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Abstract  

The investigation reported here examined how Masters students experience learning to program.  The 

phenomenographic research approach adopted permitted the analysis of 1) how students go about learning to 

program, that is the ‘Act’ of learning to program, and 2) what students understand by ‘programming’, that is the 

‘Object’ of learning to program.  Analysis of data from twenty-three participants identified five different 

experiences of the Act of learning to program and five different experiences of the Object of learning to 

program.  Together the findings comprise an empirical model of the learning to program experience amongst 

the participating students.  We suggest how our findings are significant for programming teachers and offer 

tools to explore students’ views. 

INTRODUCTION 

Investigations into learning to program have largely focussed on teaching approaches with a view to helping 

improve students’ success rates (e.g.  Barg et al.  2000; Carbone and Sheard 2002; Fincher 1999; Gottfried 1997; 

Lister and Leaney 2003; Stein 1999; Williams and Kessler 2000).  One branch of these investigations, studies 

into the experience of learning to program, have been conducted in Sweden and Australia amongst 

undergraduate students (Booth 1992, 2001; Bruce et al.  2004).  These studies, based on a relational approach to 

learning, have adopted a phenomenographic approach to researching students’ experiences (Marton and Booth 

1997).  This approach permits the analysis of variation in 1) how students go about learning to program, that is 

the ‘Act’ of learning to program, and 2) what students understand programming to be, that is the ‘Object’ of 

learning to program. 

The experience of learning may be characterised, according to Marton and Booth (1997), using the 

schematisation in Figure 1.  For simplicity, the Direct Object is referred to as the Object in this paper. 

 

Figure 1: The experience of learning 

(Adapted from Marton and Booth 1997, with permission) 

 

Our interest in uncovering variation in the Act and Object of learning stems from the potential power of 

influencing student learning by designing learning experiences that draw attention to variation in the learning to 

program environment.  If we accept, with Marton and Booth (1997) and Bowden and Marton (1998), that 

fundamentally learning is about changing the way in which one sees or experiences the world, then helping 

someone learn is about helping them make such a change.  Marton and Booth (1997) argue that bringing about 

the appropriate change in experience or way of seeing begins with helping learners to discern that there are 

different ways of seeing or experiencing the phenomenon in question. 
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The primary contribution of this paper is that it makes explicit the character of variation in both the Act and 

Object of learning to program amongst a cohort of Masters students.  We believe that the model we have 

established provides a stimulus for discussion for new as well as more experienced teachers and learners.  For 

the educators we have worked with, it empirically confirms insights that have come from years of teaching.  The 

model is most likely to be easily adaptable to educators of similar cohorts, but may also be relevant to educators 

of undergraduate students.   

 

RESEARCH APPROACH AND METHOD 

The purpose of our investigation was to explore the different ways in which Masters students experience 

learning to program.  In order to be able to compare with previous studies (Booth 1992, 2001; Bruce et al.  2004) 

and to effectively investigate variation in the Act and Object of learning to program, a phenomenographic 

approach (Marton and Booth 1997) was used.  The primary goal of phenomenography is to elicit variation in 

ways of experiencing specific phenomenon, making it the most suitable approach for our investigation. 

Participants 

The twenty-three students participating in this investigation were enrolled in an information technology Masters 

course which allowed them to engage in further study in information technology without having an 

undergraduate degree in an information technology area.  These students are typically mature-aged, already have 

a degree and have had some previous formal or informal experiences of programming.  From this course they are 

destined for a range of sub-disciplines. 

Participants were drawn from two semesters’ enrolments, including different student intakes and groups who 

were taught by different lecturers and tutors.  The broad range of participants satisfied the need for a participant 

profile that would allow us to elicit variation in ways of experiencing learning to program.  Table 1 illustrates 

other characteristics of this group.  (Sometimes participants selected more than one alternative or none of the 

alternatives offered in the profile survey.) 

 

Gender When first learned programming? How first learned programming? How skilled? 

