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Abstract 

 
Mobile robots operating in unknown environments 

need to build maps. To do so they must have an 
exploration algorithm to plan a path. This algorithm 
should guarantee that the whole of the environment, or 
at least some designated area, will be mapped. The 
path should also be optimal in some sense and not 
simply a “random walk” which is clearly inefficient. 
When multiple robots are involved, the algorithm also 
needs to take advantage of the fact that the robots can 
share the task. In this paper we discuss a modification 
to the well-known distance transform that satisfies 
these requirements.  
 
1. Introduction 
 

Exploration of unknown environments is a common 
task for robots. Apart from the issues of mapping and 
localization, the process also requires an exploration or 
path planning algorithm to ensure that the entire 
surrounding area is explored. As far as possible, the 
algorithm should produce an efficient path. 

Several methods have been used for path planning 
in the past, but many of these assume that a map is 
already available. We use a Distance Transform [10] to 
repeatedly calculate paths towards unknown space. 

The motivation for developing a modified distance 
transform is to set the preferred initial directions of 
exploration for multiple robots. This should allow 
multiple robots to explore with minimal overlap, 
thereby speeding up the exploration process. 

 
1.1. Experimental Setup 

 
In our experimental environment, the robot is a 

Yujin soccer robot, which is a cube 7cm on each side. 
It is remotely controlled by a PC via a wireless 
modem. A wireless colour camera on top of the robot 
is used to locate obstacles in the surrounding 
environment [13]. By performing a pirouette (spinning 

around on the spot) the robot builds a 360° view of its 
surroundings. 

The resulting Radial Obstacle Profile (ROP) is 
similar to a sonar sweep, and it is suitable for 
producing a map based on an occupancy grid. Moravec 
and Elfes [6] first suggested this approach and it is 
widely used. 

Several occupancy grid maps are shown in this 
paper. By convention, unknown space, i.e. areas not 
yet explored, is shown as grey in an occupancy grid, 
which corresponds to a probability of being 
unoccupied of 50%. Obstacles are shown as black (0% 
unoccupied means the cell is definitely occupied) and 
free space is white (100% unoccupied). 

Due to limitations on the size of our physical 
environment, the examples in this paper are based on a 
simulation in order to provide a larger working area. 
The code uses OpenGL to create simulated camera 
images from the perspective of the robot and the same 
vision processing is applied as for the real robot. The 
principles are therefore still applicable to the real robot. 
See [14] for an example map from the real robot. 

 
1.1. Related Work 

 
Jarvis [4] first recognized that the Distance 

Transform (DT) could be used as an exploration 
algorithm. For this purpose, all of the unknown space 
cells in the map are marked as goals for the transform. 

Distance Transforms have been used widely for 
path planning in exploration by single robots, e.g. [7, 
15]. However, we wish to use multiple robots. 

In most of the literature a square grid is used, 
although the tessellation does not need to be square. 
For example, a triangular grid is used in [8]. 
Regardless of the grid shape, it is still necessary to 
define the “distance” from one cell to another. 

In some applications, the exact Euclidean distance 
is required. For instance, [11] uses a Weighted 
Distance Transform as one way to calculate Euclidean 
distances. 

An exact Euclidean DT is not necessary for our 
purposes. The only requirement is that the DT must 
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produce a surface that contains peaks where the 
obstacles are, but elsewhere it is monotonically 
decreasing towards unknown space. A simple downhill 
search can then be used to find a path from the robot to 
the nearest unexplored area. 

Chong and Kleeman [2] developed an explore-
local-first behaviour using a DT to force the robot to 
explore nearby areas before moving further away. 
They also created a local path validator to prevent 
collisions within a cell when a large cell size is used. 

Their approach results in a pattern of exploration 
that is roughly a spiral. This is not desirable for 
multiple robots starting from the same location because 
they would be constantly running into each other or 
following the same paths. 

Frontier-based exploration [16] is conceptually 
similar to the distance transform approach in that it 
locates the advancing frontier of unknown space, i.e. 
“the boundary between open space and uncharted 
territory”. However, Yamauchi uses a depth-first 
search of the grid to find the shortest obstacle-free path 
to a frontier. In contrast, we use a modified DT to 
create a path to the nearest unexplored space.  

 Pei and Horng [9] developed a modified DT 
algorithm to take account of the shape and directional 
constraints involved in driving a car through an 
obstacle field. This is not necessary in our case because 
our robot is pseudo-holonomic, i.e. it can turn on the 
spot and thereby move in any direction (although not 
instantaneously nor whilst in motion). We limit our 
robot to motions made up solely of turns and straight 
forward moves, which we refer to as piece-wise linear. 

