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Abstract
Model-based advanced control of industrial processes requires well-developed process

models. The established models are often complex with the features of multi-dimension,
high nonlinearity, strong coupling, etc. Those features make the computational demand of
the models conceptually high, especially for large-scale systems, resulting in difficulties in
implementation of real-time control systems. This paper reports our efforts in overcoming
the difficulties for a large-scale industrial process: a continuous hot dip galvanising pro-
duction line. The process model is developed first, which is a set of partial differential
equations. It is then transformed into a discrete state space model suitable for computation
using digital computers. In order to meet the requirements of real-time control, algorithms
are designed to significantly reduce the computational time. The process model and its
computational algorithms are implemented and embedded into the real-time control system
of the galvanising production line in the real plant.

1. Introduction

All systems must be logic correct. Real-time systems are time-critical systems in which time-
liness is as important as the logic correctness. They are pervasive in the real world, e.g. in
computing, communication, multimedia, robotics, process monitoring and control, etc. Due
to the wide applications of the real-time systems and increasing demand on functionality and
performance, real-time technology becomes an emerging and challenging area in computer en-
gineering.

There have been some reports on real-time systems with regard to software architecture and
software engineering, e.g. (Jeon and Choi, 2001; Carreira and Costa, 2003; Kumarakulasingam
and Saiedian, 2002; Zalewski, 2001; Naedele, 2001). However, how to translate a real-time
application problem into a form suitable for software specification, design, and implementa-
tion is still challenging. Moreover, reasonable simplifications of the original problem in this
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Figure 1. Continuous annealing furnace in a galvanising process.

translation process will lead to a significant reduction of computational demand and make the
scheduling of various real-time tasks much easier. This work reports our efforts in this aspect
through implementation of a mathematical model of a large-scale industrial process for real-
time applications.

The investigated industrial process is a continuous hot dip galvanising production line in an
iron and steel plant. A large-scale continuous annealing furnace, as shown in Figure 1, is the
most important equipment in the production line. The furnace is about 42m high and 38m long.
It consists of four sections: F1 (flame preheating), F2 (radiation heating), F3 (cooling), and C1
(gas-jet cooling).

A steel strip of the thickness between 0.3mm and 3mm passes continuously through the four
consequent furnace sections for annealing and then through a zinc port for zinc coating. The
equivalent length of the steel strip in the furnace is about 183m.

Maintaining steel strip temperatures T1 through T5 at specified values is critical for the qual-
ity of the galvanised steel products. The expected values of these temperatures are determined
by the so-called annealing diagram, which specifies a set of strip temperatures in the furnace
for each of the steel strip rolls. Therefore, many efforts have been made to control the steel strip
temperature distribution in furnace, e.g. (Yoshitani and Hasegawa, 1998).

The strip temperatures in furnace are controlled through manipulating furnace temperatures
TZ1 through TZ16, while the furnace temperatures are regulated through combustion control.
Therefore, the real-time control system of the furnace has a hieratical and cascade structure.
For steel annealing diagram no. 76, a typical furnace temperature profile is depicted in Figure
2. Typical strip and furnace temperature profiles at the temperature measurement points in the
furnace are tabulated in Table 1. More information about the production line can be found in
(Tian et al., 2000; Tian and Tadé, 2002).

For advanced control of the strip temperature in furnace, a mathematical model of the pro-
cess is required. The model is used to predict the strip temperature distribution in furnace
several steps ahead. The prediction is then used for control design. It has been clarified from
system analysis that a good choice of the control period for the system is 4s, implying that the
model computation time must be much shorter than the control period, i.e. 4s.

However, a mathematical model for such a large-scale galvanising process is normally a
set of partial differential equations, which are computationally intensive. Using conventional
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Figure 2. A typical furnace temperature profile.

Table 1. Typical strip and furnace temperature profiles at measurement points (unit: ◦C).

