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Abstract: During the life cycle of a software project development, many 
problems are found and raised. Resolutions to these problems are very time 
consuming and costly. How to use data mining techniques to analyse these 
problems, and find valuable knowledge to reduce the effort of fixing these 
problems are discussed in this paper.  

 
 

1 Introduction 
 

A project leader manages a project with several issues involved such as project 
planning and scheduling, code implementation, testing and release. It is difficult for 
him to precisely estimate the project duration in advance. However, he can utilise the 
Data Mining (DM) methods and make the accurate estimation by learning from the 
information gained by previous projects. He can also eliminate several potential 
problems when a pattern appears in his current project similar to the one that have 
caused problems in previous projects. 
            Data mining techniques have been successfully applied to various areas such as 
marketing, medical, and financial [4, 5, 6, 7]. However, few of them can be currently 
seen in software engineering domain. There exist several difficulties, such as hard to 
find a data model to put through mining process, no suitable mining tools, poor data 
quality and acquisition etc. This paper explores the software engineering domain by 
applying DM techniques to a real world data set. This paper first introduces the 
undertaken software engineering problem and data mining. After a data model is 
established for the underlying problem, various data mining techniques are 
experimented. Interesting findings are discussed together with issues appearing during 
the mining process.  

 
2 Data Acquisition  
 
Every year, more than 50 software projects are carried out in MASC*, more than ten 
thousands lines of code are created, and thousands pages of documents are released to 
various customers. In order to control the problems appearing during a project life 

                                                 
* MASC is a division of a global telecommunication company. A detail of the 
information source is intentionally removed. 
 



 

cycle and to improve the working efficiency, MASC has set up a series of processes 
such as Software Configuration Management, Software Risk Management, Software 
Project Metric Report and Software Problem Report Management. Data is collected 
during all these procedures. The Software Problem Report (PR) management data is 
chosen as the focus of this research. A software bug-tracking system, GNATS (A 
Tracking System by GNU), is set up on MASC Intranet to collect and maintain all PRs 
raised from every department and individual within MASC. Currently the GNATS 
system stores more than 40,000 of problem reports.  

Each PR page starts with a number together with a series of information about 
when, who and which project or department raised this PR. After this, there are several 
fields that give details of the PR such as Synopsis, Severity, Priority, Responsible, 
State, Class, Arrival-Date, Closed Date, Description, etc. Description details about the 
bug and its affect the whole system. Synopsis is a summary of Description field. The 
Severity field shows the criticality of the problem as - serious, critical or non-critical. 
The Priority - high, medium or low – field shows how soon the problem should be 
resolved. The State attribute tells the current stage in the progress of the PR. User can 
only choose from open, active, analysed, suspended, feedback, resolved and closed as 
the input value of this field. Another important variable is Class to state what type the 
bug is - sw-bug, doc-bug, change-request, duplicate, mistaken, or support.  
 
3 Data Pre-processing  

 
A data mining task includes the preprocessing of data before valid, novel, potentially 
useful, and ultimately understandable patterns are identified in data.  

 
3.1 Defining Goals 

 
MASC engineers make estimations on many aspects of a project such as the number of 
lines of code to be developed, the kinds of document to be delivered to customer, the 
time required to accomplish each software engineering stage in the project. There are 
several tools exist to help a programmer to do the implementation jobs in the software 
design stage. However, there is few or even no tool exists that can be used for both 
estimation and project problem reasoning stage. Project team members can only give 
estimations based on their own experience from previous projects. If the current 
project is not within their familiar topics, the accuracy of the estimation becomes 
worse. A PR (problem report) fixing work also becomes more tedious when the 
responsible person can not estimate the time to fix the problem. Finding a precise 
estimation figures on bug fixing or estimation work at the early stage of a project will 
bring great cost savings and accurate progress control to the development team and to 
the organization. 

Currently the GNATS system has no actual database management system 
implemented. If a PR is closed, it is just statically stored in GNATS and no further 
analysis is performed. This limits the potential benefits to software engineers who can 
obtain valuable information if the existing PR data is being analysed. This is useful 
especially when a programmer is struggling with a bug while a resolution may already 
hide behind the knowledge that can be derived from the previous similar problems. 



