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Abstract. Web service deployment is hampered by the possibility of
sudden variations in request volumes. Mechanisms exist to enhance scal-
ability in times of heavy load when the delivered content is static. How-
ever, web services typically involve dynamic content, delivered through
application servers which may have little to no support for adapting to
varying loads in order to ensure timely delivery. In this paper we discuss
why scaling dynamic content delivery under load is difficult, we present
a technique for controlled service degradation to achieve this scalability,
and we present experimental results evaluating its benefits.

1 Introduction

The vast and uncertain environment of the Internet has direct consequences for
service delivery, and has the potential to derail attempts to provide economic
benefits via the electronic offering of services. In particular, the tardy delivery
of a service may force the provider to decrease the price or increase the quality
to offset the negative effects of the poor delivery.

The delivery of software as a service across the Internet carries with it sig-
nificantly more risk than that of offering functionally equivalent shrink-wrapped
software. By logically centralizing the software and offering it as a service, the
service provider invites direct customer dissatisfaction by transferring originally
client-side risks (such as the provision of an an environment capable of meeting
client demand) back upon themselves. In addition there is a significant risk of
insufficient capacity for client demand: a direct consequence of the unpredictable
Internet environment in which a web service operates. Web services exposed to
the Internet may experience huge demand fluctuations. These changes may occur
rapidly, making it impossible for a human operator to respond in a timely man-
ner. This situation is exacerbated if a client’s expectations of a service remains
high regardless of the problems being experienced by the service provider.

A possible way to maintain timely delivery in cases of capacity overflow,
is by dynamically varying service overhead so that performance degradation is
gracefully managed and user dissatisfaction minimized. Examples of situations
where service degradation can be applied include: (i) choosing not to execute
code for generating advertising content; (ii) skipping non-essential validations of



XML messages; and (iii) offering delayed data (e.g. stock quotes) rather than
the most up-to-date version.

As a step toward a system for controlled service degradation, this paper aims:

1. to investigate the impact of high user load (such as a flash crowd) on a given
service, and

2. to determine if benefits associated with a simple method for dynamically
varying service resource consumption through service degradation, outweigh
the overhead introduced.

The paper specifically considers Quality of Service (QoS) measured only in
terms of response time and focuses on CPU consumption, as evidence indicates
that this is a bottleneck when delivering dynamic content [1].

Section 2 discusses previous work on scalability of web service provision under
extreme load. Section 3 discusses our approach to measuring service adequacy.
Using this approach, we discuss in section 4 our initial technique for mitigating
the effects of heavy load using variable CPU consumption. Section 5 presents
three experiments involving large user load on a simulated service offering and
discusses the results. Section 6 concludes outlining directions for future work.

2 Background

When delivering static content such as basic HTML pages, network bandwidth
is typically the bottleneck [2]. Given that static content changes infrequently,
basic Internet infrastructure allows caching of the content “closer” to the user
via reverse-proxy caching, web browser caching, Content Distribution Networks
(CDN), etc. This allows a degree of scalability by spreading bandwidth con-
sumption amongst a set of remotely located caches.

Resource management for bandwidth under heavy load has also been in-
vestigated and typically revolves around techniques to limit certain types of
bandwidth consumption (see [3] for a comparison of popular approaches) and
controlled degradation of service, for example [4].

In times of extremely heavy load, traditional caching techniques can be aug-
mented with more active approaches to better meet demand [5]. Peer-to-Peer
caching schemes [6], the use of adaptive CDNs [7] and Cooperative networking
models [2] where clients act as proxy cache servers to newer clients have all
been investigated as approaches to mitigate the effects of heavy request loads
for static content. Regardless of the caching strategy chosen, the core target of
each strategy is to maximise cache-hits, allowing the originating server to deliver
to just a minimised number of clients that do not have access to a remote cache.

When looking to scale delivery of dynamic content offered by web services,
however, the application of caching is problematic. Basic Internet infrastructure
offers limited support for caching results to dynamic queries, simply because it
can make no guarantees on what future response might be. Considering that the
delivery of dynamic content becomes CPU bound, the target for content caching
shifts to saving on content construction overhead. Dynamic content caching



schemes work on the idea that some amount of the dynamic content remains
static enough over time to justify the overhead of synchronizing copies with the
source content as this source content changes. Data Update Propagation [1], Ac-
tive Query Caching [8] and Macro-Pre-Processing of HTML [9] are examples of
this approach. The applicability of dynamic content caching however, is limited
as noted by Yagoub et al. [10]. Hence, the possibility of minimizing the cost of
dynamic content generation during times of heavy load should be considered.

