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Abstract 

Two key objectives of robot vision are autonomous navigation and mapping. Digi-
tal cameras have become relatively cheap in recent years and have appeared in a 
variety of consumer devices, such as PDAs (Personal Digital Assistants). It there-
fore makes sense to try to build systems that use vision as their primary input in-
stead of the more traditional sonar and infrared sensors that have been used in the 
past. The camera can also be used for a range of other tasks. Service robots and 
toys typically operate in an indoor environment but rarely have a map of their en-
vironment when they are first turned on. This paper therefore addresses the prob-
lem of vision-based mapping where a camera has deliberately been chosen as the 
only sensor. 

1 Introduction 

Our work demonstrates the exploration and mapping of an unknown environment 
using only video images from a single, cheap, colour camera. The approach in-
volves performing pirouettes (spinning on the spot) to create the equivalent of tra-
ditional sonar sweeps, and limiting the moves that the robot can make to avoid 
real-time decision making. 

Vision has several advantages over other sensors for use in navigation and 
mapping – it is passive, low-power, less susceptible to noise, and most signifi-
cantly it provides colour information that can assist in distinguishing between ob-
stacles. It also has some unique features that make it more difficult to use, several 
of which are addressed in this paper. 

Creating a map requires accurate knowledge of the distances from the robot to 
the surrounding obstacles. In the past, the range to obstacles has often been deter-
mined using sonar, infrared or laser sensors [4]. Stereoscopic systems which de-
rive a depth map from the images from a pair of cameras, e.g. [3], have also been 
used. However, for reasons of low cost, simplicity, and due to size constraints we 
use a single camera. 
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In our experimental environment the vision system consists of a small wireless 
colour camera mounted on a two-wheeled Yujin soccer robot as shown in Fig. 1a. 
The camera is smaller than the 9V battery it runs off. 

 

   
Fig. 1. (a) Yujin Soccer Robot with Wireless Camera (b) Test Environment 

The robot can roam around a test environment which is similar to a robot soc-
cer field, but without the lines on the floor (Fig. 1b). Vision processing takes place 
on a PC, which controls the robot via a wireless modem (just like robot soccer). 
Eventually we will use a PDA with a camera to control a larger robot. Therefore 
the test environment is a scale model. 

The first objective of the vision system is to distinguish the floor from obstacles 
in order to derive a Radial Obstacle Profile (ROP) [13]. The ROP is a local map of 
the surrounding obstacles with the robot at the centre and is similar to a sonar or 
radar sweep, as shown by the thick line in Fig. 2. 

 

 
Fig. 2. Radial Obstacle Profile (ROP) produced by a Pirouette 

To obtain the ROP, we assume that the ground plane is flat and that obstacles 
sit on the floor, which is true for indoor environments. This constraint results in a 
unique Inverse Perspective Mapping from the pixel coordinates in the image to 
real-world coordinates on the floor. (See [13] for the details.) The mapping for all 
pixels can easily be calculated and stored in a lookup table. This data can be used 
to create a “top down” view of the surrounding obstacles (Fig. 2). 

The local map information from the ROP is then incorporated into an Occu-
pancy Grid (a global map) by the application of Bayes rule with an appropriate 
sensor model. This is a classical approach [11] which should not require further 
explanation except for the sensor model (see below). 
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Note that new information is continually being added to the map, and so mov-
ing objects will not remain in the map permanently. In effect the robot is con-
stantly learning about its environment. 

It is well known that mapping by autonomous robots also requires simultaneous 
localization so that they do not lose their position due to accumulated odometry 
errors, e.g. [1]. A localization process will therefore be the next step in our work. 

For the purposes of development and testing we have written a simple simula-
tion using OpenGL to create artificial camera images. Simulation is not subject to 
odometry errors, and so localization is not required. 

We have developed an exploration algorithm based on the Distance Transform 
which ensures that all unknown space which is reachable will be explored. The 
mapping and exploration algorithms have been successfully tested on the real ro-
bot and the results are shown later in the paper. 

