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This paper examines the transmission of returns and volatility among eight major art markets.  The art indices 
included in the analysis are Contemporary Masters (CM), 20th Century English (TE), 19th Century European 
(NE), French Impressionist (FI), Modern European (ME), Modern US Paintings (US), Old Masters (OM) and 
Surrealists (SR). A multivariate generalised autoregressive conditional heteroskedasticity (MGARCH) model is 
used to identify the source and magnitude of spillovers. The results indicate the presence of large and 
predominantly positive mean return and volatility spillovers, though the spillovers between art markets are not 
homogeneous. 

I. INTRODUCTION 

It goes without saying that art markets differ substantially from financial markets. Most art 

markets would appear to be characterised by product heterogeneity, illiquidity, market 

segmentation, information asymmetries, behavioural abnormalities, and monopolistic price 

setting. And there is no doubting the fact that a substantial component of the return from art 

investment is derived not from financial returns rather from intrinsic aesthetic qualities. 

However, in recent years it has been widely accepted that most art markets have moved closer 

to the ideals set by financial markets. Turnover has increased dramatically in a globalised 

setting, information on alternative art investments is now more accessible, and the publishing 

and dissemination of catalogues has increased the amount of information available to both 

buyers and sellers.   

The growing interest in the economics of art markets [see, for instance, Pesando (1993), 

Goetzmann (1993), de-la Barre et al. (1994), Frey and Eichenberger (1995a; 1995b), Curry 

(1998), Frey and Pommerehne (1998), Flores et al. (1999) and Pesando and Shum (1999)] has 
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prompted a number of studies to examine the mechanism by which art market returns are 

transmitted amongst each other, analogous to the well-investigated linkages among financial 

markets. Most art market studies have relied upon zero-order correlation analysis and just a 

few studies of market interdependencies have employed Granger-causality testing of market 

indices [see, for example, Ginsburgh and Jeanfils (1995) and Chanel (1995)]. No work to date 

into art market interrelationships has availed itself of the sizeable advances in modeling that 

take into account the time-varying properties of art market data. To meet this deficiency, this 

note examines the relationships between eight major art markets using a multivariate 

generalised autoregressive conditional heteroskedasticity (MGARCH) approach (Engle and 

Kroner 1995; Gallagher and Twomey 1998; Dunne 1999). 

II. DATA AND DESCRIPTIVE STATISTICS 

The data employed in the study is composed of indices for eight major categories of paintings, 

namely: Contemporary Masters (CM), 20th Century English (TE), 19th Century European 

(NE), French Impressionist (FI), Modern European (ME), Modern US Paintings (US), Old 

Masters (OM) and Surrealists (SR). All art index data is obtained from UK-based Art Market 

Research (AMR) and encompasses the period January 1976 to February 2001. All monthly 

index data is specified in US dollars with the return in market i represented by the 

continuously compounded return or log return of the index at time t. Selected descriptive 

statistics of the monthly returns for the eight art indexes are presented in Table 1.  

<TABLE 1 HERE> 

Table 1 presents the summary of descriptive statistics of the annualised returns for the 

eight art markets. Samples means, medians, maximums, minimums, standard deviations, 

skewness, kurtosis and the Jacque-Bera statistic and p-value are reported for the annualised 

art returns. The highest mean annual returns are in Contemporary Masters and French 

Impressionist and the lowest are in Modern European and Surrealists. Of the eight art 

markets, 19th Century European and Old Masters are the least volatile, while French 

Impressionist and Modern US Paintings are the most volatile. Using the coefficient of 

variation (standard deviation divided by the mean return) the degree of risk in relation to the 

mean return is lower for Contemporary Masters and Old Masters than Modern European and 

Surrealists. Jarque-Bera statistics fail to reject the null hypotheses that the monthly 
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distributions of returns are normally distributed for all markets with the exception of French 

Impressionists.  

