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Abstract. A process-oriented composite application aggregates func-
tionality from a number of other applications and coordinates these ap-
plications according to a process model. Traditional approaches to de-
velop process-oriented composite application rely on statically defined
process models that are deployed into a process management engine.
This approach has the advantage that application designers and users
can comprehend the dependencies between the applications involved in
the composition by referring to the process model. A major disadvantage
however is that once deployed the behaviour of every execution of the
composite application is expected to abide by its process model until this
model is changed and re-deployed. This makes it difficult to enrich the
application with even minor features, to plug-in new applications into
the composition, or to hot-fix the composite application to meet special
circumstances or demands (e.g. to personalise the application). This pa-
per describes a technique for translating a process-oriented application
into an event-based application which is more amenable to such runtime
adaptation. The process-based and event-based views of the application
can then co-exist and be synchronised offline if the changes become per-
manent and it is found desirable to reflect them in the process model.
Keywords: flexible process execution, activity diagram, event-based co-
ordination, coordination middleware, object space.

1 Introduction

Process-oriented composite applications aggregate functionality from a number
of other applications by specifying interconnections between these applications
through a process model. This model determines how the underlying applica-
tions should be orchestrated, most notably their dependencies in terms of flow
of control and data. Mainstream infrastructures for developing and executing
process-oriented composite application include workflow management systems
and process management modules embedded within Enterprise Application In-
tegration (EAI) solutions. Predefined process models can be deployed into the
runtime environments associated to these infrastructures for execution.

A major advantage of using a process-oriented approach for composite appli-
cation development is that it provides an easy-to-comprehend and global view



of the dependencies between the underlying applications. However, in existing
process-oriented systems these dependencies have to be completely specified be-
fore deployment [1]. In certain environments, such as mobile computing, changes
occur frequently and exceptions are numerous. A just-in-case approach where the
designer specifies all possible paths in the process model is impractical, leading
to models that are large and unintelligible. Applications operating in such envi-
ronments may be better served by a just-in-time approach, where adaptation and
personalization may be done after the process has been deployed and without
requiring all executions to perfectly align with the process model.

Existing methods and techniques in the area of adaptive, dynamic, and flex-
ible workflow systems have addressed issues such as specifying exception han-
dling mechanisms within process models [6, 13] or migrating running processes
when replacing a previously deployed process model with a new one [1, 14]. How-
ever, these prior proposals do not provide mechanisms to alter the behaviour of
process-oriented composite applications after deployment without changing the
process model, that is, without requiring alignment between each execution of
the composite application and its process model (whether the originally deployed
model or a modified version of it). Such ad hoc flexibility mechanisms are in-
strumental for a number of purposes including: (i) personalising applications to
suit the requirements or preferences of specific users; (ii) adapting the behaviour
of composite applications based on the users’ context (e.g. location, device or
network connection) without overloading the process model with such details;
and (iii) hot-fixing the composite application to address unforeseen errors, as
opposed to predicted exceptions, or to add new features (e.g. to plug-in new
applications or to re-route tasks and data).

To overcome the above limitations of existing systems, we propose to adopt
an event-based coordination approach to execute process-oriented composite ap-
plications. Due to its finer-grained nature, event-based coordination approaches
has several advantages over process-based ones when it comes to runtime adap-
tation and re-configuration [12]. By translating process models of composite
applications into event-based models and using the latter in the runtime envi-
ronment, it becomes possible by adding and removing event-based rules (e.g.
event subscriptions related to a specific task) to overlay behaviour on top of
already deployed composite applications in response to special requirements or
unforeseen situations. In this way, users, administrators and/or developers can
re-route data and control in an already deployed composite application in or-
der to steer it into executions paths not foreseen in the process model, thereby
facilitating the personalization and adaptation of these applications.