                                                          

These problems can be relieved by utilising data mining techniques. Mining results 
of the PR data will bring benefits such as accurate project estimation and planing, 
improved control over the PR fixing and deduction of the project cycle time. 

 
3.2  Field Selection  
 
There are several fields such as Confidential, Submitter-ID, Environment, Fix, Release 
Note, Audit Trail, the associated project name and PR number that are ignored during 
mining. These fields provide identification information about a PR containing no 
mining value. Instead, some of these values are used as support roles during pre-
processing and post-processing stages to assist in the selection of data and a better 
understanding of the rules being found. 

The aim of this mining exercise is to find useful knowledge from existing projects, 
all the existing projects should already be finished and all the corresponding PRs 
should also be closed. Otherwise, a PR can still be changed and is not stable for 
mining. Hence all PRs with a closed value in their State field are chosen.  

Whenever a PR is raised, a project leader will have to find answers for the 
following questions before taking any action: How long it will take to fix? How many 
people were involved? How severe the problem is (customer impact)? What is the 
impact of the problem on project schedule (Cost & Team priority)? and What type of 
the problem it is (a Software bug or a design flaw)? Accordingly, attributes such as 
Severity, Priority, Class, Arrival-Date, Closed-Date, Responsible, and Synopsis are 
considered for mining.  The first three attributes describe how a PR is handled within a 
project, the next three attributes indicate how long a PR is fixed and who were 
responsible, and the last one lists the content in a PR.  The attribute ‘class’ is chosen as 
the target attribute in order to find out any valuable knowledge among the type of a 
problem and the rest of the PR attributes. Knowing the relationship between the fix 
effort (in time) and the PR class, a project leader can analyse the fix effort versus the 
human resources available, and put it in the schedule and resource plan.   

The first five fields have fixed input values. Responsible attribute is used to 
calculate how many people were involved to fix the problem. Association or 
characteristics rules can be found by applying mining techniques on these fields. 
Whereas Synopsis field has no fixed input values. Instead, there is a lot of pure text 
information stored in this field briefly describing what the problem is in the associated 
project. It may contain what type of a project document (a piece of code or a support 
document) that the PR is concerned with. It can be used as a text index. Due to the 
nature of the values inside this field, a different mining approach, Text Mining is 
considered to deal with such kind of text values. 
   
3.3         Data Cleaning  
 
Data is further investigated to identify problems, such as missing values, inconsistent 
values, and mistaken values using graphical tools such as histogram for frequency 
distribution of the values, calculating maxima, minima and mean values. Histogram 
plots the contribution made by each value for the (categorical) attribute, and therefore 
helps to identify distribution skews and invalid values. The occurrence of these 
problems comes with several factors such as human mistakes and evolutions of the 



 

GNATS system. An example is the use of different terminologies over the time such as 
SW-bug or sw-bug as an input value for Class field (Example a, d in Figure 1). A 
Time-Zone field and other new input values have been added later in the system on 
management request based on feedback of users after several years of system running.  

For the PRs in which an error can be recovered manually or automatically by 
software, the modified PRs are included in the mining process. For example, SW-bug 
in Class field is replaced by sw-bug throughout the data. Another example is filling the 
data in wrong fields such as mistakenly input the closing date in the obsolete 
Completed-Date field instead of the Closed-Date field.  

The PRs, in which an error cannot be recovered precisely, are either discarded or 
replaced by a ‘?’ if a software can handle the missing values. For example, the pattern 
a in Figure 1 has its closed time earlier than the time being raised. Some PRs do not 
have all the values stored, such as Example c in Figure 1 has no closed date. An 
example of inconsistent values is shown in Figure 1 - there is no input for the Time-
Zone field in a PR recorded before 1998, as the Time-Zone field is added in 1998.  
 

