

COVER SHEET

Lermer, Karl and Fidge, Colin and Hayes, Ian (2005) A theory for execution-time
derivation in real-time programs. Theoretical Computer Science(346):pp. 3-27.

Copyright 2005 Elsevier

Accessed from: https://eprints.qut.edu.au/secure/00003759/01/tcs2.pdf

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10875273?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Theory for Execution-Time Derivation in

Real-Time Programs

Karl Lermer a,∗, Colin J. Fidge b and Ian J. Hayes a

aSchool of Information Technology and Electrical Engineering,

The University of Queensland, Queensland 4072, Australia

bSchool of Software Engineering and Data Communications,

Queensland University of Technology, Queensland 4001, Australia

Abstract

We provide an abstract command language for real-time programs and outline how
a partial correctness semantics can be used to compute execution times. The notions
of a timed command, refinement of a timed command, the command traversal con-
dition, and the worst-case and best-case execution time of a command are formally
introduced and investigated with the help of an underlying weakest liberal precon-
dition semantics. The central result is a theory for the computation of worst-case
and best-case execution times from the underlying semantics based on supremum
and infimum calculations. The framework is applied to the analysis of a message
transmitter program and its implementation.

Key words: Real-time programming; Control-flow analysis; Execution-time
derivation and prediction; Predicate transformer semantics; Partial correctness.

1 Introduction

State-of-the-art development of safety-critical systems must guarantee the im-
plementation of the system’s safety requirements to the highest possible assur-
ance level. This especially applies to real-time systems where producing results
between certain time bounds is crucial for correct and safe behaviour. The
major advances in real-time programming have been in the areas of schedul-
ing periodic processes [5,6] and worst-case execution-time analysis of program

∗ Corresponding author.
Email address: lermer@itee.uq.edu.au (Karl Lermer).

Preprint submitted to Theoretical Computer Science 12 March 2005

code [8,23]. Together these allow the design of systems as a set of communicat-
ing processes, where each process consists of a block of code which is repeatedly
executed with a given (fixed) period. In order to successfully schedule such a
set of processes it is necessary to know the worst-case execution time of the
block of code associated with each process.

The requirements of a reactive real-time system are most succinctly specified in
terms of a relation between inputs and outputs over all time. To bridge the gap
between such high-level system requirements and real-time implementations
that satisfy those requirements, a theory of real-time software development is
required [19]. Figure 1 shows our approach to formal development and timing
analysis of real-time systems. This figure outlines the development of a real-
time system from an abstract specification into a high-level language program
to a machine-code implementation in a specific environment. The separation
of timing behaviour and functional behaviour [13] is a key feature of this
framework that allows a more abstract approach to the program development
process. Real-time program development is partitioned into

• a machine-independent phase that, given the specification of a real-time
system, develops a machine-independent program, annotated with timing
requirements, to meet the specification [14,19], and

• a machine-dependent phase, that checks that the compiled version of the
program will meet all its timing requirements when it is executed on the
particular target machine [24,25].

This partitioning makes it possible to perform abstract reasoning about timing
requirements in the system design and high-level language program, and to
separately prove that the requirements are satisfied by the compiled code.

Within this framework, timing analysis begins by annotating the program
with the programmer’s real-time requirements. This can be done by extend-
ing the program semantics with a variable to denote the current time [21]
and by adding a ‘deadline’ statement to the programming language [13] which
allows bounds on the current time to be expressed. We have also developed
methods to derive sequential real-time programs from specifications [19] and
perform timing analysis [15]. This paper focuses on using the program’s se-
mantics to derive execution times for real-time programs. In particular, we
are interested in high-level program analysis where the derivation of execu-
tion times for annotated real-time programs is essential for the formulation
of timing constraints. These constraints can be used in the subsequent tim-
ing analysis phase to verify that the compiled machine code has acceptable
timing behaviour. This phase refers to the dashed ellipses in Figure 1. Nu-
merous algorithms and tools for predicting worst-case execution times from
both high-level and machine-level code already exist [35,34,28,11]. Our goal
here is not to derive yet another such algorithm, but to elaborate the seman-

2

specification
Abstract

Real−time
 HLL program

Timing path extraction

Timing paths
Separation of

Timing constraints

refinement

Machine code

Constraint verification

Timing analysis Timing analysis

time and functional behaviour

Refinement

WCET / BCET

Functional

Fig. 1. Phases of real-time program development.

tic theory that underlies these implementations. We investigate the notions
of timed commands and their associated execution times from a fundamental
perspective, and thus provide a sound theoretical basis for the justification of
the correctness of execution-time analysis techniques.

The remainder of this paper is structured as follows. Section 2 states the syn-
tax and semantics for abstract commands. The notions of command and timed
command are defined. Section 3 defines the entry and traversal conditions for
commands. Section 4 defines the liberal refinement relation on the command
language. In Section 5 the notions of worst-case and best-case execution times
are introduced for timed commands. As a main result we present a method
for symbolic computation of traversal conditions, and worst-case and best-case
execution times. In Section 6 these techniques are applied to a ‘message trans-
mitter’ example. Three appendices at the end of the paper contain important
definitions and theorems.

1.1 Related work

In this paper we develop a semantic theory for deriving traversal conditions
for, and execution-time expressions from, real-time program paths. Both of
these goals have been explored previously, but from a pragmatic, rather than
theoretical, perspective. Extraction and analysis of ‘program paths’, or ‘partial
programs’, has long been a cornerstone of static program analysis [22]. For
efficiency and ease of use, the aim is usually to devise algorithms that can be
applied automatically and syntactically to a program or program path.

3

Path traversal conditions are important because they can be used to show that
programmer-supplied assertions are consistent with the code, and that the
code itself is internally consistent. For instance, Bergeretti and Carré devised
algorithms that manipulate matrices representing information flow between
the statements in a path in order to analyse programs for coding errors such
as ineffective assignments [4]. Subsequently, a data-flow analysis algorithm
was incorporated in the SPADE program analysis tool [7] and its successors.
In particular, the SPARK Examiner tool uses weakest precondition semantics
for program paths [3]. A particularly explicit tool for path traversal condition
calculation is the Path Exploration Tool [16]. It allows the programmer to
select a control-flow path through a program and a simple algorithm then
calculates the path’s traversal condition. A particularly important application
of algorithms that calculate path traversal conditions is to identify ‘dead’,
or ‘infeasible’, program paths, i.e., those that can never be followed at run
time [7,8]. In previous work we described a semantic basis for such dead path
analysis [17].

Analysing program paths to predict their worst-case (and sometimes best-
case) execution times is a standard requirement of high-integrity real-time
programming. The process is awkward because the actual execution time of
the final system cannot be known until the program is compiled and the partic-
ular host processor and operating environment are chosen. The most accurate
timing predictions are those made by analysing paths through the compiled
assembler code [36], although even this is difficult for code that will run on
pipelined and cached processors [28]. However, our interest here is also with
high-level language program analysis. In this case the program is divided into
its individual control-flow paths and formulas corresponding to each language
construct in the path can be used to derive an execution-time expression for
that path. The resulting expression may be symbolic, or it may be instanti-
ated with specific execution times for each primitive component to produce a
numerical result [35,33]. For instance, Chapman et al. present practical algo-
rithms for partitioning high-level language programs into paths, eliminating
dead paths by calculating their traversal conditions, and predicting the worst-
case execution times of the remainder based on a cost function associated
with each path component [8]. (Eliminating dead paths is particularly impor-
tant in static timing analysis, because incorporating their execution times can
severely distort the overall timing predictions [12,27].) Puschner and Schedl’s
approach to timing analysis uses graph theory to extract paths which are
then assessed using a worst-case execution-time function [34]. Engblom and
Ermedahl convert control-flow information to linear constraints to support
subsequent execution-time analysis [11]. Park advocates an approach in which
the programmer uses an explicit ‘path language’ to identify those paths to be
analysed for their worst-case execution times [32].

Whichever technique is used, to be effective in practice, automatic algorithms

4

for identifying path traversal conditions and predicting worst-case execution
times must work syntactically because they cannot afford the overheads of
semantic theorem proving. Our goal below, therefore, is to provide the gen-
eral semantics underlying such algorithms, thus providing a sound basis for
justifying their correctness.

