

COVER SHEET

This is the author version of article published as:

Campbell, Alexander B. and Erik, Berglund and Streit, Alexander
(2005) Graphics Hardware Implementation of the Parameter-Less
Self Organising Map. In Gallagher, Marcus and Hogan, James and
Maire, Frederic, Eds. Proceedings Intelligent Data Engineering and
Automated Learning - IDEAL 2005: 6th International Conference,
Brisbane, Australia 3578, pages pp. 343-350, Australia, Queensland,
Brisbane.

Copyright 2005 Springer

Accessed from http://eprints.qut.edu.au

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10874617?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Graphics Hardware Implementation
of the Parameter-Less Self-Organising Map

Alexander Campbell1, Erik Berglund2, and Alexander Streit1

1 Faculty of IT
Queensland University of Technology

GPO Box 2434, Brisbane QLD 4001, Australia
ab.campbell@qut.edu.au

2 Information Technology and Electrical Engineering
University of Queensland

St. Lucia, QLD. 4072, Australia

Abstract. This paper presents a highly parallel implementation of a
new type of Self-Organising Map (SOM) using graphics hardware. The
Parameter-Less SOM smoothly adapts to new data while preserving the
mapping formed by previous data. It is therefore in principle highly
suited for interactive use, however for large data sets the computational
requirements are prohibitive. This paper will present an implementation
on commodity graphics hardware which uses two forms of parallelism
to significantly reduce this barrier. The performance is analysed experi-
mentally and algorithmically. An advantage to using graphics hardware
is that visualisation is essentially “free”, thus increasing its suitability
for interactive exploration of large data sets.

1 Introduction

One of the consequences of the explosion of data collection size and dimensional-
ity is the need for unsupervised approaches to analysis and, in particular, dimen-
sionality reduction. The Self-Organising Map (SOM) is an unsupervised learning
technique capable of mapping a high dimensional input space to a lower (gen-
erally two-dimensional) output space such that the topology of the input space
is preserved in the output space. This allows intuitive exploration of the data in
an easily comprehensible 2D map that preserves neighbourhood relations.

For large, high dimensional data sets, or for applications where interactive
use of the SOM is required, training times become an issue. This has led to the
development of specific hardware implementations such as [?]. However, in order
to find widespread application as, for example, an interactive web search tool,
custom hardware solutions are obviously infeasible.

Driven primarily by the games industry the speed and programmability of
commodity graphics hardware have been developing apace - performance in-
creases outstripping Moore’s Law by approximately a factor of 3:1 [?]. Over the
last few years the graphics processing unit (GPU) has not surprisingly been gain-
ing interest as an inexpensive high performance platform for non-graphics cen-
tric computation. General Purpose computation on Graphics Processing Units

(GPGPU) is a burgeoning field. GPU is suited particularly to implementations
which exploit the parallelism of the graphics rendering pipeline, and which match
the single instruction multiple data (SIMD) format at some point in their exe-
cution.

A recent development, the Parameter-Less Self-Organising Map (PLSOM)
[?,?], markedly decreases the number of iterations required to get a stable and
ordered map. It also has two features which make it highly suited to interactive
use: plasticity preservation and memory. These mean that it handles well being
retrained with new data which may be greater than the range of the previously
used data (plasticity) or smaller than the range of previous data (memory).

These factors made it an ideal candidate for an efficient parallel implemen-
tation, which we present here. We seek to demonstrate the suitability of the
PLSOM for parallelisation and graphics hardware implementation, and a signif-
icant theoretical and actual performance superiority of this implementation. We
have not provided a reference implementation of the standard SOM - for the
reasons already given our focus is on the PLSOM - however we do discuss briefly
how they relate.

We start with the theoretical basis of the Parameter-Less SOM in Section
2, then provide an introduction to using graphics hardware for general purpose
computation in Section 3. Section 4 contains the fusion of these elements in
terms of implementation and algorithmic complexity. Experimental setup for
performance testing and empirical results are presented in Section 5. We con-
clude by commenting briefly on the potential for sophisticated visualisation and
interactive use.