M F 
last 
year 

2-4 
years 

5-10 
years 

> 10 
years 
ago 

Self-
taught 

School 
Formal 
course 

TAFE Begin. Inter. Adv. 

17 6 6 5 4 8 8 6 9 1 11 7 2 

74% 26% 26% 22% 17% 35% 33% 25% 38% 4% 55% 35% 10% 

Table1: Participant profile 

Seventeen students were interviewed and six students filled out questionnaires.  Almost half the participants 

were international students or NESB students.  Most participants had already written programs using, for 

example, ASP, Basic, C, C++, Fortran, Java, Lightspeed, LISP, machine code, Modula-2, Pascal and Visual 

Basic.  A participant group size of 15 to 20, purposefully sampled for variation, is considered in 

phenomenographic research to be sufficiently large to reveal most of the variation possible, while keeping the 

quantity of data to a manageable level (Trigwell 2000).   

Data gathering and analysis 

A primary goal of data collection in phenomenographic research is to allow the participants to express 

themselves freely, within the constraints of the topic at hand.  Thus, questions are designed to be open-ended to 

allow participants to explore the topic without being led, but at the same time directing their attention to the 

phenomenon of interest, in this case programming and learning to program.  Our interviews were given focus, 

therefore, through the use of questions which directed students’ attention to their experience of programming and 

learning to program.  The questions used in this study were based on those from a previous study on learning to 

program (Bruce et al.  2004): 

1. What is “programming”? 

2. Can you write a program that works? How do you know? 

3. Can you write a good program? How do you know? 

4. How do you see your current ability to program? 

5. Can you describe the process you go through when you write a program? 

6. Do you enjoy programming? 



 

7. How have you learned to program? 

Written questionnaires posed the same questions.  Once transcribed, the interviews and other data were read as a 

whole in order to discern patterns in the viewpoints expressed.  The analysis was pursued within the ‘How’ and 

‘What’ parameters of Marton and Booth’s schematisation of learning (see Figure 1).  Variation in perspective 

was sought, with similar perspectives grouped together.  The analysis framework established by Marton and 

Booth (1997) recommends a search for variation in both meaning and structure.  This variation in meaning and 

structure were allowed to ‘emerge from the data’ through an iterative, exploratory process which cycled between 

the record of interviews, categories posited and research team members’ observations.  Programming teaching 

practitioners were also asked to appraise the categories found.   

Each resulting category of description depicts a single way of experiencing either the Act of learning to program 

or the Object of learning to program.  In the categories that follow meaning is described as well as critical 

elements of the category’s structure.  Structure is depicted in terms of an internal and an external horizon - the 

internal horizon indicates the focus of awareness and the external horizon indicates that which lies on the 

periphery.  For example, in category one ‘Following the course’ is the internal horizon and the ‘Formal Learning 

Environment’ forms the external horizon.  Systematic variation between categories was also identified.  For 

example, in the Act of learning to program across three dimensions – teaching practices, learning strategies, and 

approaches to learning. 

In the following section the relationships between the categories are represented first, in the form of an outcome 

space.  This aligns the outcomes with Marton and Booth’s model of learning and serves as an overview of the 

categories discovered.  The outcome space is a logical interpretation of the phenomenon, based on the data 

collected.  Such phenomenographic analysis is explained in detail by Marton and Booth (1997).   

 

MODELLING EXPERIENCES OF LEARNING TO PROGRAM 

The outcome space depicted in Figure 2 forms a model of Masters students’ experiences of learning to program.  

Grouped according to their external horizons, these are considered to represent a progressively expanding 

universe of awareness. 

 

Figure 2: The Outcome Space for Masters Students’ Experiences of Learning to Program 

The left-hand side of the outcome space portrays the internal relationship between the five categories used to 

describe the Act of learning to program.  The name, focus and external horizon for each category are represented 

in the diagram.  For example, for category two the name of the category is ‘Acting’; the focus is simultaneously 

‘Coding’ and ‘Activity’; and the external horizon is the ‘Programming Language’.  When subcategories have 

been identified they are listed under the category name and indicated with capital letters (A, B).  Some categories 

share the same external horizon. 