2 Syntax and semantics for timed commands

This section presents a general language for real-time programs on the basis
of a partial correctness semantics. For some real-time programs their correct
behaviour for some inputs may be to never terminate, for example, a loop
waiting for an external signal will never terminate if the signal never arrives.
Additionally, there are situations in which the signal may only appear tran-
siently: in these cases the loop may or may not detect the signal and hence
may or may not terminate; either behaviour is correct in this situation.

We would like to reason about the timing behaviour of such programs, for
example, if the loop in the above example detects the signal and terminates,
it may be required to respond to the signal within some deadline. For this
reason weakest liberal precondition (wlp) semantics [10] are used in this paper.
Recall that wlp(S, R) is the weakest predicate characterising initial states
from which predicate R is guaranteed to hold in the final state, provided that
command S terminates. This can be contrasted with weakest precondition (wp)
semantics in which wp(S, R) characterises those initial states from which S is
both guaranteed to terminate and establish R on termination. The following
relationship holds between wp and wlp:

wp(S, R) ≡ wp(S, true) ∧ wlp(S, R),

where wp(S, true) characterises those states from which S is guaranteed to
terminate. According to weakest precondition semantics a loop that may or
may not terminate is indistinguishable from a loop that never terminates (both
have a weakest precondition of false for any postcondition) but the two loops
are distinguished by weakest liberal precondition semantics.

2.1 Basics

Let Var denote the universal set of variables that may take their values from
a universal set of values, Val, which includes the booleans, B. The set of all
possible states, Σ, is then defined as the set of all functions from Var to Val.
We assume that for every unprimed variable x ∈ Var there is also a primed

5

copy x′ ∈ Var. The set of predicates Pred is defined as the set of all functions
from states to booleans. We define the set of single-state predicates, SPred,
as the set of predicates that do not have any free primed variable. With the
pointwise extension of the ordering ⇒ and the operators ¬, ∧ and ∨ from
B, Pred and SPred become complete lattices. For two predicates P1 and P2

the entailment ordering V on Pred is implication for every state and ≡ is
equivalence for every state. A predicate transformer is defined as a function
from predicates to predicates that is monotonic with respect to the entailment
ordering. Further details on the predicate space are given in Appendix A. The
following definitions summarise the above.

Σ
def
= Var → Val

Pred
def
= Σ → B

P1 V P2
def
= ∀σ(σ ∈ Σ ⇒ (P1(σ) ⇒ P2(σ)))

P1 ≡ P2
def
= (P1 V P2) ∧ (P2 V P1)

2.2 The command language

Before defining our real-time programming language, we first define a set of
primitive constructs in terms of which the rest of the language can be defined.
Then we add contexts which allow variable declarations and typing informa-
tion to be represented. Finally, we define our real-time language in terms of
these primitives by adding a current time variable, τ .

Our primitive program constructs consist of the specification statement [29],
here denoted x:nt [Q] where the “nt” superscript denotes ‘nontimed’ to dis-
tinguish it from the timed version below; an assumption about the program
state denoted {P}; nondeterministic choice over some set of commands in-
dexed by set A, (ui∈ASi); and sequential composition of commands, (S1 ;S2).
Table 1 states the syntax and weakest liberal precondition semantics for the
primitive commands. In the postcondition predicate R we do not allow refer-
ences to primed variable names, i.e., R ∈ SPred. The specification statement
updates the variables in its frame x according to the predicate Q ∈ Pred.
Note that the frame x stands for a (possibly empty) set of variables that may
be changed by this statement. The primed set of variables x′ denotes their
final values. The predicate Q may have free unprimed variables and only the
free primed variables x′ corresponding to those that occur in the frame of the
specification statement. In the semantics, variables x are renamed x′ in pred-
icate R to match the final state naming convention used in predicate Q. The
specification statement can describe the behaviour of assignment and other
primitive programming statements [29]. For a predicate P ∈ SPred, statement
{P} allows an assumption about the program state to be included. Nondeter-

6

Table 1
Weakest liberal precondition seman-
tics for primitive commands.

Command S wlp(S,R)

x:nt [Q] ∀x′(Q ⇒ R[x′/x])

{P} P ⇒ R

(ui∈ASi) ∧i∈A wlp(Si, R)

S1 ; S2 wlp(S1, wlp(S2, R))

Table 2
Commands extended with a context pred-
icate C.

Command S Equivalent to command

(x:nt [Q])C x:nt [C ∧ C[x′/x] ∧ Q]

{P}C {P ∧ C}

(ui∈ASi)
C (ui∈ASC

i)

(S1 ; S2)
C SC

1 ; SC
2

(SC1

1)C2 SC1∧C2

1

Table 3
Real-time commands.

Command S Equivalent command

x: [Q] x, τ :nt [Q ∧ τ ≤ τ ′]

[Q] ∅: [Q]

ministic choice over commands can be used to model conditional and iterative
behaviour [2].

We extend the commands with a ‘context’ predicate which is used to record
invariants concerning the surrounding program. Such invariants are typically
type declarations for variables of the form v ∈ T . A command S is always
seen in a certain (possibly true) context C ∈ SPred, expressed as SC . Table 2
defines commands with contexts in terms of the primitive commands. For a
specification statement the context is assumed to hold in the initial state and
in the final state. Contexts in this sense are similar to the invariants introduced
by Morgan and Vickers [31]. An assumption occurring in a particular context
always assumes that the context predicate holds. Contexts are carried through
nondeterministic choice, nesting and sequential composition in obvious ways.

As well as the commands in Table 2, a variable declaration (var v : T • S1)
C

extends statement S1’s context C by introducing the fact that new variable v
has type T , and that the original context C holds in the presence of this newly-
declared variable. The type T of a variable must be a nonempty subset of Val.
The weakest liberal precondition of a variable block is defined as follows:

wlp((var v : T • S1)
C , R) ≡ (∀ v(wlp(S

v∈T∧C[w/v]
1 , R[w/v])))[v/w]

where w ∈ Independ(R) and w /∈ Idf((var v : T • S1)
C)

A substitution with a fresh variable w is performed in context C and predi-
cate R to exclude unwanted bindings to an externally declared variable with
name v, if any. In the proviso, Independ(R) is the set of variable identifiers
that the predicate R does not depend on (see Appendix A for more details)

7

and Idf(S) denotes those variable identifiers that appear free in command S
(see Table A.1 for a full definition).

Table 3 extends the language further with the abstract syntax and semantics
of a timed specification statement, x: [Q]. A timed specification statement is
defined with the help of a conventional specification statement and an ad-
ditional variable τ that refers to the current time and ranges over the real
numbers R. The timed specification statement implicitly has the reserved cur-
rent time variable τ in its frame, plus the additional condition τ ≤ τ ′, making
sure that the time never goes backwards. The frame x of the timed specifi-
cation statement denotes a possibly empty set of variables that are distinct
from τ . The timed specification statement is the primitive construct for ‘timed’
commands [19].

Definition 2.1 (Timed command) A timed command denotes a command
SC , with a context C such that C V τ ∈ R, that is constructed from variable
declarations and the program constructors in the first column of Table 2 with
timed specification statements instead of nontimed ones.

Finally, coercions [Q] are defined as timed specification statements with an
empty frame.

Other commands may be modelled using timed commands. For example,
the idle command, that changes no variables but may consume time, and
a (timed) conditional command may be modelled as follows,

idle
def
= [true]

if B then S1 else S2 fi
def
= ([B]; S1; idle) u ([¬B]; S2; idle) (1)

where we have used the infix operator “u” as a shorthand for a choice over two
alternatives. Notice how this decomposes the conditional into its two possible
paths. In dealing with the timing analysis of such commands it is desirable to
treat each path separately because they may have quite different timing char-
acteristics. Note that an individual path, such as ([B]; S1; idle), is miraculous
(or infeasible) in initial states in which B does not hold and hence that path
is not followed. Further commands are defined in Table 6 and Table 7.

3 Command entry and traversal conditions

The execution time of a command, S, may depend on the initial state (of
the program’s variables). However, we need to consider two exceptional cases:
in some states, (a) the command executes forever, or (b) the command is

8

miraculous [9]. In both cases we are not interested in the execution time be-
cause (a) the command does not terminate or (b) the command corresponds
to a path that is not followed. In the weakest liberal precondition semantics
these alternatives are not distinguished. They both correspond to the states
satisfying wlp(S, false). Recall that wlp(S, R) defines those initial states from
which, if S terminates, it does so in a state that satisfies R. Hence wlp(S, false)
corresponds to those initial states from which S does not terminate, or if it
does, the state satisfies false, i.e., it is miraculous from that initial state. For
execution-time analysis we are interested in the initial states that may lead to
nonmiraculous termination, which we refer to as the entry condition, E(S), of
command S.