The main contribution of this paper is a technique for translating a process
model described in a mainstream process modelling notation (UML Activity Di-
agrams) into an event-based model described through coordination rules made
up of composite event specifications, predicates, and a small number of pub-
lishing/sharing primitives. We also discuss how the resulting event-based model
can be executed on top of a shared object space infrastructure and how adapta-
tion and personalization is achieved by adding rules (encoded as active objects)



into the shared space. We illustrate the proposed technique and its supporting
infrastructure through a use case scenario drawn from the area of mobile com-
puting, where the need for adaptation and personalization is often prominent.

The paper is structured as follows. First, we outline a use case scenario
(Section 2) and describe the coordination primitives and infrastructure upon
which our proposal relies (Section 3). In Section 4 we introduce a technique for
translating a process model captured as a UML activity diagram into an event-
based coordination model. We then discuss how adaptation can be achieved
by adding, enabling and disabling rules in the event-based model (Section 5).
Finally, we discuss related work (Section 6) and conclude (Section 7).

2 Use Case Scenario

This section presents a use case that will be used as a motivating and working
example in the rest of the paper. The scenario is described as a UML activity
diagram3 in Figure 1. We chose UML activity diagrams as a process modelling
notation because of its status as a de jure standard and because its constructs
are representative of those found in other process modelling and process execu-
tion languages (e.g. sequence, fork, join, decision and merge nodes). Thus the
proposed techniques can be adapted to other languages that rely on these con-
structs. Moreover, a recent study shows that UML activity diagrams (version
2.0) provide direct support for many common workflow patterns [17].

Download Notes

Go To Train

Catch Taxi

Pay Catch Train

Pay

Display NotesCheck Presentation Time

Postpone Meeting 1 hour

Check Train Availabilty

Check Traffic Conditions

[ontime & train]: 

[not ontime & train]: 

[traffic=NOK | postponed]: 

[no train]: 

[traffic=OK & not postponed]: 

Fig. 1. UML Activity Diagram describing the working example

The scenario is an example of a personal workflow [11], i.e. a process aimed
at assisting a user in the achievement of a goal that requires the execution of a
number of tasks. Most of the tasks composing the process (but not necessarily the
3 http://www.uml.org. Note that in this paper, we refer to UML version 2.0



process itself) are intended to be executed in a mobile device. Thus the scenario
is also an example of a mobile workflow. We have chosen this scenario because,
putting aside their futuristic nature, mobile and personal workflows constitute
a class of process-oriented composite applications in which personalization and
runtime adaptation are prominent requirements. Such requirements can also be
found to varying degrees in more traditional applications (e.g. order handling)
and the proposed techniques are also applicable in these settings.

In this scenario, a user is on a trip to attend a meeting. Before the meeting
commences he runs this process-oriented application so that it assists him in
the lead-up to the meeting. The process starts with three activities in parallel:
1) checking the presentation time, 2) checking the availability of trains to the
destination, and 3) downloading meeting notes to the user’s device (which may
take some time due to low bandwidth).

After the presentation time and the train availability of the train have been
checked three options are available: 1) If the user is “on time” AND “there is a
train” that would take the user near the meeting’s location, the user is directed
to the train station; 2) If there is “no train”, a taxi is automatically ordered;
3) If the user is “late” AND “there is a train”, two new activities are started
to determine if a taxi or a train is the best option for the user. At this point,
the process checks the traffic conditions and tries to postpone the meeting by
one hour (both actions in parallel). If the traffic is adverse, there is no point in
catching a taxi, and the application will advise the user to catch the train. The
same applies if the meeting is postponed. If however, there is favorable traffic and
the meeting can not be postponed, the user will catch a taxi to get there sooner.
Each transportation requires a payment. Payment is automatically arranged by
the application and the details of the payment are sent to the finance department
to arrange for a refund (both of these steps are modelled as a single task “pay”).
Finally, once all the user is on his/her way to the meeting and the meeting notes
have been downloaded, the application displays the notes.

3 Infrastructure for event-based model execution

This section presents the coordination infrastructure upon which the proposed
technique relies and the framework to describe event-based coordination models.

