
Directed Exploration using a Modified Distance Transform

Trevor Taylor, Shlomo Geva, Wageeh W. Boles
Queensland University of Technology

T.Taylor@qut.edu.au

Abstract

Mobile robots operating in unknown environments

need to build maps. To do so they must have an
exploration algorithm to plan a path. This algorithm
should guarantee that the whole of the environment, or
at least some designated area, will be mapped. The
path should also be optimal in some sense and not
simply a “random walk” which is clearly inefficient.
When multiple robots are involved, the algorithm also
needs to take advantage of the fact that the robots can
share the task. In this paper we discuss a modification
to the well-known distance transform that satisfies
these requirements.

1. Introduction

Exploration of unknown environments is a common
task for robots. Apart from the issues of mapping and
localization, the process also requires an exploration or
path planning algorithm to ensure that the entire
surrounding area is explored. As far as possible, the
algorithm should produce an efficient path.

Several methods have been used for path planning
in the past, but many of these assume that a map is
already available. We use a Distance Transform [10] to
repeatedly calculate paths towards unknown space.

The motivation for developing a modified distance
transform is to set the preferred initial directions of
exploration for multiple robots. This should allow
multiple robots to explore with minimal overlap,
thereby speeding up the exploration process.

1.1. Experimental Setup

In our experimental environment, the robot is a

Yujin soccer robot, which is a cube 7cm on each side.
It is remotely controlled by a PC via a wireless
modem. A wireless colour camera on top of the robot
is used to locate obstacles in the surrounding
environment [13]. By performing a pirouette (spinning

around on the spot) the robot builds a 360° view of its
surroundings.

The resulting Radial Obstacle Profile (ROP) is
similar to a sonar sweep, and it is suitable for
producing a map based on an occupancy grid. Moravec
and Elfes [6] first suggested this approach and it is
widely used.

Several occupancy grid maps are shown in this
paper. By convention, unknown space, i.e. areas not
yet explored, is shown as grey in an occupancy grid,
which corresponds to a probability of being
unoccupied of 50%. Obstacles are shown as black (0%
unoccupied means the cell is definitely occupied) and
free space is white (100% unoccupied).

Due to limitations on the size of our physical
environment, the examples in this paper are based on a
simulation in order to provide a larger working area.
The code uses OpenGL to create simulated camera
images from the perspective of the robot and the same
vision processing is applied as for the real robot. The
principles are therefore still applicable to the real robot.
See [14] for an example map from the real robot.

1.1. Related Work

Jarvis [4] first recognized that the Distance

Transform (DT) could be used as an exploration
algorithm. For this purpose, all of the unknown space
cells in the map are marked as goals for the transform.

Distance Transforms have been used widely for
path planning in exploration by single robots, e.g. [7,
15]. However, we wish to use multiple robots.

In most of the literature a square grid is used,
although the tessellation does not need to be square.
For example, a triangular grid is used in [8].
Regardless of the grid shape, it is still necessary to
define the “distance” from one cell to another.

In some applications, the exact Euclidean distance
is required. For instance, [11] uses a Weighted
Distance Transform as one way to calculate Euclidean
distances.

An exact Euclidean DT is not necessary for our
purposes. The only requirement is that the DT must

Proceedings of the Digital Imaging Computing: Techniques and Applications (DICTA 2005)
0-7695-2467-2/05 $20.00 © 2005 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10874632?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

produce a surface that contains peaks where the
obstacles are, but elsewhere it is monotonically
decreasing towards unknown space. A simple downhill
search can then be used to find a path from the robot to
the nearest unexplored area.

Chong and Kleeman [2] developed an explore-
local-first behaviour using a DT to force the robot to
explore nearby areas before moving further away.
They also created a local path validator to prevent
collisions within a cell when a large cell size is used.

Their approach results in a pattern of exploration
that is roughly a spiral. This is not desirable for
multiple robots starting from the same location because
they would be constantly running into each other or
following the same paths.

Frontier-based exploration [16] is conceptually
similar to the distance transform approach in that it
locates the advancing frontier of unknown space, i.e.
“the boundary between open space and uncharted
territory”. However, Yamauchi uses a depth-first
search of the grid to find the shortest obstacle-free path
to a frontier. In contrast, we use a modified DT to
create a path to the nearest unexplored space.

