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Abstract 
 

The study of kaolinite surfaces is of industrial importance. In this work we 
report the application of chemometrics to the study of modified kaolinite surfaces. 
DRIFT spectra of mechanochemically activated kaolinites (Kiralhegy, Zettlitz, Szegi 
and Birdwood) were analysed using, Principal Component Analysis (PCA), and 
multi-criteria decision making (MCDM) methods, PROMETHEE and GAIA.  The 
clear discrimination of the Kiralhegy spectral objects on the two PC scores plots (400-
800 and 800-2030 cm-1) indicated the dominance of quartz.  Importantly, no ordering 
of any spectral objects appeared to be related to grinding time in the PC plots of these 
spectral regions.  Thus, neither the kaolinite nor the quartz, are systematically 
responsive to grinding time according to the spectral criteria investigated.  The third 
spectral region (2600-3800 cm-1 – OH vibrations), showed apparent systematic 
ordering of the Kiralhegy and, to a lesser extent, Zettlitz spectral objects with grinding 
time.  This was attributed to the effect of the natural quartz on the delamination of 
kaolinite and the accompanying phenomena (i.e. formation of kaolinite spheres and 
water).  With the MCDM methods, it was shown that useful information on the basis 
of chemical composition, physical properties and grinding time can be obtained.  For 
example, the effects of the minor chemical components (e.g. MgO, K2O etc) indicated 
that the Birdwood kaolinite is arguably the most pure one analysed.  In another 
MCDM experiment, some support was obtained for the apparent trend with grinding 
time noted in the PC plot of the OH spectral region. 
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1 Introduction 
 
Kaolinite is one of the most important clay minerals and has wide industrial 

applications.  It is used in the production of ceramics and porcelain, and as a filler for 
paint, rubber and plastics [1, 2].  However, the greatest demand for kaolinite is in the 
paper industry where it is used to produce glossy paper such as those in magazines 
[3].  The wide industrial application of kaolinite depends on the ability to modify its 
properties for other uses.  One such method is the mechanochemical activation of 
kaolinite through dry or wet grinding.  Other methods used to modify kaolinite 
surfaces include intercalation and thermal treatment [4-6]. 

Studies have been undertaken to investigate changes in the kaolinite structure 
due to grinding over a long period of time [7-13].  Various techniques that have been 
used to study changes in kaolinite include X-ray diffraction, infrared spectroscopy, 
thermal analysis, electron microscopy, and Raman spectroscopy.  Laws and Page [14] 
studied changes arising from grinding of the kaolinite and some aspects of the 
resulting product.  Schrader [15] comprehensively studied the mechanochemical 
transformation of the kaolinite structure and observed that increased grinding causes 
the crystal structure to deform mainly along the c axis with the crystal structure along 
the b axis proving to be more resistant (i.e. deformation between the layers but not 
within the layers).  In addition, increased grinding decreased crystallite size 
significantly along the c axis, and slightly along the b axis, causing the kaolinite 
structure to delaminate.  Takahashi [7] and Kohler et al. [16] found that prolonged dry 
grinding (over 36 hours) resulted in a disordered phase which yielded an amorphous 
material due to the complete destruction of the kaolinite structure.  The gradual 
destruction of kaolinite affects its physical and chemical properties including particle 
size [11, 12], specific surface area [12, 16], cation exchange capacity [17, 18], water 
absorption capability and energy [19, 20], acid solubility [17] and aggregate 
formation [21]. 

Mechanochemical activation as studied by Scanning Electron Microscopy 
(SEM) and Transmission Electron Microscopy (TEM) shows the disintegration, 
aggregation and agglomeration of the kaolinite [12, 21].  It was found that dry 
grinding causes the kaolinite layers to fragment and results in the formation of 
spheroidal particles.  According to Juhasz [12], these spheroidal particles result from 
the mechanochemical activation process where grinding causes a) initial increase in 
the degree of dispersion; b) aggregate formation due to interpartial adhesion; c) 
aggregate compaction (agglomeration) due to the effect of high surface forces; and d) 
dispersion of aggregates at a sufficient degree of compactness. 

Infrared spectroscopy has also been used to study the changes in the molecular 
structure of kaolinite during grinding [22].  The structural alterations characterised by 
X-ray diffraction measurements are supported by various studies with infrared 
spectroscopy.  According to Farmer [23], kaolinite hydroxyl groups have four infrared 
stretching bands.  The bands are assigned in accordance with the inner surface 
hydroxyls (3695, 3670 and 3650 cm-1) and inner hydroxyls (3620 cm-1).  Thus, 
structural changes as the result of grinding are reflected in the infrared spectra of the 
hydroxyl stretching region.  With the use of infrared spectra, Miller and Oulton [24] 
observed a deterioration of the kaolinite structure and explained the removal of 
protons from inner surface and inner hydroxyls.  Frost et al. [25, 26] and Gonzalez 
Garcia et al. [27] demonstrated on the basis of thermal analysis and infrared 
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spectroscopy the conversion of hydroxyl groups to water, which becomes weakly and 
strongly hydrogen bonded to the kaolinite surface.  This process is referred as the 
dehydroxylation of kaolinite where a) delamination of the crystal (due to grinding) 
exposes the inner surface hydroxyls to form water; and b) increased grinding results 
in the formation of an amorphous phase [21, 28, 29]. 

