View metadata, citation and similar papers at M brought to you by fCORE

provided by Queensland University of Technology ePrints Archive

QUTeOPF_erints

en-access archiva of QUT research literature
Aim TR
& AR T

\aF

COVER SHEET

This is the author version of article published as:

Bao, Meng and Wang, Rongming and Rintoul, Llew and Liu, Qingyun and
Arnold, Dennis P. and Ma, Changqin and Jiang, Jianzhuang (2006) Vibrational
spectroscopy of phthalocyanine and naphthalocyanine in sandwich-type
(na)phthalocyaninato and porphyrinato rare earth complexes: Part 13. The
Raman characteristics of phthalocyanine in unsubstituted and peripherally
octa(octyloxy)-substituted homoleptic bis(phthalocyaninato) rare earth
complexes . Polyhedron 25(5):1195-1203 .

Copyright 2006 Elsevier

Accessed from http://eprints.qut.edu.au



https://core.ac.uk/display/10874091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Vibrational spectroscopy of phthalocyanine and naphthalocyanine in
sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes
Part 13. The Raman characteristics of phthalocyanine in unsubstituted and
peripherally octa(octyloxy)-substituted homoleptic bis(phthalocyaninato) rare
earth complexes**

Meng Bao™’, Rongming Wang®, Llew Rintoul®, Qingyun Liu®, Dennis P. Arnold“*,
Changqgin Ma®, Jianzhuang Jiang™*
“Key Lab for Colloid and Interface Chemistry of Education Ministry, Department of Chemistry,
Shandong University, Jinan 250100, China
® Department of Chemistry, Jinan University, Jinan 250002, China
¢ School of Physical and Chemical Sciences, Queensland University of Technology, G.P.O. Box 2434,
Brisbane 4001, Australia

*Corresponding authors. Tel.: + 86-531-8564088; fax: + 86-531-8565211 (J. Jiang);
+61-7-38642482; fax: + 61-7-38641804 (D. P. Arnold).
E-mail addresses: d.arnold@qut.edu.au (D. P. Arnold); jzjiang@sdu.edu.cn (J. Jiang),

** Part 12, see Ref. 3e.



Abstract

The Raman spectroscopic data in the range of 500-1800 cm™ for two series of thirty
homoleptic bis(phthalocyaninato) rare earth complexes M(Pc), and M[Pc(OCsH;7)s], [M =Y,
La-Lu except Pm; H;Pc = unsubstituted phthalocyanine, H,;Pc(OCgH;7)s =
2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyanine] have been collected and comparatively
studied using laser excitation sources emitting at 633 and 785 nm. Under both laser excitations,
the marker Raman band of Pc* and [Pc(OCsHi7)s]” in the Raman spectra of Ce(Pc), and
Ce[Pc(OCsH,7)s], appears as a strong scattering at 1498-1501 cm™ with contributions from both
pyrrole C=C and aza C=N stretches together with isoindole stretchings. This band has been found
to upshift to 1502-1528 cm™ in the Raman spectra of M"(Pc), and M"[Pc(OCsH7)s]» as the
marker Raman band of phthalocyanine monoanion radicals, Pc* or [Pc(OCgH;7)s]”. With laser
excitation at 633 nm, Raman vibrations derived from isoindole ring and aza stretchings in the range
of 1300-1600 cm™ for both series are selectively intensified. In contrast, when excited with laser
radiation of 785 nm, the ring radial vibrations of isoindole moieties and dihedral plane
deformations between 500 and 1000 cm™ for M(Pc), and M[Pc(OCsH,7)s], intensify to become the
strongest scatterings. The present Raman results also reveal that the frequencies of Pc breathing,
pyrrole stretching, isoindole stretchings, aza stretchings and coupling of pyrrole and aza stretchings
depend on the rare earth ionic size, shifting to higher wavenumbers along with the lanthanide
contraction due to the increased ring-ring interaction across the series. Moreover, under these laser
excitations, in particular under 785 nm laser line, the Raman spectrum appearance, i.e. the pattern
of relative intensities, also changes systematically depending on the rare earth ionic size.
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1. Introduction