Strip temperatures T1 ∼ T5 450 650 760 630 465
F1 furnace temperatures TZ1 ∼ TZ4 1127 1131 1181 1097
F2 furnace temperatures TZ5 ∼ TZ10 882 847 764 895 912 888
F3 furnace temperature TZ11 210
C1 furnace temperatures TZ12 ∼ TZ16 507 413 205 195 182

numerical methods, it is difficult to complete the model computation in a control period (4s)
with the required computation accuracy. Consequently, feasible scheduling strategies are not
available for such a real-time computing application. Therefore, the mathematical model has
to be reasonably and significantly simplified and efficient algorithms have to be developed for
model implementation.

System analysis and the main aspects of the model development for the galvanising process
have been discussed in (Tian et al., 2000; Tian and Tadé, 2002). As a continuation of our
previous work in this area, this paper focuses on the implementation aspect of the developed
process models for real-time applications through further model simplification, and algorithm
development.

To make this paper self-contained, let us have a brief discussion of the model development
of the galvanising process in the next section.

2. Development of Process Models

2.1 Partial Differential Equation Model

To describe the strip temperature distribution T in the furnace, a fixed two-dimensional Carte-
sian coordinate system is taken with x and y representing the thickness and length directions,
respectively, as shown in Figure 3. The physical properties of the steel strip are described by its
specific heat C [J/kgK], density ρ [kg/m3], and heat conductivity Ks [W/mK].

Under some reasonable assumptions, the strip temperature distribution T can be described
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Figure 3. Fixed two-dimensional coordinate system.

by a partial differential equation (PDE) (Tian et al., 2000)

∂T (x, y, t)

∂t
=

Ks

Cρ

{
∂2T (x, y, t)

∂x2
+

∂2T (x, y, t)

∂y2

}
(1)

with the initial condition

T (x, y, 0) = T0(x, y) (2)

and “linearised” boundary conditions




Ks

h(y, t)

∂T (x, y, t)

∂x

∣∣∣
x=0

= T (0, y, t) + TZ(y, t)

Ks

h(y, t)

∂T (x, y, t)

∂x

∣∣∣
x=d

= TZ(y, t) − T (d, y, t)
(3)

where TZ represents furnace temperature, h [W/m2K] is an equivalent heat transfer coefficient
between furnace and strip, x ∈ [0, d] (d is the strip width), and y ∈ [0, L] (L is the equivalent
length of the strip in furnace). Some simplifications have been made in deriving this PDE model
in order to implement the model in real-time (Tian et al., 2000).

The average strip temperature along the strip thickness direction is obtained through

TS(y, t) =
1

d

∫ d

0
T (x, y, t)dx (4)

2.2 State Space Model

The above PDE model equations (1) through (4) developed from the first principles are difficult
to solve analytically, necessitating numerical computation. Therefore, the PDE model needs to
be transformed into a form suitable for real-time numerical computation.

Among various numerical computation methods, the finite difference technique is adopted
in this work to develop a simple yet practical state space model for strip temperature distribution.
The model is discrete in both time and space. The main steps of the model development are
stated below.

Firstly, partition x into Nx sections of length ∆x and y into Ny sections of length ∆y,
respectively, where Nx × ∆x = d and Ny × ∆y = L. This results in Nx × Ny parallelograms
on the xy space, as shown in Figure 4. For simplicity, let i, j denote i∆x and ∆y, respectively,
without confusion.

Secondly, discretise the time t into a finite number of instants with the time step of ∆t. For
simplicity, let k denote k∆t.

Then, use forward and backward differences to approximate
∂T (x, y, t)

∂t
and

∂T (x, y, t)

∂y
,

respectively. However, use forward-backward differences to approximate
∂T 2(x, y, t)

∂x2
and

∂T 2(x, y, t)

∂y2
.

290



Complex 2004 The 7th Asia-Pacific Conference on Complex Systems

Figure 4. Space partition.

After that, add up the finite number of strip temperatures at the discretised x points to ap-
proximate the integration

∫ d
0 T (x, y, t)dx.