 Pei and Horng [9] developed a modified DT
algorithm to take account of the shape and directional
constraints involved in driving a car through an
obstacle field. This is not necessary in our case because
our robot is pseudo-holonomic, i.e. it can turn on the
spot and thereby move in any direction (although not
instantaneously nor whilst in motion). We limit our
robot to motions made up solely of turns and straight
forward moves, which we refer to as piece-wise linear.

Paths of complete coverage, where the robot visits
every cell in the map, have been developed using
distance transforms [17]. Applications such as vacuum
cleaning [8] or lawn mowing require the robots to
traverse every accessible cell in the map to complete
their task. In contrast, our objective is to build a map.
By using vision, the robot does not need to enter a cell
to see into it. Furthermore, it can see into cells that are
not accessible to the robot because it is too large.

Exploration using robotic swarms has been
investigated by Tang and Jarvis [12]. Their approach
requires knowledge of the locations of all the other
robots at any given instant in time, although it does
minimize the overlap. Our concept will allow the
robots to be “let loose” and operate autonomously with
minimal interaction. Of course, a global map must be
produced eventually, but in the initial stages the robots
will tend to spread out independently of each other
regardless of whether or not they can communicate
reliably at all times.

2. Description of the Algorithm

The basic process can be described as follows:
1. Perform a pirouette and update the Occupancy

Grid map using the resulting Radial Obstacle
Profile.

2. Calculate a modified Distance Transform to
find the shortest path to the nearest unknown
space. If no path can be found, then stop.

3. Travel along this new path, up to a specified
maximum number of moves, updating the
Occupancy Grid along the way.

4. Go to step 1.

The procedure for obtaining an ROP and creating a

map has been described in our previous work [13].
Therefore step 1 above is not covered here.

Exploration continues while there is unknown space
that is reachable. Our ultimate objective is to use
multiple robots to speed up the exploration process,
and this is why we have developed a modification to
the Distance Transform which is used in step 2.

As the robots explore, they will send new map
information to a central server that will combine it into
a global map. The modified Distance Transform
ensures that they start out in different directions.
Subsequently, they tend to move outwards, unless their
path is blocked, e.g. a walled in area.

Notice that in step 3 the number of moves along the
path is limited. Most other exploration algorithms in
the literature allow the robot to move all the way to the
end of the newly calculated path. We have found this
to be undesirable, for reasons explained below.

2.1. Distance Transform Path Planning

The basic concept of a Distance Transform is

simple. Consider the map as a pool of water with the
obstacles sticking out. Throw a pebble into the pool
and take snapshots as the ripples spread out. The
advancing wave front will wrap around obstacles.
(Ignore any “reflections” that occur.) As time
progresses the wave front gets further and further away
from its origin, i.e. the distance increases. All points on
the wave front at any given instant are equidistant from
the origin.

For a square grid, there are both 4-connected and 8-
connected versions of the DT. We have chosen the 8-
connected version which requires two types of moves –
move forward the distance of one grid cell for north-
south and east-west moves, and the square root of two
times this distance for diagonal moves.

Therefore, the use of the DT only requires the robot
to rotate on the spot and move forward by two different

Proceedings of the Digital Imaging Computing: Techniques and Applications (DICTA 2005)
0-7695-2467-2/05 $20.00 © 2005 IEEE

amounts. There is no requirement to move in real time
or make steering decisions on the fly. This is a
significant advantage of the approach because it is not
dependent on the computational resources available.
(Clearly, the fastest possible processor is desirable, but
it is not essential to the task.)

To perform the DT, obstacles in the map are set to
“infinity”, and hence ignored during the calculations.
Free space is filled in with a “big” value, which is
necessary so that the transform will correctly update
the cells. Of course, it is assumed that the total cost in a
cell can never reach “big”, but this is a fair assumption
for practical purposes even when using a 32-bit integer
as the distance. Unknown space, which is the goal, is
filled in with zeros.

Our modification to the DT is to superimpose an
influence map, or potential field, over the transform
map during the calculation of the DT. The values in the
influence map are simply added to those in the
transform map when the cost in each cell is calculated.

The DT “wave” emanates from the zero cells
(unknown space) and travels “uphill” until it
encounters an obstacle and has nowhere else to go.

The net effect is that following a steepest descent
path through the DT from the robot’s current location
(or in fact starting from any non-obstacle cell) will lead
to the nearest goal, i.e. unknown space.

Fig. 1 shows an example with a path from the robot
(the round object near the middle of the diagram) to
unknown space in the top left.