Sandwich-type bis(phthalocyaninato) rare earth complexes, in which the conjugated =«
systems are held in close proximity by rare earth ions, have been extensively studied due to their
potential applications as a very important class of advanced molecular materials [1]. Some
proposed fields of application include molecular electronic, optronic and iono-electronic devices
[1,2]. Vibrational spectroscopies have proved to be versatile methods among various techniques for
characterizing thin films of phthalocyanines in solid state devices. In the past several years, the
vibrational (IR and Raman) characteristics of (na)phthalocyanine in a wide range of
bis[(na)phthalocyaninato] and mixed (porphyrinato)[(na)phthalocyaninato] rare earth complexes
have been systematically investigated mainly by Jiang and Arnold [3,4], following the precedent
studies of Aroca, Homborg, and Tran-Thi [5-7]. As summarized in our recent papers concerning
the vibrational spectroscopic characteristics of sandwich tetrapyrrole rare earth complexes, several
series of recently developed novel sandwich double-decker complexes with the whole series of rare
earth metals, namely M(TCIPP)(Pc) [4g], M(OEP)(Nc) [4d], M(TBPP)(Nc) [4e], M[Nc(/Bu)s]>
[4c], and M(Pc)[Pc(a-OCsHyp)s] [4f] [M = Y, La...Lu except Pm; H,TCIPP =

5,10,15,20-tetra(4-chloro)phenylporphyrin, H,OEP = 2.3,7.8,12,13,7,18-octaethylporphyrin,
H,TBPP = 5,10,15,20-tetra(4-z-butyl)phenylporphyrin, H,Nc(7Bu)s
3(4),12(13),21(22),30(31)-tetrakis(z-butyl)-2,3-naphthalocyanine, H,Pc(a-OCsHy )4 =

1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine] have been systematically studied by the Raman
technique using laser excitations emitting at 633 and 785 nm, in order to achieve a complete
understanding of their intrinsic properties. In contrast, investigation at the same excitation
wavelengths of the Raman properties of the most common counterparts, the basic unsubstituted and
peripherally octa(alkoxy)-substituted homoleptic bis(phthalocyaninato) rare earth complexes
(Figure 1), are still limited to scattered species such as M(Pc), (M = Ce, Eu), Eu[Pc(OCsH;)s].,
and M[Pc(OCsH7)s]» (M = Ce, Gd, Tb) (Aex = 633 nm) [4a]. It thus seems opportune to study
systematically the Raman spectroscopic properties of these complexes by means of excitation with
laser sources emitting at 633 and 785 nm, as for the other series mentioned above. The present
work reports these studies.

It is worth noting that we have previously recorded the Raman spectra of the
bis(phthalocyaninato) compounds of Ce and Eu, namely M(Pc), (M = Ce, Eu) and
Ce[Pc(OCsH7)s]2, under excitation by 633 nm radiation [4a]. For the purpose of systematic
comparison with those under 785 nm laser excitation, the spectra of the complete set of compounds
discussed in this paper were re-measured under 633 nm excitation. Note that the Raman spectra of
Ce(Pc), and Ce[Pc(OCgH,7)s]» recorded this time under 633 nm excitation correspond well in band
positions, but the relative intensities of some bands differ, compared with those recorded previously
[4a]. Nevertheless, the results reported here are confirmed by the systematic and comparative
spectra of the whole series of rare earth bis(phthalocyaninato) compounds M(Pc), and
M[Pc(OCgHi7)s]» (M =Y, La...Lu except Ce and Pm), in which the one for Eu(Pc), is in good
accordance with the previous measurements [4a]. The conclusions are further reinforced by the fact
that the Raman spectrum of Ce[Pc(OCgH,7)s]> corresponds well with that of Ce(Pc), recorded
under 633 nm excitation, the former of which is also in line with the previous measurement under
excitation by 647 nm radiation [4b].

2. Experimental

Homoleptic bis(phthalocyaninato) rare earth complexes M(Pc), and M[Pc(OCsH;7)s] (M =
La-Lu except Pm, Y) were prepared according to published procedures [8]. Their sandwich nature
has been well established through a series of spectroscopic methods including high resolution mass,
UV-vis, near-IR, and NMR techniques. Resonance Raman spectra were recorded on a few grains of
the solid samples with ca. 4 cm™ resolution using a Renishaw Raman Microprobe, equipped with a
Spectra Physics Model 127 He-Ne laser excitation source emitting at a wavelength of 633 nm and a
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Renishaw diode laser emitting at 785 nm, and a cooled charge-coupled device (CCD) camera. An
Olympus BHZ-UHA microscope was attached, and for these experiments the x10 objective was
employed giving a spot size on the sample of about 5 um. Laser power at the sample was
approximately 0.08 mW. Spectra of excellent quality were obtained in approximately 3 min, with
the exceptions noted below.