Simple sampling of infrared spectra may be carried out by the well known 
Diffuse Reflectance Fourier Transform Infrared (DRIFT) Spectroscopy method.  
However, the spectra can be quite broad and complex to interpret.  Direct spectral 
comparison becomes difficult and curve fitting, which has been a popular method for 
infrared spectral resolution becomes problematic.  A possible way to overcome this 
problem is to apply chemometrics techniques to extract information that is otherwise 
difficult to obtain from the complex raw spectra.  In effect, chemometrics methods 
facilitate multivariate comparisons of spectra of samples, and there are numerous 
examples in the vibrational spectroscopy [30-33] and other literature [34-39] to attest 
the usefulness of this approach.  However, the literature search did not reveal 
applications of chemometrics methods to the study of kaolinites and, in particular, to 
investigate the molecular and structural changes of different mechanochemically 
activated kaolinites. 

This paper presents the results of an exploratory study of a set of DRIFT 
spectra of several different kaolinites with the aid of chemometrics.  The assessment 
of DRIFT spectra was undertaken with the aid of Principal Components Analysis 
method (PCA), and the results were compared and contrasted with known 
information.  In addition, an initial study on the application of the multi-criteria 
decision making methodology (MCDM), PROMETHEE (Preference Ranking 
Organisation METHod for Enrichment Evaluations) and GAIA (Geometrical Analysis 
for Interactive Assistance), was carried out to explore the relationships between 
spectroscopic data and other available information such as grinding time and chemical 
composition. 

 

2 Experimental 

2.1 Kaolinite samples 
 
The samples used in the experiments were high grade natural kaolinites from 

four different sources: a) the Szegi (Hungary); b) the Kiralyhegy (Hungary); c) the 
Zettlitz (Carsbad, Czech Republic); and d) the Birdwood (South Australia).  Their 
properties are shown in Table 1.  The kaolinites were selected for their low quartz 
content and high purity (apart from the Kiralyhegy kaolinite). The analyses were 
undertaken by the authors and have been referred to in previous publications [26, 29]. 

 

2.2 Milling procedure 
 
A Fritsch pulverisette 5/2-type laboratory planetary mill was used to grind the 

kaolinites.  Samples were ground for 0, 1, 2, 3, 4, and/or 6 hours.  Each milling was 
carried out with a 10 g air-dried sample in an 80 cm3 capacity stainless steel (18 % Cr 
+8 % Ni) pot using 8 (31.6 g) stainless steel balls (10 mm diameter).  The applied 
rotation speed was 374 r.p.m.  All four kaolinite samples were ground under precisely 
the same conditions. 
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2.3 DRIFT spectroscopy 
 
DRIFT spectra were sampled with the use of a Bio-Rad FTS 60A spectrometer 

(scans = 512; resolution  = 2 cm-1; mirror velocity = 0.3 cm/s). 
Approximately 3 weight % of the kaolinite sample was dispersed in 100 mg 

oven dried spectroscopic grade KBr with a refractive index of 1.559 and a particle 
size of 5-20 µm.  Reflected radiation was collected at ~50% efficiency.  Background 
KBr spectra were obtained and spectra ratioed to the background.  The DRIFT 
spectral accessory (Bio-Rad FTS) is a “praying mantis” design, and includes two four-
position sample slides and eight sample cups.  The cup (3 mm deep, 6 mm in 
diameter) accommodates powdery samples (1-3 % concentration) mixed with KBr, 
which were usually ground in an agate mortar and pestle.  The reflectance spectra 
were expressed in Kubelka-Munk units, and are very similar to absorbance spectra. 

 

2.4 DRIFT spectra 
 
DRIFT spectra were baseline corrected, zero-offset and subdivided into three 

regions 400-830, 830-2030, 2600-3800 cm-1 (Spectracalc GRAMS).  Thus, a data 
matrix for each spectral range consisted of 19 spectral objects and 250 wavenumber 
variables.  Each matrix was then pretreated (Excel 5, Microsoft) prior to submission 
to PCA, and PROMETHEE and GAIA. 

 

2.5 Chemometric analysis 

2.5.1 Principal Component Analysis (PCA) 
 
PCA is a well known chemometrics method [40, 41] facilitating pattern 

recognition and display of data.  PCA effects multi-variate data reduction by 
transforming the data into orthogonal components, which are linear combinations of 
the original variables.  These new variables are often referred to as latent variables or 
principal components (PCs).  The transformation is achieved without loss of 
information because each PC accounts for a certain amount of data variance and the 
PCs are extracted in order such that PC1 accounts for largest amount of data variance, 
PC2 for the next largest amount and so on.  The data reduction process often 
encapsulates all the significant information or data variance in just a few PCs instead 
of hundreds or even thousands of original variables (i.e. wavenumbers in the case of 
DRIFT spectra). 

Each spectrum or object has a score value on each of the new PC variables and 
hence, PC score/score plots may be obtained e.g. a PC1 versus PC2 score plot may be 
displayed, which allows any patterns and trends to be studied.  Commonly, such a 
score plot accounts for most of the data variance.  In addition, each original variable 
(i.e. a wavenumber) is characterised by a loadings value, which expresses the 
importance of a variable on a particular PC for the discrimination of the objects (i.e. 
DRIFT spectra on a given PC).  Hence, plots of loadings values for a given PC will 
indicate the wavenumber ranges that are principally responsible for the separation or 
discrimination of the objects or spectra on a given PC.  However, it should be noted 
that loadings plots are generally regarded as abstract spectra and do not necessarily 
reflect a true spectral response from a particular component of sample mixture.  
Ultimately, a combination of the PC score/score plots and their corresponding 
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loadings displays may provide progressively more information which is often 
unavailable by conventional data analysis. 

 

2.5.2 Data pretreatment 
 
The raw data matrix consists of DRIFT spectra objects as rows with 

wavenumber variables as columns.  To extract the data variance effectively, it is often 
necessary to rescale or pretreat the raw data matrix.  In this work, the raw data matrix 
was double centred (i.e. y-mean scaled followed by x-mean scaling) [42].  This 
procedure removes the size component reflected by the first PC of the raw data matrix 
leaving essentially the information responsible for the data variance and noise.  The 
resulting matrix was then submitted to variance scaling or standardisation to bring 
each column variable to unit variance.  The pretreated matrix was then submitted to 
PCA. 