Paths of complete coverage, where the robot visits 
every cell in the map, have been developed using 
distance transforms [17]. Applications such as vacuum 
cleaning [8] or lawn mowing require the robots to 
traverse every accessible cell in the map to complete 
their task. In contrast, our objective is to build a map. 
By using vision, the robot does not need to enter a cell 
to see into it. Furthermore, it can see into cells that are 
not accessible to the robot because it is too large. 

Exploration using robotic swarms has been 
investigated by Tang and Jarvis [12]. Their approach 
requires knowledge of the locations of all the other 
robots at any given instant in time, although it does 
minimize the overlap. Our concept will allow the 
robots to be “let loose” and operate autonomously with 
minimal interaction. Of course, a global map must be 
produced eventually, but in the initial stages the robots 
will tend to spread out independently of each other 
regardless of whether or not they can communicate 
reliably at all times. 

 

2. Description of the Algorithm 
 

The basic process can be described as follows: 
1. Perform a pirouette and update the Occupancy 

Grid map using the resulting Radial Obstacle 
Profile. 

2. Calculate a modified Distance Transform to 
find the shortest path to the nearest unknown 
space. If no path can be found, then stop. 

3. Travel along this new path, up to a specified 
maximum number of moves, updating the 
Occupancy Grid along the way. 

4. Go to step 1. 
 
The procedure for obtaining an ROP and creating a 

map has been described in our previous work [13]. 
Therefore step 1 above is not covered here. 

Exploration continues while there is unknown space 
that is reachable. Our ultimate objective is to use 
multiple robots to speed up the exploration process, 
and this is why we have developed a modification to 
the Distance Transform which is used in step 2. 

As the robots explore, they will send new map 
information to a central server that will combine it into 
a global map. The modified Distance Transform 
ensures that they start out in different directions. 
Subsequently, they tend to move outwards, unless their 
path is blocked, e.g. a walled in area. 

Notice that in step 3 the number of moves along the 
path is limited. Most other exploration algorithms in 
the literature allow the robot to move all the way to the 
end of the newly calculated path. We have found this 
to be undesirable, for reasons explained below. 
 
2.1. Distance Transform Path Planning 

 
The basic concept of a Distance Transform is 

simple. Consider the map as a pool of water with the 
obstacles sticking out. Throw a pebble into the pool 
and take snapshots as the ripples spread out. The 
advancing wave front will wrap around obstacles. 
(Ignore any “reflections” that occur.) As time 
progresses the wave front gets further and further away 
from its origin, i.e. the distance increases. All points on 
the wave front at any given instant are equidistant from 
the origin. 

For a square grid, there are both 4-connected and 8-
connected versions of the DT. We have chosen the 8-
connected version which requires two types of moves – 
move forward the distance of one grid cell for north-
south and east-west moves, and the square root of two 
times this distance for diagonal moves. 

Therefore, the use of the DT only requires the robot 
to rotate on the spot and move forward by two different 
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amounts. There is no requirement to move in real time 
or make steering decisions on the fly. This is a 
significant advantage of the approach because it is not 
dependent on the computational resources available. 
(Clearly, the fastest possible processor is desirable, but 
it is not essential to the task.) 

To perform the DT, obstacles in the map are set to 
“infinity”, and hence ignored during the calculations. 
Free space is filled in with a “big” value, which is 
necessary so that the transform will correctly update 
the cells. Of course, it is assumed that the total cost in a 
cell can never reach “big”, but this is a fair assumption 
for practical purposes even when using a 32-bit integer 
as the distance. Unknown space, which is the goal, is 
filled in with zeros. 

Our modification to the DT is to superimpose an 
influence map, or potential field, over the transform 
map during the calculation of the DT. The values in the 
influence map are simply added to those in the 
transform map when the cost in each cell is calculated. 

The DT “wave” emanates from the zero cells 
(unknown space) and travels “uphill” until it 
encounters an obstacle and has nowhere else to go. 

The net effect is that following a steepest descent 
path through the DT from the robot’s current location 
(or in fact starting from any non-obstacle cell) will lead 
to the nearest goal, i.e. unknown space. 

Fig. 1 shows an example with a path from the robot 
(the round object near the middle of the diagram) to 
unknown space in the top left. 

 

 
Figure 1. Path from a Distance Transform 

 
While calculating the path it sometimes happens 

that there are two adjacent cells with the same distance 
value. In order to minimize the number of turns, the 
direction that is chosen is the one that the robot is 
currently facing if this is possible. 