 
Figure 1: Data examples from the original PR data set 

PR_ID|Category|Severity|Priority|Class|Arrival-Date|Close-Date|Synopsis 
 

a. 17358|bambam|serious|high|sw-bug|20:50 May 25 CST 1999|11:35 Mar 24 CST 
1999| STI STR register not being reset at POR 

b. 17436|bambam|serious|high|support|18:10 Mar 30 CST 1999|12:00 May 24 CST 
1999| sequence_reg varable in the RDR_CHL task is not defined  

c. 580 |bingarra|serious|low|doc-bug|10:10 May 31 May 1996|  | In URDRT2 of 
design doc, the word 'last' should be 'first' 

d. 6205 |gali|serious|medium|SW-bug|14:30 Nov 5 1997|13:14 Dec 1 1997| 
grouping of options in dialog box 

 
 

 
Figure 2: Data examples ready for mining 

    Severity |Priority| Time-to-fix| Class |Synopsis 
 

a. serious, high, 61, sw-bug, STI STR register not being reset at POR 
b. serious, high, 56, support, sequence_reg varable in the RDR_CHL task is not 

defined  
c. serious, low, ?, doc-bug, In URDRT2 of design doc, the word 'last' should be 

'first' 
d. serious, medium, 24, sw-bug, grouping of options in dialog box  

 
3.4        Data Transformation  
 
Data transformation is considered, in the way of converting attributes Arrival-Date and 
Closed-Date to a time-period - identifying the time spent to fix a PR - taking account 
the additional information Time-Zone and Responsible. This transformation resulted in 
the Time-to-fix attribute with continuous values (figure 2). The Responsible attribute 



 

has the information about personnel engaged in rectifying the problem. We assume 
that the derived attribute Time-to-fix is total time spent to fix a problem if there is only 
one person involved. The calculated time period from Arrival-Date and Closed-Date is 
than multiplied by the number of people yield from the Responsible attribute. In order 
to improve the mining quality, we have discretized this attribute with cutting points be 
one day (1), half week (3 days), one week (7), two weeks (14), one month (30) and one 
quarter (90 days), half year (180 days) and more than one year (360 days).  So that the 
mining results are not very highly depended on the exact human resource involved but 
gives an approximate estimate, allowing a minor change in human resource. 
 
4 Data Modelling and Mining 

 
Out of total 40000 PRs initially selected as the data set, we are left with 11,000 PRs 
after pre-processing (figure 2). These 11,000 PRs (depends on different mining tasks, 
the numbers varies a little) cover more than 120 projects within MASC from 1996 to 
2000. For example 11364 PR records have been applied with text-mining tools on the 
valid values in their Synopsis fields, as 364 records have no time values so could not 
be used for classification task. 

The GNATS system provides simple methods to retrieve basic information from 
the PR data set, such as the PR numbers related to a particular person, etc. Besides this, 
general database query languages (such as SQL) can also give useful information, i.e., 
the average time spent for fixing a PR in a project. However these methods cannot 
perform if user likes to (1) pose queries on a large number of records with high 
dimensional structures, (2) summarise a large data set to facilitate decision-making, (3) 
make predictions on new data based on the existing rules, and (4) visualise simplified 
extracted local structures. On the contrary, data mining techniques perform well on 
these cases, and are able to reveal the deeper characters of the data, such as:  
• If a PR is raised, how long should it take to fix the problem? 
• What type of project documents needs a significant effort to fix an associated bug?  

The selection of data mining operations and techniques is one of the most 
important things that directly affect the progress and the accomplishment of any DM 
applications. We have chosen: 
• Prediction modelling on the time consuming patterns of the PR data to make 

estimation.  
• Link analysis to discover association among the contents/values of the variables 

being selected.  
• Text Mining to analyse Synopsis field. 

The predictive modelling or classification task builds a model on existing dataset 
by recognising distinct characteristics of the data set.  The built model predicts future 
events based on previous data, specifying a class (or label) to each record in the 
dataset. A supervised machine learning algorithm, that learns a model on previous or 
existing data, can be used for predictive modelling task. These models are developed 
over training and testing phases. The model is given some already known facts with 
correct answers during the training phase, from which the model learns to make 
accurate predictions. During the testing phase, the model is exposed to new data set to 
check the predictive capability. Various classification methods are neural induction, 



                                                          

tree induction and bayesian classifiers, K-nearest neighbour classifiers, case based 
reasoning, genetic algorithms, rough set and fuzzy set approaches [4, 5, 6, 7].  