Definition 3.1 (Entry condition) The entry condition, E(S), of a com-
mand, S, is defined as the predicate ¬wlp(S, false).

If there are no states that satisfy a command’s entry condition it is a dead
command [17].

Definition 3.2 (Dead command) A command S is dead iff E(S) ≡ false.

For a sequential composition, (S1; S2), the calculation of its entry condition
E(S1; S2) gives the following.

¬wlp((S1; S2), false) ≡ ¬wlp(S1, wlp(S2, false)) ≡ ¬wlp(S1,¬E(S2)) (2)

This motivates a generalisation of the entry condition that defines the traversal
condition for a command S as a restriction of the entry condition to those
states from which S can possibly achieve a state satisfying postcondition R.

Definition 3.3 (Traversal condition) The traversal condition E(S, R) of
a command S, for R ∈ SPred, is defined as the predicate ¬wlp(S,¬R).

Note that E(S) ≡ E(S, true), i.e., the entry condition is the traversal condition
to terminate in any state. The entry condition for the sequential composition
(2) can now be written as E(S1, E(S2, true)). Note that E(S, R) is monotonic
with respect to entailment on R, i.e., if R V R′ then E(S, R) V E(S, R′).

Theorem 3.4 (Traversal condition) Table 4 defines the traversal condi-
tion E(S, R) for commands S and predicates R ∈ SPred.

The proof is by expanding the definition of the traversal condition.

For example, let B ∈ SPred with τ ∈ Independ(B). By assuming that the
entry condition for SC

1 is C, the entry condition for the first alternative of the

conditional (1) in context C
def
= τ ∈ R can be calculated as follows.

9

Table 4
Computation of the traversal condition E(S,R).

Command S E(S,R)

(x:nt [Q])C ∃x′ (C ∧ (C ∧ R)[x′/x] ∧ Q)

{P}C P ∧ C ∧ R

(var v : T • S1)
C (∃v E(S

v∈T∧C[w/v]
1 , R[w/v]))[v/w]

with w /∈ Idf(S) and w ∈ Independ(R)

(ui∈ASi)
C ∨i∈AE(SC

i , R)

(SC1

1)C2 E(SC1∧C2

1 , R)

(S1 ; S2)
C E(SC

1 , E(SC
2 , R))

E(([B]; S1; idle)C , true)≡E([B]C , E(SC
1 , E(idleC , true)))

≡E([B]C , E(SC
1 , C))

≡E([B]C , C)

≡B ∧ C

Similarly, assuming E(SC
2) ≡ C, the entry condition for the second alternative

is ¬B ∧ C, and the entry condition for the whole conditional is (B ∧ C) ∨
(¬B ∧ C) (≡ C).

4 Liberal command refinement.

We define a liberal program refinement relation on the command language via
the weakest liberal precondition semantics by interpreting a command as a
predicate transformer on the subspace consisting of all predicates in SPred.
This refinement relation ensures partial correctness in program development.
All functions on predicates that have been used to define the semantics of
commands in Table 2 are monotone functions and the restrictions on the
program statements ensure that the underlying predicate transformers map
predicates from SPred to predicates in SPred.

Definition 4.1 (Liberal refinement) Let S1, S2 be two commands. We say
that S2 liberally refines S1 and write S1 vwlp S2 if wlp(S1, R) V wlp(S2, R)
for all predicates R ∈ SPred. Liberal refinement equivalence of S1 and S2 is
denoted by S1 vwwlp S2.

Note that liberal refinement is different from common refinement relations
based on weakest preconditions used in total correctness approaches [1,30]. A
refinement S vwlp S ′ means that the predicate characterising the entry condi-
tion of command S ′, is stronger than the one for command S, and furthermore,

10

that all states that command S ′ can achieve are possible ones for command S.
Every liberal refinement decreases nondeterminism and strengthens the entry
condition. Unlike refinement based on weakest preconditions (total correct-
ness), liberal refinement may increase the domain of nontermination.

5 Symbolic computation of execution times

This section focuses on timed commands. We show how worst-case and best-
case execution times for timed commands can be defined and computed on
the basis of the underlying weakest liberal precondition semantics.

5.1 Infimum and supremum

Our theory relies on the notions of infimum and supremum. As with predicates
(which are defined to be functions from states to booleans) our definitions of
supremum and infimum are also functions from the state. We use the notation
(sup{V|B•θ})(σ) to denote the supremum (least upper bound) of function θ ∈
Σ → (R∪{∞,−∞}) over all states σ′ where predicate B holds that may differ
from state σ only in the variables V. The infimum is defined similarly. Note
that sup{V|B • θ} is of type Σ → (R ∪ {∞,−∞}). The domain R must be
extended with infinite values ∞ and −∞ here to account for situations where
no finite bound exists. In particular, the supremum (infimum) of the empty set
is defined to be −∞ (∞). We also use the notation (supθ∈Ω θ)(σ) to denote the
supremum of the set of expressions θ(σ), for θ ranging over a set of functions
Ω, and a similar notation for the infimum. Appendix A contains the formal
definition of these notations.

5.2 Defining time bounds

As a motivational example the assignment of value 1 to variable x taking
between one and two time units can be specified as the timed specification
statement

x: [x′ = 1 ∧ 1 ≤ τ ′ − τ ≤ 2]. (3)

This command has ‘worst-case’ execution time 2 and ‘best-case’ execution
time 1. To formally derive the execution time of a timed command, S, we in-
troduce a fresh variable, ξ, to stand for the termination time of the command.

11

Then E(S, ξ = τ) is a predicate (in ξ and the initial state variables) represent-
ing those initial states from which S can possibly terminate at time ξ. The
current time in the initial state is τ , and hence ξ − τ represents the execution
time of S. To determine the worst-case (best-case) execution time, we take the
supremum (infimum) over ξ of ξ − τ for states satisfying the E(S, ξ = τ). Let
W(S) and B(S) be the worst and best-case execution times of command S,
respectively.

W(S)
def
= sup{ξ | E(S, ξ = τ) • ξ − τ} (4)

B(S)
def
= inf{ξ | E(S, ξ = τ) • ξ − τ}

For the example (3) above we get its worst-case execution time, W(S), as

sup{ξ | E(x: [x′ = 1 ∧ 1 ≤ τ ′ − τ ≤ 2], ξ = τ) • ξ − τ}

=sup{ξ | ∃x′, τ ′(x′ = 1 ∧ 1 ≤ τ ′ − τ ≤ 2 ∧ ξ = τ ′) • ξ − τ}

=sup{ξ | 1 ≤ ξ − τ ≤ 2 • ξ − τ}

=2

Similarly, its best-case execution time can be calculated as 1. W(S) and B(S)
are expressions on the initial state (including τ). To calculate the worst-
case execution time over all initial states one needs to take the supremum
of W(S)(σ) over all states σ. For the example (3) above W(S) is independent
of the state and hence W(S)(σ) is 2 for all states.

If S is dead then E(S, true) ≡ false, and because the traversal condition is
monotone on SPred, E(S, ξ = τ) V E(S, true) and hence E(S, ξ = τ) ≡ false.
Therefore the worst-case execution time for a dead command is given by

sup{ξ | E(S, ξ = τ) • ξ − τ}=sup{ξ | false • ξ − τ} = −∞

The determination of the worst-case execution time of a sequential compo-
sition, (S1; S2), is, unfortunately, not as simple as summing the respective
worst-case execution times of the two statements. There are two reasons for
this. Firstly, S1 may terminate in a state that does not satisfy the entry con-
dition for S2. Hence when determining the worst-case execution time for S1,
we need to restrict our attention to initial states from which S1 can achieve
states satisfying the entry condition for S2, that is, initial states satisfying
E(S1, E(S2)). Secondly, the worst-case execution time of S2 depends on its
initial state. The predicate

E(S1, E(S2) ∧ ξ = τ + W(S2))

12

characterises those initial states from which S1 can reach a state σ which (a)
satisfies the entry condition for S2, and (b) in which ξ is equal to the worst-
case execution time of S2 from state σ plus the termination time of S1, i.e., τ .
Hence

W(S1; S2) = sup{ξ|E(S1, E(S2) ∧ ξ = τ + W(S2)) • ξ − τ}. (5)

Theorem 5.2 proves that this corresponds with our definition (4) of worst-case
execution time.

