View metadata, citation and similar papers at M brought to you by fCORE

provided by Queensland University of Technology ePrints Archive

QUT@pPrints

en-access archiva of QUT research literature

g IR éﬁ;ﬁ\

COVER SHEET

This is the author version of article published as:

Fauvet, Marie-Christine and Duarte, Helga and Dumas, Marlon and
Benatallah, Boualem (2005) Handling Transactional Properties in
Web Service Composition. In Proceedings 6th International
Conference on Web Information Systems Engineering 3806, pages
pp. 273-289, New York NY, USA.

Copyright 2005 Springer

Accessed from http://eprints.qut.edu.au

https://core.ac.uk/display/10874681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Preprint

Handling Transactional Properties in Web
Service Composition

Marie-Christine Fauvet!, Helga Duarte!, Marlon Dumas?, and
Boualem Benatallah®

1 Joseph Fourier University of Grenoble, CLIPS-IMAG Laboratory, **
BP 53, 38041 Grenoble Cedex 9 - France
{Marie-Christine.Fauvet,Helga.Duarte}@imag.fr
2 Centre for Information Technology Innovation, QUT
GPO Box 2434, Brisbane QLD 4001, Australia,
m.dumas@qut.edu.au
3 School of Computer Science and Engineering, UNSW
Sydney 2052, Australia
boualem@cse.unsw.edu.au

Abstract. The development of new services by composition of existing
ones has gained considerable momentum as a means of integrating het-
erogeneous applications and realising business collaborations. Services
that enter into compositions with other services may have transactional
properties, especially those in the broad area of resource management
(e.g. booking services). These transactional properties may be exploited
in order to derive composite services which themselves exhibit certain
transactional properties. This paper presents a model for composing ser-
vices that expose transactional properties and more specifically, services
that support tentative holds and/or atomic execution. The proposed
model is based on a high-level service composition operator that pro-
duces composite services that satisfy specified atomicity constraints. The
model supports the possibility of selecting the services that enter into a
composition at runtime, depending on their ability to provide resource
reservations at a given point in time and taking into account user pref-
erences.

1 Introduction

Web services constitute a rapidly emerging technology that promises to revo-
lutionise the way in which applications interact over the Web. Established or-
ganisations are discovering new opportunities to conduct business by providing
access to their enterprise information systems through Web services. This trend
has led to a paradigm known as Service-Oriented Computing (SOC) wherein in-
formation and computational resources are abstracted as (Web) services which
are then interconnected using a collection of Internet-based standards.

** H. Duarte is financially supported by the European Union Programme of High Level
Scholarships for Latin America (id. E03D13487CO) and the National University of
Colombia.

In this setting, the development of new services by composition of existing
ones has gained considerable momentum as a means of integrating heterogeneous
applications and realising business collaborations. The execution of a service
obtained by composition, also known as a composite service, involves a series
of interactions with the underlying component services in order to access their
functionality. The logic of a composite service (also known as the orchestration
model) determines, among other things, the interactions that need to occur,
the order of these interactions, and the escalation procedures that should be
triggered under specified exceptional situations (e.g. faults arising during the
interactions). Importantly, the components of a composite service retain their
autonomy, that is, they are free to enter into interactions with other services
(whether composite or not).

Some services, for example in the area of electronic commerce, possess in-
herent transactional properties [1]. This is the case in particular of services as-
sociated with the management of resources with limited capacity (e.g. accom-
modation booking), the management of shared physical or human assets (e.g.
short-term rental of equipment, hiring of professional services), or the sales of
goods where demand tends to exceed supply (e.g. ticket sales services). In prin-
ciple, these transactional properties can be exploited during service composition
in order to fulfil constraints and preferences specified by the designer or the
user of the composite service. At present however, the language and platforms
supporting the development of transactional applications over (Web) services do
not provide high-level concepts for : (i) expressing the transactional properties
that composite services are required to fulfil; and (ii) automatically ensuring
that these properties are fulfilled by exploiting the transactional properties of
the underlying component services.

The aim of the work reported in this paper is to propose a model for the com-
position of Web services with transactional properties that takes into account the
above requirements. Specifically, the paper focuses on ensuring atomicity proper-
ties. The main contribution of the paper is the definition of a service composition
operator that exploits the atomicity properties and reservation functionality of
the component services in order to ensure atomicity properties at the level of the
resulting composite service. In particular, the operator supports the modelling
of minimality and maximality constraints over the set of services entering into
a transaction in the context of an execution of a composite service. Using the
proposed model, it is possible to capture constraints such as “between X and Y
component services must execute successfully up to completion or else no ser-
vice must execute successfully up to completion” (i.e. up to the point where the
underlying resource has been assigned to the composite service). For example,
given four services A, B, C and D, the user of a service obtained by composition
of these four services can specify that at least 2, but not more than 3 services
among {A, B, C, D} must complete or none must complete, by setting the min-
imum and maximum bounds to 2 and 3 respectively. In addition, the proposed
operator is parameterised so as to allow the end user to impose that certain

domain-specific constraints and preferences are satisfied by the executions of the
composite service.

