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Mental computation: Is it more than mental architecture? 
 

Ann Heirdsfield 
Centre for Mathematics and Science Education, QUT, Brisbane 

 
Literature at national and international levels argues the importance of including 
mental computation in a mathematics curriculum that promotes number sense. 
However, mental computation does not feature in importance in the current 
Queensland mathematics syllabus documents. Hopefully, with the writing of a new 
mathematics syllabus, mental computation will feature with more prominence. It has 
been posited that when children are encouraged to formulate their own mental 
computation strategies, they learn how numbers work, gain a richer experience in 
dealing with numbers, and develop number sense. In the literature, a wide variety of 
addition and subtraction mental strategies has been identified and characteristics of 
good mental computers have been documented. These findings are useful to inform 
teachers of children's thinking, and help them better understand children's 
explanations. However, little research has attempted to explain why or how children 
develop these strategies and why some children are proficient. Thus, the intention of 
present study was to go beyond reporting the existing situation in schools to 
investigating, in depth, associated factors, and to develop a comprehensive model for 
mental computation. This paper reports a study of Year 3 children's addition and 
subtraction mental computation abilities, and the complexity of interaction of 
cognitive, metacognitive, and affective factors that supported and diminished their 
ability to compute efficiently. As well, the part memory plays in mental computation 
was investigated. Finally, some implications for teaching are discussed. 

 

The architecture of mental addition and subtraction was initially described at the 
Australian Association for Research in Education Conference in 1997 (Heirdsfield & 
Cooper, 1997).  Three studies, each building on the previous one, were reported, and as a 
result, the mental architecture of a proficient mental computer was described.   In 
particular, the third study found a complex interaction among factors that appeared to be 
connected with proficient mental computation.   The third study (reported in Heirdsfield 
& Cooper, 1997) constituted a small part of a study, whose main purpose was to develop 
an explanation of why some children are better at addition and subtraction mental 
computation than others.  Mental computation is defined as “the process of carrying out 
arithmetic calculations without the aid of external devices” (Sowder, 1988, p. 182).  The 
research was undertaken in response to claims that addition and subtraction mental 
computation should be included in number strands of mathematics curricula.  This paper 
reports the findings of this larger study. 

Addition and subtraction mental computation, as defined in this study, is not 
mentioned in the existing Queensland curriculum document, Years 1 to 10 mathematics 
teaching, curriculum and assessment guidelines (Department of Education, Queensland, 
1987a).  Nevertheless, in some of the support documents, Years 1 to 10 mathematics 
sourcebooks (e.g., Department of Education, Queensland, 1987b, 1988, 1990), specific 
mental computation strategies are mentioned.  It is of interest to note that the mental 
strategies for two-digit addition that are mentioned in the Year 7 sourcebook are taught to 
Dutch children in second grade (Beishuizen, 1993).  Further, these same strategies were 
reported as being employed spontaneously by children as young as 8 and 9 years old in 



Brisbane schools, where addition and subtraction mental strategies are not taught at this 
age (Cooper, Heirdsfield, & Irons, 1996). 

Literature at national and international levels argues the importance of including 
mental computation in a mathematics curriculum that promotes number sense (e.g., Klein 
& Beishuizen, 1994; McIntosh, 1998; Reys, Reys, Nohda, & Emori, 1995; Sowder, 1992; 
Verschaffel & De Corte, 1996; Willis, 1992).  It has been posited that when children are 
encouraged to formulate their own mental computation strategies, they learn how 
numbers work, gain a richer experience in dealing with numbers, develop number sense, 
and develop confidence in their ability to make sense of number operations (Kamii & 
Dominick, 1998; Reys & Barger, 1994; Sowder, 1990).   

Carroll (1997) and Kamii, Lewis, and Livingston (1993) documented the mental 
and written computational procedures invented by children who are active in their 
learning.  They showed that children could produce a wide variety of efficient strategies 
that exhibited sound number understanding even though there was little direct teaching of 
algorithms.  They also found that the active development of knowledge encouraged 
children to participate in the construction of problems and the explanation of solution 
strategies. 