Figure 1. Path from a Distance Transform

While calculating the path it sometimes happens

that there are two adjacent cells with the same distance
value. In order to minimize the number of turns, the
direction that is chosen is the one that the robot is
currently facing if this is possible.

When creating the path, if a cell is reached which
has no surrounding cells with a lower value, and this
cell is not an unknown space (zero), then there are no
more paths and exploration is complete. This is a very
useful feature of the DT.

2.2. Collision Avoidance

In some of the Distance Transform literature, the

robot is assumed to occupy a single cell. In practice,
this is often not the case. If the robot is larger than one
cell, then it can potentially collide with obstacles as it
tries to drive past them. In fact, Zelinsky [17] has
pointed out that the DT generates “too close paths”
which tightly hug the walls.

The solution to this problem is very simple, and
uses an old concept called Configuration Space, or C-
Space for short. In C-Space all of the obstacle cells are
enlarged by the size of the robot, thereby preventing it
from coming too close to an obstacle. Basically this is
a morphological dilation of the obstacles in the map by
a structuring element that is the size of the robot.

Figure 2. (a) World Model and

(b) Configuration Space

An example is given in Fig. 2 of a world model (or

ground truth) and the C-Space corresponding to a
completed map. Notice that the obstacles in C-Space
have been expanded.

Our robot is cubic in shape, but we use a round
structuring element that has a radius half the diagonal
width of the robot. (Using a square structuring element
would not be correct because the robot’s orientation
can change. For instance, it could rotate to “squeeze”
through small gaps, but this is not taken into account.)
The result is a slightly conservative C-Space map.

Several methods exist for calculating a DT. We use
one developed by Borgefors [1] which is commonly
referred to as being similar to a convolution consisting

Proceedings of the Digital Imaging Computing: Techniques and Applications (DICTA 2005)
0-7695-2467-2/05 $20.00 © 2005 IEEE

of a forward pass and a backward pass. For many
environments this is all that is required, but it has been
noted [5] that under certain circumstances multiple
passes might be necessary. It depends on how many
small “channels” there are in the image and can occur
in mazes with a lot of twists and turns.

Our code is based on the Intel Open Computer
Vision (OpenCV) library [3]. However, it should be
noted that OpenCV (in version Beta 4) only performs
one forward-backward pass and therefore the resulting
DT might not be correct. In contrast, we iterate until
there are no changes, which always results in one pass
too many, but this is unavoidable. In addition, the
modifications to the DT that we incorporate often
require another pass or two to reach the final result.

The DT grid size need not be the same as the map
grid size, but an integer multiple is best. Our map grid
is 1cm square and the DT grid is 5cm square, which is
about half the size of the robot.

A large DT grid size results in smoother paths and
minimizes the number of turns involved. Because turns
are a large source of localization errors, it is highly
desirable to keep them to a minimum.

When adjusting the grid size, it will occasionally
happen that the robot’s cell will be marked as occupied
by an obstacle. This is due to quantization effects and
clearly is not correct. Therefore the robot’s cell is
always set to free space before the DT is run.

2.3. Initial Direction Control

To control the initial direction that the robot heads

off in, an Influence Map (or potential field) is created
and overlaid on the distance transform. By controlling
the initial direction of exploration, we can force
multiple robots to spread out.

Several different influence maps have been tested.
For example, Fig. 3 shows a cardioid shape and a pie
slice (a.k.a. pacman) that have a preference for a north-
easterly direction. In this figure, darker areas
correspond to higher values. Notice that the pie only
has two values, whereas the cardioid has a range.

All the different influence maps that we have tried
had the desired effect, but the pie slice is the simplest
to calculate. The radius of the pie can be adjusted to
suit the environment, and the centre of the slice can be
pointed in the desired direction.

Figure 3. Examples of Influence Maps

As noted above, the values in the influence map are

simply added to the “distance” in each cell during the
calculation of the DT.

3. Discussion

One of the primary advantages of using the
Distance Transform is that it is very easy to determine
when the exploration is complete – there will be no
reachable goals, i.e. unknown space. Furthermore, the
DT cannot become trapped like some other algorithms.

However, a DT-based exploration algorithm can
exhibit oscillations, especially when a directional field
is applied. These oscillations result if the maximum
allowed path length is less than the distance necessary
to reach the nearest free space in two different
directions. In this case, the DT alternates between two
paths.

Fig. 4 shows a partial map where oscillations have
started in the top right. The influence map was
centered on the robot, rather than fixed at the centre of
the map. Using a robot-centric influence map
accentuates this problem, and so we have discarded
this approach.