The execution model underpinning the proposed composition operator relies
on the Tentative Hold Protocol (THP) [2] to tentatively reserve the resources
managed by the component services, as well as a variant of the Two-Phase Com-
mit (2PC) protocol to perform the transaction once all the tentative reservations
have been obtained. Note that this is not a fundamentally restrictive assumption,
since tentative holds, as opposed to definite reservations do not force the service
to lock a resource for a given client. So regardless of its atomicity properties (or
absence thereof) the operations associated to THP can be implemented on any
given service. This combination maximises the chances of achieving a success-
ful transaction while avoiding blocking resources for relatively long periods of
time. In addition, the execution model incorporates a runtime service selection
mechanism, so that if a given component service is not able to provide a given
resources, it can be replaced by another one among a set of candidate compo-
nent services. This selection takes into account the constraints and preferences
provided as parameter to the composition operator.

The remainder of the document is structured as follows. In Section 2 we
frame the problem addressed in this paper and discuss related work. A scenario
illustrating the proposed approach is then presented in Section 3. In Sections 4
and 5 we introduce the service composition model and the underlying execu-
tion model respectively. Finally, Section 6 draws some conclusion and discusses
directions for future work.

2 Motivation and related work

The execution of composite services with transactional properties is generally
based on long-lived complex distributed transactions that may involve compen-
sation mechanisms. A significant number of transactional models have been pro-
posed in various contexts, including database systems, cooperative information
systems, and software configuration management [4-7]. However, these models
are not designed to address the following combination of challenges posed by the
environment in which (Web) services operate:

Heterogeneity of transactional properties. Whereas it is reasonable to assume
that certain services will provide the operations required to participate in 2PC
procedures and will expose these operations in a standardised manner as part
of their interfaces, it is not realistic to expect that all services will do so. Some
services will simply not provide transactional properties, or will provide them
but not to the same level and in the same way as others. This may be due to
purely technical issues (e.g. a given service provides operations corresponding
to those required by 2PC but in a non-standard manner), or it may result from
the choice of business model (e.g. the service provider is not willing to let clients
lock its resources) or it may ensue from the inherent nature of a service (e.g.
the notion of locks does not make sense for a given service). In addition, certain
services will not offer the operations associated with 2PC, but may will instead

offer compensation operations, possibly with associated costs like in the case of
services for which the rights can be rescinded with associated penalties.

Limited duration of reservations and cost of compensation. Even when a ser-
vice does offer operations allowing it to participate in 2PC procedures (or when
it offers compensation operations), it is crucial to minimise the duration between
the two phases of the 2PC protocol (or to minimise the need for compensations
to avoid the associated costs). In the field of electronic commerce for example,
certain services only allow one to lock resources for a very limited period of
time. This raises coordination problems when the number of services involved in
a transaction is high and they need to be synchronised.

Need for dynamic service selection support. The choice of services that will
complete a given transaction may be performed dynamically (during the ex-
ecution of the transaction) and hence it is not realistic to assume that this
information will be known in advance. This is partly due to the fact that several
services may offer the same functionality (or rather capability). Thus, when the
execution of a given service fails during the first phase of the 2PC protocol, it is
possible to replace it with another service providing the same capability so that
the transaction can still proceed.

It is commonly accepted that traditional approaches for achieving transac-
tions with ACID (Atomicity, Consistency, Isolation, Durability) properties are
not suitable for long-running transactions like those found in the area of Web
services, since it is not acceptable to lock a given resource managed by a ser-
vice while work is being performed in parallel by other services and/or until
locks for the resources managed by other services (which may end up refus-
ing to grant these locks) are obtained. In addition, the 2PC protocol which is
commonly used in distributed systems is not applicable in the context of com-
posite service execution since this protocol assumes that all the partners par-
ticipating in a transaction support the operations of preparation and validation
essential to this protocol, and this assumption does not generally hold in the
case of Web services as explained in the previous section. Furthermore, given
the competing/substitutable (i.e. one or the other) relations that may exist be-
tween services that provide the same capability, it is appropriate not to restrict
atomicity to the traditional all-or-none property, but instead to consider mini-
mality and maximality constraints over the set of services that participate in a
transaction as part of the execution of a composite service. Finally, integration
issues need to be considered since the services participating in a composition
may potentially each rely on a different type of transaction management system
and/or expose its transactional operations in a different manner. This latter
aspect is the main motivation for protocols such as WS-Coordination [8], WS-
AtomicTransaction [9] which aim at defining standardised ways for services to
interact with transactional coordinators in order to set up, join, and validate
transactions.

In this paper we address the issues identified above by proposing a high-level
operator that allows designers to compose sets of services (with or without trans-
actional properties) and to specify atomicity constraints of the form between X

and Y component services must validate (i.e. complete their execution up to the
validation phase), or else none of them should wvalidate. Such constraints are
relevant in a broad range of applications, and in particular in electronic com-
merce applications as motivated in [10]. In addition to being parameterised by
minimality and maximality constraints (i.e. variables X and Y in the statement
above), the operator admits as parameters, restriction and preference functions
that guide the (runtime) selection of services that are to participate in the se-
lection of component services (among the pool of possible component services)
as well as the replacement of services when some of the selected services fail to
arrive up to the validation phase (e.g. because the resource that they manage is
unavailable under the constraints captured by the composition).