3. Results and Discussion

In bis(phthalocyaninato) rare earth complexes M(Pc),, the single crystal X-ray diffraction
structural data have shown that the rare earth cation is at the center of two Pc ligands facing each
other in a staggered arrangement [1,2]. In the solid state, these compounds can be assumed to
belong to the D, or Dy, point-groups depending on the skew angle between the two macrocyclic
rings. There has been no crystallographic report on the molecular structure of peripherally
octa(alkoxy)-substituted homoleptic bis(phthalocyaninato) rare earth complexes thus far. However,
according to the recently reported molecular structures of peripherally octa(hexylthio)- and
15-crown-5 ether-substituted bis(phthalocyaninato) rare earth analogues Lu[Pc(SC¢H3)s], and
Yb[Pc(15C5)4]n  [H2Pe(SCeHiz)s = 2,3,9,10,16,17,23,24-octakis(hexylthio)phthalocyanine,
H,Pc(15C5)s = 2,3,9,10,16,17,24,25-tetrakis(15-crown-5)phthalocyanine] [9], the skew angle
between the two phthalocyanine macrocyclic ligands is 42 and 42.5°, respectively, for these two
compounds. The equilibrium geometry of Lu[Pc(SC¢Hi3)s]> and Yb[Pc(15C5)4] is therefore Dy.
This should also be true for the present alkoxy-substituted analogues M[Pc(OCgH 7)s]».

It has been found that in the Raman spectra of Zr[Pc(fBu)s],, M[Nc(tBu)s],, and
M(Pc)[Pc(a-OCsHy)4] [4c,41,5], only frequencies corresponding to the characteristic fingerprint
vibrations of the Pc or Nc macrocycle were observed and side chain vibrations were very weak or
absent. This is also true in the present case since both laser lines used in our experiments appear to
enhance modes associated with the aromatic macrocycles (see below).

Similar to other large conjugated systems, one-to-one matching of observed vibrational
frequencies to the internal vibrations cannot be achieved in the vibrational spectra of homoleptic
bis(phthalocyaninato) rare earth compounds due to the existence of strong couplings of some
vibrational coordinates [3-7]. Therefore, the Raman spectra of these homoleptic
bis(phthalocyaninato) double-decker complexes are still composed of a relatively small number of
fundamentals despite the large number of Raman active vibrational modes.