 

2.5.3 PROMETHEE and GAIA 
 
PROMETHEE and GAIA MCDM methods have been described in detail 

elsewhere [40, 43, 44]; in this paper, a summary of these methods is provided in 
sufficient detail to indicate the concepts and data treatment involved. 

PROMETHEE is a non-parametric method used to rank a number of actions 
(objects) based on the criteria (variables) in the data matrix.  For each criterion, a 
specific preference function, a threshold value and a weighting condition must be 
defined.  The preference function is a mathematical function, which is used to 
calculate the degree of preference associated with each action.  To set up a model for 
PROMETHEE, a preference function must be selected.  In commercially available 
software (e.g. Decision Lab (Visual Decision 2000)), six shapes of preference 
functions are defined.  In this software, they are called Usual, Linear, Level, V-
shaped, U-shaped, and Gaussian [40].  For most functions, one or two classification 
thresholds must be provided by the user.  These establish how preferences are to be 
attributed in accordance with the functions.  Minimised and maximised conditions are 
allocated for each criterion to establish the preferred ranking sense.  Therefore, the 
ranking can be undertaken bottom up (minimised) or top down (maximised) 
depending on the decision-maker’s preferences.  Weights can also be allocated for 
each criterion to reflect the importance of one criterion over another.  By default, a 
weighting of 1 is assigned for all criteria.  However, weights can be altered by the 
decision-maker if alternative scenarios are required in the investigation.  The model is 
now set up according to the user’s chosen scenario, and the raw data matrix may be 
submitted for calculation.  

A summary of the PROMETHEE procedure is given below: 
1. The raw data matrix is transformed into a difference d matrix. 
2. For each criterion, the selected preference function, P(a, b) is applied to determine  

how much an outcome a is preferred to b.  The overall outcome is a preference 
index matrix. 

3. A global (or overall) preference index is then calculated for each object by 
summing all preference indices for each criterion. 

4. Positive (Φ+) and negative (Φ -) outranking flows are calculated by summing all 
the global preference indices.  Φ + describes how an action outranks all others 
while Φ – describes how an action is outperformed by all others. 
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5. The outranking flows are compared pairwise according to a set of rules [40].  
These are based on three possible outcomes, which lead to partial pre-order of the 
objects known as PROMETHEE I ranking: 

a) one action is preferred to another; 
b) there is no difference between the two actions; and 
c) the two actions can not be compared. 

6. The net outranking flows (Φ = Φ + - Φ -) are calculated, which exclude rule 5 (c) 
above, and the results are displayed in a unidimensional (PROMETHEE II) 
ranking.  Although it may be more convenient to use PROMETHEE II net 
ranking, some information does get lost in the process.  This information is 
retained in the PROMETHEE I partial ranking, where incomparable objects (or 
alternatives) are displayed. 

Typical partial PROMETHEE I and net PROMETHEE II rankings are 
illustrated in Figures 1a and 1b. 

GAIA is a display method and is linked to the PROMETHEE procedure.  The 
GAIA matrix is constructed from a decomposition of the Φ net outranking flows [40].  
The data is then processed by a PCA algorithm, and displayed on a GAIA biplot, 
which shows a distribution of objects, criteria vectors and a decision axis, π.  Such 
displays are interpreted conventionally as normal PCA biplots, and the decision axis 
π, displays the degree of decision power pointing to the approximate location of the 
preferred action.  GAIA provides some guidance for criteria, which are important for 
net outranking, and which criteria influence the decision axis.  An important 
difference between the application of the GAIA and a conventional PCA is its facility 
to model scenarios based on the choice of individual preference functions for each 
criterion, the choice of ranking sense and the criteria weights.  The choice of such 
model specifications will be reflected in the distribution of the criteria vectors on the 
resulting biplot.  This facilitates the testing of different experimental hypotheses, 
providing the user with options to test different scenarios.  A typical simulated biplot 
is shown in Figure 1c. 

 

3 Results and discussion 

3.1 DRIFT spectra 
 
The infrared spectra for the three regions are shown in Figures 2a, 2b and 2c.  

The first region (400-800 cm-1) represents mainly the bands assigned to the OSiO and 
OAlO bending region.  The second region (800-2030 cm-1) mainly contains the SiO 
and AlO stretching modes and the third region (2600-3800 cm-1) represents the OH 
stretching modes. 

The three spectral regions show the effects of mechanochemical treatment of 
the kaolinite samples.  The two regions of most interest are the first (OSiO and OAlO 
bending region) and the third (OH stretching region).  In the first region, the spectra 
are complex and there is a significant overlap between the quartz and kaolinite bands 
(Figure 2a).  The intense band at 780 cm-1 in the K series is attributed to quartz.  
Therefore, the Kiralyhegy (K) samples are clearly differentiated from the Birdwood 
(B), Zettlitz (Z) and Szegi (S) samples on the basis of its high quartz content.  The 
spectral region 830 to 2030 cm-1 is shown in Figure 2b. This region is important as it 
shows the kaolinite SiO stretching vibrations. 