The execution model associated with this composition operator relies on the
THP protocol [2] to acquire tentative reservations on the resources managed
by the component services and thus increase the probability of completing the
transaction successfully with the subset of component services initially selected.
A variant of the 2PC protocol is then used to complete the transaction. This
variant takes into account the fact that some services do not provide the oper-
ations required by the 2PC protocol, i.e. services that do not provide atomicity
properties, services for which atomicity is irrelevant, and services that offer com-
pensation operations rather than supporting definitive reservations.

The THP protocol is intended to facilitate the automated coordination of
multi-process business transactions. It is an open protocol operating over a
loosely coupled architecture based on message exchanges between processes prior
to a transaction. The idea is to allow a process to register an intention to acquire
a resource managed by a service (i.e. a tentative hold) and from that point on,
to be notified of changes in the availability of this resource. When the resource
is definitely acquired by a process, a message is sent to all other registered pro-
cesses to inform them that the resource is no longer available. This protocol
thus allows processes to maintain up-to-date information regarding the ability
for a set of resource management services to enter into a given transaction, thus
maximising the chances that the transaction is successfully completed.

The idea of separating between a tentative reservation phase and a ”defini-
tive” reservation phase has previously been considered in the area of distributed
component transactions. In [11] for example, a protocol similar to THP is em-
ployed during the so-called negotiation phase while the 2PC protocol is used to
complete the transaction. This prior proposal differs from ours in at least two
ways. Firstly, the proposed approach takes into account services that do not
provide the operations required by the 2PC protocol. For a number of reasons
as outlined above, such non-transactional services are numerous in the area of
electronic commerce and business process management which are prominent ap-
plication areas of SOC [12, 1]. Because of this, we do not use the traditional 2PC
protocol but rather an extension of it. Secondly, our model allows designers to
express maximality and minimality constraints over the set of services that are
expected to go through the validation phase, as well as restriction and preference
functions that are used to perform dynamic service selection. In contrast, the

model put forward in [11] is limited to all-or-none transactions and does not take
into account dynamic selection of the components entering into a composition.

The same comparative remarks apply to previously proposed web service
transaction models based on THP and 2PC such as the one proposed in [13].

In [14] the authors present a multi-level model for service composition that
covers the specification of composite services from the user-interface level of ab-
straction down to the implementation of transactional operations. However, this
approach supports only “all or none” transactions whereas our model supports
minimality and maximality constraints as discussed above. On the other hand,
the model in [14] supports ”all or none” executions of composite services that in-
clude sequentially ordered tasks. To achieve this, the model in [14] distinguishes
tasks with different transactional characteristics, namely atomic, compensable
and pivot tasks as defined in [12] and characterises a class of sequential arrange-
ments of such tasks for which all or none execution can be guaranteed.

Another related work is [15], where a workflow-based approach is proposed
to deal with workflow flexibility issues. This approach has a different scope than
ours as it relies on transactions to enforce the atomicity of a set of modifications
to be applied to a workflow specification.

3 Scenario

As a working and motivating example, we consider a scenario that arises when
one wants to organise a meeting to be held at a given day. Potential participants
must be invited, a room must be booked and catering must be arranged. To keep
the example simple we assume the meeting to last only one day.

The organiser of the meeting determines that the meeting should be organised
according to the following rules, which capture either restrictions or preferences:

— Restrictions: the person X should participate, consequently she has to be
available at the given day, otherwise the meeting is postponed. To make
sense, a minimum number of persons must participate (at least min but not
more than max). Eventually the global cost (catering and room cost) cannot
exceed a given budget.

— Preferences: the number of participants should be maximised and the global
cost minimised.

For the sake of simplicity, both catering and room are arranged for an average
number of people ((min+max)/2).

The organisation of the meeting succeeds only if all restriction rules given
above are met, otherwise the meeting is cancelled. In addition, the organisation
is done in a way that satisfies the preferences as much as possible.

To model this example, we define Meeting Organisation (MO in short) as a
composite service type that captures the process of organising meetings as de-
scribed above. MO relies on three other processes, each of which is modelled by
a service type: Room for booking function rooms and Caterer for arranging food

and drinks. The process of contacting participants to arrange a meeting is also
modelled as a composite service type, namely Participant Invitation (Pl in short).

The type PI results from the composition of service types each of which is
associated to a potential participant’s diary. Let pi be a service of type PI: services
that compose pi have been selected in order to ensure pi to satisfy the restriction
rules associated with it. pi’s executions are performed as follows: pi processes
requests to diary services hoping to obtain a successful booking at the given
day. We assume here, that all diary services support the operations needed to
manage such booking. When pi interacts with its service components, it does so
according to their transactional properties and in a way that satisfies as much
as possible the preferences defined at composition time by the designer. The
outcome of this interaction process is to build a suitable set of diary services,
such that each service in this set provides an operation to perform a booking on
a given day (and possibly also other operations). If the resulting set contains X’s
diary and if its size is greater than min and less than max, then the service pi can
complete successfully, otherwise it fails.

