
August 18, 2005 22:25 WSPC/Book Trim Size for 9in x 6in acal05

Chapter 1

Issues in the Scalability of Gate-level
Morphogenetic Evolvable Hardware

Justin Lee and Joaquin Sitte

Smart Devices Laboratory
Faculty of Information Technology

Queensland University of Technology
GPO Box 2434, Brisbane, Qld 4001, Australia
E-mail: jm.lee@qut.edu.au, j.sitte@qut.edu.au

Traditional approaches to evolvable hardware (EHW), in which the field
programmable gate array (FPGA) configuration is directly encoded, have
not scaled well with increasing circuit and FPGA complexity. To overcome
this there have been moves towards encoding a growth process, known as
morphogenesis. Using a morphogenetic approach, has shown success in
scaling gate-level EHW for a signal routing problem, however, when faced
with a evolving a one-bit full adder, unforseen difficulties were encountered.

In this paper, we provide a measurement of EHW problem difficulty that
takes into account the salient features of the problem, and when combined
with a measure of feedback from the fitness function, we are able to estimate
whether or not a given EHW problem is likely to be able to be solved
successfully by our morphogenetic approach. Using these measurements
we are also able to give an indication of the scalability of morphogenesis
when applied to EHW.

1.1 Introduction

While evolvable hardware (EHW) has proven to be successful in the evo-
lution of small novel circuits, generally on field programmable gate arrays
(FPGAs), its applicability to complex problems has been limited, largely
due to the use of direct encodings in which the chromosome directly rep-

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10874634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


August 18, 2005 22:25 WSPC/Book Trim Size for 9in x 6in acal05

2 The Second Australian Conference on Artificial Life 2005

resents the device’s configuration. A practical approach to solving this
problem for specific application domains has been function-level evolution,
involving the use of higher-level primitives such as addition, subtraction,
sine, etc. (see [3; 6] as examples). Although this scales the ability of EHW
to solve more complex problems, it comes at the price of higher gate counts
and designer bias [11], as well as the loss of potential novelty in solutions,
thus countering some of the original motivations for EHW.

Another approach is through decomposing the problem into compo-
nents or subtasks which are evolved first and then combined. Increased
Complexity Evolution [10], and Bidirectional Incremental Evolution [5] are
examples of this. However, these approaches are limited to applications
with straightforward decompositions, without interdependencies.

A separation between genotype (the chromosome) and phenotype (the
generated circuit), and a way of generating the phenotype from the geno-
type (a growth process), is the approach taken by nature to evolve complex
organisms, and has increasingly been seen as a means of scaling EHW
to more complex problems without losing its ability to generate novelty.
By encoding a growth process, known as morphogenesis, rather than an
explicit configuration, the complexity is moved from the genotype to the
genotype-phenotype mapping.

Morphogenetic approaches have been successfully applied to generating
neural networks [4; 2; 9] and tessallating patterns [1]. Recent work by the
authors [7] showed that this approach could also be successfully applied to
EHW at the gate level on a modern FPGA, specifically the Xilinx Virtex.

In this paper we briefly revisit the results of using morphogenesis to
scale EHW on a signal routing problem, presented in Section 1.2. Then, in
Section 1.3 we extend this work to evolving a one bit full adder. However,
in the process of evolving adders, several obstacles were encountered, this
forced us to come up with a measure of problem complexity, or more ac-
curately difficulty, and fitness feedback as a means of identifying whether
a given experiment is likely to succeed. This also allows us to quantify the
scalability of our morphogenetic approach to EHW. This is presented in
Section 1.4, after which we draw some conclusions.

1.2 Scaling with Morphogenesis

In this work biological cells correspond to functionally independent logic
elements, comprised of a function generator and associated routing, within
a configurable logic block (4 per CLB). Multiplexors (gates) are interpreted
as proteins within a cell, with each protein representing that resource and
its configuration. Inter-cellular signaling is done via shared lines, such that



August 18, 2005 22:25 WSPC/Book Trim Size for 9in x 6in acal05

Issues in the Scalability of Gate-level Evolvable Hardware 3

for each line that connects between logic elements, each cell has a signalling
protein that corresponds to the configuration of the multiplexor (mux) in
the other logic element. Each cell receives a copy of the chromosome, and
implements a transcription level gene expression model, such that genes
are regulated by the configuration state of the logic element, and in turn
generate proteins, which then reconfigure this logic element. Through the
interaction of genes with the FPGA configuration and inter-cell signalling, a
morphogenesis process emerges. Details of the morphogenetic EHW system
implementation can be found in [8].