2 Practical Considerations 

Although cameras and computers have improved enormously in recent years, 
there are still limitations that restrict what can be accomplished. Some of these are 
discussed in this section. 

2.1 Camera Limitations 

Many cheap cameras have poor quality lenses. The most obvious effect is radial 
distortion, which causes problems with the Inverse Perspective Mapping. Camera 
calibration can be performed using the Intel Open Computer Vision software, and 
the distortion can be removed from the images. An example of correcting for ra-
dial distortion is given in Figs. 3a and 3c. 

Another common effect in cheap cameras is vignetting. This problem arises be-
cause the camera’s CCD array is rectangular but the lens is round. It appears as a 
darkening of the image towards the corners. Although this problem is mentioned 
in textbooks on computer vision, e.g. [5], no solutions are offered. We have 
adopted a very simple approach that improves image quality, but cannot com-
pletely remove the vignetting effects. It is loosely based on the work of Yu [14]. 

Pixel values in the image are adjusted by a factor that is proportional to the 
square of the distance from the center of the image. This is done independently for 
each of the Red, Green and Blue components, which allows compensation for in-
correct colour tint to be applied at the same time. The resulting improvement can 
be seen in Figs. 3a and 3b.  

Our camera only has a 60º field of view, which is fairly typical of such cam-
eras. It must therefore be tilted downwards to see the floor in front of the robot, 
but even then there is a blind area in front of the robot. Tilting the camera also in-
troduces complications due to perspective effects which are discussed below in 
Section 5. 
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Fig. 3. Image correction (a) Original Image (b) Anti-Vignetting (c) Undistorted 

2.2 Computational Requirements 

Processing of images is computationally intensive which makes real-time steering 
problematic. To eliminate this problem, our robot is restricted to only two types of 
movements: rotation on the spot, or forward/backward moves in a straight line. 
We refer to this as piece-wise linear motion. It also fits in well with our use of 
Distance Transforms for exploration. 

There are advantages to having the robot stationary when it captures images. 
Firstly, there is no vibration to affect the position of the camera. For example, if 
the camera moved up or down slightly then the pixel locations of the obstacle 
edges in the image would also change resulting in errors in the Inverse Perspective 
Mapping. 

Secondly, the shutter speed of the camera cannot be controlled and it is fairly 
slow. This means that the images are blurred if the robot is moving when they are 
captured. Blurring tends to suppress edges, making it harder to detect obstacles. 
However, with piece-wise linear motion the robot is not moving when images are 
captured. 

3 Mapping the Local Environment 

The first stage in creating a global map is to produce a map of the surrounding en-
vironment, i.e. a Local Map. The robot is instructed to turn around on the spot in a 
series of small rotations, i.e. 12 steps of 30º each, to provide a good overlap and 
allow averaging of the results. A Radial Obstacle Profile (ROP) is obtained from 
the resulting sequence of images [13]. 

We assume that the floor is reasonably uniform in colour and that this colour is 
distinct from the obstacles. The actual colour of the floor is not important because 
the robot determines during its initialization sequence. 

Despite the fact that this is a significant limitation, it is quite common in the lit-
erature, e.g. [8, 10] and reflects the difficulty of handling textured surfaces. High-
frequency textures can be eliminated by applying a low-pass filter. Horswill [7] 
referred to this as the “Background Texture Constraint” and expressed it as a 
lower bound on the spatial frequency of the floor texture. Martin [12] found by 
applying a genetic algorithm that the best means of detecting obstacles in this case 
was to use an edge detector. 
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Therefore, to segment the image we use a Canny edge detector to locate edges. 
A flood fill is then performed from the bottom of the image upwards until an edge 
is encountered. 

Care has to be taken to ensure that the fill is not performed inside obstacles. 
Therefore the colour of the seed pixel is first checked against the known floor col-
our. If it differs significantly from the floor, then a search is performed across the 
bottom of the image until the floor is found. 