5.3 Calculating time bounds

To allow systematic (symbolic) calculation of the worst-case execution time of
a sequence (or path) of commands, we generalise function W(S1) to function
W(S1, R, θ), which represents the worst-case execution time of the path con-
sisting of S1 followed by some path S2, where R is a predicate representing the
entry condition for path S2 and θ represents the worst-case execution time of
path S2. Note that θ is a function of the state. With this definition, the worst-
case execution time in equation (5) can be written as W(S1, E(S2),W(S2)).

Definition 5.1 (Execution-time bounds) Let S be a timed command, let
θ ∈ Σ → (R ∪ {∞,−∞}) and let R ∈ SPred and let ξ ∈ Var with ξ /∈ Idf(S)
and ξ ∈ Independ(R) ∩ Independ(θ). The best-case and worst-case execution
time expressions B(S, R, θ) and W(S, R, θ) are of type Σ → (R ∪ {∞,−∞})
and are defined by

B(S, R, θ)
def
= inf{ξ | E(S, R ∧ ξ = τ + θ) • ξ − τ}, and

W(S, R, θ)
def
= sup{ξ | E(S, R ∧ ξ = τ + θ) • ξ − τ}.

Note that W(S) = W(S, true, 0) and B(S) = B(S, true, 0), where “0” here
represents the function that is zero in all states.

Table 5 provides a method for the symbolic computation of worst-case execu-
tion times of timed commands.

Theorem 5.2 (Execution-time bounds) Let S be a timed command, R ∈
SPred and θ ∈ Σ → (R ∪ {∞,−∞}), then Table 5 defines W(S, R, θ).

Proof. We prove the assertion of the theorem by induction on the structure of
a timed command SC with context C. The proof for specification statements
x: [Q] is as follows.

13

Table 5
Computation of the worst-case execution time W(S,R, θ).

Command S W(S,R, θ)

(x: [Q])C sup{τ ′, x′ |C ∧ (C ∧ R)[x′, τ ′/x, τ] ∧ Q ∧ τ ≤ τ ′•

θ[x′, τ ′/x, τ] + τ ′ − τ}

{P}C sup{ξ |P ∧ C ∧ R ∧ ξ = τ + θ • ξ − τ}

(var v : T • S1)
C sup{v |W(S

v∈T∧C[w/v]
1 , R[w/v], θ[w/v])}[v/w]

with w /∈ Idf(S) and w ∈ Independ(R) ∩ Independ(θ)

(ui∈ASi)
C supi∈A W(SC

i , R, θ)

(SC1

1)C2 W(SC1∧C2

1 , R, θ)

(S1 ; S2)
C W(SC

1 , E(SC
2 , R),W(SC

2 , R, θ))

W((x: [Q])C , R, θ)

= sup{ξ | E((x: [Q])C , R ∧ ξ = τ + θ) • ξ − τ}

=“By Table 4”

sup{ξ | ∃τ ′, x′ (C ∧ (C ∧ R)[x′, τ ′/x, τ] ∧ Q ∧ τ ≤ τ ′ ∧

ξ = τ ′ + θ[x′, τ ′/x, τ] • ξ − τ}

=“By Theorem C.1”

sup{τ ′, x′ |C ∧ (C ∧ R)[x′, τ ′/x, τ] ∧ Q ∧ τ ≤ τ ′ •

τ ′ + θ[x′, τ ′/x, τ] − τ}

The proof for assumptions {P} is trivial. Next we show the induction step for
variable declarations. We fix a variable w with w /∈ Idf((var v : T • S1)

C) and
w ∈ Independ(R) ∩ Independ(θ).

W((var v : T • S1)
C , R, θ)

= sup{ξ | E((var v : T • S1)
C , R ∧ ξ = τ + θ) • ξ − τ}

=“By Table 4”

sup{ξ |
(

∃v E(S
v∈T∧C[w/v]
1 , R[w/v] ∧ ξ = τ + θ[w/v])

)

[v/w] • ξ − τ}

=“By Theorem C.1”

sup{v | sup{ξ | (E(S
v∈T∧C[w/v]
1 , R[w/v] ∧ ξ = τ + θ[w/v])) •

ξ − τ}}[v/w]

= “By induction hypothesis”

sup{v |W(S
v∈T∧C[w/v]
1 , R[w/v], θ[w/v])}[v/w]

The induction step for nondeterministic choice (ui∈ASi) is as follows.

W((ui∈ASi)
C , R, θ)= sup{ξ | E((ui∈ASi)

C , R ∧ ξ = τ + θ) • ξ − τ}

14

= “By Table 4”

sup{ξ | ∨i∈A E(SC
i , R ∧ ξ = τ + θ) • ξ − τ}

= sup
i∈A

sup{ξ | E(SC
i , R ∧ ξ = τ + θ) • ξ − τ}

= “By induction hypothesis”

sup
i∈A

W(SC
i , R, θ)

It remains to show the induction step for sequential composition, (S1 ; S2).
According to Theorem B.5 we can assume that there is a timed specification
statement x: [Q] which is liberal refinement equivalent to SC

1 .

W(SC
1 , E(SC

2 , R),W(SC
2 , R, θ))

= “By Definition 5.1 of W on SC
1 ”

sup{ξ | E(SC
1 , E(SC

2 , R) ∧ ξ = τ + W(SC
2 , R, θ)) • ξ − τ}

=“By Definition 5.1 of W on SC
2 ”

sup{ξ | E(SC
1 , E(SC

2 , R) ∧

ξ = τ + sup{η | E(SC
2 , R ∧ η = τ + θ) • η − τ}) • ξ − τ}

=“By Table 4 assuming SC
1 is equivalent to x: [Q]”

sup{ξ | ∃τ ′, x′(Q ∧ τ ≤ τ ′ ∧ E(SC
2 , R)[τ ′, x′/τ, x] ∧

ξ = τ ′ + sup{η | E(SC
2 , R ∧ η = τ + θ)[τ ′, x′/τ, x] • η − τ ′}) • ξ − τ}

=“By Theorem C.1; also cancelling out τ ′”

sup{ξ, τ ′, x′ |Q ∧ τ ≤ τ ′ ∧ E(SC
2 , R)[τ ′, x′/τ, x] ∧

ξ = sup{η | E(SC
2 , R ∧ η = τ + θ)[τ ′, x′/τ, x] • η} • ξ − τ}

=sup{τ ′, x′ |Q ∧ τ ≤ τ ′ ∧ E(SC
2 , R)[τ ′, x′/τ, x] •

sup{ξ | E(SC
2 , R ∧ ξ = τ + θ)[τ ′, x′/τ, x] • ξ} − τ}

=sup{ξ, τ ′, x′ |Q ∧ τ ≤ τ ′ ∧ E(SC
2 , R)[τ ′, x′/τ, x] ∧

E(SC
2 , R ∧ ξ = τ + θ)[τ ′, x′/τ, x] • ξ − τ}

=“By monotonicity of the command traversal condition”

sup{ξ, τ ′, x′ |Q ∧ τ ≤ τ ′ ∧ E(SC
2 , R ∧ ξ = τ + θ)[τ ′, x′/τ, x] • ξ − τ}

=“By Theorem C.1”

sup{ξ | ∃τ ′, x′(Q ∧ τ ≤ τ ′ ∧ E(SC
2 , R ∧ ξ = τ + θ)[τ ′, x′/τ, x]) • ξ − τ}

=“By Table 4 assuming SC
1 is equivalent to x: [Q]”

sup{ξ | E(SC
1 , E(SC

2 , R ∧ ξ = τ + θ)) • ξ − τ}

=“By Table 4”

sup{ξ | E((S1 ; S2)
C , R ∧ ξ = τ + θ) • ξ − τ}

=“By Definition 5.1”

W((S1 ; S2)
C , R, θ)

2

15

A similar theorem holds for the best-case execution time: by replacing the
expression W(S, R, θ) with B(S, R, θ) and the supremum with the infimum in
all expressions in Table 5 we obtain a method for the symbolic computation
of best-case execution times.