To test the performance and scalability of the morphogenetic EHW ap-
proach this model was used to evolve signal routing circuits with severely
constrained routing that disallowed simple connection rules (see [7] for de-
tails), and was compared with a standard EHW approach using a direct
encoding on a fixed-length binary chromosome.

A first set of experiments required a signal to be routed horizontally
across a 5x5 CLB matrix (100 cells) from an input in the center of the
west edge to an output at the center of the east edge. Then to test the
scalability of each approach, the size of the matrix was increased to an 8x8
CLBs (256 cells) and the number of inputs was increased to 4, placed in the
center of the West edge of the CLB matrix, and outputs was also increased
to 4, spread evenly across the East edge of the CLB matrix. This required
evolution to learn not just how to connect horizontally across the matrix,
but also how to spread vertically from the middle outwards. Fitness, in
both cases, was based on how much progress was made in routing a signal,
possibly inverted, from the inputs to the outputs. The relationship between
the different inputs and outputs was disregarded, it was only required that
all inputs are connected and one or more of these drive the outputs. Further
details of the fitness function can be found in [7].

For each set of experiments twenty evolutionary runs were done with
a population size of 100 and using a steady state genetic algorithm with
tournament selection without replacement. The crossover rate was set at
80%, mutation at 2%, inversion at 5%, and for the variable length chro-
mosomes used with the morphogenetic approach, a base insert/delete rate
of 0.1% was used with 50-50 chance of insertion or deletion. Each run was
continued until a solution with 100% fitness was found or until stagnation
(defined as no improvement in the maximum fitness attained in 1000 or
1500 generations for the first and second problem, respectively). For the
morphogenesis approach, growth is done for a minimum of 30 iterations,
with fitness evaluated at each step. Growth is continued if the maximum
phenotype fitness for this genotype increased in the last 15 iterations, or
if phenotype fitness is increasing. The genotype’s fitness is given by the
maximum phenotype fitness achieved during growth.



August 18, 2005 22:25 WSPC/Book Trim Size for 9in x 6in acal05

4 The Second Australian Conference on Artificial Life 2005

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90

100

Generations

F
itn

es
s 

%

Mean maximum fitness for routing IO across CLB matrix

MG5x5
GA5x5
MG8x8
GA8x8

Fig. 1.1 Mean maximum fitness for routing IO across CLB matrix

Figure 1.1 show the mean maximum fitness over all runs for both ap-
proaches on the two experiments (up to generation 5000).

In the smaller problem morphogenesis approach was able to find a 100%
solution every time, taking an average of 458.5 generations and 36.95 growth
iterations. In comparison, the direct encoding approach was successful in
only 13 of the 20 runs, with the average number of generations required for
successful runs being 531.1 generations.

For the larger, more complex experiments, the morphogenetic approach
was again successfully able to find a 100% solution in every run, taking
an average of 1001.7 generations and 49.95 iterations. The direct encoding
approach, however, was unable to solve this at all, with maximum fitness
values reaching a mean of 86.6% (standard deviation was 3.1%), and taking
on average 4647.1 generations. The best run, which reached 93.75% at gen-
eration 9954, was continued up to 35,000 generations, reaching a maximum
of 96.875% at generation 16302.

1.3 Evolving One Bit Full Adders

While the previous section concentrated on evolving circuits with fitness
primarily based on circuit structure, using a severely cut down set of gate-
level resources, in this section the aim is to investigate the evolution of



August 18, 2005 22:25 WSPC/Book Trim Size for 9in x 6in acal05

Issues in the Scalability of Gate-level Evolvable Hardware 5

circuit structure and functionality on a more complete set of resources.
This allows us to test the scalability of our morphogenetic approach to
an increase in circuit functionality, and what amounts to an increase in
platform complexity.