When creating the path, if a cell is reached which 
has no surrounding cells with a lower value, and this 
cell is not an unknown space (zero), then there are no 
more paths and exploration is complete. This is a very 
useful feature of the DT. 

 

2.2. Collision Avoidance 
 
In some of the Distance Transform literature, the 

robot is assumed to occupy a single cell. In practice, 
this is often not the case. If the robot is larger than one 
cell, then it can potentially collide with obstacles as it 
tries to drive past them. In fact, Zelinsky [17] has 
pointed out that the DT generates “too close paths” 
which tightly hug the walls. 

The solution to this problem is very simple, and 
uses an old concept called Configuration Space, or C-
Space for short. In C-Space all of the obstacle cells are 
enlarged by the size of the robot, thereby preventing it 
from coming too close to an obstacle. Basically this is 
a morphological dilation of the obstacles in the map by 
a structuring element that is the size of the robot. 

 

 
 

 
Figure 2. (a) World Model and 

(b) Configuration Space 
 
An example is given in Fig. 2 of a world model (or 

ground truth) and the C-Space corresponding to a 
completed map. Notice that the obstacles in C-Space 
have been expanded. 

Our robot is cubic in shape, but we use a round 
structuring element that has a radius half the diagonal 
width of the robot. (Using a square structuring element 
would not be correct because the robot’s orientation 
can change. For instance, it could rotate to “squeeze” 
through small gaps, but this is not taken into account.) 
The result is a slightly conservative C-Space map. 

Several methods exist for calculating a DT. We use 
one developed by Borgefors [1] which is commonly 
referred to as being similar to a convolution consisting 
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of a forward pass and a backward pass. For many 
environments this is all that is required, but it has been 
noted [5] that under certain circumstances multiple 
passes might be necessary. It depends on how many 
small “channels” there are in the image and can occur 
in mazes with a lot of twists and turns. 

Our code is based on the Intel Open Computer 
Vision (OpenCV) library [3]. However, it should be 
noted that OpenCV (in version Beta 4) only performs 
one forward-backward pass and therefore the resulting 
DT might not be correct. In contrast, we iterate until 
there are no changes, which always results in one pass 
too many, but this is unavoidable. In addition, the 
modifications to the DT that we incorporate often 
require another pass or two to reach the final result. 

The DT grid size need not be the same as the map 
grid size, but an integer multiple is best. Our map grid 
is 1cm square and the DT grid is 5cm square, which is 
about half the size of the robot. 

A large DT grid size results in smoother paths and 
minimizes the number of turns involved. Because turns 
are a large source of localization errors, it is highly 
desirable to keep them to a minimum. 

When adjusting the grid size, it will occasionally 
happen that the robot’s cell will be marked as occupied 
by an obstacle. This is due to quantization effects and 
clearly is not correct. Therefore the robot’s cell is 
always set to free space before the DT is run. 

 
2.3. Initial Direction Control 

 
To control the initial direction that the robot heads 

off in, an Influence Map (or potential field) is created 
and overlaid on the distance transform. By controlling 
the initial direction of exploration, we can force 
multiple robots to spread out. 

Several different influence maps have been tested. 
For example, Fig. 3 shows a cardioid shape and a pie 
slice (a.k.a. pacman) that have a preference for a north-
easterly direction. In this figure, darker areas 
correspond to higher values. Notice that the pie only 
has two values, whereas the cardioid has a range. 

All the different influence maps that we have tried 
had the desired effect, but the pie slice is the simplest 
to calculate. The radius of the pie can be adjusted to 
suit the environment, and the centre of the slice can be 
pointed in the desired direction. 

 

   
Figure 3. Examples of Influence Maps 

 
As noted above, the values in the influence map are 

simply added to the “distance” in each cell during the 
calculation of the DT. 

 
3. Discussion 
 

One of the primary advantages of using the 
Distance Transform is that it is very easy to determine 
when the exploration is complete – there will be no 
reachable goals, i.e. unknown space. Furthermore, the 
DT cannot become trapped like some other algorithms. 

However, a DT-based exploration algorithm can 
exhibit oscillations, especially when a directional field 
is applied. These oscillations result if the maximum 
allowed path length is less than the distance necessary 
to reach the nearest free space in two different 
directions. In this case, the DT alternates between two 
paths. 

Fig. 4 shows a partial map where oscillations have 
started in the top right. The influence map was 
centered on the robot, rather than fixed at the centre of 
the map. Using a robot-centric influence map 
accentuates this problem, and so we have discarded 
this approach. 

 

 
Figure 4. Oscillations in the DT Path 

 
It is easy to detect oscillations and all that is 

required to break the cycle is, for instance, to halve the 
distance moved along one of the paths. On the next 
iteration the robot generally reaches unknown territory. 