A consequence of the definition of timed commands, worst-case and best-case
execution times and the previous theorem are the following correspondences.

Theorem 5.3 (Achievable execution times) For every timed command
S and predicate R ∈ SPred, it is the case that

• B(S, R, 0) ≥ 0,
• E(S, R) ≡ (B(S, R, 0) ≤ W(S, R, 0)),
• ¬E(S, R) ≡ B(S, R, 0) = ∞, and
• ¬E(S, R) ≡ W(S, R, 0) = −∞.

In other words, no command takes a negative time, the best-case execution
time never exceeds the worst-case one on states that fulfil the traversal condi-
tion, and the execution times are unsatisfiable on states that do not fulfil the
traversal condition.

5.4 Refining time bounds

Any liberal refinement S vwlp S ′ always tightens the worst-case and the best-
case execution times of a timed command S in the sense that the worst-case
execution time of S ′ is below the one for S and the best-case execution time
of S ′ is above the one for S. This is stated in the following theorem which
is derived from Definition 5.1 and the fact that E(S ′, R) V E(S, R) for any
predicate R ∈ SPred.

Theorem 5.4 (Time-bound refinement) Let S, S ′ be timed commands
with S vwlp S ′, let R ∈ SPred and let θ be a function on Σ with values in
R ∪ {−∞,∞}. Then, B(S, R, θ) ≤ B(S ′, R, θ) and W(S ′, R, θ) ≤ W(S, R, θ).

This shows that program development with liberal refinement (partial correct-
ness) preserves upper bounds for worst-case and lower bounds for best-case
execution-time behaviour. This is not necessarily the case for refinement based
on weakest preconditions (total correctness), since states from where the pro-
gram may not terminate can then become states from where anything can
happen.

16

Table 6
High-level language commands and equivalent modelling language commands.

Command S Wlp-command equivalent

x := E x: [x′ = E]

deadline D [τ ′ = τ ∧ τ ≤ D]

delay until D [D ≤ τ ′ ≤ max{τ,D} + late]

whileG doS end (ui∈NSi ; [¬G])

where S0
def
= [τ ′ = τ] and Si+1

def
= [G] ; S ; Si, for i ∈ N

6 Example

This section applies our techniques to the timing analysis of a ‘message trans-
mitter’ example. Timing constraints are extracted from the high-level pro-
gram, and the compiled code is evaluated against those. This is performed
by giving a common semantic model for the high-and low-level programs and
investigating timing paths through the programs.

Table 6 defines the syntax and semantics of a set of language commands for a
high-level real-time language with conventional program primitives and loops.
The timing behaviour of a real-time program in this language can be specified
with the help of the ‘delay’ and ‘deadline’ commands. The delay statement
delays the program’s execution until a specified time with possible maximal
overrun late > 0, and the deadline command requires that the preceding state-
ments finish before a certain time [13]. Furthermore, there is a (possibly time
consuming) assignment to program variables. All commands are defined on
the base of the language for timed commands. The definitions of the while
loop have been taken from previous work [17] and re-expressed with the gen-
eral nondeterministic choice command of Table 2. In the table, G denotes
a predicate with no free primed variables, and D and E denote expressions
without free primed variables. The expression E, time-valued expression D,
and predicate G must all be idle-stable, that is, their values cannot change
with just the passage of time. This means that they cannot refer to the current
time variable, τ , or to the value of external inputs. The identifier x denotes a
local variable.

6.1 The message transmitter

To illustrate the execution time computation techniques on a high-level real-
time program, Figure 2 contains a simplified version of a program which dis-
plays a message of size characters, one character at a time, in a shared memory
location, out, under the constraint that the first character must be displayed

17

varmsg : array(0..size− 1) of nat;
out : nat;
n : nat;

...
{τ ≤ 30};
n := 0;
while n 6= size do

out := msg(n);
deadline 50 + 35 ∗ n;
delay until 56 + 35 ∗ n;
n := n + 1

end ;

deadline 56 + 35 ∗ size

Fig. 2. High-level language transmitter program.

from (at least) time 50 to time 56, the second character must be displayed
from time 85 to time 91, and so on [18]. A new character appears every 35
microseconds, and remains visible for at least 6 microseconds. The delay until
statement forces the character to remain visible for the required time, and the
deadline states that the program must have produced the character by the
required time.

The challenge when verifying such a program is to show that the timing of each
control-flow path ending at a deadline command ensures that the deadline will
always be met. As an example of a timing path in this program, we investigate
the control-flow path that starts with the assumption at the beginning of
the program, enters the while-loop for the first time and ends with the first
deadline command. We denote this path by Path A.

{τ ≤ 30};
n := 0;
[n 6= size];
out := msg(n);
deadline 50 + 35 ∗ n

Note that in Path A, the coercion statement [n 6= size] records the condition
that has to be true for the loop to be entered [17].

This is, of course, only one of the many paths through such a program. In
particular, to successfully prove the timing correctness of an embedded pro-
gram it is usually necessary to prove that each process iterates quickly enough
to process data at the correct rate. For instance, in this case we would also
want to analyse the path that goes from the deadline of 50 + 35 ∗ n, around
the ‘loop’, and back to itself, in order to prove that the task can achieve its

18

required periodicity. We do not go further into the issue of finding all relevant
timed paths and the problem of extracting a minimal set of primitive paths
that have to be analysed to derive a sufficient set of timing constraints [15,20].

The following predicate defines the program context C for Path A.

C
def
= τ ∈ R ∧ out, n ∈ N ∧ msg ∈ {0, .., size− 1} → N

In this context (which is implicit below) we compute the traversal condition
of Path A to achieve ξ = τ as follows, by calculating backwards up the path
with the help of Table 4.

E(deadline 50 + 35 ∗ n, ξ = τ)

≡ τ ≤ 50 + 35 ∗ n ∧ ξ = τ

E(out := msg(n), τ ≤ 50 + 35 ∗ n ∧ ξ = τ)

≡∃τ ′, out′ (τ ≤ τ ′ ∧ out′ = msg(n) ∧ τ ′ ≤ 50 + 35 ∗ n ∧ ξ = τ ′)

≡ τ ≤ ξ ≤ 50 + 35 ∗ n

E([n 6= size], τ ≤ ξ ≤ 50 + 35 ∗ n)

≡∃τ ′ (τ ≤ τ ′ ∧ n 6= size ∧ τ ′ ≤ ξ ≤ 50 + 35 ∗ n)

≡n 6= size ∧ τ ≤ ξ ≤ 50 + 35 ∗ n

E(n := 0, n 6= size ∧ τ ≤ ξ ≤ 50 + 35 ∗ n)

≡∃τ ′, n′ (τ ≤ τ ′ ∧ n′ = 0 ∧ n′ 6= size ∧ τ ′ ≤ ξ ≤ 50 + 35 ∗ n′)

≡ τ ≤ ξ ≤ 50 ∧ 0 6= size

E({τ ≤ 30}, τ ≤ ξ ≤ 50 ∧ 0 6= size)

≡ τ ≤ 30 ∧ τ ≤ ξ ≤ 50 ∧ 0 6= size

≡E(Path A, ξ = τ)

This is exactly the condition we require to traverse this path with termination
time ξ. The starting time τ is not later than 30 and the length of the message
is not 0 (which is necessary to enter the loop at least once) and ξ must be not
greater than 50. The worst-case execution time of Path A is computed with
the help of Definition 5.1 as follows.

