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Abstract. This paper proposes a visualization technique to support the
modelling and management of large business process specifications. The
technique uses a set of criteria to produce views of the specification that
exclude less relevant features. The proposed approach consists of three
steps: assessing the relevance of nodes, reducing the specification, and
presenting the results. Algorithms and methods are presented for these
steps along with examples.

1 Introduction

There are multiple graphical business process modelling techniques such as EPC
(Event-driven Process Chain) and YAWL (Yet Another Workflow Language), for
more see [1] pp.3. Graphical business process modelling languages are elegant
solutions because the user can visually interpret the process. However, as the
process grows in size the graph becomes difficult to deal with. This problem is
well known to fields that use graphical languages [2]. While zooming initially
solves the issue of gaining an overview perspective, there is a finite limit to the
amount of zooming that can be performed. Screen real estate is limited and the
specification given in Figure 7, for example, does not fit on a 1280x1024 display.

Features requiring controlled visual processing, such as interpretation of text,
are dominant in business process modelling languages. The ability of controlled
visual processing to be interpreted is particularly affected as more information
is added. Automatic processing features, such as colour, find limited use in spec-
ification languages such as EPC and YAWL. In the case of EPC, where colour
is used, colour does not contribute to the overall structural interpretation of the
graph.

The traditional solution to this has been to allow decomposition of tasks to
sub-specifications. This approach requires that the user construct a deliberate
hierarchical structure to support what is in essence a multi-resolution model.
Another approach is conversion of the information into another format, but this
loses the benefits of user familiarity, requiring users to learn a new representation.

For large models to be understood it is necessary that the level of controlled
processing required is reduced. The approach explored in this paper is to provide



views of the specification that exclude less relevant information. This filtering
of information produces a model with lower complexity, but introduces a degree
of uncertainty. This uncertainty reflects the lower resolution model’s potential
for representing variations of the original model. This use of uncertainty mimics
human reasoning [3], where decisions are made on relevant information instead
of relying upon a detailed and precise model.

The discipline of 3D computer graphics has conducted extensive research
into level of detail algorithms [4]. These algorithms construct simplified repre-
sentations of a full scale model. The purpose of simplification is to maintain a
representation of the model that is recognisable while reducing the processing
and data requirements of the system (see Figure 1). Typically, lower level detail
versions of a model are substituted for the object when it is further away from
the observer, where the change is indiscernible.

Fig. 1. The structure of the 3D model of a plane is evident, even at four different levels
of detail. (from [5])

The approach in this paper is motivated by the success of level of detail
methods in the 3D graphics field. The proposal is a simplification approach for
business process specifications by constructing a reduced graph that captures
the most relevant information of the original graph. This technique avoids the
intuitiveness issue mentioned previously by using the same graphical notation as
the original graph. However, the reduced graph must also preserve the semantics
of the original graph to avoid being misleading.

This reduction process presents an opportunity to not only preserve the
overview of structure, but to actually provide different views of the same graph
according to different interests of the user. Reduction should therefore be di-
rected by criteria that represent the interest of the user, which is governed by
the task of the user. For example, the user may wish to see only those processes
that are involved in a possible dead-lock situation, or alternatively the user may
wish to see nodes that are relevant to a text search term. A graphical search
engine can be constructed by creating reduced views of business process models
according to search terms. This effectively allows the user to browse the business
process much like using a web search engine.



Fig. 2. Prototype for a system that allows users to query specifications in a similar
manner to a web search engine.

To expand on the example of the search engine, consider the prototype1

shown in Figure 2. The user is able to enter a search term that is used to direct
the criterion function. The resulting display is a reduced view of the specification
that includes only the most relevant nodes and their relationships to one another.
Should the user enter a different term, the process is repeated, starting from the
original specification every time. No changes are made to the original specifi-
cation, instead a temporary reduced view of the specification is constructed for
display to the user. Such a tool might be incorporated into the modelling pack-
age, to aid the user’s understanding and construction of large or complicated
specifications.

The mechanics of the reduction algorithm is based on first determining a
relevancy factor for each node, followed by analysing the paths through the
process model and removing the least relevant nodes. Once the graph has been
reduced it must be prepared for display, which requires an aesthetically pleasing
and intuitive layout for the graph.