2 The Parameter-Less SOM

The Self-Organising Map [?, ?] is an algorithm for mapping (generally) low-
dimensional manifolds in (generally) high-dimensional input spaces. The SOM
achieves this through unsupervised training, but one of the major problems have
been selecting and tuning annealing schemes, since it must be done empirically
in the absence of a firm theoretical basis. There is no need for a learning rate
annealing scheme or neighbourhood size annealing schemes with the Parameter-
Less SOM. The PLSOM, which is similar to the SOM in structure but differs in
adaption algorithm, consists of an array of nodes, N . The nodes are arranged
in a grid in output space so that one can calculate the distance between two
given nodes. During training, an input in the form of a k-dimensional vector x
is presented to the PLSOM. The winning node at timestep t, c(t), is the node
with an associated weight which most closely resembles the input, c(t) is selected
using Equation 1.

c(t) = arg min
i

(||x(t)−wi(t)||) (1)

where wi(t) is the weight vector associated with node i at timestep t. Then
the weights are updated using Equations 4-5. The basic idea is to move the
weight nodes associated with nodes close to c towards the input x. How much to

move the weight vector of a given node i depends on the distance from i to c (in
output space) and the neighbourhood function. The scaling of the neighbourhood
function (the neighbourhood size) determines how a node which is far away from
c is affected. A small neighbourhood size means relatively few nodes, close to c,
are affected while a large neighbourhood function will lead to updates on more
nodes further away from c. The weight update is scaled by a variable ε which is
calculated according to Equations 2 and 3.

ε(t) =
||wc(t)− x(t)||

ρ(t)
(2)

where ρ(t) ensures that ε(t) ≤ 1.

ρ(t) = max(||x(t)−wc(t)||, ρ(t− 1)),
ρ(0) = ||x(0)−wc(0)|| (3)

ε is used to scale the weight update in two ways; directly, as part of Equation 4
and indirectly as part of Equation 5.

∆wi(t) = ε(t)hc,i(t)[x(t)−wi(t)] (4)

where ∆wi(t) is the change in the weight associated with node i at timestep t
and hc,i is the neighbourhood function given in Equation 5.

hc,i(t) = e
−d(i,c)2

Θ(ε(t))2 (5)

where e is the Euler number, d(i, c) is the Euclidean distance from node i to
node c in output space and Θ(ε(t)) is given by Equation 6.

Θ(ε(t)) = β ln(1 + ε(t)(e− 1)) (6)

where β is a scaling constant related to the size of the network. For a n-by-m
node network one would usually select β according to Equation 7:

β =
m + n

2
(7)

The PLSOM achieves faster ordering, is independent of input space distribution,
eases application and has a firmer theoretical basis.

3 Programmable Graphics Hardware

Commodity graphics hardware is designed primarily for real time approximation
of lighting for 3D scenes. In the quest for more realistic approximations, recent
graphics hardware has allowed programming of the graphics operations directly
using programs that are referred to as shaders.

Through the careful construction of graphics commands, we can adapt the
hardware to perform calculations, much like a co-processor. The graphics hard-
ware expects polygons that are defined by their edge vertices. Each polygon is

transformed into fragments, which are multi-valued cells. We will refer to the
collection of fragments as streams, in keeping with parallel computation termi-
nology. Each fragment is processed by a fragment shader, also referred to as a
kernel. As part of the hardware process, fragments are written to the framebuffer
as pixels, ready for display to the user.

Control over the execution of the process remains with the CPU, since the
CPU must instigate any instance of the stream operations. This is achieved
by rendering a quadrilateral, which passes four vertices that bound the stream
output, causing an instance of the kernel to be invoked for each element within
the output stream. In our implementation we re-use the contents of the frame
buffer as input, which under the architecture of the GPU means passing it to
the fragment program as a texture.

The architecture of the graphics hardware is SIMD both as a vector processor
and as a stream processor. As a vector processor each instruction can operate on
up to four components of a vector simultaneously. As a stream processor the same
program, or kernel, is executed for every element in the stream concurrently.