In Queensland, there are few reform classrooms and the traditional pen and paper 
algorithms are still taught out of context and in situations where children have little or no 
input into constructing problems and explaining solutions.  As Cooper, Heirdsfield and 
Irons (1995 & 1996) reported, this has resulted in a tendency for Queensland children to 
use strategies for mental computation that reflect the procedures underlying the pen and 
paper algorithms regardless of their knowledge and ability to use more efficient 
strategies.  However, there is evidence that even children in these situations can and do 
employ a variety of computational methods, particularly before instruction in the 
traditional pen and paper algorithms (Heirdsfield, 1999). 

The purpose of the research was to develop an explanation why some children are 
better at addition and subtraction mental computation than others.  In particular, a 
fundamental aim was to identify factors and the relationship between factors which 
influence children’s proficiency in addition and subtraction mental computation.  In order 
to commence this study, the literature was consulted to identify some possible factors on 
which to base the initial investigation. 

The literature has shown that mental computation may be viewed as a subset of 
number sense, as students who exhibit proficiency in mental computation also display 
number sense (e.g., McIntosh, 1996; McIntosh, Reys, & Reys, 1992; Sowder, 1990, 
1992).  Research on mental computation has proposed specific connections among 
mental computation and aspects of number sense, in particular, number facts knowledge 
and estimation (e.g., Heirdsfield, 1996; Sowder, 1992).  Other research relating to 
computation (in particular, children’s natural strategies) has reported connections with 
number and operation and numeration, for example, place value, (e.g., Kamii, Lewis, & 
Jones, 1991).   

Further, relationships have been posited between mental computation and 
affective factors, for example, beliefs (about mathematics or a particular domain of 
mathematics) and beliefs about oneself (self-efficacy) (DeBellis & Goldin, 1997).  Such 



beliefs as mathematics should make sense, there are often different ways of solving 
problems, and there may be more than one answer would result in a quite different 
performance from that where mathematics is viewed as set of rules to be learnt and it 
need not make sense.  Beliefs about the nature of mathematics could be manifested in a 
student’s disposition – mastery orientation or performance orientation (Prawat, 1989).  In 
relation to computation, mastery oriented students would aim for understanding and 
flexibility, and where monitoring, checking, and planning may be evident; whereas, 
performance oriented students would tend to aim to complete a task as quickly as 
possible, and not attend to understanding and reflection.   

Hope (1987), Hope and Sherrill (1987), Reys (1985), and Sowder (1994) 
identified characteristics of proficient mental computers. Skilled mental computers used a 
variety of strategies in different situations (depending on numbers and context), because 
they were disposed to making sense of mathematics (Sowder, 1994).  Therefore, they 
were aware of a variety of strategies and had the confidence to use them. There was also 
evidence of reflection and regulation.  Further, Hope (1987) and Dowker (1990) reported 
children and adults choosing strategies based on their knowledge of number and 
operations, and choosing appropriate strategies to deal with the problems. 

In summary, research on mental computation and number has proposed 
connections among mental computation and number sense, particularly number facts, 
computational estimation, numeration, and properties of number and operation; social 
and affective issues including attributions, self efficacy, and social context (e.g., 
classroom and home); and metacognitive processes.   

The study 
The research consisted of two studies, a pilot study and a main study.  Both 

studies were based on interviews developed to investigate mental computation (strategies 
and accuracy) and other aspects that were identified from the literature.  The findings of 
the pilot study informed the main study. 

Subjects   

The subjects were Year 3 students from two Brisbane Independent School that 
serve high and middle socio-economic areas.  The students (thirteen in all) were selected 
(from a population of three Year 3 classes, 60 students in all) after participating in a 
structured mental computation selection interview.  As proficiency in mental computation 
was defined in terms of both flexibility and accuracy, both these factors were considered 
when selecting the students.  As a result of their performance on the selection items, 
students were identified as accurate and flexible, accurate and not flexible, inaccurate and 
flexible, and inaccurate and not flexible (see Table 1).   