Section 2 provides background material, section 3 details the techniques and
approach, while section 4 provides a summary of the work and points to future
work.

1 More information will be made available through http://www.bpmquery.com



2 Background

2.1 Workflow specifications

Business process management (BPM) is about the management of business
processes. BPM is receiving increased attention due to improvements in infor-
mation systems [6]. Workflow management systems (WFMS) are computerised
tools to support BPM and workflow specifications drive the WFMS.

Workflow specifications can be observed from different perspectives. The
control-flow perspective describes the order of execution of tasks, that is it de-
scribes task dependency relationships. Tasks can either be atomic or decompose
to sub-specifications, which creates a hierarchical view of the process. The data

perspective deals with the flow of objects, such as documents, and can overlay
the control flow perspective. The resource perspective links tasks to the resources
required to perform them. The operational perspective details the practical exe-
cution of tasks, such as the underlying software services involved.

There are a number of workflow specification languages, both commercial and
academic (see [1]). WF-nets were proposed [6] as a specification language based
on Petri-nets. The advantage of using Petri-nets is that they provide a formal
basis, which enforces precise definition. The disadvantage to this approach is
that some patterns do not map well onto high-level Petri-nets [7]. YAWL [7]
is a progression from WF-nets that overcomes these disadvantages by adding
mechanisms to support the workflow patterns in [8]. The YAWL environment is
freely available2.

The YAWL environment currently provides support for the control perspec-
tive, data perspective, and the operational perspective. The formal underpin-
nings and expressiveness of YAWL make it an ideal choice for visualization re-
search. The former allows for a formal analysis of techniques, while the latter
implies that successful development of techniques for YAWL will translate to
other workflow specification languages.

The constructs of the YAWL language are given in Figure 3.

2.2 Visualization

A visualization program is analogous to a looking glass through which the user
inspects an underlying system. In other words, it is the “bringing out of meaning
in data” [9]. Examples of visualization techniques are given in [9]. Traditionally,
visualization research has produced visualization techniques that were classified
according to data type [10–13]. However, recent opinion has criticised this ap-
proach as producing “showy” images that are insufficiently useful to the user [14].

Suggestions for overcoming this include working more closely with the appli-
cation domain [14] and creating task-oriented visualization systems [15]. Task-
oriented visualizations are driven by the task of the user rather than the com-
position of the underlying data. The user-centric approach of task-oriented vi-

2 The YAWL environment is available through http://www.yawl-system.com



Fig. 3. Constructs of the YAWL language [7]

sualization requires an understanding of the user’s requirements. This in turn
requires closer cooperation with the application domain.

Visual elements can be classified into two categories [12]: automatic visual
processing elements are easily interpreted and include colour, shape, and width,
whereas controlled visual processing requires additional user interpretation and
include features such a text, icons, and arrows.

2.3 Mesh Simplification Algorithms

Real-time computer graphics applications use 3D mesh structures to model 3D
objects. The mesh structure consists of a collection of convex surfaces defined by
their vertices. The visible surfaces of the mesh are rasterized, to produced a raster
image, which is subsequently shown to the user. To maintain interactive frame
rates, this process must be performed for every visible 3D object, in under 83
milliseconds. The sheer mesh complexity required for acceptably accurate models
creates processing challenges and has lead to the creation of novel techniques to
reduce complexity.

Simplification algorithms reduce the mesh complexity while maintaining the
important characteristics of the model. These techniques are used to reduce
computation requirements for uses such as fluid flow simulation, shadow volume
extrusion, and particularly preserving visual appearance. Several techniques ex-
ist (see [4]), which can be placed into two broad categories: decimation and
collapse. Decimation techniques remove numerous elements and reconstruct sur-
faces over the holes this creates, whereas collapse methods incrementally reduce
the mesh through atomic operations.

The progressive mesh [5] is a collapse technique designed for progressive
transmission of mesh data. Partially received progressive meshes can be displayed
to give the user a low resolution model and the model is refined as more data
is received. The edge collapse technique used has an inverse operation, called a



vertex split. Given vertex split information, in the correct order, the mesh can
be reconstructed to the desired level of detail.