When considering the differences between static and dynamic content deliv-
ery, the bottleneck typically shifts from bandwidth to CPU. Kraiss et al. [11]
note that the bottleneck for e-services resides in the application server and back-
end database servers. Padmanabhan & Sripanidkulchai [2] point to the effects of
September 11’s tragedy on a popular news site. As dynamically generated con-
tent initially made the CPU the primary bottleneck, it was manually replaced
with static content, shifting the bottleneck to network bandwidth. Challenger et
al. [1] state that “a typical dynamic page may require several orders of magnitude
more CPU time to serve than a typical static page of comparable size”.

Graceful degradation of service in times of server-side under-capacity is not a
new concept [12]. When discussing CPU as a resource however, existing discus-
sion on techniques for resource management seem limited to queue management
of a static algorithm for response generation (see [11], [13], and [14] as exam-
ples). These techniques, while useful for delivering quality service to a limited
number of the total requests received, do little to increase overall service scala-
bility. Hence, we concentrate on when a process becomes CPU bound and how
judicious service overhead reduction may help us increase overall scalability.

Certain parallels exist between our proposal and the automatic Quality of
Service (QoS) control mechanisms proposed by Menascé and Mason [15]. Their
approach however involves modifying the configuration of the Application/Web
Server, which usually cannot be done at runtime as required in case of sudden ca-
pacity overflow. In contrast, our work focuses on what the application developer
may do without modifying the underlying server’s configuration or API.

3 Measuring service adequacy

3.1 Service Time

Perhaps one of the biggest differences between web services and traditional dis-
tributed computing is the service’s potential concurrent audience size and that
audience’s expectations for adequate service provision regardless of its own size.
For services to be consumed by an end user in real-time (a user sitting and wait-
ing for response), we define a client acceptable time limit taking the following
into consideration:

– Any human/computer interaction taking over a second is an obtrusive delay
to the user [16].

– An end user’s perception of service quality is strongly influenced by response
time. Content makeup has little effect on user’s perception of QoS [17].



– Though end users typically have a conceptual model of dynamic content
delivery taking more effort than static content, these conceptual models are
often grossly mismatched with the effort actually required by the server [18].

– So long as service response time is adequate, the requesting client will not
bail-out waiting for it [19].

Therefore, we assume a value of 1 second as our client acceptable time limit.
We use this time limit as a worst-case response time a server should endeavour
to deliver a response to its client within. This limit is a hard upper bound on
performance (as opposed to say, an average over time, allowing some responses to
go above the limit). We do this in recognition of user behaviour that will punish
a service provider for a 4 second response the first time it happens, regardless
of the fact that the past several responses were sub-second, and that an average
over all the responses might definitely be within a sub-second bound.

This client acceptable time limit will no doubt vary with circumstance. We
can imagine that a client may have varying requirements depending on the
client’s nature. A software client that is in turn a service composed of several
other services may need a tighter client acceptable time limit if it is to eventually
serve its composed service to some end human consumer.

The base metric we wish to collect is that of end-to-end response time, de-
fined in [20] as the amount of time that passes from when a client first starts
sending a request to when the client completes receiving the response. We view
end-to-end response time as an attractive measure for controlled test environ-
ments, whilst acknowledging that it may be difficult (if not impossible) to collect
in a real-world setting.

The choice of application server can severely restrict an application devel-
oper’s options in attempting to deliver dynamic content in a user acceptable
time-frame. We choose the Apache Tomcat 4.1.18 servlet engine 1 and deliber-
ately limit ourselves to what we can achieve without modification of the Servlet
engine itself. As we do not have access to the time a servlet resides on the request
queue, we cannot use approaches based on length of time in queue.

3.2 Service Adequacy

We define the function service adequacy between two time points (t1 and t2) as:

adequate responses(service requests(t1, t2))
# service requests(t1, t2)

(1)

where service requests(t1, t2) is the set of requests sent between times t1 and
t2, while adequate responses({r : ServiceRequest}) is the number of requests
in the supplied set that return a response within the client acceptable time limit
discussed previously.