Figure 4. Oscillations in the DT Path

It is easy to detect oscillations and all that is

required to break the cycle is, for instance, to halve the
distance moved along one of the paths. On the next
iteration the robot generally reaches unknown territory.

Another issue with the use of influence maps is that
they tend to force the robot to take an indirect route to
the nearest free space once it falls on the opposite side
of the map. The robot then follows a path that moves
alternately from one side of the map to the other as it
winds its way around the central potential “hill”.

To reduce this effect, the influence map can be
made to decay over time. Its purpose is only to direct
the robot in a particular direction initially, so it is not
required in the longer term.

Proof that the directional control does work is
apparent in Figs. 5 and 6 which show the final maps
where the specified initial direction was south and

Proceedings of the Digital Imaging Computing: Techniques and Applications (DICTA 2005)
0-7695-2467-2/05 $20.00 © 2005 IEEE

north-east respectively. The robot began in the centre
of the map in both cases and it is obvious that it started
out in the correct directions.

Figure 5. Exploration starting to the South

Figure 6. Exploration to the North-East with

(a) 50 move maximum (b) 10 move maximum

Note that these diagrams are for a single robot. Due

to the effects of the influence maps, the initial paths for
multiple robots will not differ much from the paths for
single robot because the influence maps have a
significant effect on the DT path. Over time, the robots
will be far enough away from the centre that their
nearest unknown space will tend to be in their direction
of exploration. Certainly, it will not be via the centre of
the map unless their direction of exploration is
completely blocked.

Notice in the two maps of Fig. 6 that the initial path
is the same (due to the influence map) but as the
influence map decays the robots move off in different
directions due to the different maximum number of
moves allowed at each stage.

Limiting the number of moves towards the goal is
beneficial because the robot performs a pirouette
before doing a new DT calculation. This tends to fill in
the narrow spaces between obstacles and the walls.
Also, in a multi-robot environment, following a very
long path could prove to be a waste of time if another
robot reaches the unexplored area first, so shorter paths
with more frequent re-calculation should be beneficial.

3.1. Efficiency

Efficiency can be measured in a variety of ways,
e.g. based on time, energy expended, distance traveled,
etc. We have not approached this in a quantitative way,
but the diagrams above show minimal overlap. In other
words, the DT seems to minimize overall path length.

The distance transform will, in general, provide the
shortest path from a specified location to a goal. Our
algorithm uses the DT at each stage, and therefore we
expect that the overall result should be a reasonably
efficient. However, we have found in practice that the
amount of duplicated effort is related to the maximum
allowed length of the paths. It is also affected by the
geometry of the environment and is therefore difficult
to predict.

In particular, planning a path in an unknown
environment will often lead to paths which will be seen
to be sub-optimal in retrospect. An obvious example is
a cul-de-sac. A robot entering one of these will have no
idea that it is a dead end until it is too late, and it will
have to back-track. On a larger scale, it is obvious that
some duplication of effort is inevitable.

DTs tend to produce paths that closely follow
obstacles and/or zig-zag. This effect can be reduced by
using a larger cell size for the DT than the map cell
size. However, this has the disadvantage that it might
render some locations inaccessible because the robot is
not sitting in the centre of a (large) grid square and
therefore cannot align itself with a door or corridor.

4. Future Work

The robot currently misses some small areas when
obstacles are too close together in C-Space. A DT
could be done on the actual map using the map grid
size, i.e. not the C-Space map. This would allow the
small regions that have been missed to be located.

Because the robot uses vision, it does not have to
enter a cell to determine if it is empty or not. An
intelligent algorithm could be developed that would
allow the robot to “look behind” obstacles using the
information generated from the original map. Of
course, collision avoidance would still require the use
of the C-Space map in producing the paths.

Proceedings of the Digital Imaging Computing: Techniques and Applications (DICTA 2005)
0-7695-2467-2/05 $20.00 © 2005 IEEE

Another area to be addressed is what to do when
robots run into each other whilst exploring. Applying
influence maps centred on the location of the rendez-
vous would force them off in different directions again.
However, it might happen that the obstacle geometry
does not permit this, e.g. a long corridor.

Testing with multiple robots is still to be done.

5. Conclusion

This paper has outlined a novel modification to the
Distance Transform to force robots to explore in a
particular direction initially. This will be important to
minimize the overlap when multiple robots are used.
Our future work on collaborative mapping will use this
algorithm to control the robots.

