency domains are limited. Daugman [9] shows that the Gabor filter can
achieve the theoretical limit of the joint 2D resolution regardless of the values of any
of its parameters. This means that the Gabor filter is appropriate for tasks requiring

simultaneous measurement in both spatial and 2D frequency domains.

e It can extract local information from images. This property is useful to obtain the

local orientation of a curve.

e The output of the filter is robust to noise. This is because the Gabor filter uses the

information of all pixels within the kernel instead of one pixel.

e It can be implemented by optoelectronic processor at high speed. Because the Gabor
filter is not steerable, usually, the operator needs a large number of additions and
multiplications. However, the Gabor filtering operations are particularly easy to be

implemented by an unusual optical system with VLSI-based processor [18].

3.1 Determination of Gabor filter parameters

Gabor filters have been widely used in image processing and recognition, such as texture
segmentation [19], object recognition [20] and image representation [21]. In these applica-
tions, the determination of Gabor filter parameters is the central issue. The approach of [20],
in which some filter parameters are preset, is not suitable to handwriting feature extraction

due to the variation of writing styles. Using a set of Gabor bandpass filters with multiple
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orientations and multiple scales [21] is computationally intensive. In order to extract con-
sistent and meaningful structural features from word images, Gabor filters are essential for
different sizes and thickness of the writing. Therefore, we proposed a new method to design
Gabor filters for handwriting feature extraction. In the following, we will explain how to

select the filter parameters in our experiments.

A. Determination of the orientation bandwidth

The number of selected angles for Gabor filters is based on the orientation bandwidth at
half maximum response in 2D frequency domain. According to orientation bandwidths of
cat cortical simple cells [9], the mean angle covers from 26° to 39°. This means that the least
number, n, of Gabor filters covering the range [0°, 180°] is from 5 to 7. For convenience,
we choose n = 8. In order to reconstruct the original word from extracted parts by Gabor

filters, there is A8 = « x 22.5° for n = 8, where 2 > a > 1.

B. Determination of f

The parameter f determines the position of 2D spectral centroids. This parameter will be
derived in relation to the average width of lines in the word. Let us consider the worst
case, a rectangular pulse line. If the frequency, f, is set too high, the output of the Gabor
filter will have two peaks at edges of the rectangular pulse line. In order to produce a single
peak in the output for a given line segment, the filter must adapt to different writing tools.

Therefore, for a given parameter f, the output of the Gabor filter should satisfy:

Out,(0) > Outy(1) % >0, (9)
Out,(ty) > Out,(t) % >t >t >0, (10)
where
2 +t
Out y( / / exp{—=( )}cos(27rfy)dyd:v

2+t

Because the function Out,(t) is differentiable, (9) and (10) can be expressed by

dOut, (1)

W
<0 —
da — 2

>t>0.
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Then, we have

exp{—W(VV/iijty} cos|2m f(W/2 + )] — exp{_w(_W{fﬂ} cos[2m f (= W/2 +1)] < 0
g > 150, (11)

As (11) must hold regardless of the parameter oy, it is easy to obtain
cos[2m f (=W /2 + t)] > cos[2n f(W/2 + t)].

This gives

sinfW -sin2nwft > 0 %

> 1> 0. (12)

A suitable solution for (12) is f < 1/W which will produce a single peak in the output of

the filter regardless of the values of o, and o,. This solution can be rewritten as

= W (13)
where > 1. On the other hand, if the selected value of f is too small, the filter may
produce one peak in its output of two close lines. Therefore, it is appropriate to take f as
1/W for the case of the ideal rectangular pulse line. However, in the database used in our
experiments, the lines of words are of gray-scale instead of binary, the equivalent line width

is much smaller than the estimated W of binarized words. As a result, 3 is in the range of

[0, 1].

C. Determination of ¢,

The parameter, o,, determines the spread of the Gabor filter in ¢ direction. The orientation
bandwidth is also mainly determined by o, and the frequency f. The relationship between
orientation bandwidth (radian) and frequency f and o, is illustrated in Fig.9. If A8/2 <

180°, the relationship between them can be approximated by

SL) (19

Ab=a’ ~2 arctan(
n
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where AFy is the 3-dB frequency bandwidth of the filter in v direction when ¢ = 90°.