The right-hand side of the outcome space portrays in a similar manner the relationships between the categories 

used to describe the Object of learning to program. 
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The categories associated with students’ experiences of the Act of learning to program may be interrelated 

according to their increasing sophistication as approaches to learning and their expanding external horizons.  

Their focus thus changes from being solely on following the course (Category 1), to simultaneous focus on 

coding and activity (Category 2), to simultaneous focus on structure and understanding (Category 3), to 

simultaneous focus on adding elements and researching (Category 4), to simultaneous focus on sub-conscious 

and intuitive skills (Category 5).  Similarly, students’ perceptual boundaries expand from the formal learning 

environment (Category 1), to the programming language (Categories 2 and 3), to knowledge mastery (Categories 

4 and 5). 

The categories associated with students’ experiences of the Object of learning to program may be interrelated 

according to their increasing connectedness with the wider world.  Thus, their focus changes from syntax 

(Category 1), through logic (Category 2), the problem to be solved (Category 3), collaboration with other 

programmers (Category 4), to client satisfaction (Category 5).  Similarly, students’ perceptual boundaries 

broaden from the programming language (Categories 1 and 2), to the application environment (Category 3), to 

the programming community (Category 4), to the marketing environment (Category 5). 

Each of the categories depicted in the outcome space are described further below. 

 

MASTERS STUDENTS AND THE ACT OF LEARNING TO PROGRAM 

Our analysis has identified five different experiences of the Act of learning to program: Following, Acting, 

Conceptualising, Resourcing and Taking intuitive steps.   

Each of these categories is described in relation to their meaning, subcategories (if appropriate) and dimensions 

of variation.  Details pertaining to their structure, as described above, are not repeated. 

(Quotation references refer to the interview or questionnaire number, page number and quadrant on the page.  

For example, (I2.1b) refers to Interview 2, page 1, section b.  Redundant insertions and pauses in the quotations 

are indicated by “…” .) 

 

Learning to program is experienced as following 

Focus: Following the course.  External horizon: The formal learning environment. 

In this category learners experience learning to program as following a formal course.  They see responsibility 

for learning as resting principally on the shoulders of the instructors.   

...  you get frustrated if you go along to a lecture, and the lecturer just reads the PowerPoint slides 

to you because they’re not actually teaching.  They’re not taking something which is difficult to 

understand and making it any easier to understand.  (I5.5b) 

When learning to program is experienced this way, learners expect that perseverance in fulfilling the course 

requirements will result in learning.  The course requirements typically involve the completion of exercises and 

attendance at formal sessions (lectures and tutorials). 

A teaching practice expected by students associated with this category is the timely provision of assignment 

results to learners. 

Key learning strategies associated with this category are the fulfilment of course requirements and following the 

teacher’s lead. 

The approach to learning in this category is passive. 

 

Learning to program is experienced as acting 

Focus: Coding and activity simultaneously.  External horizon: The programming language. 

In this category learners experience learning to program as actively producing code.  In order to learn, learners 

do not consider it necessary to understand what they are doing; if they are actively engaged in writing code then 

they believe that understanding will follow.   

… understanding often follows execution, after doing something.  So you have to be able to do 

something, not knowing what you’re doing and then you’ll get your true understanding after 

you’ve done it, not before you’ve done it.  (I5:13b) 



 

The subcategories of ‘experimentation’ and ‘imitation’ further illuminate this category. 

A.  Experimentation 

Learners often employ trial and error, involving a cycle of coding revisions based on the results obtained.  This is 

common in early attempts to learn to program, though it is not absent from later learning.  Learners run their 

programming attempts with an expectation of error messages which they then use to refine the code. 