The third region (OH stretching region, Figure 2c) is where most of the 
changes occur due to grinding (i.e. losing hydroxyl units, formation of water and 
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changes to the surface structure).  According to Farmer [45], the hydroxyl stretching 
region of kaolinite displays five key features: 
a) in-phase inner surface hydroxyl stretching vibration at 3695 cm-1; 
b) two out-of-phase vibrations of the inner surface hydroxyl at 3668 and 3652 cm-1; 
c) hydroxyl stretching vibration of the inner hydroxyl at 3620 cm-1; 
d) transverse longitudinal optic vibration at 3684 cm-1; and 
e) water hydroxyl stretching vibration of weakly hydrogen-bonded interstitial water 

at 3595 cm-1. 
The DRIFT spectra of the four kaolinite samples exhibit these key features 

(Figure 2c).  The two most significant spectral features are the reduction in peak 
intensities of the spectra with increase grinding time and the formation of the broad 
band in the 3000 – 3500 cm-1 range which is attributed to adsorbed and coordinated 
water [29].  This spectral region varies according to the kaolinite being studied. The 
intensity is significantly greater for the K3 and K 4 spectra compared with the S3, B3 
and Z3 spectra (Figure 2c). The reason for this is that the presence of quartz in the 
Kiralyhegy kaolinite acts as an additional grinding medium which facilitates the 
formation of water. This water may be adsorbed or coordinated to the kaolinite 
surface.  

Mechanochemical treatment results in dehydroxylation of the kaolinite.  This 
occurs in two processes a) delamination of the kaolinite layers (exposing the 
hydroxyls to form water); and b) reaggregation of the crystallites to form a new 
amorphous material [12, 21, 28].  The effect of grinding is to reduce the layer 
stacking.  Therefore, the effectiveness of mechanochemical treatment depends on the 
crystallinity of the kaolinite.  For highly ordered kaolinites such as Kiralyhegy and 
Zettlitz, the effect of grinding can be quite significant.  From Figure 2c, the formation 
of the water band at 3000-3500 cm-1 is clearly observed for the K and, to a lesser 
extent, the Z samples. 

As discussed in the introduction, the ground kaolinite particles agglomerate to 
take on a spherical shape.  This means that during the grinding process, the particles 
recombine to form spheres.  Gonzalez Garcia [27] suggests that grinding causes the 
particles to fragment and form stable large spheroidal aggregates of fine particles.  
The effectiveness of the mechnomechemical treatment was found to be dependent on 
the formation of these spheres, particle size and the crystallinity of the original 
kaolinite sample. 

Generally, the spectra display significant changes in some regions and less in 
others.  Therefore, it is difficult to compare the spectra for the four samples and study 
the effects of grinding comprehensively.  To facilitate this work, chemometric 
techniques (PCA, and PROMETHEE and GAIA) were used to investigate and 
classify the samples, and assist with the interpretation of results. 

3.2 Chemometrics 

3.2.1 PCA 
 
PC1 versus PC2 scores plots for the three spectral regions are shown in 

Figures 3, 4 and 5.  Each pair of PCs accounts for at least 80% of the data variance 
(i.e. most of the differences in the spectra). 

In the 400-800 cm-1region (Figure 3a), it can be seen that the spectra of the 
kaolinite samples have been separated into two groups: K (negative scores on PC1); 
and B, Z and S (positive scores on PC1).  The K series samples have a high quartz 
content and the loadings plot for PC1 indicates that the separation of the K series 
spectra occurs on the basis of frequency ranges attributable to quartz vibrations 
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(Figure 3b).  It is evident that the K series objects are spread out along PC1 but are 
not ranked according to grinding time on this PC; in contrast, the objects from the Z, 
B, and S series cluster fairly closely in two groups with the Z group closer to the 
origin followed by objects from the B and S series with more positive PC scores.  A 
general conclusion from these observations is that the Z, B and S series show less 
effect on mechanochemical grinding as reflected by the DRIFT criterion in this 
spectral region. 

PC2 shows that the K objects are nearly rank ordered according to grinding 
time with K0 having the most positive score and K4 the most negative score.  Only 
K1 is displaced from the series on PC2.  The Z objects cluster (with positive scores) is 
separated on the basis of spectral changes in the kaolinite bands at 474 cm-1 and 
540 cm-1 (Figure 3c).  Objects with negative scores on PC2 are separated on the basis 
of spectral changes around the quartz bands at 512 cm-1, kaolinite bands at 644 and 
622 cm-1, and mixtures of quartz and kaolinite vibrations at ca 700 and 800 cm-1.  
Again there is no rank order with grinding in Z, B or S series. 

In the 830-2030 cm-1 region (Figure 4a), the spectra of the K series form a 
cluster with negative scores on PC1 and are clearly separated on the basis of the 900-
1250 cm-1 range which accommodates typical bands of quartz and kaolinite.  Since 
the loading intensities are relatively high, the discrimination of this series from the B 
and S objects is on the basis of changes to the stretching vibrational modes of both 
kaolinite and quartz (i.e. deformation of both the lattices).  The Z series of objects, 
which is located principally around the origin, does not contribute much to PC1.  This 
emphasises once again its difference not only from the K series but also from the B 
and S series. 

In addition, the grinding time does not appear to have a significant affect on 
the score plots of the B, Z and S series.  These samples form relatively compact 
groups as they did in Figure 3a on the positive PC1 axis.  It is worth noting that there 
is also a high correlation between the B and S series, possibly due to similar structural 
disorder.  In general, there appears to be no order due to grinding time for this region. 

In the 2600-3800 cm-1 region (Figure 5a), the PC1 versus PC2 scores plot 
shows some apparent correlation with respect to grinding time.  Both the K and Z 
samples are highly ordered on the PC1 axis in order of grinding time.  The objects 
positive on PC1 are discriminated by a broad band of positive loadings in the 3000-
3570 cm-1 range.  This is attributed to OH stretching vibrations principally of weakly 
H-bonded water (nominally at 3550 cm-1).  The spectral objects with negative PC1 
scores are discriminated on the basis of a broad loadings band in the 2600-3000cm-1 
that is attributed to OH stretching vibrations principally those of strongly H-bonded 
water.  The negative loadings at around 3750 cm-1 have no specific spectral 
association.   Thus, it appears that the ranking of the K and the Z series is associated 
with changes in the inner surface and inner OH groups of the kaolinite and the 
formation of water during grinding (i.e. dehydroxylation of kaolinite). 