III. MULTIVARIATE GARCH MODEL 

The following model is developed to examine the joint processes relating the monthly rates of 

return for the eight art markets. The sample period is chosen on the basis that it represents the 

longest common time period over which data for most of the major art markets is available. 

The following conditional expected return equation accommodates each market’s own returns 

and the returns of other markets lagged one period: 

t tt εARαR ++= −1  (1) 

where Rt is an n × 1 vector of weekly returns at time t for each market and ( )tt-t H~NIε ,0
1

. 

The n × 1 vector of random errors, εt is the innovation for each market at time t with its 

corresponding n × n conditional variance-covariance matrix, Ht. The market information 

available at time t - 1 is represented by the information set It-1. The n × 1 vector, α, represent 

long-term drift coefficients. The elements aij of the matrix A are the degree of mean spillover 

effect across markets, or put differently, the current returns in market i that can be used to 

predict future returns (one month in advance) in market j. The estimates of the elements of the 

matrix, A, can provide measures of the significance of the own and cross-mean spillovers. 

This multivariate structure then enables the measurement of the effects of the innovations in 

the mean returns of one series on its own lagged returns and those of the lagged returns of 

other markets.  

For the purposes of the analysis, the BEKK (Baba, Engle, Kraft and Kroner) model is 

employed, whereby the variance-covariance matrix of equations depends on the squares and 

cross products of innovation εt and volatility Ht for each market lagged one period. One 

important feature of this specification is that it builds in sufficient generality, allowing the 

conditional variances and covariances of the stock markets to influence each other, and, at the 

same time, does not require the estimation of a large number of parameters (Bollerslev 1990; 

Bollerslev et al. 1992; Karolyi 1995). The model also ensures the condition of a positive 

semi-definite conditional variance-covariance matrix in the optimisation process, and is a 

necessary condition for the estimated variances to be zero or positive. The BEKK 

parameterisation for the MGARCH model is written as: 
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GHGCεεCBBH tttt 11 −− ′+′+′=  (2) 

where bij are elements of an n × n symmetric matrix of constants B, the elements cij of the 

symmetric n × n matrix C measure the degree of innovation from market i to market j, and the 

elements gij of the symmetric n × n matrix G indicate the persistence in conditional volatility 

between market i and market j. This can be expressed for the bivariate case of the BEKK as: 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
′

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡′

⎥
⎦

⎤
⎢
⎣

⎡
+′=⎥

⎦

⎤
⎢
⎣

⎡

−−

−−

−−−

−−−

2221

1211

1221121

112111

2221

1211

2221

1211
2

121112

1211
2

11

2221

1211

2221

1211

gg
gg

HH
HH

gg
gg

cc
cc

cc
cc

BB
HH
HH

tt

tt

ttt

ttt

tt

tt

εεε

εεε
 (3)  

In this parameterization, the parameters bij, cij and gij cannot be interpreted on an individual 

basis: “…instead, the functions of the parameters which form the intercept terms and the 

coefficients of the lagged variance, covariance, and error terms that appear are of interest” 

(Kearney and Patton 2000: 36). With the assumption that the random errors are normally 

distributed, the log-likelihood function for the MGARCH model is: 

( ) ( ) ( )∑
=

−+−+−=
T

t
tt

'
tt εHεHπTnθL

1

1ln
2
12ln

2
  (4)  

where T is the number of observations, n is the number of markets, θ is the vector of 

parameters to be estimated, and all other variables are as previously defined. The BHHH  

(Berndt, Hall, Hall and Hausman) algorithm is used to produce the maximum likelihood 

parameter estimates and their corresponding asymptotic standard errors. Overall, the proposed 

model has sixty-four parameters in the mean equations, excluding the eight constant 

(intercept) parameters, and thirty-five intercept, thirty-five white noise and thirty-five 

volatility parameters in the estimation of the covariance process, giving one hundred and 

seventy-seven parameters in total. The Ljung-Box Q statistic is used to test for independence 

of higher relationships as manifested in volatility clustering by the MGARCH model [Huang 

and Yang 2000:329]. This statistic is given by: 

( ) ( ) ( )∑
=

−−+=
p

j
jrjTTTQ

1

212   (5) 

where r(j) is the sample autocorrelation at lag j calculated from the noise terms and T is the 

number of observations. Q is asymptotically distributed as χ2 with (p - k) degrees of freedom 
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and k is the number of explanatory variables. The test statistic in (5) is used to test the null 

hypothesis that the model is independent of the higher order volatility relationships. 