I didn’t understand the logic of it … I knew that the string compare would return one or minus one 

or zero, but I didn’t know … what that meant or what order it would be.  But instead of trying to 

work it out I just ran the program and I’d have a fifty percent chance of it being the right order 

and fifty percent wrong ...  you test it and the computer gives you feedback ...  and [you] learn 

from the test and trial and error and correct … and ...  understanding of the logic didn’t happen 

until after I’d done something.  (I5:9d) 

Experimentation concentrates on the learners’ own code and their own attempts at finding solutions to their 

programming problems. 

B.  Imitation 

In this subcategory learners concentrate on how others’ code can be copied and adapted to meet their own needs.  

They compare others’ code with its outcomes to gain an understanding of how the program is working.   

… the word imitation comes to mind.  Like when I first started, I was copying programs out of a 

book.  I was rote copying, so that’s just imitating ...  just typing it in, but learning about the 

structures … when I came to work here, I did quite a bit of developing with other programmers 

and sometimes involved modifying their code and … I’d see structures that they were using ...  the 

concept of self-documenting code … long variable names and ways of approaching problems and 

things like that, so I sort of tried to imitate ...  (I4.5c) 

A teaching practice expected by students associated with this category is the practical application of new 

concepts in coding exercises. 

Key learning strategies associated with experiencing learning to program as acting are the copying and 

adaptation of examples of programming, successive drafting, response to error messages, the testing of coding 

attempts, the use of automated coding functions (such as macros) to produce a model, and the assessment of 

outputs. 

The approach to learning in this category is active. 

 

Learning to program is experienced as conceptualising 

Focus: Structure and understanding simultaneously.  External horizon: The programming language. 

In this category learners experience learning to program as conceptualising the logic of programming.  This is 

primarily a thinking process; understanding precedes action.  It is important to gain a mental picture of the 

structure of the program before code is written. 

This category is considered by the learners to be abstract and high-level, whereas coding is concrete and easily 

found in a textbook.  Learners taking this point of view appreciate the need for a wider application of 

programming beyond simple coding, the need to be able to adapt what is being learned according to particular 

programming languages and environments.  Learners place a strong emphasis on developing their own logical 

thinking. 

… in case … we have to learn programming ...  make some good diagrams ...  we draw the 

diagrams, we write stuff on, we write ‘set to’ and we assign the values to the variables and then try 

and understand the part actually the program is trying to do.  ...  Writing onto the computer ...  we 

won’t be able to understand that much,  unless we sit down on a table and then we ...  actually 

write the whole code or draw the diagrams on the piece of paper.  (I1.4c) 

A teaching practice expected by students associated with this category makes use of real world examples or 

employs animations, to illustrate new concepts in concrete terms. 



 

Key learning strategies associated with this category are modelling, drawing diagrams, reflecting, writing code 

on paper and forming real world analogies.  Learners in this category concentrate on paradigm questions, asking 

not only “How?” but also “Why?” 

The approach to learning in this category is active. 

 

Learning to program is experienced as resourcing 

Focus: Adding elements and researching simultaneously.  External horizon: Knowledge mastery. 

In this category learners experience learning to program as gathering resources.  Learners experience learning to 

program here as the accumulation of useful skills.   

I think there’s been different levels of learning to program ...  You learn the basic way that a 

language should be laid out.  You learn then at a deeper level how it accesses memory.  And then 

you learn more abstract concepts and I guess at each stage ...  it’s just been building a bit on the 

previous thing ...  (I14.5d) 

Thus, learners experience learning to program as being akin to putting building blocks on top of each other, 

where isolated elements are added together.  The goal of engaging in acts of learning is to construct a pool of 

resources which can be drawn on to meet a variety of programming demands.  Typically, excerpts from books, 

lecture and tutorial notes, online help files, the Internet and people are collected into a library for future 

reference. 

The subcategories of ‘building on own experience’ and ‘building from others' experience’ further illuminate this 

category. 

A.  Building on own experience 

In building on own experience the student is progressing to more sophisticated concepts and methods by adding 

to their own experience.   

Learners see themselves as taking their experience and advancing it without having to refer substantially to 

others’ work.  This may involve active coding or it may entail the re-discovery or re-organisation of past 

knowledge. 