The service mo of type MO, responsible for organising the meeting, coordi-
nates the execution of its component services: pi of type PI, r of type Room and ¢
of type Caterer. r and c successfully complete only if they could be booked at the
given day and if the total cost is less than the budget decided at design time. r
and c have been chosen in order to minimise expenses.

4 Composition Model

This section introduces a composition model which aims at providing features
for composing services and associating transactional properties to the resulting
composite services. The proposed model handles the transactional properties of
a composite service according to those exposed by the component services.

Our aim is not to define yet another model for Web service composition or
another language for service description, but rather to abstract usual concepts
used in many approaches (see for example [16-18]) and standards (see for ex-
ample [19,9,20]). We introduce here an abstract notation that will enable some
form of reasoning on transactional properties of Web services. In Section 4.1
we introduce an abstract data type-based notation for the purpose of Web ser-
vice modelling. In Section 4.2 we then study a composition operator. Finally,
Section 4.3 discusses transactional properties of services resulting from a com-
position.

4.1 Service Design

In the study reported here, we focus on Web services that offer resources to clients
(e.g. flight tickets that can be purchased by customers). Interactions between
the service that offers a resource and the clients interested in it, are usually
encapsulated within a transaction. In the following we intend to characterise a
Web service according to the properties of the transactions it can handle [12]:

— A service is said to be atomic (e.g. associated with the “all or nothing”
semantics) when it provides the following operations: resource reservation
(equivalent to the preparation phase of the 2PC protocol), cancellation, and
validation.

— A service is quasi-atomic, when it supports a validation operation (i.e. an
operation that performs the work involving the resource such as booking
a flight seat), and a compensation function which undoes the effect of the
validation (e.g. releasing the flight seat and applying a penalty).

— A service is defined as non-atomic, when the only operation it offers on
resources is validation. It does not support neither (definite) reservation nor
cancellation nor compensation.

In the sequel, we formally capture the notion of service and other related no-
tions by describing a set of abstract types and operations. We adopt a functional
style as it gives a high level and syntax-independent framework to describe types
and operations. The following notations are used: T1 — T2 stands for the type
of all functions with domain T1 and range T2. {T} denotes the type of sets of T.
The following functional specification introduces the Service abstract data type
(ADT) and its elementary selectors.
type Service

{The type Service models an offer of a set of operations (e.g. books sells and buys).
An instance of type Service models a software entity capable of providing
these operations. Clients can access this entity using the operations it offers.}
type Client
{An instance of the type Client models a customer (whether it is a person, an
organisation or a service instance) who, after appropriate authentication, is
allowed to access service instances.}
property: Service — {atomic, quasi-atomic, non-atomic}
{property(s) returns the transactional characteristic of service s (see Section 2).}

With these conventions, the working example (see Section 3) can be for-
malised as follows:
Caterer: sub-type of Service
{An instance of Caterer represents an enterprise providing catering functions.}
cost : Service, Resource, Client — real
{cost(s, r, c) returns the price the customer c has to pay to purchase the resource
r supplied by s.}
Room: sub-type of Service
{An instance of Room represents an enterprise that proposes function rooms
for rent.}
Diary: sub-type of Service
D1, ..., Dn: sub-types of Diary
{A Diary type Dj (i € [1..n]) is associated to each potential participant. We associate
a type Diary to each potential participant. Doing so allows us to offer an homogeneous
notation, even though there will not be more than a service associated to each type.}
holder: Diary — string
{holder(d) returns the name of d’s holder.}

Below we describe the operations supported by all services. The semantics
of these operation is defined according to the transactional properties of the
services. The following operations are provided by atomic services:

ReserveR, ReleaseR, ValidateR: Service, Resource, Client — boolean
{ReserveR (s, r, c) <= resource r is reserved by service s for client c (this is a
definite reservation as opposed to a tentative hold).}

{ReleaseR (s, r, c) <= client c has released resource r managed by service s.
Pre-condition : ReserveR (s, r, ¢)}

{ValidateR (s, r, c) <= client c has definitely acquired resource r managed
by s (Note: it is not mandatory for a client to reserve a resource first).}

The operations provided by services whose executions are quasi-atomic are
ValidateR introduced above and CompensateR describes below:
CompensateR: Service, Resource, Client — nil
{CompensateR (s, r, c) compensates the purchase by client ¢ of resource r
managed by service s.

Finally, non-atomic services provide only one operation, namely ValidateR
defined above.

4.2 Parallel Composition Operator

Composite service types can be built by using the parallel composition operator
among others. As a first stage, and to focus on transaction issues we chose to limit
the scope of this paper to parallel compositions only. Extending our approach to
a set of operators (such as condition or sequence) is one of our further studies.
Applying this operator to a set of service types with transactional properties
defines a new composite service type whose transactional properties are derived
from the types of the component services, at composition time.

It is worth noting that in this paper we do not consider sequential composition
of services (e.g. dependencies imposing that a service must fully complete before
another one can start). In order to support such control dependencies in the
context of a transactional service composition model, techniques from the area
of long-running database transactions and transactional business processes (see
for example the concept of Sagas [21, 12]) would need to be incorporated. Dealing
with such issues is outside the scope of this paper and integration in our model
of a more complete set of composition operators is left as a direction for future
work.

