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ABSTRACT 
 
A novel pattern recognition-based approach to detect 
near-surface interfaces using ground penetrating radar 
(GPR) has been reported in [1].  The approach was used 
to successfully detect interfaces within 5 cm of the 
ground surface.  This technique has been adapted for the 
important task of layer thickness estimation in the near-
surface range.  This is inherently a difficult problem to 
solve in practice because the radar echo is often 
dominated by unwanted components such as antenna 
crosstalk and ring-down, ground reflection effects and 
clutter.  Features derived from the bispectrum and a 
nearest-neighbour classifier have been utilized for this 
processing task.  It is shown that unlike traditional 
second order correlation based methods such as matched 
filtering which can fail in known conditions, layer 
thickness estimation using this approach can be reliably 
extended to the near-surface region. 
 
 

1. INTRODUCTION 
 
Ground penetrating radar (GPR) is a non-invasive 
technique used to determine information about media 
beneath the earth’s surface.  In impulse GPR systems a 
short pulse (nanoseconds) of electromagnetic energy is 
transmitted into the ground.  A proportion of this energy 
is reflected back towards the surface at interfaces of 
media with differing electromagnetic parameters 
(permittivity, permeability and conductivity).  The 
amplitude and time delay of these reflections are used to 
determine information about the sub-surface.  There are 
many applications that use GPR for sub-surface imaging 
such as buried landmine detection, pavement evaluation 
and forensic investigations [2]. 
 

Traditional techniques for sub-surface interface 
detection and layer thickness estimation using GPR 
involve matched filtering and layer stripping [3].  This is 
a straightforward task when the targets are well 
separated spatially and have significant 
permittivity/conductivity contrasts.  The terminology 

“near-surface” is herein defined to represent the case 
when the target interface is too close to the surface for 
the matched filter to be a reliable layer thickness 
estimator. 
 

One important application for GPR layer thickness 
estimation is horizon control sensing in underground 
coal mining [4].  In [1], GPR was used to detect coal 
seam interfaces within 5 cm.  In this paper, the interface 
detection task is adapted to estimate coal layer thickness 
within the near-surface range of 1-6 cm.  A pattern-
recognition approach has been adopted using features 
derived from the bispectrum and a nearest-neighbour 
classifier.  The results show that layer thickness 
estimation can be reliably extended to the near-surface 
region where traditional techniques often fail. 
 

2. RADAR SIGNAL PROCESSING 
 
Traditionally, the matched filter is used to detect target 
reflections in 1-D GPR data.  The time delay of the 
detected reflection is then used in conjunction with the 
electromagnetic wave propagation velocity to estimate 
layer thickness.  This is a trivial task when the layer 
interfaces are well separated and site conditions allow 
for flexibility in the choice of GPR antenna 
configuration.  Depending on the application, the GPR 
antennas can be mounted above the surface (air-coupled) 
or in direct contact with the ground (ground-coupled).  In 
the near-surface case, the matched filter becomes 
unreliable in both antenna mounting configurations due 
to nuisance components characteristic of GPR systems.  
The three main nuisance components are the crosstalk 
(direct transmitter to receiver pulse), ground reflection 
and antenna ring-down.  Figure 1 shows a typical GPR 
setup configuration and the signal propagation paths. 
 

When the antennas are ground-coupled, the near-
surface interface reflection is masked by the crosstalk 
and antenna ring-down.  The adverse effects of these 
components can occasionally be minimised using 
background subtraction, which is simply a mean trace 
removal filter.  Background subtraction is reasonably 
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Figure 1. Experimental GPR setup for layer thickness 
estimation. 