3.1 The Active Object Space

To be able to execute the event-based coordination models that will be derived
from process models, we require an execution infrastructure with support for :
(i) event publishing, data transfer/sharing, and complex event subscription; (ii)
association of reactions to event occurrences; and (iii) runtime re-configuration
so that new event subscriptions and reaction rules can be added anytime. For
reasons outlined below, we have chosen the Active Object Space (AOS) [7, 8] as
our target infrastructure. The AOS is an exemplar of a family of communication
infrastructure known as coordination middleware which has its roots in the tuple



space model underlying the Linda system [10]. Other exemplars of coordination
middleware include Sun’s JavaSpaces4 and IBM’s TSpaces5.

At the centre of the AOS is a shared memory (the space). Coordination
between applications occurs through objects being written and taken from the
space. Some of these objects may correspond to data that needs to flow from
one application to another, while others may serve as signposting, indicating
that a given step of work has been completed or that a given step of work is
enabled but has not yet started. The AOS supports undirected decoupled com-
munication based on four elementary operations, namely read, write, take and
notify. A read operation copies an object from the space matching a given object
template; a take operation moves an object matching a given object template
out of the space; a write operation puts an object on the space; and a notify
operation registers a subscription for a composite event expressed as a set of ob-
ject templates: Whenever there is a combination of objects present in the space
that matches these object templates, an event occurrence will be raised and a
notification will be sent to the subscriber. An object template is an expression
composed of a class name and a set of equality constraints on the properties of
that class. An object matches a template if its class is equal to or is a sub-class
of the class designated by the template and it fulfills the template’s constraints.

An originality of the AOS with respect to other object-oriented coordination
middleware lies in its support for active objects, that is, objects with their own
thread of control that run on the space. Active objects can be deployed, sus-
pended, resumed, and destroyed by applications running outside the space at
any time. Active objects can read and write passive objects to/from the space,
subscribe to events, and receive notifications from the space. At the implemen-
tation level, the difference between active objects and “passive” objects is that
an active object has a special execute method that is invoked on a dedicated
thread of control when the object is written into the space.

As illustrated in the rest of the paper, the deployment of active objects
operating on a shared memory and writing and taking objects to/from this space,
constitutes a powerful paradigm not only for executing event-based coordination
models, but also for re-configuring these models after their deployment. Re-
configuration is facilitated by two features of the AOS infrastructure: (i) the
use of undirected (also known as “generative”) communication primitives which
allows data and events to be produced and consumed without a priori determined
recipients (and thus allows data and control to be “re-routed”); and (ii) the
ability to add, remove, suspend and resume individual active objects and thus
alter the behaviour of an application.

This having been said, we recognize that other coordination middleware or
publish/subscribe middleware supporting composite events (e.g. Elvin6) consti-
tute suitable alternatives to the AOS. To adapt our proposal to such alternative
infrastructures, active objects would have to be replaced by dedicated applica-

4 http://java.sun.com/developer/products/jini/index.jsp
5 http://www.almaden.ibm.com/cs/TSpaces
6 http://elvin.dstc.edu.au



tions operating outside the space (or operating on top of the messaging bus in
the case of a pub/sub middleware).

3.2 Coordinators

Having introduced the basic concepts and functionality of the AOS, we now
define a higher-level concepts that we use to explicate the execution of event-
driven coordination models.

A coordinator is an active object that is deployed in the space to coordinate
work (e.g. to perform synchronization or data transfer) and operates in an infinite
loop until suspended or destroyed, with each iteration comprising three phases:

1. Waiting for an event, which could be either the addition to the space of an
object matching a given template or an interaction initiated by an external
application;

2. Performing internal processing and/or interacting with external applications;
3. Writing one or several objects to the space.

For methodological reasons, it is useful to distinguish two types of coordinators,
namely connectors and routers. This way, internal coordination steps within the
space (which is the responsibility of the routers) are separated from communi-
cation with external applications (which is the responsibility of the connectors).
The following paragraphs explain these types of coordinators in turn.