Substituting those approximations of the partial derivatives and integration into the original
PDE model equations (1) through (4) gives a set of coupled difference equations. With some
algebraic operations, the following state space model can be derived, which is discrete in both
time and space (Tian et al., 2000)

X(k + 1) = A(k)X(k) + B(k)U(k) (5)

where




X(k) = [TS(0, k), · · · , TS(Ny, k)]T

U(k) = [TZ(0, k), · · · , TZ(Ny, k)]T

B(k) = diag(d0k, · · · , dNyk)

A(k) =




a11 b
b + c a22 b

b + c a33 b
· · · · · · · · ·

b + c aNy,Ny b
b + c aNy+1,Ny+1




(6)

djk is expressed by

djk =
2

Cρd
h(j, k)∆t, j ∈ {0, 1, · · · , Ny} (7)

The matrix A(k) = [apq] is a Ny+1 by Ny+1 square matrix with most elements being zero



app = 1 − b − d0k p = 1
app = 1 − 2b − c − d(p−1)k, p ∈ {2, · · · , Ny}
app = 1 − b − c − dNyk, p = Ny + 1
ap(p+1) = b, p ∈ {1, · · · , Ny}
ap(p−1) = b + c, p ∈ {2, ..., Ny + 1}
apq = 0, otherwise

(8)

where

b =
Ks

Cρ

∆t

(∆y)2
(9)

c = v(k)
∆t

∆y
(10)
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The variable v(k) represents the strip speed in m/s. It is an operational variable in production
but not a manipulated variable in control design and implementation of the system.

2.3 Settings of Model Parameters

The developed state space model expressed by equations (5) through (10) contains some pa-
rameters representing the physical properties and operating conditions, such as C, ρ, d, v, etc.
These parameters are not adjustable in model computation unless the operating environment
has changed. In addition to these parameters, there are two adjustable parameters, ∆t and ∆y,
which determine the computational complexity, accuracy, and stability of the model. Big val-
ues of ∆t and ∆y reduce the computational demand while resulting in less accurate results and
probably unstable model computation. On the other hand, small values of ∆t and ∆y benefit
the computation accuracy and stability; however, this will lead to a significant increase in com-
putational demand and consequently the real-time requirement may not be met. Therefore, a
compromise has to be made when selecting ∆t and ∆y values.

A detailed analysis of the computational stability of the state space model has been carried
out. The stability conditions are listed below (Tian et al., 2000)




h(j, k)∆t < Cρd forj ∈ [1, Ny − 1]

2h(Ny, k)∆t <

[
2 − v

∆t

∆y

]
Cρd

v ∆t
∆y

Cρd < 2h(0, k)∆t <
[
2 + v ∆t

∆y

]
Cρd

(11)

From the stability conditions in equation (11), the full range of operating conditions and
physical properties of the steel strip has been investigated for determination of reasonable values
of ∆t and ∆y. In the final implementation of the state space model, it has been chosen that ∆t
= 4s and ∆y = 10m.

3. Algorithm Design and Implementation

3.1 Standard Least Square Algorithms

When using the developed state space model to predict the strip temperature distribution and
further for control design, all model parameters in the matrices A and B must be known. How-
ever, the operating conditions of the system keep changing continuously. Therefore, a set of
fixed values for model parameters is not acceptable for online and real-time applications. Some
model parameters must be identified online and in real-time.

The fundamental algorithms for model identification are simple. For example, the standard
least-square identification algorithm and its extensions can be used. For easier discussion of the
algorithm developed in this work, a brief description of the standard least square identification
algorithms is given below.

Consider a model

z(t) = φ1(t)θ1 + φ2(t)θ2 + · · · + φn(t)θn = φT (t)θ (12)

where φ and θ are regressor and parameter vectors, respectively. The model is linear in the
parameters.

A series of observations of z is obtained together with corresponding φ, {(zi, φi), i =
1, 2, · · · , t}.