In contrast, B and S spectral objects are less affected by the dehydroxylation 
process (due to grinding) on PC1 and remain more or less randomly associated with 
OH stretching vibrations.  This suggests that the grinding process is affecting these 
kaolinite samples differently.  On PC2, the S and B spectra (positive PC2 scores) are 
associated with the high loadings centred on ca. 3000 cm-1.  In accordance with band 
assignments by Farmer [45], this band of loadings is attributed principally to OH 
stretching vibrations of strongly H-bonded water.   Thus, the discrimination of the S 
and the B series of spectra on PC1 and PC2 are consistent. 

Apparent ordering with respect to grinding time was observed for both K and 
Z spectral objects but not for B and S spectral objects.  This may be due to the 
structural disorder of B and S samples, specifically: 
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a) B samples are complex and include a highly disordered kaolinite film coating the 
highly ordered kaolinite crystals [47].  Previous studies have shown that the 
kaolinite from Birdwood, South Australia is a highly ordered kaolinite with a very 
high Hinckley Index [47, 48].  TEM images show the presence of two types of 
kaolinite a highly ordered kaolinite coated by a disordered kaolinite.  This 
disordered kaolinite coating may prevent the dehydroxylation process observed in 
K and Z samples.  Previous studies have also shown the kaolinite is difficult to 
intercalate [46, 47, 49, 50].  

b) S samples are naturally highly disordered and, thus, grinding has a minimum 
effect.  This is in contrast to K and Z samples, which are highly ordered and 
undergo significant changes in the hydroxyl region with grinding especially since 
quartz is present naturally. 

There is a clear discrimination of the spectral objects with negative PC2 scores 
on the basis of changes in the kaolinite OH vibrations given the high negative 
loadings in the 3500-3700cm-1.  Again, the K series objects are well ordered 
according to their grinding time and the Z series spectra are roughly ordered.  This 
observation suggests that the presence of natural quartz is of considerable significance 
to the grinding of the K series, and probably to kaolinites in general (i.e. quartz 
enhances the delamination process).  The ordering of quartz according to the SiO 
deformation band at ca 512cm-1 as discussed for the 400-830cm-1 region suggests that 
quartz itself changes during initial time of grinding.  This is in agreement with the 
work of Schrader [51] which showed that for grinding of quartz important changes 
occur in the first few hours.  In addition, the rank ordering of the K spectral objects on 
PC2 on the basis of the 3500-3700cm-1 loadings indicates that the kaolinite OH are 
being affected in parallel with the quartz. 

It has been noted in the above discussion that kaolinite forms small spheres 
during grinding whereas the samples with large amounts of natural quartz would tend 
to disperse the kaolinite.  The grinding between kaolinite spheres would occur only at 
their points of contact, which for a given particle are unlikely to be more than six at 
any instant.  The dispersed kaolinite will be ground not only by larger areas of contact 
between kaolinite particles but also by contact with the quartz crystals.  Thus, it is 
suggested that the presence of the dispersed kaolinite sample as well as that of natural 
quartz lead to a different and mechanically much more efficient grinding process.  
This is reflected in a greater relationship between grinding time and K spectral 
objects, where the presence of natural quartz has enhanced the grinding process. 

 

3.2.2 PROMETHEE and GAIA 
 
The above PCA treats only the spectral data and it is difficult to study any 

comparisons and influence of other variables of interest such as the composition of 
the samples and any physical properties such as grinding time on the spectra.  In the 
case of the latter, one could infer from the PC scores (Figure 5a) that the grinding 
time played an important role in the distribution of the K and Z objects in the PC 
plane.  However, it may be possible to obtain more definitive information by 
submitting the spectral data in a different format and in differently constructed 
matrices to PROMETHEE and GAIA for analysis. 

As previously indicated with PROMETHEE, it is necessary to model each 
criterion independently.  This makes it possible to have very different criteria e.g. 
chemical composition variables, physical attributes, biological characteristics, 
sociological traits etc to be compared in the same matrix.  Spectral data could be 
introduced into such a matrix if the spectral information could be represented in 
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compressed form by new variables without loss of spectral information.  This is 
precisely what PCA performs – the new variables being the PCs, and theoretically all 
spectral information is contained in the several significant PCs without loss of 
information.  It follows that PCs may be used as criteria to represent spectra in a 
PROMETHEE matrix with scores being the new data.  The application of this 
approach is illustrated in one of the investigated scenarios below.  However, it should 
be recalled that the PC scores commonly have positive and negative values, whereas 
PROMETHEE cannot account for both positive and  negative values with some of the 
preference functions e.g. the commonly used Linear V-shaped model, which is 
bounded by zero and either a positive or a negative p threshold.  In such cases, there 
are three possible alternatives: a) select a preference function which recognises the ‘-’ 
/ ‘+’ sign difference, e.g. the Usual function which only has two preference values , 
either 0 or 1 – this approach is often unsatisfactory for the distribution of criterion 
values; b) the negative score values are left in their raw state – in which case for the 
commonly used linear V-shaped preference function with a maximised criterion, such 
scores will have a zero preference value, which could bias the analysis; and c) the 
baseline for the scores could be shifted by adding to each score the absolute value of 
the lowest negative score.  In the present study, both operations b) and c) have been 
performed, and it was found little or no influence in either the ranking or the GAIA 
biplot display after changing the baseline as described. 