...  where I can I do things like make little libraries or snippets of code  … once I’ve done 

something difficult once, I like to have it stored somewhere else, where I can just say, "Oh yeah, I 

need one of those." ...  But it’s important to remember where it all is if you need to pull it out 

again.  (I4.6d) 

B.  Building from others’ experience 

When building from others’ experience, the learner is acknowledging their dependence on others.  They take 

others’ experience, conveyed in person, or embodied in books, error messages, help files or the Internet, and 

advance their understanding through it.  Learners in this category value immediate feedback from lecturers and 

interaction with other learners at the very time they are writing programs. 

The most valuable lessons I feel I’ve had have been from direct contact with people or at least 

close contact with people and talking about their code.  (I4.7a) 

Some learners recognize that ‘building on own experience’ and ‘building from others' experience’ may work in 

partnership with each other.  For example, learners call on both of these aspects of resourcing when they 

experiment with their lecturer’s suggestions. 

This category reveals a more sophisticated, independent approach to learning.  The focus is on resources rather 

than on code and attention is placed on programming mastery rather than on finding a solution to an immediate 

problem. 

A teaching practice expected by students associated with this category is the provision of resources (for example, 

libraries of source code) for learners to draw on. 

Key learning strategies associated with this category are investigative research, organisation of knowledge and 

learning in community.  These learning strategies may differ from those offered in the course. 

The approach to learning in this category is active. 



 

Learning to program is experienced as taking intuitive steps 

Focus: Sub-conscious and intuitive skills simultaneously.  External horizon: Knowledge mastery. 

In this category learners experience learning to program as engaging their intuition, for example letting the sub-

conscious work on the problem at hand and taking decisions based on instinct.  Learners take a conscious 

decision to turn away from the problem, place their confidence in their own emergent mastery and provide their 

latent creative abilities room for expression. 

… the thinking time away from the computer … helps a lot.  Because if you stay on the computer 

you get too close to it and you can’t see the forest for the trees ...  being … confident enough … to 

actually step away from the computer and allow the problem just to sit there because your 

subconscious will work on it and intuitively you can actually come back and get it, a different 

approach, see the problem from a different angle … that helps.  (I5.11d) 

No teaching practice seems to be expected by students associated with this category; the focus is off the teacher 

and entirely on the student. 

The key learning strategy associated with this category is to choose to stop consciously thinking about the 

problem, and even leave the learning situation altogether. 

The approach to learning in this category is active. 

 

MASTERS STUDENTS AND THE OBJECT OF LEARNING TO PROGRAM 

Our analysis has identified five different experiences of the Object of learning to program: Coding, Thinking 

differently, Problem-solving, Participating and Satisfying clients.  These are considered to be cumulative - the 

latter categories embrace views held in the preceding categories. 

Each of these categories is described below, giving their meaning, subcategories (if appropriate) and a dimension 

of variation.  Details pertaining to structure are presented in the earlier description of the Outcome Space. 

 

Programming is experienced as coding 

Focus: Syntax.  External horizon: The programming language. 

In this category learners experience programming as sitting at the keyboard and writing code. 

Programming ...  is writing code … I always think of programming … as the actual sitting there 

and actually typing away, coding, etc.  (I7.1a) 

Programming in this category relies on trial and error and successive drafting based on compiler error messages.  

Learners may deliberately enter code imprecisely, in order to make a start and allow an overall view of the 

program.   

Good programming in this category is producing efficient code in a short period of time, without help from any 

other source. 

 

Programming is experienced as thinking differently 

Focus: Logic.  External horizon: The programming language. 

In this category learners experience programming as a way of thinking.  This way of thinking is typically quite 

different from the way humans naturally think.  The focus is on computer logic and being able to structure 

programs according to that logic.  Learners who see programming from this point of view are aware of the need 

for systematic design. 