W(Path A) = sup{ξ | E(Path A, ξ = τ) • ξ − τ}

=sup{ξ | τ ≤ 30 ∧ τ ≤ ξ ≤ 50 ∧ 0 6= size • ξ − τ}

=

50 − τ : τ ≤ 30 ∧ 0 6= size

−∞ : otherwise

To interpret this result, consider that the path is not permitted to start later
than time 30. The computed expression 50 − τ specifies the uppermost ex-
ecution time of the path with respect to the starting time τ . In the worst

19

--{τ ≤ 30}

20: li $0, msg $0 := msg base address

21: li $1, size $1 := size (length of msg)

22: li $2, 0 $2 := 0 (loop counter n)

23: li $3, 56 $3 := 56 (first delay time)

24: li $4, 35 $4 := 35 (separation time)

25: j 34 goto loop test

26: add $5, $2, $0 $5 := n + msg base

27: lb $6, ($5) $6 := msg(n)

28: sb $6, out out := msg(n)

-- deadline $3 − 6

29: lt $7, clock $7 := current time

30: sub $7, $3, $7 $7 := delay time − current time

31: bgtz $7, 29 delay if $7 > 0

32: add $3, $3, $4 delay time := delay time + 35

33: addi $2, $2, 1 increment n

34: bne $1, $2, 26 goto loop body if n 6= size

Fig. 3. MIPS-like assembler code of the message transmitter.

case, when the program starts at time 30, the path can take no more than
20 microseconds. Importantly, if we can prove that an implementation of this
path never takes more than 20 time units, the deadline at the end will always
be met for any anticipated starting time. However, if the path starts too late
or size equals zero, then there is no timing obligation on the path.

6.2 Analysing the transmitter implementation

Figure 3 depicts an implementation of the transmitter program in MIPS-like
assembler language. Here msg and out are symbolic constants representing
the addresses allocated to these high-level language variables. Expression $i
denotes register number i and function clock denotes the machine clock. The
clock is modelled as an input to the program which keeps track of the actual
time. However, since the instruction that samples the clock takes 1 microsec-
ond the sampled time clock is slightly behind the actual time τ . The assembler

20

Table 7
Assembler commands and defining modelling language commands.

Assembler comd. Equivalent modelling language command

lb $i, a r, pc: [r′ = r ⊕ {i 7→ m(a)} ∧ τ ′ = τ + 1 ∧ pc′ = pc + 1]

lb $i, ($j) r, pc: [r′ = r ⊕ {i 7→ m(r(j))} ∧ 1 ≤ τ ′ − τ ≤ 3 ∧ pc′ = pc + 1]

li $i, z r, pc: [r′ = r ⊕ {i 7→ z} ∧ τ ′ = τ + 1 ∧ pc′ = pc + 1]

lt $i, clock r, pc: [r′ = r ⊕ {i 7→ clock(τ)} ∧ τ ′ = τ + 1 ∧ pc′ = pc + 1]

sb $i, a pc,m: [m′ = m ⊕ {a 7→ r(i)} ∧ τ ′ = τ + 2 ∧ pc′ = pc + 1]

j a pc: [τ ′ = τ + 1 ∧ pc′ = a]

bgtz $i, a pc: [(r(i) ≤ 0 ⇒ pc′ = pc + 1) ∧ (r(i) > 0 ⇒ pc′ = a)∧

1 ≤ τ ′ − τ ≤ 2]

bne $i, $j, a pc: [(r(i) 6= r(j) ⇒ pc′ = a) ∧ (r(i) = r(j) ⇒ pc′ = pc + 1)∧

1 ≤ τ ′ − τ ≤ 2]

sub $i, $j, $k r, pc: [r′ = r ⊕ {i 7→ r(j) − r(k)} ∧ τ ′ = τ + 1 ∧ pc′ = pc + 1]

add $i, $j, $k r, pc: [r′ = r ⊕ {i 7→ r(j) + r(k)} ∧ τ ′ = τ + 1 ∧ pc′ = pc + 1]

addi $i, $j, z r, pc: [r′ = r ⊕ {i 7→ r(j) + z} ∧ τ ′ = τ + 1 ∧ pc′ = pc + 1]

l: S [pc = l ∧ τ = τ ′] ; S

Address a, registers $i, $j, $k, integer z and program counter address l.

commands are defined in Table 7 on the base of our modelling language. We
assume an abstract machine with a register function r on the set of registers

Reg
def
= {0, ..., 31} and a memory function m on the set of addresses (natural

numbers) Addr, both with values in the set of machine representations (in-
tegers) Int. Every assembler command S has a machine address l in Addr
denoted by l: S. The program counter pc ranges over these addresses. In addi-
tion, execution times have been given to each of the commands. For simplicity,
we have not included any caching or pipelining effects. The following defines
the context of the assembler program in Figure 3.

C
def
= τ ∈ R ∧ msg, out, pc ∈ Addr ∧ m ∈ Addr → Int ∧ r ∈ Reg → Int ∧

clock ∈ R → Int ∧ Addr ⊆ Int ∧ τ − 1 ≤ clock(τ) ≤ τ

On the base of the timing behaviour of the assembler program we can now
compare the high-level timing constraints of the transmitter with the actual
execution times of its implementation. The following control-flow path through
the assembler code corresponds to Path A of the high-level program. We call
this program path Path B.

21

--{τ ≤ 30}
20: li $0, msg
21: li $1, size
22: li $2, 0
23: li $3, 56
24: li $4, 35
25: j 34
34: bne $1, $2, 26
26: add $5, $2, $0
27: lb $6, ($5)
28: sb $6, out

-- deadline $3 − 6

The computation of the traversal condition of Path B is outlined below. Any
command with machine address i is referenced under the name Si. The equiv-
alences hold under context C.

E(S28, ξ = τ)

≡∃m′, pc′, τ ′(pc = 28 ∧ m′ = m ⊕ {out 7→ r(6)} ∧ τ ′ = τ + 2 ∧

pc′ = 29 ∧ ξ = τ ′)

≡ pc = 28 ∧ ξ = τ + 2
...

E(S20, pc = 21 ∧ m(size) 6= 0 ∧ 10 ≤ ξ − τ ≤ 13)

≡ pc = 20 ∧ m(size) 6= 0 ∧ 11 ≤ ξ − τ ≤ 14

≡E(Path B)

This tells us that in order to traverse Path B the message must have some con-
tent and the program counter must point to the start of the path at address 20.
The worst-case execution time of Path B is then computed as follows.

W(Path B) = sup{ξ | pc = 20 ∧ m(size) 6= 0 ∧ 11 ≤ ξ − τ ≤ 14 • ξ − τ}

=

14 : pc = 20 ∧ m(size) 6= 0

−∞ : otherwise

This tells us that the worst-case execution time of Path B is 14 microseconds,
in those cases where the path’s behaviour is well-defined. Since this is below
the timing constraint 20 that we computed for the functionally equivalent
Path A, we can conclude that Path B will always meet the deadline of the
high-level program. The implementation’s timing behaviour is correct for this
control-flow path.

22

7 Conclusion

We have defined a semantics for timed program commands and used it to de-
fine calculations for traversal conditions and execution-time bounds. We have
shown how this approach can be used as a basis for timing analysis of high-
level language real-time programs, where semantic extraction of the ‘specified’
worst-case and best-case execution times is needed to support timing verifi-
cation of the machine-dependent implementation. We have shown that the
techniques can be likewise applied in low-level program analysis with machine
languages, where commands may have machine-specific timing bounds de-
fined. In this context, our formal approach can be then used for the derivation
of ‘actual’ worst-case and best-case execution times.

The expressive power of our model in terms of nondeterminism and nontermi-
nation needs some discussion. Our partial correctness semantics does not allow
us to distinguish program states from which either a terminating or nonter-
minating behaviour is possible from states where only termination is possible.
This lack of expressiveness is irrelevant for the computation of worst-case and
best-case execution times, since their derivation is relevant only for terminat-
ing program executions: in a nondeterministic choice between nontermination
and termination our model disregards nontermination, and permits the com-
putation of execution times for the terminating alternative alone. Total cor-
rectness semantics would only permit the computation of execution times for
‘strictly’ terminating programs.

The symbolic computation of execution times that we describe in Theorem 5.2
looks tedious and repetitive on paper, but can be automated with techniques
from Linear Programming. This approach permits the approximation of exe-
cution times for programs in arbitrary programming languages. A prototype
tool using this approach has been implemented in Prolog on the base of linear
programming techniques. The tool approximates the supremum (infimum) ex-
pressions of Table 5 by transforming the predicates into ‘linear’ predicates and
translating the supremum (infimum) computations over the reals into linear
optimisation problems. As a result of this, we obtain upper and lower bounds
for execution times for arbitrary timed commands in our language [26].

Generally, though, the model is independent of the particular target machine
and applies to any programming language with a predicate transformer seman-
tics. In particular, the model provides a sound basis for verification of practical
algorithms and tools for worst-case and best-case execution-time prediction.