4 GPU Implementation of the PLSOM

There are two strategies to parallelising the self-organising map - vectorisation
and partitioning [?] - and these essentially correspond to the two SIMD charac-
teristics just mentioned. Vectorisation is the use of a vector-processor to operate
on the (k-dimensional) components of each input in parallel. Partitioning of the
map is done to allocate different processors to different sections; on which they
can execute identical kernels. So by using graphics hardware we are well posi-
tioned to take advantage of both these optimisations. It should be possible to
extend the algorithm given below to a standard SOM with very little modifica-
tion: the only real difference is that way that the neighbourhood is chosen.

4.1 Self-Organising Map Kernels

We focus on a single weight update for the whole map, that is to say a single value
of t for Equations 1-6. This computation maps itself well to the stream paradigm
and requires three separate kernels which we denote computeDist<>,findMin<>
and updateWeights<>.

If we extract di = ||x(t)−wi(t)|| from Equation 1 and formulate it as a single
operation for the whole map, we have the distance vector d = ||x(t)−w(t)||, and
computeDist< x,w > becomes our first kernel. The weight update is also easily
treated as a stream operation using kernel updateWeights< w, c, ε >. Provided
c(t) is available for Equation 4 this approach should lead to significant speedup.
Therefore our main focus is to construct a kernel which can be used to find
arg mini(d) in an efficient manner.

Finding the maximum or minimum value of a set in parallel, and with only
localised knowledge of state, can be achieved by iterating many local finds on ever
smaller sets. This divide-and-conquer style of operation is termed a reduction

Input
Stream

Kernel Operation
findMin<.>

Output
Stream

min{a,b..i}a b c

d e f

g h i

Fig. 1. Reduction Kernels

operation in the GPGPU literature. There are a number of implementation issues
to be considered. With each iteration of the kernel operation we modify the
coordinates of the quad we render to reduce the bounds of the stream each
time. Eventually we are left with a one pixel buffer which is our desired value.
Each time the kernel executes, the stream output is copied from its destination
into a texture ready for input to the next stream operation. The kernel itself is
relatively simple: it gathers a small number of values from the input texture and
outputs the minimum value.

Given that our initial set size is N , we only require q = dlogηNe iterations,
where η is the size of the local sub-sets (and therefore the reduction factor). We
term this operation findMin< dj >, where dj represents the vector of values in
the input stream at iteration j, j = 1 . . . q, ie d1 = d and |dq| = 1 . The nature
of this reduction process is expressed in Figure 1.

4.2 Algorithm Analysis

Using these three stream operations leads to a concise algorithm:
1: d ← computeDist < x,w >
2: q ← ceil(logηN)
3: for all j ← 1, 2, . . . , q do
4: dj+1 ← findMin < dj >
5: end for
6: c ← dq

7: updateWeights < w, c, ε >

Assuming a number of processors equal to the number of nodes in the map, we
have two standard stream operations - computeDist<> and updateWeights<>
- with constant order time complexity, plus dlogηNe iterations of findMin<>,
which is essentially η compare instructions. This would result in a time com-
plexity T = ηdlogηNe which is O(logN).

However, in reality we have a limited number of processors, these being the
twelve parallel pixel shader pipelines on our GeForce 6800 graphics card. With
P processors our time complexity is

T (N) = k

⌈
N

P

⌉
+

q−1∑

i=0

η

⌈
ηi

P

⌉
(8)

where k is the number of (constant order) instructions in computeDist and
updateWeights combined. This is O(N/P) which demonstrates clearly the extent
to which partitioning parallelism is exploited. Until some point N >> P , we
should see roughly logN growth.

4.3 Higher Dimensions

Our treatment so far has ignored the issue of what happens when we have greater
than four dimensions. Arbitrary dimensions can be modelled using a 3D texture,
with 4 dimensions to each z coordinate. The winning node is now found using
a 2-step reduction. First the dimension distance is reduced to a scalar for each
node, then the 2D coordinate and scalar distance are reduced as above. In our
3D texture, the x,y dimension are the 2D SOM grid, the z dimension is all
the dimensions of that node. The graphics hardware’s two SIMD characteristics
are both utilised heavily in this situation indicating that similar performance
advantages can be expected. Future work will explore this avenue.