The parallel operator is parameterised by:

— The set of component service types {T1, T2, .., Tn}.

— The range of values for the number of component services which must suc-
cessfully complete. This range is specified by the minimum and the maximum
values (min < max < n), thereby offering more flexibility for executing the
composition and increasing chances for it to successfully complete.

— Two functions: one Boolean function which specifies restrictions (e.g. X must
agree to participate) and a scoring function that returns, for each potential
instance of the composition, the score that the user wishes to maximise
(e.g. the number of participants in the case of the working example).

To each service type Ti (i € [L..n]) given as a parameter, is associated a set
of potential service instances that may vary from an execution to another. For
example, let us consider the service instances FrenchTable.com, PizzaSolutions.org
and Doyles.org of service type Caterer accessible at a given time. At another time,
some might no longer be reachable, and/or others might become accessible.

At an abstract level it is necessary to consider all potential sets of service
instances that may enter in the composition. Such a set is called option. Let us
consider the service instances {t1, t2, ..., tp} (p = 1, ..., n), this set of options is
defined as follows (let us assume that type(s) returns the service type associated
to s):

(1) [[{type(t1), type(t2), ..., type(tp)}| = p A
(2) {type(tl), type(t2), ..., type(tp)} C {T1, T2, .., Tn}

Rule (1) expresses that the component service types are distinct e.g. each
service type is represented by one service instance. Rule (2) enforces that each
service type is one of those given as a parameter. || E || denotes the size of E.

The set of options is then reduced to contain only options that evaluate
the restriction to true. Eventually, the score is calculated for each option and
associated to it.

Summarising the discussion above, the parallel operator is formalised as fol-
lows:

Restriction: {Service} —— Boolean

Score: {Service} — real

T1, .., Tn : sub-types of Service

// : {T1, .., Tn}, integer>0, integer>0, Restriction, Score, Client — Service
{Let S =// ({51, S2, .., Sn}, mi, ma, R, SC, c). S is a service type composed of
service types, each belonging to {S1, S2, .., Sn}. Let s be a service of type S: an execu-
tion of s may lead to either a success or a failure. In the former case, among all
options satisfying R, s is one that maximises SC. s is executed for the client c. mi # 0
and ma > mi. s is composed of at least mi service instances but not more and ma. }

By using the operator specified above, the service type Participant Invitation
(P1 for short) introduced in the working example (see Section 3) can be described
as follows:

Let Dy, ..., Dy be the Diary service types of the n potential participants to the
meeting. The following statement specifies the process of inviting participants for
a meeting scheduled at time d: the person X must agree to attend the meeting,
and at least 10 but not more then 15 persons must agree to attend as well:

Pl «— // ({D1, ..., Dn}, 10, 15, Ao « 3 x € 0, holder(x) = X, Mo« |0, €)

c is the client who made the request, holder being a function that applies to
diaries, Ao « 3 x € o, holder(x) = X is a Boolean function that evaluates to true if
and only if o (a composition option) contains X’s diary. The score associated to
each option is its size (e.g the number of participants, to be maximised).

In this expression, the number of service instances entering in the composition
is bounded by 10 and 15, therefore relaxing the “all or nothing” rule associated
to executions of the composed service: the execution is successful even if the
number of participants that complete does not reach 15, as soon as this number
is greater than 10.

Pl is then used as a component type in the expression defining MO (Meeting
Organisation):

MO «— // ({PI, Caterer, Room}, 3, 3,

Ao « cost(o.Caterer, client(o.Pl), (min(o.Pl)4+max(0.Pl))/2)

+ cost(o.Room, client(o.Pl), (min(o.Pl)+max(0.P1))/2)) < b,
Ao « —(cost(o.Caterer, client(o.Pl), (min(o.Pl)4+max(o.Pl))/2))
+ cost(o0.Room, client(o.Pl)), (min(o.Pl)+max(0.Pl))/2)),
client(o.Pl))
o being an option, o.Caterer (respectively o.Room and o.Pl) returns the service,
instance of type Caterer (respectively Room and PI), that participates in o.
min(o.Pl) (respectively max(o.Pl)) returns the lower bound (respectively the

upper bound), used as parameters in the expression given to specify Pl and which
define the range of values for the number of component services which must
successfully complete. The function described by the first lambda expression
specifies the restriction. The global cost (e.g. calculated by the means of the
second lambda expression) specifies the preference, it is calculated for each option
o. The opposite of the resulting value (which is a negative number) forms the
score associated to o. Both minimum and maximum values are set to 3: to
successfully complete, an option must be composed of exactly 3 components,
each of which must successfully complete. For instance, if X does not participate,
the service Participant Invitation (PI) fails, and MO must then propagate this failure
to the two other services by using the cancellation operation associated to the
2PC protocol.

4.3 Transactional Properties of a Service Composition

It is important to note that when min > 2, the minimality constraint implies an
atomicity constraint. For example, when min = 2, either at least two component
services must successfully complete, or none must complete. This means that
the situation where only one out of the two components completes can not arise.
To enforce this constraint, each option must necessarily contain at least min ser-
vices which are either atomic or quasi-atomic. The resulting composite service
will itself provide the operations associated to the 2PC protocol (preparation,
cancellation and validation). The implementation of these operations relies on
the operations provided by the component services participating in the compo-
sition. The mapping between operations offered by the composite service and
those provided by its components is defined by the execution model detailed in
the next section.