IV. EMPIRICAL RESULTS 

The estimated coefficients and standard errors for the conditional mean return equations are 

presented in Table 2. All art markets examined exhibit significant own mean return spillovers 

with values ranging from 0.3644 (OM) to 0.5675 (NE). Just four of the eight art markets, 

namely CM, OM, NE and FI exhibit significant mean return spillovers from lagged returns in 

other markets. The mean return for CM is influenced by its own lagged returns and those of 

SR, OM is influenced by its own lagged returns and also CM and NE, the mean return for NE 

is influenced by the lagged returns in CM and ME along with its own lagged returns, and FI is 

influenced by OM and its own lagged returns.  The mean returns in ME, SR, TE and US are 

influenced only by their lagged returns.  

<TABLE 2 HERE> 

Importantly, the mean return spillovers from lagged art markets are not homogeneous. For 

example, a one percent increase in the lagged NE art market will Granger-cause the OM art 

market to increase by 0.103 percent over the following month, while the lagged return in CM 

Granger-causes an increase in the order of 0.119 percent. However, in reference to NE a one 

percent increase in CM will Granger-cause a 0.234 percent increase while ME will Granger-

cause a 0.3803 percent increase. While innovations from most of the markets do get 

eventually incorporated into other markets with a lag, across all markets it is generally found 

that the magnitudes of causation for own mean return spillovers are larger than those for the 

cross mean return spillovers. This suggests that art markets, at least those examined in the 

current analysis, are relatively isolated from each other in terms of mean return spillovers. 

Table 3 presents the estimated coefficients for the variance covariance matrix of equations. 

The conditional variance covariance equations effectively capture the volatility and cross 

volatility spillovers among the eight art markets. These quantify the effects of the lagged own 

and cross innovations and lagged own and cross volatility persistence on the present own and 

cross volatility of the eight art markets, indicating the presence of a weak ARCH effect, but a 

strong GARCH effect. There is then little evidence of innovation spillover effect but strong 
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evidence of conditional volatility. Overall, there is strong evidence of time-variation in market 

risk.  

<TABLE 3 HERE> 

The coefficients of the variance covariance equations are insignificant for own and cross 

innovations and significant for own and cross volatility spillovers to the individual returns for 

all art markets. This suggests the presence of weak ARCH effects. Own-innovation spillover 

effects range from 0.0093 (ME) to 0.0975 (CM). In terms of cross-innovation effects in the art 

markets, past innovations in TE have the greatest effect on future volatility in CM from 

among past innovations in other art market returns. However, in the case of TE and US past 

innovations in CM have the greatest influence on future volatility. 

In the GARCH set of parameters, seventy-three percent of the estimated coefficients are 

significant. For NE the lagged volatility spillover effects range from 0.61 for TE to 0.94 for 

OM. This means that past volatility shocks in OM have a greater effect on future NE volatility 

over time than past volatility shocks in other art returns. Conversely, in US the past volatility 

shocks range from 0.31 for SR to 0.90 for NE. In terms of cross-volatility for the GARCH 

parameters, the most influential market would appear to be NE. That is, past volatility shocks 

in the NE art market have the greatest effect on future volatility in the remaining seven art 

markets. 