One of the advantages of PROMETHEE is that it is a non-parametric method, 
which means that in principle it is possible to compare as few as two objects.  Thus, 
the investigation was undertaken on a small data matrix consisting of the four original 
unground samples of kaolinites as objects for which physical ((i.e. Hinckley index 
(HI) and loss on ignition (LOI)) and chemical (elemental composition) data are 
available as well as the IR spectra. 

Therefore, the 4 x 5 matrix consisted of four unground kaolinite objects and 
five criteria including the major chemical variables of kaolinite (silicate (SiO2), 
alumina (Al2O3) and natural quartz) as well as physical properties (HI and LOI) 
(Table 2).  The Linear V- shaped preference function was applied for all five criteria, 
and all of the five variables except LOI were set to maximise.  This setting indicates 
that high values for the four variables are preferred while for LOI low values 
dominate.  The weights for each of the five variables were set to 1. 

The model parameters described above imply that in the GAIA biplot, the 
quartz and silica loading vectors should point roughly in the direction of the K object 
and both should be quite strong as this object clearly has the highest values for these 
criteria; the same object has by far the lowest value of LOI and this vector should 
cluster with the other two as well.  The alumina vector should point roughly to the B 
object, which is high in alumina, and the HI index (being an index of crystallinity) 
should be essentially independent of the elemental composition.  It therefore, should 
be approximately at right angles to the other loadings vectors. 

The data matrix discussed above was submitted to PROMETHEE and GAIA 
with results presented in Figure 6.  

The GAIA biplot (Figure 6, 99.5% variance described) is consistent with the 
description provided in the scenario above with the silicate (SiO2), quartz and LOI 
criteria vectors grouping together, and pointing roughly towards the K object, which 
has high PC1 scores.  On the other hand, the alumina (Al2O3) vector points roughly 
towards the B object as anticipated, and importantly the HI vector is approximately at 
right angles to the other vectors.  Such agreement between the scenario interpretation 
by the model and the analysis strongly suggests that sensible results may be obtained 
from such MCDM analysis.  This also indicates that similar analysis carried out on 
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matrices where scenarios are more difficult to propose will nevertheless provide 
useful information. 

The PROMETHEE II net outflow rank order is K0 (Φ= 0.35) >B0 (Φ= -0.04) 
>Z0 (Φ= -0.10) >S0 (Φ= -0.21) with the four net outflow indices, Φ, well separated 
from each other.  Interestingly, the B0 object is ranked second on the basis of the 
model.  According to the GAIA plot, this is presumably because of its high kaolinite 
content being dominated only by silica/quartz rich K0 sample. 

When the dominance of the K0 sample, because of its very high quartz content 
is removed by excluding this object and the data matrix is re-analysed without any 
changes to the model, the resulting biplot (Figure 7, 100% variance described) shows 
certain important similarities with the previous biplot (Figure 6).  Thus, vectors SiO2, 
LOI and quartz still group together and point to the object, Z0, which is relatively rich 
on the SiO2 and quartz criteria, and the loading vector, HI, is independent of the other 
three.  But now, it is the physical variables that dominate the biplot. 

For the third MCDM experiment, all model parameters for the five criteria 
remain the same but minor chemical components were added (MgO, CaO, Fe2O3, 
Na2O, K2O, TiO2), as well as PC1 and PC2 scores taken from the PCA of the spectra 
for the 400-830 cm-1 region (Table 3).  The same linear preference functions were 
used and these new criteria were set to maximise. 

From the model described above, the major chemical components (SiO2, 
Al2O3 and quartz) and physical parameters should behave in a similar manner as 
described in the previous model (Figure 6).  Therefore, SiO2, quartz and LOI should 
cluster close together and point roughly in the direction of K0.  Al2O3 should point 
roughly in the direction of B0 (with its kaolinite rich samples) and HI should be 
perpendicular to the other criteria.  With the addition of the minor chemical 
components, it is anticipated that these criteria would cluster together and point 
towards the kaolinite rich samples (i.e. Al2O3) rather than SiO2 and quartz.  The minor 
chemical components relate to the presence of impurities such as feldspar, iron 
oxides, illite and goethite in the kaolinite samples.  The common feldspars can include 
sodium (Na), potassium (K), and/or calcium (Ca) in its composition.  Goethite is a 
common iron mineral.  The other key impurity in the kaolinite samples is K 
containing illite.  Illite is a common clay mineral found in soils.   

However, it should be noted that the physical parameters may also influence 
the position of the minor chemical components, especially HI which accounts for 
crystallinity of the kaolinite samples.  PC1 should discriminate quartz rich samples 
from kaolinite rich samples as well as the degree of crystallinity of the kaolinites.  
Positive PC1 therefore, describes quartz rich, highly crystalline samples and negative 
PC1 describes kaolinite rich, low crystalline samples.  Thus, PC1 should point 
towards either the kaolinite rich or quartz rich spectral objects.  And PC2 should be 
aligned perpendicular to the PC1 vector. 

The GAIA biplot (Figure 8, 87.8% variance described) is consistent with the 
above scenario described.  SiO2, quartz and LOI criteria vectors are clustered together 
and point towards K0 while Al2O3 point towards the kaolinite rich samples.  HI is 
roughly perpendicular to the major chemical component vectors and LOI, and point 
towards K0 and B0 (i.e. high crystalline kaolinite samples).  The minor chemical 
components are clustered together with the exception of K2O which is aligned closely 
with Al2O3 vector.  The GAIA biplot also indicates that S0 and, to a lesser extent, Z0 
are different from the other two samples (K0 and B0) due to the minor chemical 
components.  Since all these variables (MgO, Na2O, Fe2O3, CaO) are correlated with 
S0, it can be concluded that feldspar is significant in S0 (Table 1).  Similarly, Al2O3 
and K2O vectors are closely correlated therefore, it can also be concluded that Z0 
contains illite as impurities (Table 1).  Thus, the minor chemical composition 
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variables have provided additional information regarding the samples that were not 
available in the previous PROMETHEE model. 