Another issue with the use of influence maps is that 
they tend to force the robot to take an indirect route to 
the nearest free space once it falls on the opposite side 
of the map. The robot then follows a path that moves 
alternately from one side of the map to the other as it 
winds its way around the central potential “hill”. 

To reduce this effect, the influence map can be 
made to decay over time. Its purpose is only to direct 
the robot in a particular direction initially, so it is not 
required in the longer term. 

Proof that the directional control does work is 
apparent in Figs. 5 and 6 which show the final maps 
where the specified initial direction was south and 
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north-east respectively. The robot began in the centre 
of the map in both cases and it is obvious that it started 
out in the correct directions. 

 

 
Figure 5. Exploration starting to the South 

 

 
 

 
Figure 6. Exploration to the North-East with 

(a) 50 move maximum (b) 10 move maximum 
 
Note that these diagrams are for a single robot. Due 

to the effects of the influence maps, the initial paths for 
multiple robots will not differ much from the paths for 
single robot because the influence maps have a 
significant effect on the DT path. Over time, the robots 
will be far enough away from the centre that their 
nearest unknown space will tend to be in their direction 
of exploration. Certainly, it will not be via the centre of 
the map unless their direction of exploration is 
completely blocked. 

Notice in the two maps of Fig. 6 that the initial path 
is the same (due to the influence map) but as the 
influence map decays the robots move off in different 
directions due to the different maximum number of 
moves allowed at each stage. 

Limiting the number of moves towards the goal is 
beneficial because the robot performs a pirouette 
before doing a new DT calculation. This tends to fill in 
the narrow spaces between obstacles and the walls. 
Also, in a multi-robot environment, following a very 
long path could prove to be a waste of time if another 
robot reaches the unexplored area first, so shorter paths 
with more frequent re-calculation should be beneficial. 

 
3.1. Efficiency 
 

Efficiency can be measured in a variety of ways, 
e.g. based on time, energy expended, distance traveled, 
etc. We have not approached this in a quantitative way, 
but the diagrams above show minimal overlap. In other 
words, the DT seems to minimize overall path length. 

The distance transform will, in general, provide the 
shortest path from a specified location to a goal. Our 
algorithm uses the DT at each stage, and therefore we 
expect that the overall result should be a reasonably 
efficient. However, we have found in practice that the 
amount of duplicated effort is related to the maximum 
allowed length of the paths. It is also affected by the 
geometry of the environment and is therefore difficult 
to predict. 

In particular, planning a path in an unknown 
environment will often lead to paths which will be seen 
to be sub-optimal in retrospect. An obvious example is 
a cul-de-sac. A robot entering one of these will have no 
idea that it is a dead end until it is too late, and it will 
have to back-track. On a larger scale, it is obvious that 
some duplication of effort is inevitable. 

DTs tend to produce paths that closely follow 
obstacles and/or zig-zag. This effect can be reduced by 
using a larger cell size for the DT than the map cell 
size. However, this has the disadvantage that it might 
render some locations inaccessible because the robot is 
not sitting in the centre of a (large) grid square and 
therefore cannot align itself with a door or corridor. 

 
4. Future Work 
 

The robot currently misses some small areas when 
obstacles are too close together in C-Space. A DT 
could be done on the actual map using the map grid 
size, i.e. not the C-Space map. This would allow the 
small regions that have been missed to be located. 

Because the robot uses vision, it does not have to 
enter a cell to determine if it is empty or not. An 
intelligent algorithm could be developed that would 
allow the robot to “look behind” obstacles using the 
information generated from the original map. Of 
course, collision avoidance would still require the use 
of the C-Space map in producing the paths. 
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Another area to be addressed is what to do when 
robots run into each other whilst exploring. Applying 
influence maps centred on the location of the rendez-
vous would force them off in different directions again. 
However, it might happen that the obstacle geometry 
does not permit this, e.g. a long corridor. 

Testing with multiple robots is still to be done. 
 
5. Conclusion 
 

This paper has outlined a novel modification to the 
Distance Transform to force robots to explore in a 
particular direction initially. This will be important to 
minimize the overlap when multiple robots are used. 
Our future work on collaborative mapping will use this 
algorithm to control the robots. 

We have also investigated the use of a grid size that 
is more suited to the size of the robot and therefore 
differs from the grid size used for the map. 

Variations in the length of the paths followed at 
each stage of the exploration have been shown to 
produce different paths, but essentially the same maps. 
Limiting the length of the paths is expected to be 
beneficial in a multi-robot situation because it will 
allow the robots to reassess their paths more 
frequently. 
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