The sum of the ARCH and GARCH coefficients measures the overall persistence in own 

and cross conditional volatility. There is evidence of a weak own persistent volatility of 

0.1078 for ME while the remaining seven markets exhibit strong own persistent volatility 

ranging from 0.8723 for TE to 0.9521 for CM. Thus, CM has a lead-persistence volatility 

spillover effect on the remaining markets. The cross-volatility persistence spillover effects 

range from 0.3934 for SR to 0.9697 for NE to US. Finally, the Ljung-Box (LB) Q statistics 

for the standardised residuals in Table 4 reveal that all the art markets are significant (all have 

p-values of less than .05) with the exception of US (a p-value of 0.6891). Significance of the 

Ljung-Box (LB) Q statistics for the return art series indicates linear dependences due to the 

strong conditional heteroskedasticity. The seven art markets with Ljung-Box statistics at 12 

degrees of freedom are significantly greater than the Ljung-Box for US. These Ljung-Box 

statistics suggest a strong linear dependence in seven out of eight art markets estimated by the 

MGARCH model. 
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<TABLE 4 HERE> 

V. CONCLUSION 

This paper examines the transmission of art returns and volatility among eight major art 

markets during the period 1976 to 2001. A multivariate generalised autoregressive conditional 

heteroskedasticity (MGARCH) model is used to identify the source and magnitude of 

spillovers. The estimated coefficients from the conditional mean return equations indicate that 

all eight art markets exhibit significant own mean return spillovers. Own-volatility spillovers 

are also generally higher than cross-volatility spillovers for all markets, indicating the 

presence of strong GARCH effects. Strong own and cross-persistent volatility are also evident 

in the art markets examined.  
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Table 1. Descriptive statistics of annual returns for eight art markets, 1976-2001   

 CM FI ME NE OM SR TE US 
 Mean 4.2090 3.7045 2.1398 2.4645 2.8132 2.0307 2.5541 3.3180 
 Median 3.9766 6.0617 2.7789 1.3484 3.1091 3.0168 3.2300 1.5463 
 Maximum 29.7088 34.2042 21.6283 17.0330 18.2180 22.6799 13.4611 26.4745 
 Minimum -15.2562 -40.5108 -23.7159 -16.0957 -8.1525 -29.3774 -12.1199 -27.4104 
 Std. Deviation 10.5006 13.6610 11.2592 7.1423 7.5800 11.2977 7.6386 12.7691 
 Skewness 0.4858 -0.9286 -0.4300 -0.0624 0.3586 -0.6922 -0.2471 -0.1118 
 Kurtosis 3.4723 5.9786 2.5919 3.5388 1.9856 3.8568 2.0100 2.8911 
 CV 2.4948 3.6876 5.2618 2.8981 2.6944 5.5636 2.9908 3.8485 
 Jarque-Bera 1.2643 13.3475 0.9818 0.3313 1.6718 2.8718 1.3265 0.0670 
 p-value 0.5314 0.0013 0.6121 0.8473 0.4335 0.2379 0.5152 0.9670 
CM – Contemporary Masters, FI – French Impressionists, ME – Modern European, NE – 19th Century 
European, OM – Old Masters, SR – Surrealists, TE – 20th Century English, US – Modern US Paintings. 

Table 2. Estimated coefficients for conditional mean return equations 

 
Estimated 
coefficient 

Standard 
error 

Estimated 
coefficient 

Standard 
error 

Estimated 
coefficient 

Standard 
error 

Estimated 
coefficient 

Standard 
error 

 CM (i  = 1) FI (i = 2) ME (i = 3) NE (i = 4) 

CONS. 0.0367 0.1116 0.0334 0.1529 -0.0487 0.1550 0.0055 0.0780 
ai1 ***0.5083 0.1266 0.0166 0.0845 0.0438 0.1213 *0.2341 0.1749 
ai2 0.0815 0.1991 **0.4525 0.1407 -0.1255 0.1761 0.3682 0.3232 
ai3 0.0405 0.1416 -0.0810 0.1345 **0.5229 0.1495 *0.3803 0.2757 
ai4 0.0309 0.0780 0.0083 0.0748 0.0015 0.0884 ***0.5675 0.1529 
ai5 -0.0334 0.0803 *0.1487 0.0905 0.0399 0.0884 0.0793 0.1621 
ai6 *0.1769 0.1182 -0.0200 0.1199 0.1103 0.1460 0.0865 0.2718 
ai7 0.0712 0.1118 -0.0314 0.1201 -0.0648 0.1389 0.1903 0.2245 
ai8 0.1470 0.1975 -0.0171 0.2185 -0.0400 0.2428 0.2351 0.4347 