With respect to PC variables, it is apparent that PC1 is separating the samples 
on the basis of the quartz/kaolinite contribution.  PC1 is closely related to the Al2O3 
criteria and pointed in direction of the kaolinite rich samples.  This finding supports 
the conclusion from the PCA. 

The PROMETHEE II net ranking, S0 (Φ= 0.08) >K0 (Φ= -0.03) >Z0 (Φ= -
0.01) >B0 (Φ= -0.09), for this analysis illustrates that minor chemical composition 
influences the ranking process, and the Φ net ranking range has been substantially 
compressed by a factor of about three.  This suggests that the discrimination of the 
samples is substantially reduced.  From the GAIA biplot (Figure 8), the decision axis 
(π) is closely correlated with the MgO vector, and to a lesser extent with Na2O, Fe2O3, 
and CaO vectors.  It appears that the level of impurities in the kaolinite samples is 
determining the rank order.  For example, S0 contains feldspar, K0 contains high 
proportion of natural quartz and Z0 contains illite.  What the PROMETHEE and 
GAIA analysis suggests is that B0 is the most pure kaolinite sample out of the four 
kaolinites used in this study. 

An attempt has been made to explore other relationships with the use of the 
above novel application of PROMETHEE and GAIA.  This application can be 
extended to further investigate the apparent observation from the PCA for the OH 
region (i.e. grinding time was correlated with the K and Z spectral objects) (Figure 
5a).  In the PCA context, it was not possible to introduce the grinding time variable 
amongst the spectral frequencies.  However, as indicated above, the spectra can be 
modelled with the use of PC scores in the PROMETHEE matrix. 

Thus, for the fourth MCDM experiment, a model was constructed to explore a 
relationship between grinding time and the kaolinite spectral objects.  The 19 x 3 
matrix consisted of nineteen kaolinite objects and three criteria including PC1 scores, 
PC2 scores and grinding time loadings (Table 4).  The V-shaped linear function was 
applied for all three criteria and PCs were set to maximise while grinding time was set 
to minimise.  This setting indicates that high values are preferred for PCs and low 
values are preferred for grinding time.  The weights for each of the three criteria were 
set to 1. 

From the model described above, the spectral objects should align ideally with 
the grinding time vector in the GAIA biplot, if there is a close correlation between the 
spectral objects and the grinding time loadings variable.  However, since the kaolinite 
samples are inherently different, other physico-chemical properties as reflected by the 
spectral variables may interfere to shift the objects roughly in parallel with the 
grinding time vector.  Note this could occur only if the interference effects are 
relatively minor and grinding is still the dominant variable. 

A matrix of spectral objects (K, S, Z and B), spectral PCs scores and grinding 
time loadings variables were submitted to PROMETHEE for analysis (Table 4) and 
the results presented in Figure 9.   

The GAIA biplot (Figure 9, 92.6% variance described) displays the 
relationships between the spectral objects, spectral PC variables and grinding time 
vector.  From Figure 9, K and Z spectral objects are roughly parallel with the grinding 
time vector, and it is the only criterion vector with which the K and the Z series have 
any systematic association.  This supports the initial PCA observation regarding an 
apparent trend between grinding time and the K and Z kaolinite samples as reflected 
by their DRIFT spectra.  In contrast, the B and S spectral objects are clustered 
together and there is no observed relationship with grinding time (although arguably 
there is some non-systematic association with PC2) for these spectral objects. 
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4 Conclusions 
 
In general, this study demonstrated that DRIFT spectra of different kaolinites 

can be successfully compared and interpreted in respect to their grinding by the 
common chemometrics display method, PCA.  In addition, it was shown how the 
kaolinites may be globally compared on the basis of their chemical composition and 
physical properties, and how their spectral characteristics may be included in such 
comparisons with the aid of the MCDM methods, PROMETHEE and GAIA. 

The band assignments of the DRIFT spectra of mechanochemically ground 
kaolinite samples originating from Kiralhegy (Hungary), Szegi (Hungary), Zettlitz 
(Slovakia) and Birdwood (Australia), were generally consistent with those found in 
the literature.  The three spectral regions chosen for interpretation viz,. 400-800, 800-
2030, 2600-3800 cm-1, were then analysed by the two different chemometrics 
approaches. 

In regard to PCA, for each of the spectral regions, a PC scores plot was 
analysed in some detail with the aid of loadings plots.  The scores plots produced 
concise displays of all the spectral data and allowed a comparative examination of the 
spectra.  In general, the clustering could be interpreted in terms of the known 
properties of kaolinite samples as well as the presence of natural quartz.  The 
dominance of this component was a notable feature in the two PC scores plots for the 
first two spectral regions by the distinctive discrimination of the Kiralhegy spectral 
objects.  In addition, the close intermixing of the Birdwood and Szeg series spectral 
objects was quite apparent, and since these two samples are from completely different 
geographical regions, it is clear that this variable is not reflected in the DRIFT spectra.  
Importantly, while some ordering of the objects in some PC clusters was apparent, it 
was not according to the grinding time sequence.  Thus, it would appear that neither 
the kaolinite nor the quartz, are systematically responsive to grinding time according 
to the spectral criteria. 

The third spectral region, attributed to the OH vibrations, was the only one to 
show apparent systematic ordering of the Kiralhegy and, to a lesser extent, Zettlitz 
spectral objects with grinding time.  These two series of objects displayed roughly 
linear trends in the PC spectral plane.  This was attributed to the effect of the natural 
quartz on the delamination of kaolinite and the accompanying phenomena such as the 
formation of kaolinite spheres and water.  