All algorithms make use of an error metric to choose the appropriate reduc-
tions. The error metric varies depending upon the intended application of the
simplified mesh. For example, the error metric used to generate the appearance
preserving meshes given in Figure 1 uses an energy function that measures the
squared distance of the proposed vertices to the original mesh, tempered by a
spring function to distribute collapses across the mesh [5]. The interested reader
is directed to [4] for detailed treatment of various error metrics.

2.4 Other Related Work

Researchers have previously identified comprehension issues with large concep-
tual schemas. Their solution builds abstractions for conceptual schemas through
recursive derivation of simplified representations [16]. Each derived represen-
tation is termed an abstraction level. The abstraction mechanism introduces
an importance rating for roles. Objects are weighted according to the sum of
their anchored role weights. Object weights that exceed the current abstraction
level threshold are identified as important and included in the abstraction level,
whereas a series of production rules are used to remove the remaining objects
and their associated roles.

3 Approach

This section details the approach including the underlying algorithms. Section
3.1 describes methods for assessing the relevance of nodes, section 3.2 provides
algorithms for reducing graphs based on the relevance of nodes, and section 3.3
discusses methods for presenting the results to the user.

The aim is to construct a reduced representation for a given input specifi-
cation. Two methods are proposed to achieve this construction, both of which
are guided by a criterion function that reflects the requirements of the user. The
reduced graph is then presented to the user, who may alter their requirements or
request a different level of detail in response. The input specification is hereafter
referred to as the original graph. This process is called the visualization process
and is illustrated in Figure 4.

The visualization process outlined in this paper is:
1: Calculate the relevance of each node according to the criteria
2: Reduce the graph by either the collapse or decimation methods
3: Display the graph to the user for inspection

The original graph is a graph G(V, E), where each node v ∈ V is either a
condition or a task. There is always one start condition, s, and one end condition,
t. For the purposes of this paper, a completed graph has at least one task and
every node v can be reached on a directed path from s to t. In other words,
if p(vi, vj) ⊂ E returns the edges on a directed path from vi to vj , ∀v ∈ V :
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Fig. 4. Visualization support using the reduced graph approach

p(s, v) 6= ∅ ∧ p(v, t) 6= ∅. Any valid workflow specification, which must be a
completed graph, can be abstracted to the level start → P → end (see Figure
5), which is the minimum valid specification possible.

Fig. 5. Any valid process model can be abstracted to the level of a single task P , which
stands for “execute the process”

During the modelling process, where the user is still building the process
specification, the graph may not necessarily be completed. Both of the graph
reduction strategies proposed here support these partial graphs, however, the
criterion function requires additional care to ensure that it also supports partial
graphs. Partial graphs are those graphs where not all nodes can be reached from
the start condition, or the end condition is not reachable from any node, or both.
In practice the end condition is typically unreachable in a partial graph.

The aim is to build a reduced graph GR(VR, ER) for an original graph
G(V, E), such that VR ⊂ V . A relevance factor, ǫ, is calculated by ǫi = C(vi) for
each node vi ∈ V , where C is the criterion function C : V → IR. C orders the
nodes according to their relevance to the task of the user.

3.1 The Criterion Function

The criterion function is formulated according to the task of the user. For ex-
ample, if the task of the user is to identify deadlocks, then neighbourhood nodes
that contribute to the deadlock state are of greater interest to the user than



the overall graph structure. Contrast this with a user that wishes to see only
those nodes that contain a particular search term and closely related nodes.
Consequently we assign each task a different criterion function, whose effects
dictate the degree to which the preservation of structure overrides the relevance
of neighbouring nodes.

Structural importance Preservation of the overall structure of the graph is
achieved through identifying important control flow nodes. The control perspec-
tive defines the flow of control through the graph.

A promising heuristic structural importance measure is based on the con-
nectedness, χ : V → ZZ, of the node and its estimated position in the routing
hierarchy, φ : V → ZZ. φ returns an integer calculated by counting the number
of splits and subtracting the number of joins on the shortest path from s to the
node, excluding this node. χ is simply the sum of all connected nodes to this
node. ǫ is calculated as follows:

ǫi =
χ(vi)

min(φ(vi), 1)

An example application of the heuristic structural importance criteria is
shown in Figure 8.