3.1 Raman characteristics of M(Pc); and M[Pc(OCsH;7)s]» (M = Y, La-Lu except Pm) with
excitation by laser line at 633 nm

The electronic absorption spectra of M(Pc), and M[Pc(OCsH,7)s]> (M = Pr, Tb, Tm) which
are typical representatives of the UV-vis spectra for the complexes of tervalent rare earths in each
series are shown in Figs. 2 and 3, respectively [8]. All the spectra of M(Pc), (M =Y, La-Lu except
for Ce and Pm) show a typical B band at 316-325 nm with a very weak shoulder peak at the lower
energy side of 342-358 nm [10]. The Q bands for these compounds appear as a strong absorption in
the range of 658-689 nm together with the weak vibronic components at 570-596 and 595-618 nm.
In addition, a weak band related with the w-radical anion at 420-458 nm is also observed. For the
series of M[Pc(OCsH;7)s]» compounds containing tervalent rare earth metal, the B absorption splits
into two bands at 331-343 and 369-378 nm due to the influence of eight octyloxy groups on the
phthalocyaninato rings [8d]. Their Q bands appear at 668-699 nm with weak vibronic absorptions
at 579-601 and 604-630 nm, respectively. The weak n-radical anion band is seen at 485-513 nm.
For both series of compounds, the energies of all the absorption bands mentioned above are
sensitive to the metal center. In particular, along with the lanthanide contraction, the Q absorption
band for both M(Pc), and M[Pc(OCsH;7)s], blue-shifts in the same order [8d,10]. These
characteristics in their electronic absorption form the basis for the fact that systematic changes are
observed in both the frequencies and appearance of the Raman spectra of M(Pc), and
M[Pc(OCsH,7)s]» along with the change in the central metal ionic size, as detailed below.
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It is worth noting that the Raman spectra of La(Pc), and Dy[Pc(OCgH7)s], with excitation at
633 nm were of poor quality due to the strong fluorescence. Figs. 4 and 5 respectively compare the
Raman spectra of three compounds M(Pc), and M[Pc(OCgH,7)s], for M = Pr, Tb, and Tm under
excitation by 633 nm light. As can be seen, the Raman spectra for both series of compounds M(Pc),
and M[Pc(OCgH;7)s]> seem to be much simpler in comparison with those of M(Pc)[Pc(a-OCsHj)4]
[4f], revealing the relatively higher molecular symmetry of these compounds than the heteroleptic
analogues. In particular, the Raman spectra for the peripherally octa(octyloxy)-substituted
bis(phthalocyaninato) rare earth complexes appear to be as simple as, or even simpler than, the
corresponding unsubstituted counterparts M(Pc),, indicating again that only frequencies
corresponding to the characteristic fingerprint vibrations of the Pc macrocycle in M[Pc(OCsH;7)s]2
were observed. Side chain vibrations were very weak or absent under excitation with laser line of
633 nm, and this is also true when using laser excitation emitting at 785 nm (see below). The
observed Raman spectroscopic bands of phthalocyanine for these new homoleptic
bis(phthalocyaninato) rare earths were partially assigned in Tables 1 and 2, respectively. Note that
the assignments given in Tables 1 and 2 are restricted to characteristic fundamentals based on the
previous description of normal modes for phthalocyaninato and especially bis(phthalocyaninato)
metal derivatives [4,11]. Recent calculations on the vibrational characteristics of monomeric
phthalocyanine derivatives also benefit the present assignments [12]. Due to the similar electronic
structure and electronic absorption properties among the whole series of bis(phthalocyaninato) rare
earth compounds, all members of each series Mm(Pc)z and Mm[Pc(OCgH17)8]2 M =Y, La-Lu
except Ce and Pm) show similar Raman characteristics.

With laser excitation at 633 nm, which is nearly in resonance with the Q band absorptions of
both series of bis(phthalocyaninato) rare earth complexes respectively at 658-689 and 668-699 nm,
vibrational frequencies in the range of 1300-1600 cm™ derived from isoindole ring stretchings and
the aza group stretching are selectively intensified. For M"(Pc),, the weak Raman bands at ca.
574-577 and 812-817 cm™ and a band at 678-680 cm™ with medium or strong intensity are
attributed to phthalocyanine breathing [4,11], and the frequencies of all these modes seem to show a
dependence on the rare earth size, slightly blue-shifted along with the lanthanide contraction. The
medium band at ca. 740 cm™ is due to aromatic phthalocyanine C—H wagging of M(Pc), [4]. In the
range of 1000-1300 cm’!, there are several weak or medium bands lying at ca. 1006, 1030, 1103,
1174, 1196, 1215 and 1301 cm™, which are assigned to aromatic C-H bending. The pyrrole
breathing presents two bands in the region of around 1140 and 1500 cm™. The former comprises a
single peak with medium intensity at ca. 1138-1145 cm™ whereas the latter overlaps with the aza
stretching vibration in the same region to form a broad band at 1495-1525 c¢m™ for the whole series
of compounds M"(Pc),. For the double-deckers with early lanthanide metals, the aza stretching
band appears as an unresolved shoulder on the higher energy side of the peak. In contrast, for the
double-deckers with medium and late lanthanides, the pyrrole breathing band appears as an
unresolved shoulder peak on the /ower energy side of the more intense aza stretching peak. The
intense band in the range 1409-1423 cm™ and the weak band in the range 1444-1451 cm™ are
attributed to isoindole stretchings. The former intense band discussed above, together with the aza
stretching band at 1512-1525 cm™, show dependence on the rare earth radius, shifting to higher
energy along with the rare earth contraction. This is not surprising considering the blue-shifted trend
of the Q absorptions at 658-689 nm in the same order.