Acknowledgements This research was conducted as part of ARC Large
Grant A49937045, Effective Real-Time Program Analysis, and this article was

23

prepared as part of ARC Discovery Grant DP0209722, Derivation and Timing
Analysis of Concurrent Real-Time Software.

A The predicate space

Predicates in the space Pred may have the entire set Var as free variables.
Such a predicate would not permit variable substitution with variables in the
variable universe Var in the usual sense. To avoid pathological cases of this
kind we need to make sure that predicates cannot have more than a certain
number of free variables. For a given cardinal number γ we therefore introduce
the set Predγ which consists of all predicates P in Pred such that the cardinality
of the set of all free variables of P is not greater than γ. If γ is a limit ordinal,
then Predγ is closed under infimum (conjunction) and supremum (disjunction)
on sets of predicates from Predγ, i.e., for predicates Pi from Predγ , with index
i ranging over an index set A of cardinality not greater than γ, it is the case
that ∧i∈APi and ∨i∈APi are predicates in Predγ . This in turn ensures that the
definition of nondeterministic choice is well defined.

For a state σ ∈ Σ, a subset of variables V ⊆ Var and a mapping µ ∈ V → Val

we define overriding of σ by µ, denoted σ ⊕ µ, by (σ ⊕ µ)(v)
def
= σ(v) if

v ∈ Var \ V and by (σ ⊕ µ)(v)
def
= µ(v) if v ∈ V. A function f ∈ Σ → Val

may be independent of a variable v meaning that for every state σ ∈ Σ and
value r ∈ Val the equality f(σ) = f(σ ⊕ {v 7→ r}) holds, where {v 7→ r}
denotes the mapping of a variable v to a value r. The set of all independent
variables of f is denoted by Independ(f). Variable v is called a free variable of
f if v ∈ Var \ Independ(f).

The term algebra is defined as usual from the set of variables Var and the set
of function symbols Fun which represent total functions of a certain arity over
the value space Val. Substitution of a term t for a variable v in a predicate

or function P on Σ is defined by P [t/v](σ)
def
= P (σ ⊕ {v 7→ σ(t)}) where the

evaluation of a state σ on a term means the canonical extension of σ onto the
term algebra. By P [y′, z′/y, z] we denote the simultaneous substitution of y′

and z′ for y and z, whereas P [y′/y][z′/z] denotes the substitution of y′ for y
followed by the substitution of z′ for z.

The function Idf gives the set of identifiers used in a command; it is defined
in Table A.1.

Definition A.1 (Supremum) Let V ⊆ Var, B ∈ Pred and θ ∈ Σ →
(R ∪ {∞,−∞}). For σ ∈ Σ, let the expression (sup{V|B • θ})(σ) denote
the supremum of the set

24

Table A.1
Sets of identifiers occuring in commands.

Command S Identifiers Idf(S)

(x:nt [Q])C (Var \ Independ(Q)) ∪ (Var \ Independ(C)) ∪ {x, x′}

{P}C (Var \ Independ(P)) ∪ (Var \ Independ(C))

(var v : T • S1)
C Idf(Sv∈T∧C

1) ∪ {v, v′}

(ui∈ASi)
C ∪i∈AIdf(SC

i)

(SC1

1)C2 Idf(SC1∧C2

1)

(S1 ; S2)
C Idf(SC

1) ∪ Idf(SC
2)

{µ ∈ V → Val |B(σ ⊕ µ) • θ(σ ⊕ µ)}

in R ∪ {∞,−∞}. In addition, for a set Ω of functions of the same type as θ
above we denote by (supθ∈Ω θ)(σ) the supremum of the set {θ ∈ Ω | true•θ(σ)}.

B Basic Lemmas and Theorems

Lemma B.1 Let x and y be disjoint sets of variables and let Q be a predicate
that can only have free primed variables in x′. Then, the liberal refinement
equivalence x:nt [Q] vwwlp x, y:nt [Q ∧ y = y′] holds.

Proof. Let R ∈ SPred. Then the following holds.

wlp(x:nt [Q], R)≡∀x′(Q ⇒ R[x′/x])

“Since y′ does not occur free in Q and R”

(∀x′, y′((Q ∧ y = y′) ⇒ R[x′, y′/x, y])

≡wlp(x, y:nt [Q ∧ y = y′], R)

2

Lemma B.2 Let v and x denote disjoint sets of variables, then

(var v : T • x, v:nt [Q])C vwwlp x:nt [C ∧ C[x′/x] ∧ ∃v, v′(v, v′ ∈ T ∧ Q)].

Proof. Let R ∈ SPred and let w /∈ Idf((var v : T • x, v:nt [Q])C) and w ∈
Independ(R). Then the following equivalences hold.

25

wlp((var v : T • x, v:nt [Q])C , R)

≡ (∀v(wlp(x, v:nt [Q]v∈T∧C[w/v], R[w/v])))[v/w]

≡ (∀v(∀x′, v′((Q ∧ v, v′ ∈ T ∧ C[w/v] ∧ C[w/v][x′/x]) ⇒

R[w/v][x′/x])))[v/w]

≡ (∀x′, v, v′((Q ∧ v, v′ ∈ T ∧ C[w/v] ∧ C[w/v][x′/x]) ⇒

R[w/v][x′/x]))[v/w]

≡ (∀x′((C[w/v] ∧ C[w/v][x′/x] ∧ ∃v, v′(Q ∧ v, v′ ∈ T)) ⇒

R[w/v][x′/x]))[v/w]

≡∀x′((C ∧ C[x′/x] ∧ ∃v, v′(Q ∧ v, v′ ∈ T)) ⇒ R[x′/x])

≡wlp(x:nt [C ∧ C[x′/x] ∧ ∃v, v′(v, v′ ∈ T ∧ Q)], R)

2

Lemma B.3 (x:nt [Q] ; x:nt [W]) vwwlp x:nt [∃v(Q[v/x′] ∧ W [v/x])].

Proof. Let R ∈ SPred. Then the following holds.

wlp((x:nt [Q] ; x:nt [W]), R)≡wlp(x:nt [Q], wlp(x:nt [W], R))

≡∀x′(Q ⇒ (∀x′(W ⇒ R[x′/x]))[x′/x])

≡ “Let v /∈ Idf(x:nt [Q]) ∪ Idf(x:nt [W])

and v ∈ Independ(R)”

∀v(Q[v/x′] ⇒ (∀x′(W ⇒ R[x′/x]))[v/x])

≡∀v(Q[v/x′] ⇒ (∀x′(W [v/x] ⇒ R[x′/x])))

≡∀x′, v((Q[v/x′] ∧ W [v/x]) ⇒ R[x′/x])

≡∀x′(∃v(Q[v/x′] ∧ W [v/x]) ⇒ R[x′/x])

≡wlp(x:nt [∃v(Q[v/x′] ∧ W [v/x])], R)

2

Lemma B.4 (ui∈Ax:nt [Qi]) vwwlp x:nt [∨i∈AQi].

Proof. Let R ∈ SPred. Then the following holds.

wlp(x:nt [∨i∈AQi], R)≡∀x′((∨j∈AQi) ⇒ R[x′/x]))

≡∀x′(∧i∈A(Qi ⇒ R[x′/x]))

≡∧i∈A(∀x′(Qi ⇒ R[x′/x]))

≡wlp((ui∈Ax:nt [Qi]), R)

2

Theorem B.5 (Command reduction) Let S be a (timed) command, then
there is a (timed) specification statement S ′ such that S vwwlp S ′ holds.

26

Proof. This follows from the definition of (timed) commands and Lemmas
B.1, B.2, B.3 and B.4. 2

C Efficient execution-time calculation

For a set of variables V = {v1, ..., vn}, B ∈ Pred, and θ ∈ Σ → (R∪{∞,−∞}),
we abbreviate ∃v1, ..., vn B by ∃V B, and {v1, ..., vn |B • θ} by {V |B • θ}.

Theorem C.1 Let V ⊆ Var and W ⊆ Var be disjoint, B ∈ Pred and θ ∈
Σ → (R ∪ {∞,−∞}). If W ⊆ Independ(θ) then the following equality holds.

sup{V ∪W |B • θ}= sup{V | (∃W B) • θ}

Proof. Let σ ∈ Σ. Then the following equalities can be easily checked.