Text Retrieval Text retrieval algorithms perform best when there are a number
of words in a document. Business process models rarely include much text for
each node, limiting the applicability of traditional text retrieval ranking methods.
However, the context for a node can be viewed as the neighbouring nodes.

One approach to take advantage of this neighbourhood is to introduce a no-
tion of relevance flow, which increases the relevance of nearby nodes. The amount
of the contribution drops off with distance travelled including loops. The amount
of the drop off is arbitrary and a constant rate, β, gives adequate results. The
algorithm for graph G(V, E) is as follows:

1: Find ST , the set of all nodes that contain the search term.

2: For each v ∈ ST ,

3: Initialise the contribution value, c← 1.

4: Initialise the neighbourhood node set, SN ← {v}.
5: While c > 0 and SN 6= ∅,
6: update ǫ for all neighbours: ǫ′(n)← ǫ(n) + c for all n ∈ SN .

7: reduce future contributions: c′ ← c− β.

8: update neighbour list: SN ← {n ∈ SN : w ∈ V, {nw} ∈ E}.
9: End while.

10: End for.

An example application of the text retrieval criteria is shown in Figure 9.



Graphical considerations The business process model is a graphical represen-
tation, meaning that the modeller has assigned the positions of the nodes. These
positions hold meaning, for example, invoicing related tasks will commonly be
grouped together spatially. This meaning can be included in the criterion func-
tion by measuring the relative change in the position of a node.

3.2 Business Process Model Reduction

This section describes model transform techniques that produce reduced models
based on the criterion function.

The reduced graph must preserve the semantics of the original graph to avoid
being misleading. Semantics are preserved if all possible orders of execution of
the remaining nodes are unchanged from the original graph. In other words, the
dependencies between nodes cannot change.

Two methods are described: the collapse method, which incrementally re-
duces the graph until a threshold value for ǫ is reached, and the decimation

method, which removes all nodes below a threshold value and reconstructs the
paths between remaining nodes.

The threshold value is assigned by the user and is called the alpha-cut value,
denoted α.

Collapse The principle behind the collapse technique is to incrementally reduce
the graph. Each incremental change in the graph is selected on the basis of
removing the least relevant (minimum ǫ) node from the current model GR

n to
produce next GR

n+1, according to conditions described next.

A non-join node is selected for removal at each increment. A split node is
only selected if its predecessor is a task. The removal is performed by merging
the node with its predecessor. Figure 6 illustrates how this is done under various
circumstances. Split and join decorators are removed from a node when a single
inflow or outflow, respectively, results from the collapse, yielding a sequence
operation. Given the selection pattern under the heading ‘Original YAWL’ in
Figure 6, the first selected node is y, which is merged with a to produce the
version shown under the heading ‘Reduced (introduce ǫ)’. Subsequently, x is
chosen and merged with a to produce the sequence pattern of a→ b.

One advantage of the collapse technique is that the order of collapses can be
stored. The inverse operation of a collapse, called a node-split, can then be per-
formed to restore GR

n+1 to GR
n. Another advantage is that since collapses relate

one level of detail to another, the presentation can animate changes to increase
interpretability of the technique. The calculation of collapses can be performed
in a pre-processing step and since the actual collapse operation requires minimal
processing, the visualization system can allow interactive navigation between
various levels of detail.

An example application of the collapse algorithm is shown in Figure 8.
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Fig. 6. Selected reduction patterns for the collapse technique

Decimation The decimation approach selects a number of nodes that will be
included in GR. All other nodes are removed. The original graph is then analysed
to reconstruct the paths between the remaining nodes. Nodes are selected for
inclusion if their relevance is α or higher. A concurrent path is defined as any
path from one node to another where a split exists on the path that was not

synchronised before reaching the destination node. A direct path from x ∈ S to
y ∈ S is a path from x to y without going through any other element of S.

The decimation-construction algorithm is given as follows:

1: Initialise the set of included nodes, SI ← {s, t}
2: add all vi where C(vi) > α to SI .
3: Initialise output edges, ER ← ∅
4: For x ∈ SI , y ∈ SI , x 6= y,
5: V ′

R ← VR ∪ {y}
6: if there is a direct path from y to y, E′

R ← ER ∪ {yy}
7: if there is a direct path from x to y, E′

R ← ER ∪ {xy}
8: if a concurrent path {x..y} includes any z ∈ SI (z 6= x 6= y),



add the offending split node(s) before x and y to SI ,

add the matching join node(s) after x and y to SI .