On the other hand, min = 1 does not entail any atomicity constraint. The
resulting composite service may be atomic, quasi-atomic or non-atomic depend-
ing on the properties of the component services in the selected option. The
first situation arises when all participants of the selected option are atomic and
provide preparation, validation and cancellation operations. Similarly, when all
participants are quasi-atomic, the composite service is then capable of offering a
compensation operation. In other cases, the resulting composite service is non-
atomic. Note that the option to be selected is not known in advance since it

depends on the evaluation of the restriction and scoring functions, and there-
fore in this situation it is not possible to know at composition time whether
the resulting composite service will be atomic, quasi-atomic, or non-atomic. In
other words, the exact transactional nature of the composite service can only be
known at runtime.

In this paper, we do not consider the possibility of deriving the transactional
properties of composite service at runtime (i.e. we restrict the model to design-
time derivation). Deriving such properties at runtime (as opposed to design time)
will necessarily imply that the set of operations supported by a service (e.g. its
interface) can dynamically evolve, since atomic services do not have the same set
of operations as quasi-atomic or non-atomic. In contrast, in the context of Web
services, the interface of a service is statically defined at design time and exposed
as a WSDL document (among other languages) when the service is published.
Hence, composite services for which min = 1 are considered to be non-atomic.

5 Execution Model

This section presents the execution model associated to the operator previously
introduced. The execution of a composite service is carried out in two steps:

(1) Options exploration: the procedure selection /reservation is meant to build
so-called service composition options, each of which is composed of a set of com-
ponent services that together satisfy the restrictions specified by the designer.
This process involves identifying which services will participate in an option. A
service is selected only if a tentative reservation has been successfully obtained
(according to the Tentative Hold Protocol). In addition, each option must sat-
isfy the minimality and maximality constraint as well as the restriction function.
Each option is then associated with its score (which reflects the designer/user
preferences) and the set of options is then sorted in descending order by score.
This step is detailed in Section 5.1.

(2) Execution phase: the procedure ezecution/validation considers the op-
tions built during the first step and ordered according to their score (from the
higher to the lower score). Each option is considered in turn and its execution is
attempted (see Section 5.2).

The process summarised above is supported by an architecture detailed
in [22].

5.1 Dynamic Selection Process

An important feature of our approach is that the services that will participate
in a given execution of a composite service are selected at runtime rather than
this choice being hard-coded in the specification of the composite service. Most
of the time, several services can be of the same service type, in the sense that
they provide the same capability, and are thus interchangeable except for the
fact that they may possess different non-functional properties for which the
values may vary over time (e.g. cost, location). This feature is similar to the

one provided by the concept of “service community” defined in the SELF-SERV
service composition system [16, 23].

In our approach we push this idea further: during the execution of a com-
posite service, tentative hold requests are sent to several instances of the same
service type. As a result, reservations are obtained from several of these services
(which are interchangeable), thereby enabling the execution framework to defer,
until validation time, the choice of the instance of a given service type (called a
instance service) that will participate in the composition.

The selection of services is performed in two steps. First, a thread is created
for each of the service types passed as parameters to the operator. Threads are
meant to seek potential services supporting the THP protocol and offering the
capabilities corresponding to the service type they are associated to.

The second step aims at building the set of all options according to the
composition specification. For each of the options built in this way, the restric-
tion function must evaluate to true (i.e. it must satisfy the domain-specific con-
straints). In addition, each option must contain at least mi component services
but not more than ma, where mi and ma are parameters of the composite ser-
vice. Moreover, if mi’s value is two or more, then at least mi services in each
option must be atomic or quasi-atomic, otherwise satisfying the atomicity con-
straint cannot be achieved. This is because non-atomic services do not provide
neither a preparation nor a compensation operation which is necessary to en-
sure atomicity of the composite service execution (i.e. to ensure that at least
mi services validate successfully or no service validates successfully). The only
operation supported by non-atomic services is validation and the outcome of
this operation is not under the control of the composite service: when the val-
idation operation is invoked on a service, the service may either complete its
execution successfully (and thus the associated resource is definitely acquired)
or it may complete unsuccessfully (meaning that the associated resource could
not be acquired).

At the end of the second step, resources associated to services which do not
belong to any option and which have been reserved (in the sense of the THP
protocol) are released.

Subsequently, the scoring function is evaluated for each composition option.
The set of options is then sorted in descending order according to the option’s
score and the resulting list is passed on to the execution/validation phase de-
scribed in the next section.

5.2 Execution Process

The second phase aims at executing and validating the services involved in one
of the options identified in the previous phase. Options are considered in turn
starting with the option with the highest score. For each option, the correspond-
ing transaction is executed as explained below. If the execution of the selected
option completes successfully (up to and including the validation phase) then
the process stops and the composite service execution is considered to have
completed with success. If on the other hand the transaction fails, then the next

option in the list is considered. The process continues until either an option has
completed successfully, or all the options have been exhausted. In the latter case,
the composite service execution is considered to have failed.