1.3.1 Experimental Setup

A one bit full adder has 3 inputs (x, y, cin) and 2 outputs (sum, cout), with
the relation between these being defined by Boolean Equations 1.1 and 1.2.

sum = x⊕ y ⊕ cin (1.1)
cout = x · y + x · cin + y · cin

= x · y + (x + y) · cin (1.2)

The target for the adder circuit is a 2x2 CLB matrix in the center of the
FPGA. This size was chosen as it contains sufficient logic and routing to
provide evolution with freedom to explore a wide range of possible solutions
to this problem. Although an adder could be easily defined using only two 4
input function generators (LUTs) in a single slice of a CLB, most functional
circuits would require a combination of LUTs with routing lines connecting
them. Thus, this approach allows the results from these experiments to be
more readily generalised to other functional circuits.

Cells again correspond to logic elements (there are 4 per CLB), each
containing a LUT-register pair, however the register is not used here due to
the combinatorial nature of the circuit. Furthermore, each cell is allocated
two out buses and six single lines per out bus line, such that there are
connections available to each neighbouring CLB. This is shown in Fig. 1.2,
with each logic element’s LUT (F or G) and connection to the out bus
(for e.g. S0 Y) shown, but the connections to and from the Out To Single
multiplexor (which is responsible for driving the logic element outputs to
neighbouring cells) are aggregated for the CLB. Each LUT has available
the same set of input lines as the other three LUTs in the CLB, however,
each LUT has different output lines. Only directly connecting single lines
between neighbouring CLBs are used (dedicated horizontally connecting
out bus lines are also used, however). 1

The evolvable region is then setup so that the x and y signals are pro-
1Note that 16 of the 48 single lines that we are using are able to be driven by the

outputs of two neighbouring CLBs, a situation known as contention, which may dam-
age the FPGA. To avoid this, prior to configuring an output multiplexor for driving a
single line, its setting on the other end is checked, and if this configuration would cause
contention, then it is not configured.



August 18, 2005 22:25 WSPC/Book Trim Size for 9in x 6in acal05

6 The Second Australian Conference on Artificial Life 2005

vided to single lines that can be fed to the LUT inputs in the South West
CLB, while the cin signals are fed towards the North West CLB’s LUT
inputs, and the sum and cout output signals are sampled from one logic
element each on the two East CLBs. This layout is shown in Figure 1.2.
Notice that several lines are available to the circuit inputs, while the out-
puts require signals to be routed to specific lines. Signals are routed directly
from IO blocks on the perimeter of the FPGA to the CLBs adjacent to the
evolvable region. This approach is an artefact of the original design aims,
which were to allow the evolution of asynchronous circuits for robot control.

Fig. 1.2 Layout for Adder Experiments

1.3.2 LUT Encoding

The native encoding of the 4-input 1-output function generators (LUTs)
on a Virtex is a 16-bit (24) inverted least significant bit first (LSB) truth



August 18, 2005 22:25 WSPC/Book Trim Size for 9in x 6in acal05

Issues in the Scalability of Gate-level Evolvable Hardware 7

table. While this encoding, which we refer to here as LUT bit functions,
is sufficient for generating any required function there may be other more
evolution-friendly encodings.

One such encoding is LUT active functions, which provides basic
Boolean functions (AND, OR, XOR, NAND, NOR, XNOR, Majority with
tie break to 0, and Majority with tie break to 1, all with optional inver-
sion of selected lines) that are applied only to currently active input lines,
that being inputs that have a line connected that is driven by an active
CLB output. For the line to be considered active, it must be connected
to a changing signal, originating either in the circuit inputs (and generally
having undergone various function transformations), or in a feedback loop,
which may produce an oscillating signal (for example a clock divider).

This is based on the idea that cell functionality should only use inputs
that are active. In other words, unconnected inputs and undriven input
lines, that are held high (i.e. at logic 1), should be eliminated from LUT
functions, where they may possibly dominate the function applied to the
other inputs. An example of this would be a simple OR function of all
LUT inputs, which if any one of these input lines is disconnected, then
the output from the LUT will always be a 1, no matter what signals are
received on the other lines. In nature, it is unlikely that this would occur
(for example in neurons or signalling pathways), as it would be undesirable
for biological functionality to be crippled by a large state space of useless
functions, especially when there are a large number of possible inputs (for
example dendrites), which would often be inactive. In EHW, however, we
are utilising LUTs which are designed for human or automated design soft-
ware, such that they allow a great deal of flexibility in expressing Boolean
functions within the constraints of an FPGA.