Table 1 

Students selected for Study 

 Accurate Inaccurate 

Flexible 4 3 

Inflexible 2 4 



Instruments 

The students participated in indepth interviews, which addressed mental 
computation strategies, number facts, computational estimation, numeration, number and 
operations, and investigated metacognition, affect, beliefs and evidence of mental 
representations.  These tasks have been described elsewhere (Heirdsfield & Cooper, 
1997).  As a result of analysing the pilot study, another factor, memory seemed to impact 
on mental computation.  Therefore, memory tasks were also presented to the students.  
These addressed short term recall, short term retention, and executive planning.  

Interview procedures 

The students were withdrawn from class and participated in a series of videotaped 
semi-structured clinical interviews in a quiet room in the school.  Although the same 
questions were to be presented to all subjects, questions were also contingent on 
responses (typical of a semi-structured interview approach).  Reasons for deviating from 
the common tasks included: the student became agitated because of constant failure; the 
student’s responses indicated that the tasks were too easy.   

Analysis 

For the purposes of identifying flexibility in mental computation, mental 
computation strategies were identified using the categorisation scheme presented in Table 
2 (based on Beishuizen, 1993; Cooper, Heirdsfield, & Irons, 1996; Reys, Reys, Nohda, & 
Emori, 1995; Thompson & Smith, 1999). 

Mental computation responses were analysed for strategy choice, flexibility, 
accuracy, and understanding of the effects of operation on number, numeration, 
computational estimation, and number facts.  Analysis of the interviews investigating 
these individual factors was also undertaken, with the intention of exploring connections 
with mental computation.  For the memory tasks, scores and strategies were recorded.         

 



Table 2 
Mental Strategies for Addition and Subtraction 
Strategy  Example 
Counting  28+35: 28, 29, 30, ..  (count on by 1) 

52-24: 52, 51, 50, .. (count back by 1) 
Separation right to left (u-1010) 

 
 
left to right (1010) 
 
 
cumulative sum or 
difference 

28+35: 8+5=13, 20+30=50, 63 
52-24: 12-4=8, 40-20=20, 28 (subtractive) 
            :4+8=12, 20+20=40, 28 (additive) 
28+35: 20+30=50, 8+5=13, 63 
52-24: 40-20=20, 12-4=8, 28 (subtractive) 
            :20+20=40, 4+8=12, 28 (additive) 
28+35: 20+30=50, 50+8=58, 58+5=63 
52-24: 50-20=30, 30+2=32, 32-4=28 

Aggregation right to left (u-N10) 
 
 
left to right (N10) 

28+35: 28+5=33, 33+30=63 
52-24: 52-4=48, 48-20=28 (subtractive) 
          : 24+8=32, 32+ 20=52, 28 (additive) 
28+35: 28+30=58, 58+5=63 
52-24: 52-20=32, 32-4=28 (subtractive) 
          : 24+20=44, 44+8=52, 28 (additive) 

Wholistic 
 

compensation 
 
 
levelling 

28+35: 30+35=65, 65-2=63 
52-24: 52-30=22, 22+6=28(subtractive) 
           24+26=50, 50+2=52, 26+2=28 (additive) 
28+35: 30+33=63 
52-24: 58-30=28 (subtractive) 
           22+28=50, 28 (additive) 

Mental image of pen and paper 
algorithm 

 Student reports using the method taught in class, 
placing numbers under each other, as on paper, and 
carrying out the operation, right to left. 

 

Results 

 Pilot study 

For the purposes of this paper, an overview of the findings of the pilot study will 
be reported.  Little detail will be discussed.  The four students in the pilot study were 
Clare (accurate and flexible), Mandy (accurate but inflexible), Emma (inaccurate and 
flexible), and Rosie (inaccurate and inflexible).  Results for Clare and Mandy have been 
reported elsewhere (Heirdsfield, 1998; Heirdsfield & Cooper, 1997).   