...  my algorithms tend to be very linear, one step at a time.  … it wouldn’t occur to me naturally … 

to look for solutions where I could use recursion or something which might be a terrifically 

efficient way to program something and solve a particular problem.  But I don’t feel as if I’ve … 

made that change in mindset from looking at things in purely day to day linear terms - do job A 

then do job B - to looking at things in perhaps more… apparently complex ways … but 

nevertheless very elegant and efficient.  (I9.2c) 



 

Good programming in this category can be identified by the logic used in writing a program, resulting in a robust 

product. 

 

Programming is experienced as problem solving 

Focus: Problem to be solved.  External horizon: The application environment. 

In this category learners experience programming as a means to finding the solution to a problem in the wider 

world.  This problem needs to be analysed and understood before programming can begin. 

[What is programming?] Analysing a real-world problem or situation and then finding a way that 

computers can solve that problem.  And then implementing that solution.  (I14.1a) 

According to this way of experiencing programming, a test for a program’s usefulness is whether it produces 

expected results.   

Good programming in this category is producing a program that yields expected results efficiently. 

 

Programming is experienced as participating 

Focus: Collaboration with other programmers.  External horizon: The programming community. 

In this category learners experience programming as participating in the programming community.  Programs 

need to make sense to another programmer, be easy for another programmer to read and be able to be maintained 

or adapted by another programmer.   

… you’ve got to make sure that particular program is readable by any other person in the future, 

so that if … modifications need to be done, I might get hit by a bus tomorrow, someone might have 

to fix it up for me.  … it has to be readable … constructed well and laid out well so that people can 

manipulate it if it’s required.  (I6.2a) 

There is a recognition that there are standards to comply with, including ensuring you are producing a quality 

product that is socially responsible. 

Good programming in this category is producing programs that are easy to maintain. 

 

Programming is experienced as satisfying clients 

Focus: Client satisfaction.  External horizon: The marketing environment. 

In this category learners experience programming as satisfying the requirements of clients.  This includes 

meeting user needs, producing a program that is easy to use and marketing the software. 

[Can you write a program that works?] It meets a business requirement and they’re using it and 

obviously it’s got output going out there and they’re saying, “It works - we’ve processed two 

hundred documents a week for a year and the stats come out of the end of every week, and it 

monitors what’s been done.” ...  At the end of the day, the users are out there using it and it’s 

working ...  you’ve got the thing in and it’s up and running.  (I10.1d) 

In this context, programmers may successfully satisfy the budget demands of clients or produce the outcomes 

desired by the clients, even though the code produced is not efficient or elegant.   

Good programming in this category is the creation of a product that is responsive to clients’ needs.  Client 

feedback is core to determining if a program is a good one. 

 

DISCUSSION 

Comparison with the undergraduate experience 



 

A previous study of Introductory programming students (Bruce et al. 2004) found five ways of experiencing 

learning to program, represented in the following Outcome Space (Figure 3).  A comparison of these results with 

the Masters study reveals some similarities. 

Figure 3. The Outcome Space for Introductory Students’ Experiences of the Act of Learning to Program 

 

Although the category names used to represent the perspectives are different, students from both cohorts 

experienced the Act of learning to program as following a formal course, as active coding and as understanding 

concepts (see Table 2). 

 
Masters Act Introductory Act 

External horizon Internal horizon External horizon Internal horizon 

Formal learning environment Following Learning institution Following 

Programming language Acting Programming 
language 

Coding 

Programming language; 
Knowledge mastery 

Conceptualising; 
Resourcing 

Programs and 
programming 

Understanding and 
integrating 

Table 2.  Similarities between the Masters Students’ Act and the Introductory Students’ Act 

 

There are also similarities between the Object of the Masters students and the Act of the Introductory students, in 

the categories of Problem solving and Participating which carry both the same name and similar meaning (see 

Table 3).  This apparent cross-matching from Object to Act may be explained by a greater awareness on the part 

of the Masters students of the distinction between the Object and the Act of learning. 