Applying the conditions of 3-dB frequency bandwidth to (8) results in

AF,

T)|¢:90° = e:vp{—?r(—aw)2} =5 (15)

G(Uo,
This gives

AR, =2, (16)

Oy

where A = 1/2In2/7. Because the ratio between 7 and half orientation bandwidth is 03 =

2 > n and n = 8>> 1, (14) holds. The parameter, o,, can be calculated from the above

equations

Oy & nAGW : (17)
an

D. Determination of o,
The parameter, o,, controls the spread of the Gabor filter in the 6 direction. Similar to (16)

the relationship between o, and AFy is given by

ARy =2, (18)

Oy
where AFy is the frequency bandwidth of the filter in w direction when # = 0°. This
relationship is similar to that between the line width and its spectral spread. Therefore, o,
should be in direct proportion to line width. According to (17), we can infer the parameter
constraint

oy = koy, (19)

where k is a constant. If k£ is too small, the difference between the outputs of the Gabor
filter at different orientations is small. This may result in orientation estimation errors.
Furthermore, the outputs of the filter with small k are sensitive to noise. On the other hand,
if k£ is too large, there is a strong interference between outputs of the filter with two close lines.
Therefore, the value of £ is important to feature extraction. However, we cannot find any
clues as to how to determine the coefficient £ from (7) and (8). Instead, we select k£ under the

guidance of the positive correlation between space bandwidths or 2D frequency bandwidths
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of cat cortical simple cells. It was reported in [9] that the space-domain measurements of
k in populations of simple cells usually range between 0.25 and 1. After examining the line

extraction results over this range, we find it is appropriate to set k£ = 0.75.

In the above, we have described the method to estimate Gabor filter parameters. The results

are consistent with the constraints [9] between space, frequency and orientation bandwidths.

3.2 Feature extraction

The features used in this system are the parameters of word image line segments. For a
given line segment having endpoints at pixels P1(z1,y;) and P2(zs,¥s), it is characterized
by its orientation 6, length [, and line centroid c¢(zo, o). These parameters are given as

follows.

Yo— U1
)

6 = arctan( ,
L2 — 21

| = \/(IE2 —71)? + (g2 — ¥1)%,

2o = (:E2;IE1), Yo = (y2;y1).

Extraction of line segments is based on the output of the Gabor filter whose parameters are
determined by the method described in the preceding subsection. First, we calculate the
power at each point from the complex response of a word image at which the Gabor filter is
applied. Then a threshold is used and the oriented lines are obtained from the thresholded

image. Fig.18 shows examples of extracted line segments.

4 TRAINING AND RECOGNITION

In our system, two references per word are selected from the training set in the database,
and they best represent writing styles of the word. Because word images are 2D, it is difficult
to order 2D features in one dimensional domain. Therefore, all the line segments in a word
are divided into eight groups according to their orientations. Each group is further divided

into three sub-groups based on the four baselines discussed previously (see section 2.2). As a
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Figure 10: The output energy of Gabor filter for the slant and tilt corrected image in (a).

The angle of Gabor filter ¢ is (b) 0°, (c) 45°, (d) 90° and (e) 135°.

result, each sub-group contains only few line segments at a similar angle in a narrow region.

Therefore, it is much easier to order them in one dimension by their locations (P,):
Pwy =T+ 77(0) X Yo-
Here, the lines in one sub-group are arranged with the increscent Py,.

When we try to match one word (I) to another (J), the sub-groups of I are mutually
exclusive, while the sub-groups of J are not. This is to avoid the mismatch caused by
baseline estimation errors. Global matching is calculated according to each matched line.
For a line segment ¢ in a sub-group s of image I, LI,(7), it may match a line segment j in
the sub-group s of image J, LJ,(j). Their matching relationship can be measured by several
methods. For instance, the degree of similarity between two line segments can be defined by
coordinate overlapping ratios [22] and high performance has been achieved for handwritten

Chinese character recognition. This success is partly due to the small uncertainty in line
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segment location within a character. While, for unconstrained handwritten word recognition,
it involves the variability of character positions, character shapes, the sizes of word main body
and the line segment positions within a character. Therefore, in this paper, the matching

relationship is described by a fuzzy logic approach, a weighted additive combiner [10]:
Ms(’[,,j) = ww,uw(z,j) + wy/.,Ly(S, Z?]) + ’LUl,LLl(S, i7j)7 (20)
where w,, wy, and w; are weights, pg, 1y, and py; are the fuzzy membership functions:

o = fa(Ti — j,045),
ty = fy(Yi = Yj> 0ys), (21)
m = filli,1;),

where z; and z; are the x-axis coordinators of line 7 and j respectively, [; and [; are their

lengths, f;, fy, and f;, which are trapezoid-like functions, are defined as follows