1.3.3 Fitness Evaluation

Fitness is based on how much progress is made in connecting from the
inputs to the outputs, and on how closely the connected outputs match
that of the desired function. Both connectivity (c) and functional adder
fitness (a) components are given as a percentage (i.e. in the range 0 to 100
inclusive). The circuit fitness (f) is given by adding these together and
then scaling the result back to a percentage (i.e. from 0 to 100), hence

f = (c + a)/2. (1.3)

The circuit connectivity portion of fitness is produced in one of two
ways, depending on which of the LUT encoding methods is used. If LUT
active functions are used, then a recursive connectivity test is done based
on the FPGA’s current configuration. Fitness is calculated in the same



August 18, 2005 22:25 WSPC/Book Trim Size for 9in x 6in acal05

8 The Second Australian Conference on Artificial Life 2005

manner as was done for the previous signal routing experiments. Briefly,
connectivity fitness is calculated by testing how many layers are connected,
and for each connected layer, how many elements in the layer are connected.

For active functions, there are 5 levels of connectivity measurable within
a logic element. If LUT active functions aren’t used (native encoding), then
each logic element is only assigned a connectivity value based on whether
or not there are signal changes (indicating connectivity) on the probe at
the slice output, when signals are applied to the circuit input bus. Thus,
for LUT bit functions, there are only 2 levels of connectivity measurable
within a logic element.

The adder function fitness component is evaluated only when one or
more circuit outputs are connected. To evaluate the circuit’s functional
fitness, each of the input signal combinations in the adder’s truth table is
iterated through and the connected circuit outputs are tested to see how
closely they match the desired corresponding entry in the truth table.

Function equivalence is measured according to how close the circuit
output matches the truth table’s output signals, based on the Hamming
distance between the outputs that change and the specified outputs, while
unchanging outputs are assumed to be unconnected to the inputs, and for
each of these 1 is added to the Hamming distance. Adder function fitness
is then based on the proportion of matching signals, calculated as

a = 100(1− h

l
) (1.4)

where h is the Hamming distance (with an integer value from 0 to l), and
l is given by

l = Onc = 2nc (1.5)

with O being the width of the circuit output bus (i.e. the number of outputs
from the adder function), and nc is the number of input signal combinations
required to specify each output’s truth table, as given by

nc = 2I = 23 = 8 (1.6)

where I is the width of the circuit input bus (i.e. the number of inputs to
the adder function).

1.3.4 Experiment Results

Two evolutionary runs were done for both LUT encodings (time limitations
prevented more than this), each using the same evolutionary and morpho-
genetic parameters as used in the previous signal routing experiments, with



August 18, 2005 22:25 WSPC/Book Trim Size for 9in x 6in acal05

Issues in the Scalability of Gate-level Evolvable Hardware 9

evolution being stopped at 5000 generations or after stagnation for 2000
generations. The results of all the runs is given in Fig. 1.3.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90

100

Generations

F
itn

es
s 

%

Maximum Fitness for Evolving 1−bit Adders

Bit 01
Bit 02
Active 01
Active 02

Fig. 1.3 Maximum Fitness for Evolving 1-bit Adders

Unfortunately, no approach was able to find a 100% solution, the best
achieved was 96.875% (which means only 1 of the 16 output signals was
incorrect), which was achieved by both active LUT runs (at generations
670 and 1849). The native (LUT bit function) encodings were only able
to achieve fitnesses of 93.75% and 87.5% (corresponding to 2 and 4 wrong
signals) at generations 4128 and 1369, respectively. Although these runs
are not statistically significant, they can be seen as a rough indication of
trends for the different approaches.

LUT active functions, not surprisingly, were slower off the mark at solv-
ing the problem, as each LUT is only able to encode a single simple Boolean
function, requiring more LUTs to be configured and the routing between
them to be developed, before they are able to offer any advantage. However,
it is obvious that this is what occurred, and once this had been established,
it rapidly overtook the other approach.

1.3.5 Further Experiments

To investigate where evolution fails in its task of creating a 1-bit full adder,
we divided the problem into two separate components: circuit function, and



August 18, 2005 22:25 WSPC/Book Trim Size for 9in x 6in acal05

10 The Second Australian Conference on Artificial Life 2005

circuit routing. To do this we ran two separate sets of experiments. In the
first, we pre-connect the functional blocks together (i.e. fix the routing lines
and the LUT inputs) and evolve the LUT functions, while in the second,
we fix the LUT functions and evolve the routing between them.