Figure 2. Raw GPR trace acquired with ground-coupled 
antennas.  The decaying transient signal is the antenna 
ring-down. 

successful for imaging point reflectors such as a buried 
landmine or pipe.  When estimating layer thickness 
however, the response from the interface is often 
removed as it is a plane reflector.  In the air-coupled 
antenna configuration, the crosstalk and ring-down 
nuisance components are less dominant as they have 
attenuated before target reflections arrive at the receiver.  
However the near-surface target reflection is masked by 
the ground reflection.  This is due to the resolution 
limitation and is dependant upon the wavelength of the 
transmitted signal.  Figure 2 shows a GPR trace acquired 
with ground-coupled antennas on a coal surface.  The 
large pulse at the start of the trace is the crosstalk and the 
transient decaying component from 1–3 ns is the antenna 
ring-down. 

)()()(),( 212121 ffXfXfXffB += ∗  

where X(f) is the discrete-time Fourier transform of x(n) 
and * is the complex conjugate operator.  Due to 
symmetry, the bispectrum is defined in the triangular 
region, , provided there is 
no bispectral aliasing [7]. 
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To obtain a feature that is invariant to translation, 

amplification, scaling, and DC offset, the bispectrum is 
integrated radially along lines with slope ‘a’ as in [7].  
The resulting integrated bispectrum has a magnitude and 
phase component.  Typically the phase parameter, which 
is known for its invariant properties, is used as a feature 
for classification by a pattern recognition engine.  
However the implementation of pre-processing 
algorithms such as DC removal and normalisation 
extend the invariant properties to the magnitude 
component.  This provides additional feature 
discrimination compared with the phase parameter 
feature. 

 
For horizon control sensing, the GPR antennas must 

be in contact with the coal seam as an air-coupled 
antenna structure would not survive the harsh mining 
environment [5].  The practical problems of the nuisance 
components that arise out of the need to use ground-
coupled antennas for this task strongly motivate the 
investigation into alternate processing techniques.  To 
this end we propose the use of pattern recognition 
techniques for this problem. 

 
4. EXPERIMENT 

 
 A 2-D finite-difference time-domain (FDTD) simulator 

was implemented to generate the data used for the 
experiment.  The computational space consisted of 250 × 
250 cells with grid spacing of 5 mm per cell.  Mur’s 2nd 
order absorbing boundary condition (ABC) was 
implemented to minimise artificial reflections from the 
boundary [8].  The transmitter and receiver antennas 
were modeled as small dipoles polarized in the z 
direction.  The ground was modeled as two layers where 
the top and bottom layers were coal and shale 
respectively.  The electrical parameters (permittivity and 
conductivity) used in the FDTD algorithm for these 
layers were measured from real coal and shale samples 
[1].  In each simulation, the upper layer had a constant 

3. HIGHER ORDER STATISTICS 
 
The power spectrum is often used as an analysis tool for 
GPR data [6] because it is simple to apply.  However, 
important information contained in the phase of the radar 
signal is lost because power spectral representation is a 
second order measure.  This limitation motivates the 
exploration of higher order spectral processing for this 
radar processing task as the phase information is retained 
[7]. 
 

The bispectrum B(f1,f2) of a discrete-time sequence, 
x(n), is defined as 
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thickness.  This layer thickness was changed for each 
consecutive simulation.  The layer thickness range was 
0.5-10 cm with 0.5 cm increments. 
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The pre-processing stage of the feature extraction 

process included DC offset removal and sum of squares 
normalisation.  The first 128 samples of the 500 samples 
GPR trace were windowed using a Hamming window.  
This windowed segment contains the main component of 
the crosstalk and ringing, and the shape of this segment 
varies when target interfaces are close to the surface.  
The final stage before classification is feature 
standardization [9] to ensure equal weighting between 
individual feature vector components. 
 