By varying effort in dynamic content delivery, we seek to maximise the service
adequacy over a period of heavy load, which in turn means generating a higher
1 http://jakarta.apache.org/tomcat



number of adequate responses to requests under that load than what we would
have without varying effort. This measure does not take into account any user
“dissatisfaction” with a less “complete” service provision.

4 Design Considerations

We assume that for processing a given type of request, there are multiple ap-
proaches available, each with its own expected execution time. Approaches are
statically ranked during servlet initialization in order of expected system time
execution from heaviest to lightest. We also assume that a service provider would
prefer to generate the most costly approach they can so long as the response is
timely. Thus, in times of heavy load, we choose a less costly approach; in times
of light load, we choose one more costly.

Approaches are chosen via an approach selector illustrated in Fig. 1. The
approaches for handling a service request are placed in a group and ranked by
cost. Each approach in a group is either active or inactive. Active approaches
are capable of processing a service request whereas inactive ones will accept no
new requests for processing. Initially all approaches in a group are active.

We define two thresholds for the activation and deactivation of approaches:

time limit: The elapsed server time in which we desire a response to be sent for
any received request. Once the reported cost of an approach breaches this
limit, the approach is deactivated. The cheapest approach is not deactivated,
regardless of the degree to which the limit is breached.

reactivation threshold: Once the reported cost of an approach drops below
this threshold, the next most expensive (previously deactivated) approach
will be re-activated and its reported cost reset to zero.

Most
preferred

Least
preferred

2. selects

always active

Inactive, too slow
Approaches

Slowest Active Approach

Fastest Active Approach 3. reactivates next slowest 
   when selected approach 
   cost < reactivation_threshold

1. deactivates when 
    approach cost > time_limit

Approach
Selector

Fig. 1. The Approach Selector

The threshold time limit differs from the client acceptable time limit defined
earlier, in that it takes no account for time outside the control of the server (such



as communications overhead). The target processing time should conceivably be
small enough to allow reasonable communications on top of processing time to
allow overall delivery within the client acceptable time limit. The focus of our
research, however, is not in having the service consider network latency in its
delivery so we model the time difference as a simple constant value.

Every request for a service is passed through the approach selector, imple-
mented as a servlet filter. This filter can be plugged without requiring any al-
teration to the servlet engine itself. Each time that the processing of a service
request is completed using a given approach, the approach selector gets the cost.
If the cost has fallen below the reactivation threshold, the next most expensive
deactivated approach is reactivated, and its cost reset to zero. The next ser-
vice request will be processed using the reactivated approach. The reported cost
of a single approach is the worst elapsed time recorded of the last w calls to
the approach. In the experiments presented below, we have set w at 20 for the
experiment after some initial trials on the stability of approach cost reporting.

Note that for service degradation to be applicable, several versions of the
application providing the service should be available: a “full” version and one
or more “degraded” versions. In order to apply controlled degradation, the need
for multiple versions should thus be imposed as a requirement in the application
development process. In order to reduce the costs of handling this requirement
in terms of analysis, design, coding, and testing, (semi-)automated support can
be provided. In particular, design-level support could be introduced that would
allow designers to provide meta-data about the cost and importance of various
processing steps. At the coding level, special directives could be inserted in
the dynamic content generation scripts (e.g. JSP, ASP, or PHP) to indicate
for example not to perform a full XML message validation, or not to generate
certain document portions in the degraded version of the service. As the space
of possibilities is large, this issue desserves a separate treatment in future work.

5 Experiments

5.1 Simulation Environment

Our experiments are carried out on a set of eight dedicated Sun boxes running
Debian Linux on an isolated 100 megabit/second LAN. The testbed relies on a
single testing server and a single target server. The testing server sends broadcast
UDP messages to synchronise the activity of clients in order to generate differing
request patterns. The target server, a Sparc Ultra-5 with 192 Mb of memory,
contains the application server and approach selection algorithm to be tested.