All along this phase, the coordination module dynamically updates the list of
options. Specifically, when unavailability notifications are received by the coor-
dination module from the component services, meaning that the corresponding
resources are no longer available as per the rules of the THP protocol, all options
relying on such unavailable services are withdrawn from the list of options. In
particular, if a notice of unavailability concerns an option which is in the process
of being executed, the corresponding transaction is cancelled (provided that it is
still in the “preparation” phase). As the time passes, the score associated to an
option may change, thereby modifying its ranking. Studying the evolutions of
options over time is out of the scope of this paper, although we acknowledge that
studying this issue could lead to identifying various optimization possibilities.
The aim here is merely to provide an execution semantics for the composition
operator and so, possible optimisations are not considered.

Each option is executed as follows. The transaction manager sends first a pre-
pare message to each atomic service in the option (as per the 2PC protocol). If the
number of atomic services that positively acknowledges this request (i.e. services
that return a message with a "ready” status) is enough to achieve the minimality
constraint, then a validate message is sent to all the component services (again as
per the 2PC protocol), this time including both atomic and non-atomic services.
If on the other hand the number of atomic services which acknowledge positively
does not reach the required minimum, the validation cannot complete; hence, a
cancel message is sent to all the atomic services that acknowledged positively
thereby releasing the resources reserved during the preparation phase. However,
all tentative reservations made during the first phase described Section 5.1 are
kept until the end of the execution process, once all the composition options
have been tried. Of course, if at a given point during the execution it is found
that a given service does not appear in any of the options that have not yet been
tried, then the THP on this service may be released.

Quasi-atomic services are treated in a similar way as atomic services, except
that during the “preparation” phase of the composite service execution they
are sent a validate message, as opposed to a prepare message. This is because
quasi-atomic services do not provide a preparation operation (they only provide
two operations: validation and compensation). Following the validate request,
a quasi-atomic service may reply with either a success or a fail message. For
the purpose of satisfying the minimality constraint, a quasi-atomic service that
replies with a success message is equated to an atomic service that replies with
a ready message at the end of the preparation phase. If later on, cancellation
of the transaction is necessary because not enough atomic/quasi-atomic services
are available to complete the transaction, then a compensate message will be
sent to all quasi-atomic services that replied with a success message during
the preparation phase (this is seen as equivalent to sending a cancel request

to an atomic service). Since quasi-atomic services do not provide a validation
operation, they do not get involved in the validation phase of 2PC.

Non-atomic services are considered as extra participants: each non-atomic
service that validates during the validation phase is seen as a bonus on top of
the atomic/quasi-atomic services, and they can be included in the transaction
so long as the number of component services that validate does not exceed the
maximum threshold specified for the composite service.

The algorithm that implements the phases described above is detailed in [22].

6 Conclusion

We have presented a composition model for Web services. The model aims at
exploiting transactional properties of services which enter in a composition in
order to ensure transactional properties on the composite service. The proposed
model approach overcomes some key limitations of existing models as identified
in Section 2:

Support for heterogeneous transactional properties. The model allows atomic,
quasi-atomic, and non-atomic services to be involved in a composition. If an
atomicity constraint is specified on the composite service, a certain minimum
number of atomic and quasi-atomic services must participate in the composition,
but otherwise, atomic, quasi-atomic and non-atomic services can be composed
in arbitrary ways.

Provision for limited duration of reservations and cost of compensations. The
model aims at (1) maximising the chances of acquiring the resources managed
by the selected services during the preparation phase of the 2PC protocol, but
without blocking these resources for long periods of time (in the case of atomic
services); (2) reducing the risk of having to perform compensations on services
because not enough other resources are obtained (in the case of quasi-atomic
services); and (3) optimising the chances of acquiring the desired resources (in the
case of non-atomic services). To achieve this, the model relies on the Tentative
Hold Protocol for placing tentative resource reservations during the execution of
the composite service before engaging in the final stage of the transaction.

Support for dynamic selection and substitution. The parallel composition op-
erator which lies at the core of the proposed model does not apply to individual
services but rather to service types, that is, sets of substitutable services that
provide the same capability. In this way, the operator provides direct support
for service selection. Moreover, the operator is parameterised by a restriction
and a scoring (i.e. preference) function which guide the selection of composition
options.

In order to give a semantics to the composition operator, we have defined
an execution model based on an algorithm which explores all composition op-
tions that satisfy the minimality and maximaility constraints and the restriction
function in order to identify which options maximise the scoring function [22].

In this paper, we focused on atomicity constraints, and more specifically on
service coordination under such constraints. In order to be applicable in a broad

range of setting, the proposed basic model needs to be extended in at least two
directions:

— Data mediation: a composite service’s data model depends on those of its
component services. The composition operator must be extended so as to
allow the designer to define the data model of the resulting composite service
as well as the dependencies between the data model of the composite service
and those of the components. This could be achieved by using, for instance,
mediation and reconciliation functions.

— Control dependencies: so far we have only considered parallel execution of
services (at which point only tentative holds are obtained). Services are then
synchronised at validation time, at which point an attempt is made to ac-
quire the underlying resources definitely. In practice however, sequential de-
pendencies may be imposed over the execution of the services that enter
in a composition (e.g. service A must complete its execution before service
B can start). In order to take into account such dependencies, we plan to
extend the model presented here based on the principles of well-known trans-
actional process models such as Sagas [21], which rely on the compensation
capabilities of quasi-atomic services.