A picture of a proficient mental computer was starting to emerge.  It appeared that 
a well-connected network of knowledge of the effects of operations on number, 
numeration, number facts, and computational estimation contributed towards flexibility 
and accuracy in mental computation.  Other factors that appeared to contribute to mental 
computation were metacognitive strategies and beliefs, and beliefs about mathematics 
and self.   

In the case of Mandy, who was accurate but not flexible, few links were made 
among the factors that were investigated; yet she was capable of holding many interim 



calculations in memory, resulting in overall accuracy.  Mandy’s number facts were fast 
and accurate (although it could be argued, not very efficient).  Her number facts might 
have contributed to accuracy in mental computation.  However, it is argued that her 
mental strategies would have taxed working memory.  In contrast, Clare’s mental 
strategies did not require such a load on working memory.  Rather, memory was involved 
in making connections, for instance, remembering previously calculated number facts.  
On the other hand, many of Emma’s errors were attributed to memory problems.  Thus, 
memory seemed to impact on mental computation.  To date, there is a paucity of studies 
investigating memory and mental computation, when mental strategies are not confined 
to mental images of pen and paper algorithms. 

Two aspects of memory seemed to be significant: load on working memory while 
calculating, and retrieval from long-term memory of facts and strategies.  Before 
commencing the main study, it was decided to review the literature concerning memory, 
and incorporate it in a model for investigation of mental computation.   

Mental computation requires concurrent processing and temporary storage of 
information (holding interim calculations in memory), and retrieval of facts and 
strategies; that is, mental computation is cognitively demanding.  Hunter (1978) 
suggested that the demand for retrieval of facts and strategies is met by long-term 
memory.  In his study of expert mental calculators, Hunter posited that these experts not 
only build up vast resources of numerical equivalents (e.g., number facts and other more 
complicated numerical equivalents), but also a vast store of ingenious strategies.  In this 
way, complex calculations can be handled more easily by accessing long-term memory 
for numerical equivalents and efficient calculative strategies, thus eliminating the need 
for massive calculations and demands on temporary storage.  Further, Hunter suggested 
that the store of knowledge in long-term memory is acquired through an interest in 
numbers and strategies, not through “head-on memorisation” (p. 344).   

However, his model did not account for concurrent processing of calculations, 
which occurs in working memory.  A model for working memory consisting of several 
parts was proposed by Hitch (1978).  Since then the model has been modified (eg, 
Baddeley, 1986, 1990, 1992; Baddeley & Logie, 1992; Logie, 1995) to include other 
components in working memory, In brief, the central executive component provided a 
processing function and a co-ordinating function, which included information 
organisation, reasoning, retrieval from long-term memory (access), and allocation of 
attention.  The phonological loop (PL) was responsible for storage and manipulation of 
phonemic information, for instance, rehearsal of interim calculations.  The visuospatial 
scratchpad (VSSP) dealt with holding and manipulating visuospatial information.  This 
may involve representation of numbers in the head, or positional information of 
algorithms.   

Main study 

For ease of reporting, group numbers will be used to refer to specific categories of 
mental computers (see Table 3).  Group 1 refers to those who were accurate and flexible, 
Group 2 to those who were accurate but not flexible, Group 3 to those who were 
inaccurate and flexible, and Group 4 to those who were neither accurate nor flexible. 

 



Table 3 

Mental Computation Categories and Group Numbers 

 Flexible Not flexible 

Accurate 1 2 

Not accurate 3 4 

 Fast and accurate number facts supported accuracy in mental computation.  This 
would make sense, as fast and accurate recall of number facts from long term memory 
would result in less load on working memory, when more complex calculations are 
involved (as in mental computation of two- and three-digit addition and subtraction).  
Further, those students who scored poorly in the number facts test (slow and/or 
inaccurate) were inaccurate in mental computation.  Thus, fast and accurate number facts 
are essential knowledge for accuracy in mental addition and subtraction.  