 OM (i = 5) SR (i = 6) TE (i = 7) US (i = 8) 

CONS. 0.0660 0.1154 -0.0586 0.1297 0.1153 0.1166 0.0019 0.2624 
ai1 *0.1195 0.0836 0.0418 0.1130 0.0126 0.1325 0.0098 0.0780 
ai2 0.1594 0.1756 0.0991 0.1476 0.0009 0.1859 0.0432 0.1130 
ai3 0.1246 0.1220 0.0909 0.1413 -0.0030 0.1714 0.0057 0.0807 
ai4 *0.1030 0.0684 0.0131 0.0733 0.0717 0.0716 0.0206 0.0502 
ai5 ***0.3644 0.1299 0.0207 0.0827 -0.0050 0.1011 0.0018 0.0705 
ai6 0.1405 0.1228 ***0.4095 0.1240 0.1473 0.1442 -0.0532 0.0958 
ai7 0.0418 0.1127 0.0928 0.1146 ***0.4137 0.1635 -0.0310 0.0848 
ai8 0.1716 0.2088 -0.0680 0.2103 0.2326 0.2640 ***0.5070 0.1538 

Asterisks indicate significance at the *  -  0.10, ** -  0.05 and *** - 0.01 level 

Table 4. Ljung-Box tests for standardized residuals 

 CM FI ME NE OM SR TE US 

Statistic 43.8000 78.9670 38.2040 48.7630 65.4240 65.5530 61.2360 9.1620 
p-value 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.6891 
 



Table 3. Estimated coefficients for variance covariance equations 

 CM (j  = 1) FI (j = 2) ME (j = 3) NE (j = 4) OM (j = 5) SR (j = 6) TE (j = 7) US (j = 8) 