As shown in Fig. 5 and organized in Table 2, the Raman spectroscopic frequencies of the
phthalocyanine core in M[Pc(OCgH;7)s]» have been similarly assigned by analogy with those of
unsubstituted counterparts M(Pc),. The Raman spectra observed for M[Pc(OCgH,7)s], are even
simpler than those of corresponding M(Pc),. This is probably due to the fact that the excitation at
633 nm is slightly further away from resonance with the main Q bands of M[Pc(OCsH;7)s]»
(668-699 nm) than with those of M(Pc),. This leads to an increased resolution in the Raman spectra
of M[Pc(OCgH7)s]», which further benefits the assignments of the frequencies. For instance, unlike
for the series of M"(Pc),, a very good linear correlation can be established between the frequency
of the coupled pyrrole and aza stretching modes of M"'[Pc(OCsH7)s], at 1504-1527 cm™ and the
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tervalent rare earth ionic radii, as shown in Fig. 6. In addition, the band positions of the Pc breathing
modes at 561-568 and 683-686 cm™', the C=N stretch at 782-787 cm™, the coupled C=C pyrrole and
benzene stretching at 1312-1322 cm™ and the isoindole stretching at 1400-1415 cm™ show
dependence on the rare earth ionic size. They all shift to higher energy along with the rare earth
contraction as for their unsubstituted analogues.

The tervalent yttrium double-deckers are noteworthy. The frequencies of some
above-mentioned bands for both Ym(Pc)z and Ym[PC(OCan)g]z deviate from the linear
relationship established for the other tervalent rare earth complexes (Tables 1 and 2), due probably
to the intrinsic difference between yttrium and the lanthanides, namely the absence of f electrons.
This is also true for these two yttrium complexes when using laser excitation emitting at 785 nm,
Tables 3 and 4.

As can be expected from the previous studies [4a,4b,4d-f,8d], both Ce(Pc), and
Ce[Pc(OCsH7)s]2 show different Raman spectroscopic characteristics from those of the rest of the
rare earth series, which is related to the different electronic absorption spectra of these cerium
complexes. As indicated by the '"H NMR spectra, both phthalocyanine rings exist as dianions in
Ce(Pc), and Ce[Pc(OCgH,7)s]2, despite the XANES results that suggest a valence state intermediate
between III and IV for the cerium [13]. These complexes therefore differ from other analogues that
have the form M(Pc’®)( Pc’™) [Pc’ = Pc, Pc(OCsHi7)s]. A comparison of the Raman spectra of
Ce(Pc), and Ce[Pc(OCsHi7)s], with those of the rest of the series shows that these cerium
complexes contain most of the frequencies found for the other complexes, however the relative
intensities are different. For example, a strong band appears at 1173 cm™ for Ce[Pc(OCsH,7)s]
(Table 2) corresponding to C-H bending, but for the other complexes, only a weak band in the same
region is observed. Moreover, the marker Raman band of Pc* and [Pc(OC8H17)g]2' at 1499 and 1501
ecm™ with contributions from pyrrole C=C, aza C=N and isoindole stretches is observed as the
strongest scattering in the Raman spectra of Ce(Pc); and Ce[Pc(OCgH;7)s],. As noted above, a
similar strong band due to Pc* and [Pc(OCsH,7)s]” has been found to upshift to 1502-1509 and
1504-1527 cm™ in the Raman spectra of M"(Pc), and M"'[Pc(OCsH 7)s].

3.2 Raman characteristics of M(Pc); and M[Pc(OCsH;7)s]» (M = Y, La-Lu except Pm) with
excitation by laser line at 785 nm

Strong fluorescence occurred when trying to record the Raman spectra of M(Pc), (M = La,
Ce, Lu) using excitation at 785 nm, so these data do not appear in Table 3.

Using the excitation laser line at 785 nm that is far away from resonance with the Q
absorption bands, as shown in Fig. 7 and summarized in Table 3, the macrocyclic ring deformation
and ring radial vibrations between 500 and 1000 cm™ in the Raman spectra of M(Pc), are
selectively intensified. This is in good accordance with the Raman characteristics of homoleptic
M(Pc), reported by Homborg [6b], especially with excitation at 1064 nm. The Pc breathing at
675-679 cm™ and the aromatic C-H wagging at ca. 739 cm™ are the most intense bands. The band
locating at 1327-1329 cm™ with medium intensity is assigned to the pyrrole C=C stretchings
coupled with benzene C=C stretchings and the weak one at about 1342 cm™ to the isoindole
stretchings. Similar to those excited with 633 nm laser line, the frequencies of the coupled pyrrole
C=C and aza C=N stretchings in the region of 1507-1521 cm™ overlap to form a broad, unresolved
envelope. The vibrations of M(Pc), at 675-679 cm’™ assigned to the Pc breathings, at 1407-1422
cm’ attributed to the isoindole stretchings, and at 1508-1521 cm™ due to the coupling of aza and
pyrrole stretchings are found to shift to higher energy along with the ionic radius contraction.