3.1 Sensor Model for Vision 

Errors due to quantization and noise in the video image mean that the exact loca-
tion of obstacles is not certain. We consider the case of a small error, such as plus 
or minus one pixel. Examining the inverse perspective mapping lookup table for a 
1.0cm grid with our particular camera geometry, we found that the error in the ra-
dial distance was less than 0.5cm for ranges up to about 35-40cm. (It varies across 
the image). 

We therefore ignore information beyond a maximum distance, e.g. 40cm. If the 
range to an obstacle is less than this, then the sensor model looks like Fig. 4. This 
is in fact the ideal sensor model for a range sensor. A slight “blurring” of the peak 
might be more realistic, with the extent of the spread increasing with the range 
from the camera. In the immediate foreground, however, spatial resolution is far 
better than the grid size. 

 
Fig. 4. Sensor Model for Vision 

Because of the camera’s limited field of view, there is a blind area in front of 
the robot. When the robot moves too close to an obstacle, it might not be able to 
see the bottom of the obstacle, i.e. the obstacle might fill the entire image. In this 
case, the only conclusion that can be drawn is that there is an obstacle somewhere 
in the blind space, so the blind area is marked with a probability halfway between 
Unknown and Occupied. 

Systemic errors can also occur, such as incorrectly identifying the floor, or, 
more commonly, identifying obstacles where there are none, e.g. shadows. These 
errors are very hard to quantify, but the probability of them occurring should be 
low. (Otherwise the vision system is seriously impaired). They have therefore 
been ignored in the sensor model. 
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4 Exploration – Building a Global Map 

The robot must be able to map the environment autonomously, which requires an 
exploration algorithm. We have chosen to use the Distance Transform because it 
indicates when exploration is complete, i.e. there will be no more unknown spaces 
that are reachable. 

The first step is to convert the map to Configuration Space. This is done by ex-
panding the obstacles in the map by the radius of the robot so it is not possible for 
the robot to collide with an obstacle as it follows a path. Fig. 5 is a Configuration 
Space map after the robot has finished exploring. The map uses the standard con-
vention for occupancy grids where white represents free space, black is obstacles 
and grey is unknown. 

 

   
Fig. 5.  Configuration Space Map 

All of the unknown spaces in the map are marked as goals. Then a Distance 
Transform is performed from the robot’s current location, thereby finding the 
shortest path to the nearest unknown space. 

The Distance Transform as implemented using the Borgefors algorithm [2] is 
often referred to as a two-pass process (forward and backward) that is similar to 
convolution. However, for some maps it is necessary to make multiple passes [9]. 
In our experiments this has rarely been a problem. 

In the literature, it is often assumed that the map cell size matches the cell size 
for robot motions. If the cell size is small compared to the robot, this leads to paths 
that hug the walls and frequent direction changes. 

These “too close” paths, as they are called by Zelinsky [15], present two prob-
lems. Firstly, the robot might swipe an object in passing, especially when moving 
around corners. The second problem for our camera geometry is that the robot 
might move so close to an obstacle that the base of the obstacle falls into the blind 
area in front of the robot. This makes it impossible for the robot to determine ex-
actly where the obstacle is located. 

To address the first problem, the robot must always “look before it moves”. 
This means that the free space in front of the robot must be re-assessed immedi-
ately before each forward motion. A useful side-effect of this is that the robot 
should detect objects that move into its field of view, i.e. the environment does not 
have to be static. 
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The second problem can only be tackled by using active vision, i.e. moving to a 
better vantage point in order to actually see the exact location of the obstacle. The 
simplest motion is backwards, provided that the space behind the robot is already 
known to be clear based on previous information. We have not yet implemented 
this approach. 

Using a larger cell size for the Distance Transform is another way to minimize 
the possibility of these problems occurring. This results in a margin around obsta-
cles, as can be seen in the maps of Fig. 6. The robot is the small circle in the bot-
tom left and its path is shown starting from near the middle of the map. 