The remaining six boxes act as test clients. Two of these machines act simply
to generate sufficient request traffic to tax the target server. These two machines
have been configured to generate enough traffic to ensure the server is close to,
but not actually at the point where, the server will refuse an incoming connection.
The other four machines send requests and wait for responses before sending new
requests. The figures reported later have been derived from the data collected
on this second set of boxes.



The request processing component for each service delivery approach is an
instance of a “workload simulation” servlet, pre-configured to run a set number
of floating-point calculations of 3000, 1000, 500 or 100 loops. A loop of 3000
floating-point calculations is used to represent the baseline approach. A response
from a service returns processing time as measured by the server.

Each experiment is conducted using two request traffic patterns. The “steady”
pattern corresponds to a server under heavy, constant request pressure, as might
result from the arrival of a flash crowd. The “bursty” pattern alternates periods
of high arrivals of requests which go beyond server capacity, with periods of no
arrivals. In future work, we look at other traffic patterns including the transition
between the steady and bursty request patterns. Note that for both patterns,
the total amount of requests over the period of one experiment is the same.

As a result of the non-threaded nature of the sampling clients, the number
of requests that these data sampling clients can make is bound by the response
times delivered by the server. Our expectation with introducing approach selec-
tion is that we should be able to reduce end-to-end response times, and allow
significantly more timely service responses reported from the sampling machines
than when run against the baseline.

Tests are run for one hour each to ensure the receipt of enough sampled
data in the worst case. Statistics are collected for the last 50 minutes of each
experiment to ensure the results are not optimistically skewed by warm-up time.
We track the end to end response time of each client request and report the
percentage that fail to fall within our client acceptable time limit.

The time thresholds time limit and reactivation threshold are set at 800 and
400ms respectively. The time limit threshold of 800ms was chosen as a number
within our one second target with 200ms set aside to receive and transmit request
and response messages. The 400ms reactivation threshold was simply chosen as
half of the time limit.

We performed three sets of experiments. In the first experiment we run the
baseline approach against both the steady and bursty request patterns. The
second experiment replaces the baseline approach with our approach selection
algorithm and was run against the bursty request pattern. The third experiment
uses the approach selection algorithm against the steady request pattern.

Results are displayed as a histograms, with the number of responses returned
to the sampling clients within a given timeframe represented as gray bars along
the x axis. A line showing the cumulative percentage of responses is also supplied.
Service adequacy is the percentage of responses returned within one second.

5.2 Experiment 1 - Baseline approach for both request patterns

Figure 2(a) shows that most responses were received by the sampling clients
within two seconds when tested against the bursty request pattern. Via our
definition of service adequacy, only around 9% of the responses received were
adequate, however. The steady request pattern results in Fig. 2(b) shows that
the server was taxed heavily as a result of the request traffic generated. The



minimum response time recorded was slightly under 69 seconds. As a result, the
baseline delivered zero service adequacy against the steady request pattern.

(a) Baseline: Bursty Request Pattern (b) Baseline: Steady Request Pattern

Fig. 2. Effect of running baseline against bursty and steady request patterns

The experiments show that the request arrival pattern has a strong effect on
service adequacy. By simply allowing a minute between bursts of requests, the
baseline response times are 20 times better with the bursty request pattern. This
is predictable given that the bursty arrival pattern allows the service to use the
period of no requests between bursts to focus on response delivery, and therefore
achieve some “adequate” responses. However, it is surprising that almost no
request took more than 20 seconds to process under the bursty pattern, which
shows that the system does perform request processing during the bursts. Note
that the same total amount of requests were processed under both approaches.

5.3 Experiment 2 - Approach Selection for bursty pattern

Here we compare the bursty baseline presented in Fig. 2(a) (repeated in Fig.
3(a)), with approach selection in Fig. 3(b) The number of adequate responses
has moved from a little under nine percent to around 48 percent. Again, most
messages were received within four seconds of sending the request. However,
approach selection has resulted in a much smaller worst case response time, and
significantly more responses within one second. We conclude that the approach
selection overhead does not outweigh its benefits.

Figure 4(a) shows the breakdown of approaches selected for the bursty re-
quest pattern. Most requests were balanced between either the most costly, or
second most costly approach. Very few attempts were made to use the lightest
two approaches. Figure 4(b) shows that most of the inadequate responses gen-
erated were a result of attempting the most costly approach, thereby showing a
deficiency in in the approach selection algorithm. To generate better service ade-
quacy for the bursty pattern, we would expect far less attempts at the 3000 loop
algorithm and more on the 1000 and 500 loop algorithms instead (see section 6).