0, |IEZ — IE]'| > 30wj7
folzi — x5,00) = ¢ 1, |z — x| < 0y, (22)
3—u'2_a|w"_w' , else,
\ xJ
{
0, |yi_yj| > 30y;,
fy(Wi = yj045) = 9 1, i — yj| < oy, (23)
3oy —lyi—y;l else
. 20y ’ ’
1, C(l;,1;) > 0.8,
filli, 1) = (24)
1.25C(1;, 1), else,
where
min{l;, [;}
C liy l = - .
( ]) maX{li, l]}

However, the size of word main body in different images may differ greatly. This variation,
as illustrated in Fig.11, may result in significant mismatches between two images of the same
word. Therefore, we must modify the fuzzy membership functions. Because the variation of

x-axis coordinator is small after word size normalization, we modify only the functions of p,
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and ;. In order to achieve size invariance to the word main body, the scale normalization

is used in the new definitions of p, and y;. But some line segments, for instance, the line

segments of capitals, are relatively invariant to the size of the main body and are excluded

from scale normalization. Specifically, p, and p; are re-defined as follows.

Figure 11: Th

(

2R
| HTUAL)
B As—

e vast variation of size in word main body.

fy(Yi — yj, 045)
#y(5:5,9) = max{ fy (v = yj> 099)s fy[ 472 (il — w) — (95 — w), o351}
| max{fy (yi — j> o), Fulfimar (v — vi) — (i = 95), 0451}
filli, 1) s=1,
w(s:6,9) = 4 max{ fi(li, ), [/ 750 =2,
s =3,

| max{£i(ls, i), fi(5 b, )}

u—y; u—y;

s=1,
§ =2, (25)
s =3,

(26)

where we assume that the reference template is image J, y{ and y! are the y-axis coordinators

of the bottom and upper baselines in image I, y; and y; are these in image J. Dynamic

programming is employed to calculate the distance between two words. In the following, we

briefly summarize this modified dynamic programming approach:

Initialization : Dgp(0,5) =0 0<j < Jgn,
Recursion :
r
Do (i — 1,k) + L1 — ps (3, 5)]
Dy, (i, ) = min 4 k <,
\ Dy (i —1,7) + ;A
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8 3
Termination : Dry =YY" Dy(Isn, Jsn),

n=1s=1

where Dy; is the global cost, A is a cost coefficient of a line segment that does not have a
match. In the training phase, all fuzzy membership functions are re-estimated. In order to
know which line segment in image J matches the line ¢ in image I, the Viterbi algorithm [23]
is used to backtrack the path and to label every line in the training word. The parameters

of all labeled lines are transformed into these in reference image J by

(i, I) = x;, (27)
{
j’;_‘f{,’, (a —u) + oy, s=2and fy(yi — y5,005) < fulZ2 (vl —w) — (5 — ), 043,
yi( 1) =\ B8y —yl) + oy, s =3 and Sy (yi — 5,00) < S[222 (0 — ) — (0 — 45, o),
Yis else,
(28)
and )
yTliE(y;f — ), s=2and fill,lj) < iy, rl_j),
(N _ l
LD =3 il —w), s=3and fill,) < (55 5 5%07), (29)
l;, else.
The expectations T; and variances ¢’ . of line features can be calculated from z’.(i, I):
J iy J
> 250, 1)
- I,iEEj
T, = ——, (30)
Ng;
> (250, 1) — 7j]
, IieL;
= 31
0-11:] NL', ? ( )

where L; is the set of lines with some matching and N, is the number of line segments in
L;. In the same way, we can obtain 7, o,; and I;. The fuzzy membership functions defined
n (22), (25) and (26) are re-estimated by replacing x;, y;, l;, 04; and oy; with T3, 35, I;, 0}
and o, ;. The matching relationship y, (3, j), which is used in the next training, is obtained

according to the re-estimated fuzzy membership functions. Because we train the reference

templates with insufficient data, only few training images per word, the estimated features
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may be biased. A simple remedy is to use preset constants to ensure that the variances are

not unacceptably small:
045 = max{o,;, 0}, oy; = max{oy,;, d,}, (32)
where ¢, and J, are the preset constants.