Denote
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Z(t) = [z(1), z(2), · · · , z(t)]T

E(t) = [ε(1), ε(2), · · · , ε(t)]T
ε(i) = z(i) − ẑ(i) = z(i) − φ(i)θ; i = 1, ..., t

(13)

Minimising the performance index
∑

i ε(i) with respect to the parameter vector θ gives the
estimate of the parameters




θ̂(t) = P (t)ΦT Z = P (t)
∑

i φ(i)z(i)

P (t) =
(
ΦT Φ

)−1
=

(∑
i φ(i)φT (i)

)−1

Φ =
[
φT (1), φT (2) · · · , φT (t)

]T

(14)

The solution of θ̂ in (14) requires that ΦT Φ is non-sigular.
To recursive form of the above least square estimation of θ is expressed by




θ̂(t) = θ̂(t − 1) + K(t)
[
z(t) − φT (t)θ̂(i − 1)

]
K(t) = P (t)φ(t) =

P (t− 1)φ(t)

1 + φT (t)P (t − 1)φ(t)
P (t) =

[
I − K(t)φT (t)

]
P (t− 1)

(15)

To weight more new data and forget old history, a forgetting factor λ is introduced into the
estimation scheme. The corresponding estimation θ̂ is




θ̂(t) = θ̂(t − 1) + K(t)
[
z(t) − φT (t)θ̂(i − 1)

]
K(t) = P (t)φ(t) =

P (t− 1)φ(t)

λ + φT (t)P (t − 1)φ(t)
P (t) =

[
I − K(t)φT (t)

]
P (t− 1)/λ

(16)

where the forgetting factor λ ∈ [0, 1], usually λ ∈ [0.95, 1].
For the developed state space model (5) through (10), recall that ∆y is determined to be

10m, implying that A is a 19 by 19 matrix. Because the above-mentioned standard least square
algorithms are applied to each of the 19 rows of the matrix A, there will be a demand of heavy
computation of matrices and matrix inverses in estimation of A. This prevents us from using the
standard algorithms for real-time implementation of the state space model, necessitating more
efficient algorithms.

3.2 Development of a More Efficient Algorithm

It is seen from equation (8) that the matrix A is sparse with most of its elements being zero.
The first and last row of A has respective 2 elements, and all other rows have only 3 elements!
This structural feature of A can be used to develop some algorithms with significant reduction
of computational demand.

The following is a brief description of such an algorithm developed in this work. The basic
framework of the algorithm is similar to (16), i.e. the least square scheme with a forgetting
factor. However, the calculation for each row of A is carried out over 2 or 3 elements, compared
to 19 elements of the standard algorithms! In the following descriptions of the developed algo-
rithm, the vector θ is formed by the 2 or 3 non-zero elements of a row of A while φ(t) is formed
by the corresponding 2 or 3 elements of the state vector X(t). The measurement z(t), i.e. T in
the model of the steel strip temperature distribution, corresponds to a specific point of y.
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Step 1. For each row of A, construct φ and θ using the 2 or 3 non-zero elements in the
corresponding row of the matrix A.

Step 2. For each row of A, calculate K(t) based on φ(t) and P (t − 1). The formula is

K(t) =
P (t− 1)φ(t)

0.95 + φT (t)P (t − 1)φ(t)
(17)

Step 3. For each row of A, update P based on K(t) and φ. The equation is

P (t) =
[
I − K(t)φT (t)

]
P (t − 1)/0.95 (18)

Step 4. For each row of A, identify the 2 or 3 non-zero elements that form the corresponding
θ. The formula is

θ̂(t) = θ̂(t − 1) + K(t)
[
z(t) − φT (t)θ̂(i − 1)

]
(19)

These steps form the fundamental algorithm for model identification in this work.

3.3 Further Simplification

The developed model identification algorithm can be further simplified. It is known from the
system analysis that not all non-zero elements of the matrix A need to be identified!