Tree induction or decision tree is used for this task.  Decision tree has been quite 
popular in data mining due to their simplicity, efficiency and capability of dealing with 
a large number of training examples. The decision tree learning algorithms start by 
constructing a decision tree from top to bottom. Attributes are evaluated at each step to 
form descendant nodes. The attribute selection is based on a `statistical test' to 
determine how well it classifies the training examples. An internal node represents a 
test on an attribute and a leaf node represents a class or class distribution. 
Classification of unknown samples is made by tracing a path through the decision tree 
until a leaf node having the class prediction is reached. The maximum height of the 
decision tree depends on the number of attributes used to define the rules. Because the 
number of attributes in our problem is small, the resulting decision tree is relatively 
simple and thus its structure is understood easily by a human analyst. 

The link analysis operation exposes samples and trends by predicting correlation of 
variables in a given data set. Association discovery builds a model to find variables 
implying the presence of other variables (with a certain degree of confidence and 
support) in the given data set. This process reveals hidden affinity among the variables 
i.e. which variables cause one another if a PR report is being raised. The technique is 
based on counting occurrences of all possible combination of variables. Apriori and its 
variation algorithms [6] are most widely used. 

In general, Data mining is knowledge discovery from structured databases. Text 
mining techniques, on the other hand, discover the knowledge from an unstructured 
textual data.  In order to discover and use the implicit structure of the texts, text mining 
techniques integrate some specific natural language processing to pre-process the 
textual data. A suitable data-mining tool should satisfy the ease of use, low cost, ease 
of preparation and appropriate for the data model [5]. The C5 [2] is used for 
classification, CBA [1] is used for both classification and association rules mining, and 
TextAnalyst [3] is used for text mining.  

5 Assimilation and Analysis of Outputs 
 
5.1  Classification and Association Rule Mining  

 
In order to get better rules and to decrease the error rate as much as possible, several 
approaches are used. One approach is to stratify the data on the target using the choice-
based sampling rather than using random samples. Equal number of samples 
representing each possible value of the target attribute (Class) is chosen for training. 
This improves the possibility of finding rules that are associated with small group of 
values during training. Another approach is to choose different number of PR data as 
training sets. We use three different training data sets. The first data set (Case 1, Table 
1) choses 1224 PRs from only one software project. The second one (Case 2) builds 
equal distributed value for a medium size of 3400 PRs (1000 PRs from each value of 
‘Class’) from all software projects. The third data set (Case 3) contains a large size of 
5381 PRs from all software projects.  

We use two learning engines to discover rules from the PR data set– single support 
CBA (labelled a in the Table 1 e.g., Case1a) and multiple support CBA (labelled b in 



 

the Table 1 e.g., Case1b). Constraints, support and confidence, are included in rules to 
control the quality of results.  Confidence is the measure of the strength of a rule that 
indicates the probability of having consequence(s) in the rules provided that the rule 
contains certain antecedent(s). Support indicates the number of input data supporting 
the rule. Since, users are interested in rules with worth consideration or more preferred 
or more certain, a threshold for support and confidence is set.  

Setting a threshold for minimum support and confidence is a result of trial and 
error. If these factors are set too high, very few rules may be discovered. If the factors 
are set too low, too many rules may be generated with very low values. Under certain 
situation, attributes in the data are not likely to have uniform distributions, and many 
attributes are of very low frequency. Therefore a single support for all attributes may 
not be able to discover important rules that involve such rare attributes (very low 
frequency). This problem is relieved by setting multiple supports that allow user to 
choose different minimum supports to different attributes. Table 1 reports the 
classification mining results on all three cases and the associative rule mining results 
as Case4. The test data is 10% of the whole data set and chosen randomly with the 
special consideration that each output class is representing in the test data.  

Table 1: CBA Mining Results Summary. Rules are ranked by confidence.