(sup{V ∪W |B • θ})(σ) = supremum{µ ∈ V ∪W → Val |

B(σ ⊕ µ) = true • θ(σ ⊕ µ)}

=“Since W ⊆ Independ(θ)”

supremum{µ′ ∈ V → Val |

(∃W B)(σ ⊕ µ′) = true • θ(σ ⊕ µ′)}

=(sup{V | (∃W B) • θ})(σ)

2

Theorem C.2 Let V ⊆ Var, A, B ∈ Pred and θ ∈ Σ → (R ∪ {∞,−∞}). If
V ⊆ Independ(B) then the following entailment relation holds.

B V (sup{V |A ∧ B • θ} = sup{V |A • θ})

Proof. Let σ ∈ Σ and assume B(σ).

(sup{V |A ∧ B • θ})(σ)= supremum{µ ∈ V → Val |A(σ ⊕ µ) ∧

B(σ ⊕ µ) • θ(σ ⊕ µ)}

= “Since B(σ) holds and V ⊆ Independ(B)”

supremum{µ ∈ V → Val |A(σ ⊕ µ) ∧ true •

θ(σ ⊕ µ)}

= (sup{V |A • θ})(σ)

2

27

References

[1] R.-J. Back, J. von Wright, Refinement Calculus: A Systematic Introduction,
Springer-Verlag, 1998.

[2] R.-J. Back, J. von Wright, Reasoning algebraically about loops, Acta
Informatica 36 (4) (1999) 295–334.

[3] J. Barnes, High Integrity Ada: The Spark Approach, Addison-Wesley, 1997.

[4] J.-F. Bergeretti, B. A. Carré, Information-flow and data-flow analysis of while-
programs, ACM Transactions on Programming Languages and Systems 7 (1)
(1985) 37–61.

[5] A. Burns, A. Wellings, Real-Time Systems and Programming Languages, 2nd
Edition, Addison-Wesley, 1997.

[6] G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications, Kluwer, 1997.

[7] B. Carré, Program analysis and verification, in: C. T. Sennett (Ed.), High-
Integrity Software, Plenum Press, 1989, Ch. 8, pp. 176–197.

[8] R. Chapman, A. Burns, A. Wellings, Combining static worst-case timing
analysis and program proof, Real-Time Systems 11 (1996) 145–171.

[9] E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976.

[10] E. W. Dijkstra, C. S. Scholten, Predicate Calculus and Program Semantics,
Springer-Verlag, 1990.

[11] J. Engblom, A. Ermedahl, Modeling complex flows for worst-case execution-
time analysis, in: Proceedings of the 21st IEEE Real-Time Systems Symposium,
IEEE Computer Society, 2000, pp. 163–174.

[12] A. Ermedahl, J. Gustafsson, Deriving annotations for tight calculation of
execution time, in: C. Lengauer, M. Griebel, S. Gorlatch (Eds.), Euro-Par’97:
Parallel Processing, Vol. 1300 of Lecture Notes in Computer Science, Springer-
Verlag, 1997, pp. 1298–1307.

[13] C. J. Fidge, I. J. Hayes, G. Watson, The deadline command, IEE Proceedings—
Software 146 (2) (1999) 104–111.

[14] C. J. Fidge, M. Utting, P. Kearney, I. J. Hayes, Integrating real-time scheduling
theory and program refinement, in: M.-C. Gaudel, J. Woodcock (Eds.), FME’96:
Industrial Benefit and Advances in Formal Methods, Vol. 1051 of Lecture Notes
in Computer Science, Springer-Verlag, 1996, pp. 327–346.

[15] S. Grundon, I. J. Hayes, C. J. Fidge, Timing constraint analysis, in:
C. McDonald (Ed.), Computer Science ’98: Proc. 21st Australasian Computer
Science Conference, Springer-Verlag, 1998, pp. 575–586.

28

[16] E. L. Gunter, D. Peled, Path exploration tool, in: W. R. Cleaveland
(Ed.), Tools and Algorithms for the Construction and Analysis of Systems
(TACAS/ETAPS’99), Vol. 1579 of Lecture Notes in Computer Science,
Springer-Verlag, 1999, pp. 405–419.

[17] I. J. Hayes, C. J. Fidge, K. Lermer, Semantic characterisation of dead control-
flow paths, IEE Proceedings—Software 148 (6) (2001) 175–186.

[18] I. J. Hayes, M. Utting, Coercing real-time refinement: A transmitter, in: D. J.
Duke, A. S. Evans (Eds.), BCS-FACS Northern Formal Methods Workshop,
1996, Electronic Workshops in Computing, Springer-Verlag, 1997, http://

www.ewic.org.uk/ewic/.

[19] I. J. Hayes, M. Utting, A sequential real-time refinement calculus, Acta
Informatica 37 (2001) 385–448.

[20] I. J. Hayes, Programs as paths: An approach to timing constraint analysis, in:
J. S. Dong, J. Woodcock (Eds.), Formal Methods and Software Engineering:
Proceedings 5th International Conference on Formal Engineering Methods,
ICFEM 2003, Vol. 2885 of Lecture Notes in Computer Science, Springer Verlag,
2003, pp. 1–15.

[21] E. C. R. Hehner, Termination is timing, in: J. L. A. van de Snepscheut (Ed.),
Mathematics of Program Construction, Vol. 375 of Lecture Notes in Computer
Science, Springer-Verlag, 1989, pp. 36–47.

[22] S. Horwitz, T. Reps, The use of program dependence graphs in software
engineering, in: Proceedings of the Fourteenth International Conference on
Software Engineering (ICSE’92), ACM Press, 1992, pp. 392–411.

[23] Y. Hur, Y. H. Bae, S.-S. Lim, B.-D. Rhee, S. L. Min, C. Y. Park, M. Lee, H. Shin,
C. S. Kim, Worst case timing analysis of RISC processors: R3000/R3010 case
study, in: Proc. 16th IEEE Real-Time Systems Symposium, IEEE Computer
Society Press, 1995, pp. 308–319.

[24] K. Lermer, C. J. Fidge, A methodology for compilation of high-integrity real-
time programs, in: C. Lengauer, M. Griebel, S. Gorlatch (Eds.), Euro-Par’97:
Parallel Processing, Vol. 1300 of Lecture Notes in Computer Science, Springer-
Verlag, 1997, pp. 1274–1281.

[25] K. Lermer, C. J. Fidge, A formal model of real-time program compilation,
Theoretical Computer Science 282 (1) (2002) 151–190.

[26] K. Lermer, C. J. Fidge, I. J. Hayes, Linear approximation of execution-time
constraints, Formal Aspects of Computing 15 (4) (2003) 319–348.

[27] Y.-T. Li, S. Malik, A. Wolfe, Efficient microarchitecture modeling and path
analysis for real-time software, in: Proc. 16th IEEE Real-Time Systems
Symposium, IEEE Computer Society Press, 1995, pp. 298–307.

[28] S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min, C. Y. Park, H. Shin,
K. Park, S.-M. Moon, C. S. Kim, An accurate worst case timing analysis for

29

RISC processors, IEEE Transactions on Software Engineering 21 (7) (1995)
593–604.

[29] C. Morgan, The specification statement, ACM Transactions on Programming
Languages and Systems 10 (3) (1988) 403–419.

[30] C. Morgan, Programming from Specifications, 2nd Edition, Prentice-Hall, 1994.

[31] C. Morgan, T. Vickers, Types and invariants in the refinement calculus, Science
of Computer Programming 14 (1990) 281–304.

[32] C. Y. Park, Predicting program execution times by analyzing static and
dynamic program paths, Real-Time Systems 5 (1993) 31–62.

[33] P. Puschner, C. Koza, Calculating the maximum execution time of real-time
programs, Journal of Real-Time Systems 1 (2) (1989) 159–176.

[34] P. P. Puschner, A. V. Schedl, Computing maximum task execution times: A
graph-based approach, Real-Time Systems 13 (1) (1997) 67–91.

[35] A. C. Shaw, Reasoning about time in higher-level language software, IEEE
Transactions on Software Engineering 15 (7) (1989) 875–889.

[36] H. Theiling, C. Ferdinand, R. Wilhelm, Fast and precise WCET prediction by
separated cache and path analyses, The International Journal of Time-Critical
Computing Systems 18 (2/3) (2000) 157–179.

30