Two evolutionary runs were done for both LUT encodings (again time
limitations prevented more than this), each using the same evolutionary
and morphogenetic parameters as before, with evolution being stopped at
success or after 1000 generations of stagnation. The results of these are
given in Table 1.1.

Table 1.1 Adder Fixed Run Results

Approach Run 1 Run 2
Max Fitness At Gen Max Fitness At Gen

BitFN fixed Mux 100.0 214 100.0 434
BitFN fixed LUT 91.25 1514 93.75 1417

ActiveFN fixed Mux 100.0 71 100.0 56
ActiveFN fixed LUT 94.8 728 90.625 993

This clearly shows that the problem lies in the evolution of the routing
between LUTs, while LUT functions are able to be evolved quite rapidly.

1.4 Analysing Problem Difficulty

Here we analyse the difficulty of the various experiments, with the aim of
developing a heuristic that will help us to determine whether or not any
given experiment is likely to be solvable by evolution.

To do this, we need some measure of difficulty and of the feedback
provided by the system to guide evolution towards a solution. The first
measure is the state space of the problem, calculated as the total number
of configuration states that the EHW system may configure the FPGA
to. This is calculated for a logic element as the product of the number of
settings (σ) for each of the m multiplexors:

M =
m∏

i=1

σi (1.7)

then the number of configuration states is given as

S = Mn (1.8)

where n is the number of logic elements being evolved (this could also be
done per CLB).



August 18, 2005 22:25 WSPC/Book Trim Size for 9in x 6in acal05

Issues in the Scalability of Gate-level Evolvable Hardware 11

The next measure is the number of solutions, or answers A, to the prob-
lem available within this configuration space. This is problem dependent,
but in all cases, elements of the configuration space that don’t affect the
solution (i.e. redundancies), increase the number of solutions, as

A = αMρ (1.9)

where α is the initially calculated number of solutions for the essential (or
actively participating) circuit components (logic elements), and ρ is the
number of redundant logic elements.

With the state space (S) and number of solutions (A) calculated, then
the probability (P ) of a randomly generated configuration being a solution
is given by

P = A/S (1.10)

which can be seen as a measure of problem difficulty.
We also need to measure the size of the fitness feedback space, this being

the amount of information provided by the system to the fitness function
for guiding evolution. This can be calculated in a general manner using the
amount of feedback from the circuit elements, given per logic element as µ,
and overall function, given in terms of the number of circuit inputs (I) and
outputs (O) required to completely describe the function. The total fitness
feedback space is then given as

F = µn2(2IO) (1.11)

where the 2’s in the (latter) overall circuit function component of the equa-
tion are due to the binary nature of digital signals.

However, while this tells us the total amount of information available
to the fitness function, it doesn’t take into account how much of this in-
formation is actually used by the fitness function. For example, in our ex-
periments, when we measure connectivity not all logic elements’ feedback
is utilised. In this case, in the circuit input and output layers (columns
of CLBs) we only look at the connectivity of the circuit input and output
logic elements, while all others in the layer have their connectivity measure
dicarded in the fitness evaluation, reducing n to n′. This would reduce the
above measure of F to an effective fitness feedback space (E) of

E = µn′2(2IO) (1.12)



August 18, 2005 22:25 WSPC/Book Trim Size for 9in x 6in acal05

12 The Second Australian Conference on Artificial Life 2005

1.4.1 Experiment Difficulty Comparisons

With the measures introduced above, we are now able to analyse and com-
pare the measures of difficulty for each set of experiments that were con-
ducted. Due to space limitations, only the results of the calculations for
the various measures are provided here.

It should be noted that as the number of solutions is increased by the
amount of redundancy created by unused logic elements (that are able
to have any configuration without affecting the circuit’s function). This
means that for the signal routing problems, only the shortest path needs
to be found to give a first order approximation to the number of solutions
(including the longer paths would have no affect on the calculated values
here, however, due to their greatly reduced order of magnitude).