Error rate (%) Time cost  (seconds) 
 #Rules 

Training  Testing  Training  Testing  

Case1a 10 45.180 47.56 1.01 0.07 
Case1b 9 45.180 47.56 1.04 0.09 
Case2a 41 57.04 51.95 0.41 1.1 
Case2b 21 59.10 58.25 0.44 1.0 
Case3a 20 43.51 43.5 2.2 2.0 
Case3b 15 46.5 45.1 1.6 1.9 
Case4a 10 45.180 N/A 0.66 N/A 
Case4b 9 45.180 N/A 1.04 N/A 

 
In general, all classification data mining operations in CBA software achieve 

around 46% Error rate in training data set (the lowest is 43.51%, the highest is above 
59.10%). Above 51% correct prediction rate is achieved in testing data set (the lowest 
has 43.51%, the highest has 58.25%). Another interesting point is that the attempt to 
improve the accurate prediction in the way of equal-distributed target-value samples 
does not lead much change; there is only roughly 3% improvement over the final 
result. The error rates from using multiple supports are higher and the number of 
extracted rules is lower than those from using single support mining engine. There is 
no rule that has confidence value larger than 80%, however they do describe some 
characters of the PR fixing patterns. Therefore they are useful for software project 
management in estimation bug fixing related time issues.  
      Followings are examples of generated classification rules with CBA: 
Rule 1: If severity= non-critical and Time-to-fix = 3 to 30 days and priority= medium 

Then class = doc-bug. Confidence = 82.7%, Support = 2.7%  



 

Rule 2: If  severity= critical  and Time-to-fix = less than 3 days and  priority = high 
Then class = sw-bug. Confidence = 75.2%, Support = 2.3%  

Overall the extracted rules conclude that software related bugs can be fixed within 
3 days with above 75% confidence if they have high priority and are in critical 
condition. It may take 3 months to fix the problem if the corresponding priority and 
severity are graded as medium and serious. Certainly, the confidences of the rules are 
low, and only a small number of cases support these rules.  

 
Table 2: C5 Mining Results Summary 

 

Normal mining  Mining with 
Boosting  

Mining with cross-
validation (10-fold) 

 
Training  Testing Training  Testing  Training  Testing  

#Rules 51 11 N/A. N/A 57.7 12.4 
Error Rate (%) 
(Rules) 41.5 42.6 41.3 42.6 43.9 42.8 

Error Rate (%) 
(Trees)               

40.3 42.5 39.4 42.6 44.1 43.1 

Size of tree 141 21 N/A. N/A 121.9 17.4 
Process Time 
(seconds) 5.6 0.2 37.7 0.4 41.1 1.1 

 
The software C5 was also used to perform classification data mining with the 

boosting and cross validation techniques (Table 2). The cross validation technique 
splits the whole data set into several subsets (called folds). Let each fold to be the test 
case and the rest as training sets in turn during training. Boosting is a technique for 
generating and combining multiple classifiers to give improved predictive accuracy. 
After a number of trials, several different decision trees or rule sets are combined to 
reduce error rate for prediction. Boosting takes a longer time to produce the final 
classifier, and may not always achieve better results than a single classifier approach 
does, especially when the training data set has noise. Boosting and cross validation 
techniques do not generate a new rule, but try to find a better rule from the existing 
results. They only produce better results than the individual trees if the individual trees 
disagree with one another. Some example extracted classification rules with C5 are: 
Rule 1: When a PR is in low priority and the time spent is around half a day (0.5 day) 

 Then the rule has a high probability (87.5% Confidence) to classify a bug to be a 
document related bug.  

Rule 2: When a PR is in medium priority with non-critical severity and the time spent 
is around 1.1 day Then the rule has 84.6% Confidence to classify a bug to be a 
document related bug.  

Rule 3: When a PR is in low priority and the time spent for fixing is around 1 week 
 Then the rule has 83.3% Confidence to classify a bug to be a software bug.  
In general, all data mining operations achieves around 42% error rate in rules from 

the training set (the lowest is 40.3%, the highest is 43.9%). Similar error rate value is 



 

achieved for the generated trees in testing data set (the lowest is 39.4%, the highest is 
44.1%). Both of the rates are better than CBA results. The time efficiency of C5 is also 
better than CBA. 