Connectors A connector is a type of coordinator dedicated to enabling a con-
nection between the space and one or several external applications. Connectors
are necessary because external applications will generally not be programmed to
interact with the space but will instead they rely on other communication proto-
cols and interfaces. Thus, a way of wrapping external applications so that they
can be coordinated through the space is necessary and this is what connectors
achieve. For example, a connector could be placed on the space for the purpose
of relaying context data between a sensor and the space. This connector would:
(i) receive or poll data from the sensor; (ii) encode these data as a passive object;
and (iii) write this object in the space, possibly overriding the object containing
the previous known state of the context data. Another example of a connector
is an active object that calls an external web service when an object of a certain
type is written to the space, like for example an object that indicates that a
certain task has completed. This latter example shows that connectors can be
used as a mechanism to detect that a given task is enabled and thus that a given
application has to be invoked to perform this task.

Control routers Control routers (or routers for short) react to the arrival of an
object or a combination of objects to the space and perform some processing
before producing a set of new objects and writing them onto the space. The
processing that a router performs is generally translation of data using a specified
operation. This can be a simple operation such as an arithmetic operation, or



more complex operations such as checking that a purchase order is valid, but in
any case, this operation should not involve interaction with external applications,
since interactions with external applications are handled by the connectors.

A router is described by the following elements:

– Input set: A set made up of a combination of object templates and boolean
conditions.

– Output: A set of expressions, each of whichs evaluates into an object.
– Stop set: A set containing a combination of object templates and boolean

conditions.
– Replace set: A set of coordinators.

The way these elements are used is as follows. Upon creation, the router will
place a subscription with the space for the set of object templates contained in
its input set (i.e. the set obtained after removing the boolean conditions from
the input set). Subsequently, the router will be notified whenever a set of objects
matching these templates are available on the space. At this point, the router
evaluates the set of conditions in its input set. If all these conditions are true,
the router proceeds to “take” the set of objects in question and if it succeeds
to take them, it will evaluate the transformation functions (i.e. the expressions
in the “Output”) taking these objects as input. The objects resulting from the
transformation are then written back to the space. The “input set” thus captures
the events and conditions that lead to the activation of a router (where an event
corresponds to the arrival of an object to the space). The “Output” on the other
hand encodes the events that the router will produce upon activation, i.e. the
objects to be placed in the space for consumption by other coordinators. Finally,
if a set of objects matching the object templates in the stop set is found on the
space, the router will terminate its execution and replace itself by the set of
routers specified in the replace set.

A set of routers can be deployed and interconnected with existing applications
(through connectors) in order to coordinate the execution of the instances of a
process. During the execution of a process instance, routers read and take from
the space, objects denoting the completion of tasks (i.e. task completion objects)
and write into the space objects denoting the enabling of tasks (i.e. task enabling
objects). Connectors on the other hand read and take task enabling objects,
execute the corresponding task by interacting with external applications, and
eventually write back task completion objects, which are then read by routers.
To make sure that routers only correlate task completion events relating to
the same instance of a process, every object template in the input set of the
router will contain a constraint stating that all the matched task completion
objects must have the same value for the attribute corresponding to the process
instance identifier (piid). In addition, when a router (connector) writes a task
enabling (task completion) object to the space, it includes the corresponding
piid. A process instance is created when a “process instantiation” object with
the corresponding process and process instance identifier is placed on the space
by a connector. It is the responsibility of the connectors which place such objects
to ensure that process instance identifiers are unique.



4 From process-based to event-based models

This section focuses on the issue of generating coordinators for process orchestra-
tion from UML activity diagrams. We first describe the technique for generating
coordinators from UML activity diagram restricted to control-flow constructs.
We then show how data-flow aspects are incorporated.

4.1 Translating control-flow constructs into input sets

For each action7 in an activity diagram, a connector will be generated to handle
its execution, which in the case of process-oriented composite applications will
involve an interaction with an external application. Connectors thus encapsulate
the execution of actions in the process.