We have also investigated the use of a grid size that
is more suited to the size of the robot and therefore
differs from the grid size used for the map.

Variations in the length of the paths followed at
each stage of the exploration have been shown to
produce different paths, but essentially the same maps.
Limiting the length of the paths is expected to be
beneficial in a multi-robot situation because it will
allow the robots to reassess their paths more
frequently.

6. References

[1] G. Borgefors, “Distance Transformations in Digital
Images,” Computer Vision, Graphics and Image Processing,
vol. 34, pp. 344-371, 1986.
[2] K.S. Chong and L. Kleeman, “Indoor Exploration Using a
Sonar Sensor Array: A Dual Representation Strategy”, In
Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, vol. 2, pp. 676-682, 1997.
[3] Intel Open Computer Vision (OpenCV) Library, Beta 4,
available from http://sourceforge.net/projects/opencvlibrary,
accessed 25th August, 2004.
[4] R.A. Jarvis, “Collision-free Trajectory Planning Using
Distance Transforms”, In Proceedings of the National
Conference and Exhibition on Robotics, Melbourne,
Australia, pp. 20-24, 1984.
[5] R.A. Jarvis, “Distance Transform Based Path Planning
For Robot Navigation,” In: Zheng YF (ed) Recent Trends in

Mobile Robots, Vol. 11 of Robotics and Automated Systems,
World Scientific, pp. 3-31, 1993.
[6] H.P. Moravec and A. Elfes, “High Resolution Maps from
Wide Angle Sonar,” In Proceedings of the International
Conference on Robotics Automation, St. Louis, MI, USA, pp.
116-121, 1985.
[7] D. Murray and C. Jennings, “Stereo vision based
mapping and navigation for mobile robots”, In Proceedings
of the IEEE International Conference on Robotics and
Automation, vol. 2, Albuquerque, New Mexico, USA, pp.
1694-1699, 1997.
[8] J.S. Oh, Y.H. Choi, J.B. Park and Y.F. Zheng, “Complete
Coverage Navigation of Cleaning Robots Using Triangular-
Cell-Based Map”, IEEE Transactions on Industrial
Electronics, vol. 51, no. 3, pp. 718-726, 2004.
[9] S-C. Pei and J-H. Horng, “Finding the optimal driving
path of a car using the modified constrained distance
transformation,” IEEE Transactions on Robotics and
Automation, Vol. 14, pp. 663-670, 1998.
[10] A. Rosenfeld and J.L. Pfaltz, “Sequential operations in
digital picture processing,” Journal of the Assoc. Computing
Machinery, vol. 13, no. 4, pp. 471-494, 1966.
[11] I-M. Sintorn and G. Borgefors, “Weighted distance
transforms in rectangular grids,” In Proceedings of the 11th
International Conference on Image Analysis and Processing,
pp. 322-326, 2001.
[12] K.W. Tang and R. Jarvis, “A Simple and Efficient
Algorithm for Robotic Swarm Exploratory Tasks”, Technical
Report MECSE-11-2003, Department of Electrical and
Computer Systems Engineering, Monash University, 2003.
[13] T. Taylor, S. Geva, and W.W. Boles, “Vision-based
Pirouettes using the Radial Obstacle Profile,” In Proceedings
of the IEEE Conference on Robotics, Automation and
Mechatronics, Singapore, pp. 147-152, 2004
[14] T. Taylor, S. Geva, and W.W. Boles, “Early Results in
Vision-based Map Building,” Accepted for the 3rd
International Symposium on Autonomous Minirobots for
Research and Edutainment (AMiRE), Fukui, Japan, 2005.
[15] L.C. Wang, L.S. Yong, and M.H. Ang Jr., “Hybrid of
global path planning and local navigation implemented on a
mobile robot in indoor environment,” In Proceedings of the
IEEE International Symposium on Intelligent Control, pp.
821-826, 2002.
[16] B. Yamauchi, “A Frontier-Based Approach for
Autonomous Exploration”, In Proceedings of the IEEE
International Symposium on Computational Intelligence in
Robotics and Automation, Monterey, CA, USA, 1997.
[17] A. Zelinsky, “A mobile robot exploration algorithm,”
IEEE Transactions on Robotics and Automation, vol. 8, no.
6, pp. 707-717, 1992.

Proceedings of the Digital Imaging Computing: Techniques and Applications (DICTA 2005)
0-7695-2467-2/05 $20.00 © 2005 IEEE