 
Masters Object Introductory Act 

External horizon Internal horizon External horizon Internal horizon 

Application environment Problem solving Programs and programming Problem solving 

Programming community Participating Programming community Participating 

Table 3.  Similarities between the Masters Students’ Object and the Introductory Students’ Act 

 

The Masters students’ experience of the Act of learning to program as ‘Taking intuitive steps’ does not seem to 

be represented at all in the Introductory students’ views. 

The similarities found between the Introductory and the Masters students accord with the phenomenographic 

assertion that there are a finite number of ways of seeing any one phenomenon.  However, the divergence of 

perspective between the two groups also indicates that particular groups of students will have unique shared 

experiences.  Continued research into the field can be expected to result in an increasingly complete view of how 

students of different cohorts experience programming and learning to program. 
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Implications for teaching practice 

If we wish students to go about learning to program in some or all of the ways described in this paper, we must 

make students aware of the different options available to them and thus help them to expand their horizons.  

Similarly, if we wish them to appreciate that there are different ways of experiencing programming, we need to 

help them to discern the variation in experience that is possible, so they may develop a full appreciation of 

programming. 

A foundational element in attempting to introduce students to new experiences of learning to program and 

programming, as indicated by Marton and Booth (1997), is an understanding of the way students have already 

experienced these phenomena.  We offer below simple tools (Figures 4 & 5) which may be used to identify 

students’ different experiences of learning to program and programming.  Such tools may assist in helping the 

students discern variation, broadening their awareness of the nature of learning to program and programming. 

 

Figure 4.  Learning to program survey tool 

 

 

Figure 5.  Programming survey tool 

 

 

HOW DO YOU SEE LEARNING TO PROGRAM? 

What statements do you agree with? (Please tick the ones that best describe how you see things.) 
 
“Learning to program is … 

A.  following a formal course.” 
I learn to program by going to lectures and doing the required exercises.   

B.  actively producing programs.” 
I learn to program by writing code, for example by copying and adapting others’ programs, and I 
hope I will understand how they work later. 

C.  understanding the logic of programming.” 
I learn to program by making sure I understand how a program works, for example by drawing 
diagrams. 

D.  gathering resources in order to build experience.” 
I learn to program by gathering lots of programming examples and putting them in a library for 
future reference. 

E.  engaging intuitive abilities.” 
I learn to program by stepping away from the problem and letting my intuition and subconscious 
work. 

Other: Learning to program is ____________________________________________________________ . 

HOW DO YOU SEE PROGRAMMING ? 

What statements do you agree with? (Please tick the ones that best describe how you see things.) 
 
“Programming is … 

A.  sitting at a computer entering code.” 
I program by sitting at a keyboard and typing in code. 

B.  thinking in computer logic.” 
I program by designing something that a computer can understand best. 

C.  a way of finding the solution to a problem in the wider world.” 
I program by using a computer to find the solution to a problem in the real world. 

D.  participating in the programming community.” 
I program by producing something that can be easily understood and maintained by other 
programmers. 

E.  satisfying the requirements of clients.” 
I program by meeting the needs of the person who asked for it. 

Other: Programming is __________________________________________________________________ . 



 

Further, teachers of programming may be able to use the outcomes of the investigation to reflect on questions 

such as: 

1. What are the critical ways in which we want students to experience learning to program in our subjects 

or units or instruction, or at particular points in our courses? 

2. What are the implications, for students, of certain ways of experiencing the act of learning to program? 

3. How can our curriculum support ways of going about learning? 

4. How can we help students move to more sophisticated ways of learning? 

5. How can we further use the outcomes to help our students learn? 

Ideas for utilising these questions in practice are explored in greater detail in the Introductory student study 

(Bruce et al.  2004). 

 

CONCLUSION 

The investigation reported here has extended our understanding of how students learn to program from the 

relational perspective.  Previous studies have focussed on undergraduate education – the model we have 

developed provides a picture of the Masters students’ perspectives in the Act and Object of learning to program.  

From the research outcomes, we have produced a comparison with undergraduate students’ perspectives and 

have developed tools which may be used in the classroom, or other forums, to enhance learning. 
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