On the other hand, a number of routers are generated for each action. The
input sets for these routers are generated according to the algorithm sketched
using a functional programming notation in Figure 2 and explained below. The
main function defined by this algorithm (namely AllInputSets) takes as input an
activity diagram represented as a set of nodes (action, decision, merge, fork, join,
initial, and final nodes) inter-linked through transitions. From there, it generates
a set of input sets (see definition of input set in Section 3.2). The input sets
produced by this algorithm can then be used to create a collection of routers
(one router per input set) that collectively are able to coordinate the execution
of instances of the process in question. Intuitively, each input set encodes one
possible way of arriving to a given node in the process.

Given the set of connectors and routers deployed for a process-oriented com-
posite application, execution occurs as follows. A router corresponding to an
action node will wait until the object templates in its input set are all matched,
at which point if all the boolean expressions in the input set evaluate to true, it
will place an object on the space to indicate that the action is enabled and thus
that the corresponding external application invocation may be performed by a
connector. Once the connector has completed its interaction with the external
application, it will put an object in the space to signify this completion. Such
completion objects will then match the object templates of the input set of an-
other router, eventually causing the activation of this other router. In this way
the execution of the process moves from a router corresponding to a given ac-
tion, to another. The initial and final states are mapped trivially to two routers
that respectively detect the commencement of the process instance and perform
clean-up (i.e. delete all remaining objects related to the completed instance).

Algorithm for input sets generation The algorithm focuses on a core subset of
activity diagrams covering only initial and final nodes, action nodes, and control
nodes (i.e. decision, merge, fork, and join nodes) connected by transitions. In
particular, the algorithm does not take into account object flow (which is dis-
cussed later) nor swimlanes (which are irrelevant for the purposes of this paper).

7 Action is the term used in UML activity diagrams to refer to a “task”.



Without loss of generality, the algorithm assumes that all conditional guards in
the activity diagram are specified in disjunctive normal form. Also without loss
of generality, the algorithm assumes that there are no “implicit” forks and joins
in the diagram. An implicit fork (join) occurs when several transitions leave from
(arrive to) an action node. In this case, the semantics of this fragment of the
diagram is the same as that of a diagram in which this action node only has one
outgoing (incoming) transition leading to (originating from) a fork node (a join
node). Thus implicit forks and joins should be eliminated from a diagram and
replaced by explicit fork and join nodes prior to applying this algorithm.

AllInputSets(p: Process) :
let {x1, . . . , xn} = ActionNodes(p) in

InputSets(x1) ∪ . . .∪ InputSets(xn)
InputSets(x : Node) :

let {t1, . . . tn} = IncomingTrans(x) in
return InputSetTrans(t1) ∪ . . . InputSetTrans(tn)

InputSetsTrans(t : Transition) :
let x = Source(t)

if NodeType(x) = “action”
return CompletionObject(x)

else if NodeType(x) = “initial”
return ProcessInstantiationObject(Process(x))

else if NodeType(x) ∈ {“decision”, “fork”}
let {c1, . . . , cn} = Disjuncts(Guard(t)),

{i1, . . . , in} = InputSets(Source(t)) in
return {{c1} ∪ i1, . . . , {c1} ∪ in},

. . .
{cn} ∪ i1, . . . , {cn} ∪ in}

else if NodeType(x) = “merge”
let {t1, . . . , tn} = IncomingTrans(x) in

return InputSetsTrans(t1) ∪ . . .∪ InputSetsTrans(tn)
else if NodeType(x) = “join”

let {t1, . . . , tn} = IncomingTrans(x),
{〈 i1,1, . . . , i1,n〉,
. . .
〈 im,1, . . . , im,n〉} =

InputSetsTrans(t1) × . . .× InputSetsTrans(tn) in
return {i1,1 ∪ . . .∪ i1,n,

. . .
im,1 ∪ . . .∪ im,n}

Fig. 2. Algorithm for deriving input sets from an activity diagram.