In the recognition stage, only dynamic programming is used. Backtracking the matching

path is not necessary. The global cost is Dy + Dyj.

5 EXPERIMENTAL RESULTS

To evaluate our system, a database was extracted from the CEDAR database consisting of
USA city name, street name and numerals. This database consists of only USA city names
with many writing styles, such as printed, cursive and mixed writing styles. As we know, a
pre-classification [24] can be employed to divide all words into several categories with smaller
lexicon sizes according to the number of strokes and other simple features. It is relatively
simple in practice and theory to differentiate between short and long words. Therefore,
our selected database contains 228 words of 5 or 6 letters. Because the writing styles are
totally unconstrained and writing tools are unrestricted, we used the pre-processing system
to reduce the variations. Line segments are extracted from slant and tilt corrected images by
Gabor filters. The similarities between line segments in the template and testing image are
measured by fuzzy matching functions (22), (25) and (26) presented in the previous section.
The cost of a line segment is defined as the similarity weighted by the line segment length.
The global cost is the summation of all sub-group costs obtained by the modified dynamic

programming approach.

Our initial experimental results are shown in Table 1, Table 2 and Fig.12, where 115 images
with a lexical size of 14 were randomly selected for training and the remaining 113 images

were used for testing,.
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Table 1: Word classification results within the top n positions for testing.

positions The number
Lexis 1121345 of samples
Baton | 3 | - | 4| 5 | - )
Boise 214 -1-1- 4
Dallas | 6 | 8 | - | - | 9 10
Falls 7 10| - 12|13 16
Haute | 3 |4 | - | - | - 4
Little | 4 | 5 | - | 6 | - 7
Louise || 10 |13 |14 | 16 | - 16
Moines | 7 | - | 9 |10 | - 10
North || 4 | 5| - | 6| - 6
Salem || 6 | - | - | - | 7 7
Sioux || 10| - |11 |12 | - 12
South || 4 | - | - | - | - 5
Terre 3| -141-1- 4
Tulsa || 4 | 5 | 6 | 7| - 7

Table 2: Word recognition accuracies for testing

113 testing word images

first proposal 73 64.6%
among top two proposals || 87 77.0%
among top three proposals | 94 83.2%
among top four proposals | 104 92.0%

among top five proposals | 107 94.7%
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Figure 12: Off-line handwritten word recognition results for testing.

The experimental results were obtained using only 3 to 16 training samples per class
(on the average, 7.5 training images per class). Table 1 shows the number of correctly
recognized samples within n positions per class over the test set, where 1 < n < 5. The
correct recognition rates shown in Table 2 are from 64.6% to 94.7% among top 1 to top 5
positions, which are comparable to the recently published results [3,4,8,25], while they used
much larger training sets. Fig.12 shows the overall performance with the best and worst
cases for handwritten word recognition on the test set. For the best cases, 85.7% and 100%
of recognition accuracies for the first and among top two proposals were obtained in our
experiments. At the lowest boundary, 40.0% and 100% of correct recognition rates were

obtained for the first choice and within eleven choices, respectively.

In the past decade, some impressive results in this field have been reported. But, it is
difficult to compare the performance directly between different methods. This is because
different systems have been tested on different databases and under different conditions.
Nevertheless, the results of the proposed approach, which recognizes off-line unconstrained

handwritten words of similar lengths with few training images, are encouraging.
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6 CONCLUSIONS

In this paper, we have developed a new pre-processing system to produce more consistent
features for handwritten word recognition. In this system, a new simple and efficient method
for slope estimation was proposed, which is based on the orientations of non-horizontal line
segments. We also proposed a new method to estimate tilt of words using the Gabor filter to
remove horizontal lines to avoid their interference. As a result, we were able to obtain better

slant and tilt corrected images than that obtained by the pre-processing methods of [7,8].

The Gabor filter is optimal under the general uncertainty principle in joint spatial-spectral
information resolution. We have developed a method for the determination of Gabor filter pa-
rameters according to the word line width and relationships between orientation bandwidth
and frequency bandwidth. Thus, the features extracted by the Gabor filter are insensitive

to noise and optimal to the input image in joint spatial-spectral resolution.

We also proposed the modified dynamic programming approach together with fuzzy mea-
sures to recognize handwritten words. The performance of our system is encouraging with

only few training images.

Improvements of this system are expected with more feature information, such as feature
neighborhood and the relationships between sub-groups. It is certain that the recognition

rate can be further increased by using a larger training set.
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