Under the same laser line excitation of 785 nm, the Raman spectra for the
octa(octyloxy)-substituted bis(phthalocyaninato) rare earth analogues M[Pc(OCgH7)s], basically
take the same spectroscopic features with corresponding unsubstituted counterparts M(Pc),. Their
Raman spectroscopic frequencies with assignments are tabulated in Table 4. However, this time a
systematic but rather more dramatic change could be seen in the appearance of the Raman spectra
across the series. Along with the decrease in the ionic size from La to Lu, the band at 1502-1528
cm” contributed from the coupling of the pyrrole and aza stretchings gradually loses some intensity,
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changing from a very strong scattering for the light rare earth compounds to a medium and weak
one for the heavy rare earth complexes. In the same order, the band at ca. 1060 cm™ assigned to the
C-H bendings in contrast gradually gains some intensity to change from a weak band to an intense
band. It is worth noting that similar change in the intensity of the latter band at ca. 1050 cm™ due to
the C-H bendings was also observed in the Raman spectra of M"'(Pc), under the same laser line
excitation. However, the change in the intensity of the former band for M"(Pc), was not so
significant. All these results can be clearly exemplified by the Raman spectra of the Pr, Tb, and Tm
complexes of the two series shown in Figs. 7 and 8.

When exciting the Raman spectrum of Ce[Pc(OCsH;7)s], with 785 nm laser line, similar to
the case by means of 633 nm laser line, a Raman spectrum with different characteristics from those
of the rest of the rare earth series was obtained. The intense band at 1498 cm™ with contribution
from both pyrrole C=C and aza C=N stretches together with isoindole stretchings is the marker
Raman band of [Pc(OCsH7)s]*, which compares with that of [Pc(OCsH7)s]™ at 1502-1528 cm™ in
the Raman spectra of M [Pc(OCsH,7)s], under the same excitation.

4. Conclusions

The Raman spectra for two series of homoleptic bis(phthalocyaninato) rare earth complexes
M(Pc), and M[Pc(OCgH,7)s], have been recorded under excitation with 633 and 785 nm laser lines.
The present results are in line with those reported for related series of complexes, namely
M(Pc)[Pc(a-OCsH;)4] and M(TCIPP)(Pc), recorded under similar laser line excitations, in terms of
the Raman spectroscopic characteristics of phthalocyanine ligand and the relationship between the
phthalcyanine Raman characteristics and the rare earth ionic size. They also provide a good and,
more importantly a systematic, experimental basis for further investigation by theoretical chemists
in this field.
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R= H, OC8H17

Fig. 1. The schematic molecular structure of bis(phthalocyaninato) rare earth sandwich complexes
M(PC’)z [PC’ = PC, PC(OCan)g].
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Fig. 2. The UV-vis spectra of M(Pc), (M = Pr, Tb, Tm) in CHCl:.
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Fig. 3. The UV-vis spectra of M[Pc(OCsH;7)s], (M = Pr, Tb, Tm) in CHCl;.
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Fig. 4. Raman spectra of M(Pc), (M = Pr, Tb, Tm) in the region of 500-1800 cm™ with excitation at
633 nm.
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Fig. 5. Raman spectra of M[Pc(OCsH;7)s], (M = Pr, Tb, Tm) in the region of 500-1800 cm’ with
excitation at 633 nm.
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Fig. 6. Plot of wavenumber of the coupling of pyrrole and aza stretching scattering of

M[Pc(OCgH 7)s], at 1504-1527 cm’! with excitation at 633 nm as a function of the ionic radius of
MIH.
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Fig. 7. Raman spectra of M(Pc), (M = Pr, Tb, Tm) in the region of 500-1800 cm™ with excitation at
785 nm.
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Fig. 8. Raman spectra of M[Pc(OCsH;7)s]> (M = Pr, Tb, Tm) in the region of 500-1800 cm™ with
excitation at 785 nm.
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