Figure 2 defines three functions: the first one, namely AllInputSets gener-
ates all the input sets for a process by relying on a second function, namely
InputSets, which generates a set of input sets for a given node of the diagram.
This latter function relies on a third (auxiliary) function named InputSetsTrans,



which produces the same type of output as InputSets but takes as parameter a
transition rather than a set. This definition of InputSetsTrans operates based on
the node type of the source of the transition, which may be an action node, an
initial node, or one of the four types of control nodes. If the transition’s source
is an action node, a single input set is returned containing a completion object
(see Section 3.2) for that action. Intuitively, this means that the transition in
question may be taken when a completion object corresponding to that action
is placed on the space. Similarly, if the source of the transition is the initial
node of the activity diagram, a single input set with a “process instantiation”
object is created, indicating that the transition in question will be taken when
an object is placed on the space signalling that a new instance of the process
must be started. If the transition’s source is a control node, the algorithm keeps
working backwards through the diagram, traversing other control nodes, until
reaching action nodes. In the case of a transition originating from a decision or
a fork node, which is generally labelled by a guard (or an implicit “true” guard
if no guard is explicitly given), the transition’s guard is decomposed into its dis-
juncts, and an input set is created for each of these guards. This is done because
the elements of an input set are linked by an “and” (not an “or”) and thus an
input set can only capture a conjunction of elementary conditions and comple-
tion/instantiation objects (i.e. a disjunct). Finally, in the case of a transition
originating from a “merge” (resp. a “join”), the function is recursively called for
each of the transitions leading to this merge node (join node), and the resulting
sets of input sets are combined to capture the fact that when any (all) of these
transitions is (are) taken, the corresponding merge node (join node) may fire.

The following notations are used in the algorithm:

– ActionNodes(p) is the set of action nodes contained in process p (described
as an activity diagram).

– Source(t) is the source state of transition t
– Guard(t) is the guard on transition t
– Disjuncts(c) is the set of disjuncts composing condition c
– IncomingTrans(x) is the set of transitions whose target is node x
– NodeType(x) is the type of node x (e.g. “action”, “decision”, “merge”, etc.)
– Process(x) is the process to which node x belongs.

Example Figure 3 describes the router for the “CheckTraffic” using a concrete
XML syntax. This action node will only have one router associated to it because
there is only one path leading to the execution of this action. Indeed, to execute
this action, it is necessary that both the “check presentation time” and the “check
train availability” actions have completed, and in addition that the condition
“not ontime and train” evaluates to true, and this condition does not contain
any disjunction. When all these conditions are satisfied, the router will produce
an enabling object that will eventually be picked up by the connector associated
to action “check traffic”.

It can be noted in this example that the process instance identifier (piid)
attribute of the completion object templates are associated with a variable. In



<Router name = ‘‘CheckTrafficEnabler’’>

<Input>

<Template>

<CompletionObject actionName=’’CheckPresentationTime’’ piid=’’var:X’’/>

</Template>

<Template>

<CompletionObject actionName=’’CheckTrainAvailability’’ piid=’’var:X’’/>

</Template>

<Condition>

<Equality variable=’’ontime’’ value=’’false’’/>

</Condition>

<Condition>

<Equality variable=’’train’’ value=’’true’’/>

</Condition>

</Input>

<Output>

<EnablingObject action=’’CheckTraffic’’ piid=’’var:X’’/>

</Output>

</Router>

Fig. 3. Sample router

the concrete XML syntax, an XML namespace (aliased “var”) is reserved to refer
to variables. The AOS is capable of interpreting collections of object templates
where some of the atttributes are associated with such variables and to match
these templates in a way that if the same variable is associated with attributes
of two different templates, then the objects matching these templates should
contain the same values for these attributes.

4.2 Incorporating Data-Flow

Data flow (or more precisely object flow) in activity diagrams is represented by
object nodes, represented as rectangles as illustrated in Figure 4. Object nodes
are directly linked to a “producing” action preceding the object node. They are
also linked, either directly or through the intermediary of a number of control
nodes, to one or several “consuming” action node(s) following the object node. In
the example of Figure 4, the user pays using his mobile device and this produces
a receipt object which is then forwarded to the finance department so that the
user may obtain a refund.