Let us consider the row r(1 < r < 19) of the matrix A. The 3 non-zero elements in the row
are 


a(r−1)r = b + c,
arr = 1 − 2b − c − d(r−1)k,
ar(r+1) = b

(20)

From equation (10), c = v∆t/∆y can be calculated directly because the strip speed v is exactly
known and ∆t = 4s and ∆y = 10m are predetermined model parameters. It is seen from equation
(20) that a(r−1)r = ar(r+1) + c. This means that either a(r−1)r or ar(r+1) can be excluded from
the identification scheme as they can be derived from each other with the known value of c.
Therefore, only 2 elements need to be identified for each row of the matrix A! The operations
of 2 by 2 matrices are very easy.

In summary, with the developed system identification algorithm, the operations of 19-by-19
matrices are simplified into the operations of 19 2-by-2 matrices for the state space model (5)
through (10). This is the best result that we have obtained so far for this application.

3.4 Implementation of the Identification Scheme

In programming, the calculation of various vectors has been transformed into scalar calculations
within structured loops; and for each row of the matrix A, only 2 or 3 non-zero elements are
taken into account.

For equation (19), the psudo-code looks like

For row r (1 < r <19)
for (col=r-1, col<=r+1, col++)
a[r,col]+=K[col]*(T-Tpre);

Other parts of the identification algorithm can also be programmed easily.
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4. Prediction of Strip Temperature Distribution

With the developed state space model (5) through (10) and the identified model parameters, the
prediction of the steel strip temperature distribution in furnace is straightforward. Although the
calculation can be carried out based on the 19-by-19 matrix A, much less computation can be
expected because there are only 2 or 3 non-zero elements in each row of A. This can be easily
implemented in programming.

Let us consider the first row of the matrix A. The prediction is made using the following
simplified formula

x1(k) = a11x1(k − 1) + a12x2(k − 1) (21)

For rows 2 through 18 of the matrix A, the computation is carried out using a three-term
formula

xr(k) =
[
a(r−1)r, arr, ar(r+1)

] 
 xr−1(k − 1)

xr(k − 1)
xr(r+1)(k − 1)


 (22)

For the last row of the matrix A, the prediction is expressed by

x19(k) = a18x18(k − 1) + a19x19(k − 1) (23)

5. Concluding Remarks

As mentioned earlier, the control period of the overall control system for the galvanising process
is 4s, which is determined from system analysis and must be met in control system design and
implementation. Numerical computation of the original partial differential equation model of
the process requires a much longer time than the specified control period, making it impossible
to schedule the control tasks.

Efforts have been made in this work to significantly reduce the computational demand
through model simplification and implementation. The proposed computational scheme is the
operations of 19 2-by-2 matrices. The developed models, the algorithms for parameter identi-
fication and strip temperature prediction, and the implementation of the models and algorithms
are verified through simulation and industrial applications. An evaluation of the timeliness of
the proposed approach shows that the overall model computation, including system identifica-
tion and prediction, can be completed within 400ms on the control computer in the real plant.
This satisfies the requirement of the real-time control, and makes the control tasks of the overall
control system schedulable.

The developed models and algorithms for model computation are successfully embedded
into the real-time control system of the galvanising production line. Industrial applications as
well as simulation studies reveal that the implemented process model has the accuracy suitable
for real-time control. For strip temperatures T2 through T5, the means of the predictive errors
over three hours are 0.03, −0.03, 0.02, and 0.05, respectively. The corresponding standard
deviations are 1.59, 0.36, 0.38, and 0.68, respectively. A plot of the redictive error for T2 over 3
hours is shown in Figure 5.

Through this work, it is found that when a process model is descretised using a properly
designed method, a state space model discrete in both time and space can be obtained with
a special structure in the state matrix: the matrix is sparse with most elements being zero.
Taking into account this structural feature of the state matrix, it is possible to develop efficient
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Figure 5. Predictive errors of T2 over 3 hours.

algorithms for model identification and model-based prediction. This work has shown how to
develop such algorithms and how to implement these algorithms.
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