With the MCDM methods, it was firstly shown that sensible inter-
relationships between physical and major chemical criteria were reflected by the net 
outranking flows and GAIA biplot displays.  Then, it was demonstrated that minor 
chemical components can influence the rank order of the objects as well as indicating 
that the Birdwood sample is arguably the most pure kaolinite sample analysed.  And 
finally, some support for the apparent trend with grinding time as noted in the PC plot 
of the OH spectral region, was obtained from the last MCDM experiment.  The key 
observation was that the Kiralhegy and Zettlitz objects formed roughly linear trends in 
parallel with the grinding time criterion vector. 
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Table 1.  Chemical composition and physical parameters of four kaolinite 
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matrix to allow analysis of spectra PCs, major and minor chemical composition, and 
physical variables.  Number beside sample label denotes 0 h grinding time (unground 
samples). 
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region). 
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Table 1. 
 Kiralyhegy 

(K) wt% 
Szegi  

(S) wt% 
Zettlitz  

(Z) wt% 
Birdwood 
(B) wt% 

SiO2 81.59 46.89 46.97 46.97
Al2O3 12.10 33.51 36.32 38.12
Fe2O3 0.07 3.1 0.37 0.17
CaO 0.35 0.53 0.54 0.14
MgO 0.51 0.71 0.26 0.07
K2O 0.05 0.35 1.21 0.21
Na2O 0.03 0.16 - -
TiO2 - 0.06 0.05 0.01
Loss on Ignition (LOI) 5.1 14.3 12.9 15.3
Kaolinite 67 95 92 99
Quartz 33 2 4 0.5
Illite - - 4 -
Feldspar - 3 - -
Hinckley Index (HI) 1.4 0.4 0.7 1.3
 

 
Table 2. 

Kaolinite 
sample 

SiO2 
(wt%) 

Al2O3 
(wt%) 

Quartz 
(wt%) 

HI LOI (%) 

K0 81.6 12.1 67.0 1.4 5.1
S0 46.9 33.5 2.0 0.4 14.3
Z0 47.0 36.3 4.0 0.7 12.9
B0 47.0 38.1 0.5 1.3 15.3
 
Table 3. 
Kaolinite 
sample 

MgO 
(wt%) 

CaO 
(wt%) 

Fe2O3 
(wt%) 

K2O 
(wt%) 

NaO2 
(wt%) 

TiO2 
(wt%) 

PC1 
scores 

PC2 
scores 

K0 0.5 0.4 0.1 0.1 - - 8.4 -2.0
S0 0.7 0.5 3.1 0.4 0.2 0.1 3.1 17.5
Z0 0.3 0.5 0.4 1.2 - 0.1 -13.1 7.2
B0 0.1 0.1 0.2 0.2 - - 1.3 6.6
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Table 4. 
Kaolinite 
sample 

PC1 
scores 

PC2 
scores 

Grinding 
time (h) 

K0 -13.1 7.2 0
K1 -17.3 -3.2 1
K2 -26.3 0.9 2
K3 -23.0 -4.8 3
K4 -12.1 -13.3 4
S0 8.4 -2.0 0
S1 10.7 -9.0 1
S2 10.4 -8.1 2
S3 7.4 -0.2 3
S6 10.0 -6.0 6
Z0 1.3 6.6 0
Z1 2.9 6.0 1
Z2 3.0 7.6 2
Z3 4.6 4.1 3
Z4 4.1 4.8 4
B0 3.1 17.5 0
B1 7.9 -0.8 1
B2 7.7 0.6 2
B3 10.7 -7.9 3
 



 19
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FIG 1.  (a) PROMETHEE 1 partial ranking.  A3 is the most preferred object 

followed by A2 and A1 (which are alternatives and can not be compared), and A4 is 
least preferred.  (b) PROMETHEE II net ranking.  The incomparable option 5c) has 
been removed and the objects are net ranked.  (c) The GAIA plot – π points in the 
direction of the preferred object (A3) and is strongly correlated to vector C1 and, to a 
lesser extent, vector C2.  The other vectors point to objects which perform best on the 
respective criteria. 

FIG 2.  Infrared spectra of four kaolinite samples in the 400-830 cm-1 region 
(a) 830-2030 cm-1 region (b) and 2600-3700 cm-1 region (c).  Note: Kiralyhegy (K), 
Birdwood (B), Szegi (S) and Zettlitz (Z) and number beside label denotes grinding 
time (h). 

FIG 3.  (a) Scores plot, (b) PC1 loadings plot and (c) PC2 loadings plot for 
400-830 cm-1 region. 

FIG 4.  (a) Scores plot, (b) PC1 loadings plot and (c) PC2 loadings plot for 
830-2030 cm-1 region. 

FIG 5.  (a) Scores plot, (b) PC1 loadings plot and (c) PC2 loadings plot for 
2600-3800 cm-1 region 

FIG 6.  GAIA biplot of major chemical compositions and physical variables 
(400-830 cm-1 region). 

FIG 7.  GAIA biplot of major chemical composition and physical variables 
with K0 object removed (400-830 cm-1 region).   

FIG 8.  GAIA biplot of PC1 and PC2, all chemical components (major and 
minor), and physical variables (400-830 cm-1 region). 

FIG 9.  GAIA biplot of four kaolinite samples, grinding time (GT) and PC1 
and PC2 scores. 
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Figure 1. 
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Figure 2 
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Figure 3. 
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Figure 4.   
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Figure 5.   
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Figure 9. 
 
 
 

 
 
 
 
 
  
 

 
 

B0 

K0 

Z0 
S0 

Z1 

Z2 
K1 

Z4 
K2 

B2 S3 
B3 

S2 
S1 

PC2 

S6 

K4 
K3 

PC1 

GT 

Z3 

∆ = 92.6 % 

π 

Z trend 

K trend 