Note also, that for the unconstrained adder problem, where we evolve
both the multiplexor settings and LUT functions together, an over approx-
imation was used for the number of solutions. This was calculated start-
ing with the number of solutions from multiplexor settings only evolution,
where the LUT functions were fixed, and noting that for each funtion that
is needed to generate an adder, there are several possible LUT functions
that are able to achieve this, so the initial estimate is multiplied by the
number of solutions from LUT only evolution. In other words the number
of possible wiring connection settings for one particular valid set of adder
function blocks is multiplied by the number of possible LUT function com-
binations for one of these particular wirings. Then, to take into account
different routing and function combinations that could also work, this last
estimate is then multiplied by the number of logic elements (n) that are
being evolved. This gives

A = Amux ·Alut · n (1.13)

which is of course an over estimate, and not at all accurate, but is simply
used to give some sort of estimate as to the upper limit of the order of
magnitude.

For LUT active functions, we also need to take into account the fact that
the other LUTs that weren’t used with fixed routing (they are inactive)
could take various configurations usually without upsetting the circuit’s
function, so n is squared for good measure, to give

A = Amux ·Alut · n2 (1.14)

A comparison of the measures for each experiment set are given in Table
1.2, noting that ∼ indicates an approximation using an average for vari-
ables, and < is estimated over approximation only. For the experiment
names, lut indicates evolving LUT functions (fixed mux), mux indicates



August 18, 2005 22:25 WSPC/Book Trim Size for 9in x 6in acal05

Issues in the Scalability of Gate-level Evolvable Hardware 13

Table 1.2 Experiment Difficulty Measures

Experiment S A P E E∗ −P/E Gens

Adder lut act 38 17 −21 22 6 – 18 0.95 6
Adder lut bit 256 231 −25 22 7 – 22 1.14 8
Adder mux act 464 334 −130 28 37 – 114 4.64 -
Adder mux bit 464 385 −79 22 37 – 114 3.59 -
Adder act ∼ 544 <375 < −169 30 48 – 149 5.63 -
Adder bit 720 <623 < −97 22 28 – 85 4.41 -
5x5:1-1 999 963 −36 144 10 – 32 0.25 9
8x8:4-4 2558 2351 −207 464 59 – 182 0.45 10

evolving mux settings (fixed LUT), act indicates LUT active functions only
used, bit indicates LUT bit encoding only used, and 5x5:1-1 and 8x8:4-4
are used to denote the signal routing experiments (with generations taken
for the morphogenetic approach only). Only experiments that were able
to find a 100% solution are given entries for the Gens (average generations
taken) column. Note that all entries are base 2 logarithms, rounded to the
nearest integer.

From this it can be seen that the actual increase in problem difficulty
between the smaller and larger routing problems was

P5x5 − P8x8 = 2−36+207 = 2171 ≈ 3× 1051 (1.15)

This shows that our morphogenetic approach is able to scale to a prob-
lem of more than 50 orders of magnitude greater difficulty, with only an in-
crease of around 3 times more work (measured by the proportional increase
in generations and growth iterations), while the standard direct encoding
approach to EHW struggled (65% success rate) even with the simpler prob-
lem and totally failed to scale to the more difficult problem. Notice that,
the morphogenetic approach has the desirable feature that, as P decreases
(indicating an increase in problem difficulty), the number of generations
required to solve the problem increases very slowly, in fact in a better than
log2N manner.

By examining this table, it seems that −P/E correlates well with the
solvability of the problem, by a morphogenetic approach to EHW. Tenta-
tively, we can say that for the problem to be solvable this needs to be less
than or equal to k, where from experimental evidence 1.136 ≤ k < 3.593
(25/22 ≤ k < 79/22). That is

−log2(P )/log2(E) ≤ k (1.16)

which can be expanded (noting that P−1 = S/A) and rearranged to give

log2(E) ≥ log2((S/A)1/k) (1.17)



August 18, 2005 22:25 WSPC/Book Trim Size for 9in x 6in acal05

14 The Second Australian Conference on Artificial Life 2005

and as log2 is a monotonic function, we can remove it from both sides while
preserving the relation, thus

E ≥ (S/A)1/k (1.18)

We can denote (S/A)1/k as E∗, which tells us the minimum amount of
effective feedback required to successfully guide the morphogenetic system
to a solution. Hence we require that E ≥ E∗ for a problem to be solvable.