(a) Baseline (b) Approach Selection

Fig. 3. Bursty request pattern using baseline and approach selection

The results in Fig. 4(b) suggest that the decision-making algorithm for ap-
proach selection can be poor when determining when to switch between the most
costly and second-most costly approaches with the bursty pattern. We believe a
contributor to this result is the number of threads that can be simultaneously
running. As the number of threads running a given approach increase, it allows
for larger numbers of in-progress threads that still need to complete using a
given approach once that approach is deactivated. The bursty traffic pattern is
likely to be compounding the issue, as we expect it to exercise the switching of
approaches more frequently than the steady request pattern.

(a) Approaches Selected (b) Inadequate Responses per Ap-
proach

Fig. 4. Breakdown of approaches selected for bursty request pattern

5.4 Experiment 3 - Approach Selection for steady pattern

In this experiment we repeat the baseline results for a steady request pattern
(from Fig. 2(b)) in Fig. 5(a) and compare them against running the same pat-



tern with approach selection in Fig. 5(b). Most responses were received between
75 and 150 seconds of transmission from the client in the baseline experiment
and the worst-case response time took over 755 seconds to return. No adequate
responses to baseline requests were received by the sampling clients.

(a) Baseline (b) Approach Selection

Fig. 5. Steady request pattern using baseline and approach selection

In contrast to the baseline, approach selection saw over 50% of responses
return in an adequate timeframe under the bursty pattern, with most responses
returned within few seconds. In addition, approach selection proved even more
beneficial to response times under the steady pattern than the bursty one.

Figure 6(a) shows the breakdown of approaches selected for the steady re-
quest pattern. Most of the requests were processed using the least costly ap-
proach. This is in contrast to approach selection for the bursty request pattern,
which used the 3000 and 1000 loop approaches mostly. We conclude that the
accuracy of using elapsed time as a measure for determining when to switch
approaches is yields better results with heavier request loads.

A relatively even distribution of attempts to use more costly approaches was
recorded. Figure 6(b) shows that most of the requests processed with the least
costly approach returned adequate responses, whereas, most requests attempting
heavier approaches returned inadequate responses. The number of attempts at
more costly approaches is surprisingly large. We theorise that a combination
of the occasional break in steady request traffic, sufficient enough to retry the
heaviest of approaches, and concurrent threads still running recently deactivated
approaches combined to produce the numbers observed.

6 Concluding Remarks & Future Work

We have shown that despite limitations imposed by the implementation tech-
nology chosen, the principle of generating cheaper responses to a request under
times of load can deliver significant performance improvement. We wish to au-
tomate the ranking of approaches to remove the limitation of hard-coding it.



(a) Approaches Selected (b) Inadequate Responses per Approach

Fig. 6. Breakdown of approaches selected for steady request pattern

The choice of cost calculation algorithm, time limit and reactivation threshold
may also have an impact on optimal approach selection. The experiments de-
scribed used a simple worst-case elapsed time calculation method with a rela-
tively small window and time limit values that were not varied. Future work will
focus on investigating the behavioural change evidenced when using the same
algorithm with differing sample window sizes, varied cost sampling algorithms,
differing time limit values and differing degrees of multi-threading.

We have shown that the type of request pattern has a strong effect on ser-
vice provision adequacy without approach selection, and that approach selection
serves to smooth the differences in response times between patterns. Though the
method employed works to decrease response times and increase scalability for
the request patterns tested, it produces better responses when used with heavy,
constant request load. We intend to test approach selection against a wider range
of request patterns to gain a better understanding of its strengths and weaknesses
and help synthesize better selection algorithms. Also, we plan to study the be-
havioural effects of varying the two time thresholds of the proposed method,
namely reactivation threshold and time limit, in order to undertand how they
can be tuned to achieve greater scalability.

Our current experimental setup involves CPU-intensive services requiring no
RAM or disk access. At present, we are working towards extending the exper-
imental setup first to services involving frequent RAM access (e.g.to simulate
XML parsing and DOM tree-traversals), and then to services involving disk ac-
cess (e.g. relying on a database system).
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