The feature vectors were extracted from the clean 
synthetic data with known layer thickness.  A piecewise 
polynomial cubic spline was fitted to link the feature 
vectors obtained from the clean data in increasing layer 
thickness.  The points on the spline from the 
interpolation are merged with the feature vectors from 
the synthetic data with known layer thickness to form the 
full training set.  This allows the transition of the 
thickness estimate towards a continuous variable with 
sub-millimetre resolution rather than discrete with half 
centimetre spacing.  The thickness estimate is obtained 
from the single class along the spline contour closest to 
the test feature vector, which is equivalent to a k-
Nearest-Neighbour (kNN) classifier with k=1.  This 
form of nearest neighbour classification is simplistic yet 
effective in this application.  Figure 3 shows the training 
feature vectors with known layer thickness at 0.5 cm 
increments and the cubic spline. 

Figure 3.  Feature vectors for the training data, 
interpolated training points and cubic spline. 

For the proposed processing technique, this approaches 
the case when the lower layer is out of range of the GPR 
system.  Hence the current technique is unreliable in this 
range and traditional techniques such as the matched 
filter could be the processing tool of choice.  The 
proposed technique could operate in conjunction with 
the traditional approaches to form a complete layer 
thickness estimation processing scheme covering the full 
range from the near-surface to the extent of the GPR 
range. 
 

The results of the layer thickness estimator are shown 
in Figure 4 which shows the true layer thickness versus 
the estimated layer thickness with noisy data over the 
range 0.5-10 cm.  The error bars represent the 99% 
confidence interval around the estimate mean.  As 
expected from the previous discussion, the region 
susceptible to estimate errors is the 2.5-3 cm range and 
above 6.5 cm. 

 
The data used to test the classifier was synthetic with 

additive Gaussian noise.  The noise power was time-
varying in nature with a peak of 0.2 mW and zero mean.  
These noise statistics were measured from the real GPR 
system adapted for underground coal mining 
applications described in [1] and [5]. 

 
 

  
 5. RESULTS & DISCUSSION    The cubic spline in Figure 3 shows areas of high 

concentration of feature values.  These regions, between 
2.5-3 cm and greater than 6 cm, are susceptible to 
significant estimation error.  The magnitude feature 
tends to increase as the layer thickness approaches 2.5 
cm and then begins to decrease after the 3 cm thickness.   
This feature change is due to partial constructive and 
destructive interference between the target reflection and 
the direct signal component.   
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Greater layer thicknesses result in the target 

reflection being delayed along the GPR trace.  Hence the 
early time segment of the trace which is extracted for 
processing (first 128 samples) has less energy from the 
target reflection.  As the layer thickness increases, the 
feature  vector  will  converge  around  the  10 cm  point. 
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Figure 4. Layer thickness estimator results.  The true 
layer thickness is shown on the x-axis whereas the 
estimated layer thickness is shown on the y-axis.  The 
99% confidence interval is also shown by the error bars.
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Figure 5.  Synthetic GPR data profile of coal-shale interface at varying depth.  The true interface depth is shown by 
the black points, and the estimated depth is shown by the light points. 

Figure 5 shows a GPR profile obtained from scanning 
a coal seam with an underlying shale layer.  The synthetic 
data for this experiment was noisy with the same noise 
power mentioned above. The coal layer thicknesses 
shown by the light points are in good agreement with the 
true layer thickness shown by the black points.  The 
estimator error is clearly visible in outliers when the layer 
thickness approaches the extent of the near-surface 
region. 
 

6. CONCLUSION 
 
One application of special interest to the underground 
coal mining industry is coal layer thickness estimation.  
One sensor that has shown promise for this task is GPR.  
However there are certain nuisance components 
characteristic of GPR systems such as antenna crosstalk 
and ring-down that make traditional processing 
techniques such as the matched filter unreliable when 
target interfaces are close to the surface.  As a solution to 
this problem, a novel pattern recognition-based approach 
using features derived from the bispectrum and a nearest-
neighbour classifier have been developed for this radar 
processing task.  It is shown that unlike traditional second 
order correlation based methods such as matched filtering 
which can fail in known conditions, layer thickness 
estimation can be reliably extended to the near-surface 
region. 
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