In terms of the proposed technique, object flows are treated as follows. The
production of objects for a given object node is the responsibility of the con-
nector corresponding to the action node directly preceding this object node (i.e.
the producing action). In other words, the corresponding object would appear
as one of the elements in the “output” of this coordinator (see Section 3.2).
In the example at hand, the production of objects of type “Receipt” is done
by the connectors of the action nodes labelled “Pay”. On the other hand, the
consumption of objects corresponding to an object node is carried out by the



Fig. 4. Working example with object nodes

connectors of action nodes that follow this object node, either directly or through
the intermediary of a number of control nodes (i.e. the consuming actions). In
the example at hand, this means that the connector of the action node labelled
“Request Refund” will take an object of type “Receipt” from the space when
this action is enabled.

Since object flow is handled exclusively by connectors, the algorithm pre-
sented above does not have to deal with object nodes. Accordingly, object nodes
should be removed from the activity diagram before applying the algorithm for
deriving input sets. Removing object nodes from an activity diagram is trivial
since they always have only one incoming and one outgoing transition.

5 Achieving adaptation

In certain situations, some functionality may or should be made unavailable.
A context change may mean that some processing can not be performed, or
a user moving outside a firewall may prevent him/her from executing certain
applications. In our working example, it may happen that the system takes too
much time to contact the other meeting participants to check if the meeting can
be postponed (i.e. the execution of the “postpone meeting” may take more time
than the user is willing to wait for). In this case, a user may indicate that (s)he
does not wish to be delayed by this action, but instead, if the “Check Traffic”
action is completed and if the traffic conditions are OK, (s)he would immediately
take a taxi. This adaptation can be achieved by activating the router specified in
a concrete XML syntax in Figure 5. In this XML fragment, we assume that the
piid of the process instance for which this modification is to be done is 1. The



element StopSet indicates that this router is disabled if the “Postpone Meeting”
action is completed. Thus this router will only place an enabling object to trigger
action “Catch Taxi” if the action “Check Traffic” completes before “Postpone
Meeting” and the corresponding boolean expression evaluates to true.

<Coordinator name = ‘with participants’’>

<Input>

<Template>

<CompletionObject action=’’CheckTraffic’’ piid=’’1’’/>

</Template>

<Condition>

<Equality variable=’’traffic’’ value=’’OK’’/>

</Condition>

</Input>

<Output>

<EnablingObject action=’’CatchTaxi’’ piid=’’1’’/>

</Output>

<StopSet>

<CompletionObject action=’’PostponeMeeting’’ piid=’’1’’/>

</StopSet>

</Coordinator>

Fig. 5. Sample router for process adaptation

The above adaptation could arguably be achieved by modifying the process
model.8 However, in this case, significant tool support would be required and
model versioning may become an issue. In contrast, enabling an event-based rule
(encoded as a router) provides a more lightweight adaptation mechanism.

More radical changes may also be made. For example, consider a user that
prefers taxis over trains in any case and so would always catch taxis regardless
of traffic conditions and amount of time before the meeting. In this case, a
router may be introduced that enables the action “CatchTaxi” immediately upon
process instantiation when the process instance is started by the user in question.
At the same time, all other routers for that process instance would be disabled,
except the ones for download notes and display notes.

How the user actually specifies “dynamic” changes to composite applications
is a user interface issue outside the scope of this article. This may be achieved, for
example, by means of personalization applications running as active objects and
disabling or enabling routers or placing completion or enabling objects according
to an adaptation logic previously coded by a developer. Another option is to
provide users with options for adapting/personalising applications. When a user
manually selects one of these options, a number of coordinators are enabled
and/or completion and enabling objects are written to or taken off the space.
8 Note that expressing this type of discriminator (or 1-out-of-2) join in UML activity

diagrams requires the use of advanced constructs (namely signals) not covered by
our algorithm [17]. However, this is not the point that we try to make here.



Of course, this mechanism may be abused and lead to undesirable effects such
as deadlocked executions. However, as shown above, adaptation may be scoped
to specific process instances to avoid affecting a wider user base. In addition,
as certain adaptations become permanent, they may be propagated back to the
process model resulting in a new process model being deployed.