 

 
Figure 3: Text Analyst Mining: An interface 

 
5.2      Text Mining in PR data  
 
In order to find valuable knowledge from thousands lines of text, we categorise the 
pure text into several document types based on certain background knowledge. The 
analysis of the text together with the rules obtained from classification and association 
can more accurately predict the time and cost of fixing PRs. We used TextAnalyst [3] 
tool to automatically summarise the pure text data and extract some valuable rules. It 
builds up a semantic network for the investigation over the PR data. Each element of 
the semantic network is characterised by a weight value and a set of relationship of this 
element to other elements in the network. Every relationship between elements is also 
assigned a weight value. The semantic network can then provide a concise and 
accurate summary of the analysed text. 

TextAnalyst automatically creates the semantic network based on the structure, 
vocabulary and volume of the analysed text, without any predefined rules. The 
semantic network tree of the PR data (figure 3) contains a set of the most important 
words or word combinations, called concepts. The relations among those concepts 



                                                          

together with the semantic weights of concepts and relations are also shown. The 
values of the weights range from 0 to 100, which correspond to the probability that the 
associated concept is characteristic for the whole PR data. It also shows all the text 
related to a concept if the user clicks the corresponding concept. 

Text mining is applied on a total 11226 cases. An interesting result is obtained for 
SMTP, Software Configuration Management Plan, a support document in every 
MASC project. Since SCMP is not a main design document for a project with just 
about tens pages, it has never been considered as a trouble making item. But 
amazingly, the result showed that SCMP has 71 percentage probability of appearing in 
test related PR records, and 58 percentage probability of appearing in Code related PR 
records. This result is even higher than the result associated with SRS (“Software 
Requirements Specification”, a main development document directly related to 
software).  Although we can not say SCMP causes more problems than SRS, but the 
higher appearance of SCMP inside test related PR definitely shows a warning. It is 
worth for software engineers to be more careful when dealing with SCMP document, 
and hence reducing the total cost of fixing SCMP related PRs. Another analysis shows 
that a test related PR has even a higher weight (36, 100) in document related bugs than 
a SRS related PR (35, 99) does. Which suggests a better project management should 
not only focus on the quality of product related documents, but also pay attention on 
the quality of testing related documents. 

 
5.3     Existing problems in performing mining  
 
The error rates of testing data sets in both CBA and C5 are higher than expected. 
Although several approaches are attempted to reduce the error such as uniform 
distribution of values, cross validation, boosting, different size of training set, etc. 
Unfortunately, the average error rate is only fallen down by 5% from 47% to 42%. The 
best result is 9% decrease from 46% to 37%. These results indicate that some amount 
of noise is still existent in data after dealing with the noise during pre-processing.  

For example, the relationship between PRs and human resources within a particular 
project plays a great impact. The time needed to fix a bug is different for each project 
depending upon the actual human resources available. We have used only the attribute 
‘Responsible’ to indicate the human resource available. Truly, the relationship with the 
human resources available for past projects whose data was analysed is needed to use 
time patterns to help project leaders to predict time consummations more accurately. 
The use of additional data source ‘Change Request data set’ that records all customer 
request process data may rectify this problem. 

Another reason is a non-uniform value distribution. For example, there are only 
342 PRs with change-request value in the data set, compared to more than 5900 PRs 
related to sw-bug. Any potential rule associated to change-request can be heavily 
affected due to the presence of large size group with other values. Again the use of 
additional data sources together with the PR data set can rectify this problem. We also 
attempted to use neural network techniques, but it is difficult to interpret the outputs. 
 
 
 
 



 

6    Future Directions and Conclusion 
 
This paper explored the use of data mining techniques on a set of data collected from 
the software engineering process under a real software business environment. Some 
useful rules are inferred on the time patterns of the PR fixing and the relationship 
between the content and the type of a PR in the form of association rules, classification 
rules or semantic trees.   

The time patterns rules may help a project leader to estimate or predict time 
consummations more accurately than before. Another finding suggests that bug fixing 
efforts have more probabilities to be spent on test related PR. This could cost the 
project team a lot of time in fixing non-product-related problems. By giving more 
attention in design and development of these documents, the project efficiency will be 
improved.  

Results of the application indicate that data mining techniques bring more power to 
improve the quality and efficiency of the software development process, even though 
the scale of the data mining task is limited. It will be interesting to apply data mining 
to different phases of software development such as software quality data, etc. As in 
many other domains, the benefits and capabilities brought by data mining in software 
engineering domain are worth of further investigations.  
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