 Estimated 
coefficient

Standard 
error 

Estimated 
coefficient 

Standard 
error 

Estimated 
coefficient

Standard 
error 

Estimated 
coefficient

Standard 
error 

Estimated 
coefficient 

Standard 
error 

Estimated 
coefficient

Standard 
error 

Estimated 
coefficient

Standard 
error 

Estimated 
coefficient

Standard 
error 

b1j *0.0376 0.0263 0.0118 0.0228 0.0511 0.1029 0.0229 0.0311 0.0135 0.0676 0.0176 0.0295 0.0624 0.0744 0.0749 0.0663 
b2j 0.0118 0.0228 0.0922 0.1461 0.0572 0.1073 0.0110 0.0195 -0.0010 0.0792 0.0651 0.1216 0.0127 0.0399 0.1001 0.1135 
b3j 0.0511 0.1029 0.0572 0.1073 0.8897 1.6014 0.0123 0.0280 -0.0026 0.0109 0.1284 0.2266 0.0524 0.1122 0.0788 0.1665 
b4j 0.0229 0.0311 0.0110 0.0195 0.0123 0.0280 0.0441 0.0597 0.0013 0.0065 0.0101 0.0320 0.0487 0.0868 0.0079 0.0217 
b5j 0.0135 0.0676 -0.0010 0.0792 -0.0026 0.0109 0.0013 0.0065 0.0755 0.1252 0.0012 0.0350 0.0049 0.0229 -0.0054 0.0608 
b6j 0.0176 0.0295 0.0651 0.1216 0.1284 0.2266 0.0101 0.0320 0.0012 0.0350 0.0729 0.0872 0.0054 0.0193 0.1753 0.3285 
b7j 0.0624 0.0744 0.0127 0.0399 0.0524 0.1122 0.0487 0.0868 0.0049 0.0229 0.0054 0.0193 0.1105 0.1805 0.1040 0.1679 
b8j 0.0749 0.0663 0.1001 0.1135 0.0788 0.1665 0.0079 0.0217 -0.0054 0.0608 0.1753 0.3285 0.1040 0.1679 0.2284 0.2780 
c1j **0.0975 0.0533 0.0485 0.0387 0.0500 0.0730 0.1061 0.1012 0.0740 0.1164 0.0901 0.0724 *0.1166 0.0902 *0.0886 0.0655 
c2j 0.0485 0.0387 0.0249 0.0271 0.0247 0.0323 *0.0679 0.0449 0.0747 0.0644 0.0344 0.0523 0.0364 0.0607 0.0768 0.0696 
c3j 0.0500 0.0730 0.0247 0.0323 0.0093 0.0722 0.0532 0.0845 0.0254 0.0549 0.0489 0.0751 0.0655 0.1337 0.0635 0.0873 
c4j 0.1061 0.1012 *0.0679 0.0449 0.0532 0.0845 0.0757 0.0973 0.0266 0.0624 0.0640 0.0925 0.0768 0.1226 0.0656 0.0692 
c5j 0.0740 0.1164 0.0747 0.0644 0.0254 0.0549 0.0266 0.0624 0.0325 0.0339 *0.0792 0.0524 0.0528 0.0698 0.1210 0.1708 
c6j 0.0901 0.0724 0.0344 0.0523 0.0489 0.0751 0.0640 0.0925 *0.0792 0.0524 0.0473 0.0473 0.0165 0.0503 0.0825 0.0953 
c7j *0.1166 0.0902 0.0364 0.0607 0.0655 0.1337 0.0768 0.1226 0.0528 0.0698 0.0165 0.0503 0.0565 0.0904 0.0768 0.0886 
c8j *0.0886 0.0655 0.0768 0.0696 0.0635 0.0873 0.0656 0.0692 0.1210 0.1708 0.0825 0.0953 0.0768 0.0886 0.0578 0.0488 
g1j ***0.8546 0.0619 ***0.8749 0.1148 *0.6987 0.4947 ***0.7529 0.2082 0.4637 1.2772 0.8230 0.2847 *0.5853 0.4041 ***0.7718 0.1573 
g2j ***0.8749 0.1148 ***0.9136 0.1021 ***0.8730 0.2156 ***0.8946 0.0826 0.5288 0.6382 ***0.8230 0.2847 ***0.9059 0.2348 ***0.6935 0.2642 
g3j *0.6987 0.4947 ***0.8730 0.2156 0.0985 1.5498 ***0.8613 0.2203 ***0.9386 0.1251 0.5948 0.6858 0.6784 0.5512 0.6700 0.5618 
g4j ***0.7529 0.2082 ***0.8946 0.0826 ***0.8613 0.2203 ***0.7969 0.2357 ***0.9421 0.1090 ***0.8257 0.3490 0.6050 0.5919 ***0.9041 0.1629 
g5j 0.4637 1.2772 0.5288 0.6382 ***0.9386 0.1251 ***0.9421 0.1090 ***0.8804 0.1541 ***0.7766 0.2733 *0.7863 0.4798 **0.7497 0.3861 
g6j 0.8489 0.1263 ***0.8230 0.2847 0.5948 0.6858 ***0.8257 0.3490 ***0.7766 0.2733 ***0.8925 0.0954 ***0.9330 0.1663 0.3109 1.2645 
g7j *0.5853 0.4041 ***0.9059 0.2348 0.6784 0.5512 0.6050 0.5919 *0.7863 0.4798 ***0.9330 0.1663 ***0.8158 0.2723 *0.6496 0.4447 
g8j ***0.7718 0.1573 ***0.6935 0.2642 0.6700 0.5618 ***0.9041 0.1629 **0.7497 0.3861 0.3109 1.2645 *0.6496 0.4447 ***0.8422 0.1546 

Asterisks indicate significance at the *  -  0.10, ** -  0.05 and *** - 0.01 level 
 
 