 

    
Fig. 6. Completed Maps (a) Simulation (b) Real Robot 

Larger cell sizes also reduce the number of moves. Fewer moves should reduce 
the cumulative odometry errors. However, large cell sizes prevent the robot from 
entering narrow corridors or passing through tight gaps. 

Fig. 6b shows a map from the real robot starting at about the same position as 
in the simulation (Fig. 6a). The map is distorted due to odometry errors. Also, 
there are spikes at the edges that occurred because the robot’s shadow fell on the 
wall and it interpreted this as the floor (which is black). However, the basic shape 
of the map and the path followed are similar to the simulation, which confirms the 
algorithms. 

5 Future Work 

There are several areas that we are actively investigating. The following sections 
outline only a few of them. 

5.1 Using Colour 

Colour is a powerful tool for identifying and distinguishing between obstacles. We 
plan to use the colour of obstacles to assist in the localization process by incorpo-
rating it into the ROP. However, there is a significant problem referred to in the 
field as Colour Constancy, or the ability of humans to perceive a wide range of 
colours as actually resulting from the same base colour. To address this, we use 
the Improved HLS system [6] and quantize the Hue into 12 colours. Unfortu-
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nately, Hue has no representation for Black and White which are common colours 
in man-made environments. Therefore, when the saturation is too low or too high 
we quantize the “colour” into Black, White or Grey. 

5.2 Image Understanding 

Vision involves more than Image Processing – it requires understanding what is 
seen. For example, when viewing a scene with a camera that is tilted downwards, 
the vertical edges of obstacles do not appear vertical. Perspective effects result in 
edges in the image that differ from vertical by an amount which depends on how 
far away the obstacle is from the camera and also how far it is from the centre of 
the image. See Fig. 7 below. 

 

 
Fig. 7. Perspective Effects on Vertical Edges 

 
Currently, our system ignores edges that are close to vertical when constructing 

the ROP, but it can still become confused in extreme cases such as in Fig. 7. Be-
cause near-vertical edges can also arise due to walls, we are investigating ways of 
recognizing obstacles so that the inclination of their vertical edges can be calcu-
lated and compared with the image. 

5.3 Global Localization Using the ROP 

Preliminary tests have been performed using a Discrete Cosine Transform (DCT) 
of the ROP for localization. The approach is as follows: 
• Each time an ROP is obtained, perform a DCT and then throw away all but the 

first 20 coefficients, i.e. a low pass filter. (The effect can be seen as the thin line 
in Fig. 2, which is much smoother than the thick line.) 

• Keep a table of these coefficients and the corresponding locations as the robot 
explores. (This table is maintained across successive test runs.) 

• The coefficients can be compared in a simple nearest neighbour sense to obtain 
the robot’s most likely location for each new ROP. 
In simulation, this process works reasonably well. However, the DCT is phase-

sensitive, i.e. it is sensitive to the orientation of the robot. Therefore, we have also 
experimented with Hu Moments which are invariant to rotations, but they are not 
as good a predictor of the location as the DCT. 
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6 Summary and Conclusions 

Our preliminary work has illustrated map construction using vision as the sole 
sensor in both simulated and real environments. We have outlined several of the 
difficulties associated with cheap cameras. 

We have introduced a new variation on the use of the Distance Transform for 
exploration of an unknown environment. In this approach the map is not known 
initially, and the Distance Transform grid size is larger than the Occupancy Grid 
size. 

Use of the Discrete Cosine Transform of the ROP shows promise as a means of 
identifying the robot’s location on a global map, and we intend to investigate this 
further. 

Building accurate maps is easy in simulation because there are no odometry er-
rors. However, real robots quickly lose track of their position as they move 
around. Therefore it is necessary to perform a Localization step, and this will be 
the next stage of our research. Once this is complete, we intend to run multiple ro-
bots simultaneously to speed up the mapping process through collaboration. 
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