The range of values of E∗, using best (3.5) and worst (1.136) cases for
k’s value, for each experiment are given in Table 1.2. As can be seen, the
routing experiments, while they are harder to solve, according to P , remain
solvable as they have a more than sufficient amount of effective feedback
(E > E∗) available to guide evolution. while, on the other hand, the unfixed
adder problem and the adder problem where the multiplexor settings need
to be evolved both lack sufficient feedback (E < E∗) to guide evolution to
a complete solution. It can also be seen that evolving the adder LUTs was
successful due to there being a larger proportional coverage of feedback to
the problem, ensuring that there was sufficient feedback (E ≥ E∗).

1.5 Conclusion

In this paper we have shown that morphogenesis scales extremely well to
increases in circuit size and problem difficulty. This offers great promise to
EHW, as it provides scalability without having to compromise the advan-
tages of gate-level evolution.

We have also introduced a quantitative measure of problem difficulty,
in terms of the probability of finding a solution, and a heuristic indicating
whether the problem is solvable or not according to its difficulty and the
amount of information provided by the fitness function for guiding evolu-
tion. This shows the importance of fitness feedback, and to a lesser degree
problem difficulty, to a morphogenetic approach, while the state space size,
reflecting FPGA platform complexity and circuit size, has little direct im-
pact.

Ideally speaking, a problem should be analysed prior to applying evo-
lution to solving it. If, according to the heuristics provided, it appears
unsolvable, then either more feedback is required, or the probability of
finding a solution should be increased, by decreasing the search space or by
introducing more redundancies that effectively do the same.

Using morphogenesis coupled with these heuristics (refined through fur-
ther experimentation), gate-level EHW remains a viable method and should
continue to be able to provide novel solutions to hardware design problems.



August 18, 2005 22:25 WSPC/Book Trim Size for 9in x 6in acal05

Bibliography

Peter Bentley and Sanjeev Kumar. Three ways to grow designs: A comparison
of evolved embryogenies for a design problem. In Proc. of the Genetic and
Evolutionary Conference (GECCO ’99), pages 35–43, 1999.

Peter Eggenberger. Cell interactions as a control tool of developmental processes
for evolutionary robotics. In Proceedings of SAB ’96, pages 440–448, 1996.

Tetsuya Higuchi et al. Evolvable hardware at function level. In IEEE Interna-
tional Conference on Evolutionary Computation, pages 187–192, 1997.

Nick Jakobi. Harnessing morphogenesis. Technical Report CSRP 423, School of
Cognitive and Computer Science, University of Sussex, 1995.

Tatiana Kalganova. Bidirectional incremental evolution in extrinsic evolvable
hardware. In The Second NASA/DoD Workshop on Evolvable Hardware,
pages 65–74. IEEE Computer Society, 2000.

Tatiana Kalganova. An extrinsic function-level evolvable hardware approach.
In Proc. of the Third European Conference on Genetic Programming (EU-
ROGP2000), LNCS 1802, pages 60–75. Springer-Verlag, 2000.

Justin Lee and Joaquin Sitte. A gate-level model for morphogenetic evolvable
hardware. In Proc. of the 2004 IEEE International Conference on Field-
Programmable Technology (FPT’04), pages 113–119, 2004.

Justin Lee and Joaquin Sitte. An implementation of a morphogenetic evolvable
hardware system. In 5th International Conference on Simulated Evolution
And Learning (SEAL04), Busan, Korea, 2004. Korea Advanced Institute of
Science and Technology (KAIST).

Daniel Roggen, Dario Floreano, and Claudio Mattiussi. A morphogenetic evo-
lutionary system: Phylogenesis of the poetic circuit. In Proc. of the 5th
International Conference on Evolvable Systems: From Biology to Hardware
ICES 2003, LNCS 2606, pages 153–164. Springer, 2003.

Jim Torresen. A divide-and-conquer approach to evolvable hardware. In 2nd
International Conference on Evolvable Systems: from biology to hardware
(ICES 98), LNCS 1478, pages 57–65. Springer-Verlag, 1998.

Vesselin K. Vassilev and Julian F. Miller. Scalability problems of digital cir-
cuit evolution: Evolvability and efficient designs. In Proc. of the 2nd
NASA/DoD Workshop on Evolvable Hardware. IEEE, 2000.

15