References

1. Baina, K., Benatallah, B., Casati, F., Toumani, F.: Model-driven web services
development. 16th International Conference on Advanced Information Systems
Engineering (CAISE’04), Riga, Latvia. Springer-Verlag 3084 (2004)

2. Roberts, J., Srinivasan, K.: Tentative hold protocol.
http://www.w3.org/TR/{tenthold-1,tenthold-2} (2001)

3. Roberts, J., Collier, T., Malu, P., Srinivasan, K.: Tentative hold protocol - part 2.
http://www.w3.org/TR/tenthold-2 (2001)

4. Elmagarmid, A.K., ed.: Database Transactions Models for Advanced Applications.
Morgan Kaufmann Publishers (1990)

5. Gray, J., Reuter, A.: Transaction Processing: concepts and Tecniques. Morgan
Kaufmann Publishers (1993)

6. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. Concepts, Archi-
tectures and Applications. Springer Verlag (2003)

7. Papazoglou, M.: Web services and business transactions. Technical Report 6,
Infolab, Tilburg University, Netherlands (2003)

8. Cabrera, F., Copeland, G., Cox, B., Freund, T., Klein, J., Storey, T.,
Langworthy, D., Orchard, D.: Web service coordination, ws-coordination.
http://www.ibm.com/developerworks/library /ws-coor/ (2002) IBM, Microsoft,
BEA.

9. Cabrera, F., Copeland, G., Cox, B., Freund, T., Klein, J.,
Storey, T., Thatte, S.: Web service transaction, ws-transaction.
http://www.ibm.com/developerworks/library /ws-transpec/ (2002) IBM, Mi-
crosoft, BEA.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Si, Y., Edmond, D., H. M. ter Hofstede, A., M., D.: Property propagation rules
for prioritizing and synchronizing trading activities. In: CEC, IEEE International
Conference on Electronic Commerce (CEC 2003), Newport Beach, CA, USA, IEEE
Computer Society (2003) 246-255

Arregui, D., Pacull, F., Riviere, M.: Heterogeneous component coordination: The
clf approach. In: EDOC, 4th International Enterprise Distributed Object Comput-
ing Conference (EDOC 2000), Makuhari, Japan, IEEE Computer Society (2000)
194-2003

Hagen, C., Alonso, G.: Exception handling in workflow management systems.
Software Engineering, IEEE Transactions on 26 (2000) 943-958
Limthanmaphon, B., Zhang, Y.: Web service composition transaction manage-
ment. In Schewe, K.D., Williams, H., eds.: ADC. Volume 27 of CRPIT., Database
Technologies 2004, Proceedings of the Fifteenth Australian Database Conference,
ADC 2004, Dunedin, New Zealand, Australian Computer Society (2004)
Vidyasankar, K., Vossen, G.: A multi-level model for web service composition.
Technical report, Dept. of Information Systems, University of Muenster (2003)
Tech. Report No. 100.

Halliday, J., Shrivastava, S., Wheater, S.: Flexible workflow management in the
OPENflow system. In: EDOC, 5th IEEE/OMG International Enterprise Dis-
tributed Object Computing Conference, IEEE Computer Society Press, USA
(2001) 82-92

Benatallah, B., Dumas, M., Maamar, Z.: Definition and execution of composite
web services the self-serv projet. IEEE Computer Society Technical Committee on
Data Engineering Bulletin 25 (2002)

Mikalsen, T., Tai, S., Rouvellou, I.: Transactional attitudes: Reliable composition of
autonomous web services. In Workshop on Dependable Middleware-based systems
(WDMS 2002) (2002) Washington, D.C., USA.

Dalal, S., Temel, S., Little, M., Potts, M., Webber, J.: Coordinating business
transactions on the web. IEEE Internet Computer Society Journal 7 (2003) 30-39
for the Advancement of Structured Information Standards OASIS, O.: Business
transaction protocol - btp. http://www.oasis-open.org/ (2002)

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Liu, K., Roller,
D., Smith, D., Thatte, S., Trickovic, I.: Business process executions langage for
web services. version 1.1. http://www.ibm.com/developerworks/library/ws-bpel
(2003) BEA, IBM, Microsoft, SAP AG, Siebel Systems.

Garcia-Molina, H., Salem, K.: Sagas. In: Proc. of the ACM SIGMOD International
Conference on Management of Data, San Francisco, CA, USA (1987) 249-259
Fauvet, M.C., Duarte, H., Dumas, M., Benatallah, B.: Handling transactional
properties in web service composition. Technical report, CLIPS-IMAG, Joseph
Fourier University of Grenoble (2005) http://www-clips.imag.fr/http://www-
clips.imag.fr/mrim/User /marie-christine.fauvet /Publis/wise05_full.pdf.
Benatallah, B., Sheng, Q.Z., Dumas, M.: The SELF-SERV Environment for Web
Services Composition. IEEE Internet Computing (2003) IEEE Computer Society.

	Text1: Preprint