6 Related Work

Process-oriented application development has been the subject of significant at-
tention in the last decade, prompting the emergence of a large number of process
modelling and execution languages, some of which have been the subject of stan-
dardisation initiatives such as the Business Process Execution Language for Web
Services (BPEL4WS).9 However, the platforms supporting these languages adopt
an approach to process-oriented application development that is not suitable in
scenarios where personalization and adaptation are prominent requirements. In-
deed, these platforms typically rely on the static definition of process models
and allow little change to occur without a significant redeployment effort.

As discussed in the Introduction, proposals in the area of adaptive and flex-
ible workflow [14] generally focus either on a priori adaptation (e.g. attaching
exception handling policies to a process model) or on dealing with changes in the
process model. In contrast, we advocate that adaptation should not be handled
at the level of the process model. Our proposal shows that if an event-based coor-
dination model is used at the execution layer, it is possible to make fine-grained
changes to specific parts of the process and to confine these changes to specific
process instances, without altering the process model. In other words, the process
model can be used as a reference to deal with the majority of cases but devia-
tions can occur for specific cases based on the activation or de-activation of the
rules composing the event model. Parallels can be drawn between our approach
and the one followed in case handling systems [3] where human workers route
cases (i.e. process instances) manually based on information associated to each
case and contextual information such as workload and resource availability. How-
ever, case handling is targeted at processes composed mostly of manual tasks.
In contrast, our proposal is targeted at processes in which tasks are delegated to
software applications so that it is not possible to count on human intervention
at each step of the process.

There exist a large body of proposals in the area of coordination architectures,
and in particular space-based ones. Some of these architectures (e.g. Mars [5]
and Limone [9]) support the definition of reaction rules to coordinate application
components, similar to the way coordinators operate in our framework. However,
despite their potential synergies, proposals in the areas of coordination architec-
tures on the one hand, and process-oriented application development on the
other, have so far evolved independently – a notable exception being the work
by Tolksdorf [16] who describes a space-based architecture for routing XML

9 http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel



documents through processing steps encoded in XSL. A major novelty of our
proposal is that it seamlessly combines techniques from coordination-based and
from process-oriented software architectures.

This paper partly builds upon previous work on decentralised orchestration
of process-oriented composite services specified as UML statecharts [4]. In this
prior work, an algorithm was proposed that bears some similarities with the one
presented in Figure 2. In addition to technical differences between the algorithms,
stemming in part from the use of activity diagrams (version 2.0) rather than
statecharts, the proposal of this paper differs from the previous one in the use
that it makes of the output of the algorithm: Instead of using this output for
decentralised orchestration, it uses it for event-based centralised orchestration
based on coordination middleware. The proposal in this paper can also be seen
as a refinement of the architecture presented in [15], where agents and tuple
spaces are combined in an architecture for service composition. In the present
paper, we have presented a concrete approach to encode and execute event-based
models and we have detailed a method for generating event-based models from
process-based ones. We have also shown that by encoding event-based models
as active objects it is possible to achieve various forms of adaptation.

7 Conclusion and Future Work

This paper has shown how a process model specified using UML activity di-
agrams can be translated into an event-based model that can be executed on
top of a coordination middleware. Specifically, a process model is encoded as a
collection of active objects that interact with each other through a shared object
space. We have argue and illustrated that this approach is suitable for under-
taking post-deployment adaptation of process-oriented composite applications.
In particular, new control dependencies can be encoded by dropping new (or
enabling existing) active objects into the space and/or disabling existing ones.

A possible direction for future work is to extend the proposed algorithm
for input sets generation to cover a larger set of process modelling constructs
such as signals in UML activity diagrams or advanced control-flow constructs
such as those found in YAWL [2]. Another direction for future work is to de-
sign a mapping from event-based models to process models. The idea would
be to automatically derive a process model from a collection of routers. This
“reverse” mapping would assist developers in propagating changes in the event-
based model to the process model, when it is decided that these changes should
be made permanent. Techniques such as those developed in the setting of process
mining, where process models are derived from causal relations extracted from
execution traces, could provide insights for designing this reverse mapping.
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