5 Training Speed on Various Platforms

In order to give an estimation of the benefit of using programmable graphics
hardware for PLSOM training we implemented the same training algorithm on 3
different platforms. In addition to a basic CPU implementation on a desktop and
a GPU implementation using an NVIDIA graphics card on that same machine,
we also tested a semi-parallelised implementation on a supercomputer.

– Target machine 1: A Coretech desktop with a 3.0 GHz Pentium 4 CPU
and 1G RAM. Compiler: MSVC running in debug configuration with no
optimisations. Operating system: Windows XP.
Graphics Hardware: Albatron GeForce 6800 with 12 parallel pipelines.

– Target machine 2: The Queensland Parallel Supercomputing Foundation
(QPSF) SGI Altix (64 bit) 3700 Bx2 supercomputer with 64 Intel Itanium
2 (1500Mhz) processors (although we only used 6 for our test) and 121 GB
RAM. Compiler: icpc, the Intel parallelising C++ compiler. Optimisation
level 3, parallelisation enabled. Operating system: 64-bit GNU/Linux.

For the test we trained an m-by-m node network with 2-dimensional input.
The map is presented with 1000 inputs that are randomly generated, uniformly
distributed in the unit square. The inputs are presented sequentially. The test
program was written in C++ for the two non-GPU versions, a combination of
C++ and Cg for the graphics implementation, and the code was functionally
identical. Table 1 shows the execution times for 1000 map updates on these
platforms.

Figure 2 shows the execution time growth rates of the PLSOM on the su-
percomputer and the GPU. This observed data indicates an time complexity of
O(N)) for the GPU and the supercomputer after a critical point, however prior

number of Desktop Super Graphics
nodes computer computer card

729 3.93 0.24 1.67

4096 22.03 0.59 1.71

6561 36.37 1.18 1.72

16384 88.42 2.95 1.72

59049 317.80 11.51 3.32

236196 1278.04 69.26 6.65

531441 - 157.13 14.51

1048576 - 291.67 31.43

Table 1. Execution Times 1000 Map Updates (Seconds)

to this the GPU exhibits logN growth as suggested in section 4.2. The parallelism
of the graphics card is unable to overcome certain hardware-specific overheads
until a certain point, however it is never slower than the desktop implementation
in our experiments and it quickly overtakes the supercomputer performance. At
a map size of 1024 ∗ 1024 nodes we can see a 90% performance improvement of
the GPU over the supercomputer.

10
3

10
4

10
5

10
6

5
10
20

50

100

150

200

250

PLSOM Performance, 2D−2D Mapping

Number of Nodes

T
im

e
to

 C
om

pl
et

e
10

00
 M

ap
 U

pd
at

es
 (

s)

QPSF SGI Altix
GeForce 6800

Fig. 2. Execution time growth rates

This performance superiority cannot be directly translated to high dimen-
sional data sets, however as we mentioned in section 4.3 both forms of paral-

lelism would be heavily used in such an implementation and we plan to look at
this in future work.

6 Discussion and Conclusion

In this paper we have described an implementation of the Parameter-Less Self
Organising Map on commodity graphics hardware and provided an empirical per-
formance analysis. As noted by [?] a desirable application of high speed training
and re-training of the self-organising map is interactive analysis of web search
results. Given this, inexpensive commodity graphics hardware is an ideal way to
provide the computational power required, especially given that while the GPU
is busy, the CPU is free for other tasks. Additionally, the visualisation capabil-
ities of graphics hardware are ‘on-tap’ during the computational process - the
execution times for the graphics card included displaying the weight matrix to
the screen every ten iterations. This combination of superior visualisation power
and what is essentially a tool for visualising higher-dimensional spaces seems
synergetic.