9: End for

In practice, the detection of concurrent paths in step 8 is implemented by
performing a search for elements of SI − {x} in the original graph G starting
at x and following the directions of edges in E. Split nodes will spawn multiple
paths leading away from them, whereas join nodes reunite paths back together.
Since the graph is cyclic, the search must keep a set of traversed edges to ensure
they are not pursued again. Any path is terminated if it reaches y, or there are
no untraversed outflows to follow. If any path finds an element of SI − {x, y},
the path is recorded then terminated. The search is terminated when all paths
terminate. The offending split nodes are found by backtracking recorded paths
until a forward path to y is found. The matching join nodes are found using
a similar approach that starts a path at every element of SI − {x} that was
previously found, including y. The algorithm continues until all paths terminate
or there is a single path. It records join nodes that combine the paths along the
way.

An example application of the decimation algorithm is shown in Figure 9
where the task ‘Negotiate on claim’ is an offending split node and ‘Complete
settlement documentation’ is the matching join node.

3.3 Presentation Techniques

This section addresses the presentation of the reduced graph to the user. The
reduction techniques described previously produce a reduced graph, but do not
adjust the position of the nodes. The role of the presentation algorithm is to
produce a visually pleasing layout of the reduced graph while preserving the
intuitiveness of the result.

The original position of the nodes was chosen by the modeller and holds
associated meaning. Whenever automated changes to the graph are performed,
it is necessary to preserve the user’s mental map [17]. The relative position of
nodes to one another should not alter considerably, since this would also reduce
the ability of users to relate the reduced graph to the original graph.

The method used in figures 8 and 9 models the edges in ER as springs
that seek to achieve unit length. Nodes also carry a localised repellent force that
pushes nodes apart and keeps them from overlapping. The system is then allowed
to stabilise, which will occur when all edges have contracted until the repellent
force of each node equals the spring force on its edges. This stabilisation can be
animated, which adds to the visually intuitive nature of the reduction process.
This animation is improved if the visualization is scaled such that the extents of
the graph fit on screen.

To improve fidelity to the original graph another force can be modelled as an
invisible spring between the node and its relative position in the original graph,
called the scaled original position. The scaled original position Ps(i) of node i is



the position in the original graph Po(i) scaled by the ratio of the extents of the
graphs γ:

Ps(i) = γPo(i)
where γ is given by the ratio of the extents of the current graph Ec to the

extents of the original graph Eo:
γ = Ec

Eo

4 Conclusions and Future Work

This paper proposed the use of a visualization process to support the under-
standing of large business process specifications. The process was divided into
three steps that together provide the user with a simplified specification that is
relevant to the task of the user.

The visualization process can be used to allow users to browse the speci-
fication in a similar manner to the way in which the web is explored through
web search engines. The techniques presented in section 3 work with partial
graphs, allowing the process to be used during modelling of the business process
specification.

The notion of a criterion function allows for rich and flexible expression
of relevance. Section 3.1 provided two criterion functions: one favouring the
overall structure of the graph and another for locating nodes related to a text
search term. Section 3.2 described two methods for actually building the re-
duced graphs: the collapse technique, which is incremental, and the decimation

technique. Section 3.3 covered aesthetic and interpretability issues involved with
presenting the reduced graph to the user. Two examples were given in figures 8
and 9 for the original graph in figure 7.

Future work would explore additional criteria functions. User interaction with
the system can also be extended, such as to allow users to ‘brush’ over nodes to
reveal their neighbourhood. The applicability of this visualization process is not
limited to modelling large processes. It can be extended to work with run-time
data or process mining results.
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Fig. 7. An example workflow specification that is too large to fit on a computer screen.



Fig. 8. A reduced version of specification graph in Figure 7 showing structure built
using the collapse approach (α = 2.5).

Fig. 9. A reduced version of the specification in Figure 7 for the text query ‘legal’ built
using the decimation approach (β = 0.5, α = 1).