In contrast, flexibility in mental computation was supported by number facts 
strategies.  Students who were flexible in mental computation employed efficient number 
facts strategies (derived facts strategies) in the number facts test.  Some students 
(particularly those in Group 1) applied some number facts strategies to mental 
computation strategies.  In the case of Group 3 students, using derived facts strategies in 
the test did not always result in accuracy.  Further, Group 3 students did not always use 
derived facts strategies in interim calculations for the mental computation tasks.  In fact, 
they often used count.     

Efficient mental strategies (e.g., wholistic and aggregation – see Table 2) required 
good numeration understanding.  Lower level alternative mental strategies (e.g., 
separation left to right) also required numeration understanding (canonical and 
noncanonical). Some numeration understanding was also required for procedural 
understanding of mental image of pen and paper algorithm.  This was the case with 
Group 2 students who were accurate, but not flexible.  Group 4 students who were neither 
flexible nor accurate had very poor numeration understanding.     

   It has been posited (e.g., Reys, 1992; Sowder, 1988, 1994) that an 
understanding of the effects of operation on number would be important for efficient 
mental computation.  In particular, understanding of the concepts of the effect of 
changing the addend and subtrahend would affect the ability to employ some wholistic 
strategies.  Students (in the present study) who exhibited these number and operation 
understandings tended to employ high-level strategies (e.g., wholistic compensation), 
whereas, students who did not exhibit these understandings, could not successfully 
complete examples using these strategies, although they attempted to access the 
strategies with scaffolding.  It appeared that both numeration and number and operation 
understanding was required for successful employment of wholistic mental strategies.   

In contrast to the findings of Reys, Bestgen, Rybolt, and Wyatt (1982), 
computational estimation did not support mental computation.  Even proficient mental 
computers did not exhibit proficiency in computational estimation.  One reason could be 
the students were too young to have developed estimation strategies.  Heirdsfield (1996) 
found that some Year 4 students had developed some appropriate estimation strategies, 



and that these strategies were probably developed outside the classroom.  It is possible 
that students in Year 3 are simply too young.  Another reason could be the absence of 
estimation in the Year 3 syllabus (Department of Education, Queensland, 1991). 

It has been posited that metacognition aids skilled mental computers (e.g., 
McIntosh et al., 1992; Sowder, 1994).  However, in the present study metacognition did 
not feature strongly.  The reason might lie in the young age of the students; they may be 
unable to distinguish their metacognitive knowledge in particular.  On the other hand, 
they did seem to be able to verbalise their metacognitive beliefs (perceptions of their 
abilities).  Metacognitive skills were important for flexibility in mental computation.  
Flexible mental computers, particularly Group 1 students, showed evidence of 
monitoring and checking.   

Exceptional short-term recall and retention were not necessary for mental 
computation; however, threshold levels were necessary.  These findings support those of 
Hunter (1978).  Further, Hunter stated,   

The expert (mental calculator) goes quite a way to meet these 
demands (of working memory), partly by the speed and quality of working, 
and partly by devising calculative methods which evade an excess of 
interrupted working.         (p. 343) 

In the present study, flexible and accurate mental computers employed efficient 
mental strategies to alleviate demands on working memory.  However, Group 2 students 
(accurate and not flexible) resorted to an automatic strategy (mental image of pen and 
paper algorithm).  Amy (Group 1) also reported using automatic strategies, but these 
strategies included a variety of efficient strategies.  In contrast, students in Group 4 
possessed poor recall, retention and executive functioning (i.e., poor working memory 
resources).  They also had a poor knowledge base (in LTM).  Further studies are needed 
to determine if poor working memory resources contribute to poor connections in LTM, 
resulting in diminished performance. 

The results for Digit Span Test indicated that for most students (except Group 4) 
the phonological loop (PL) could support retrieval of number facts from LTM, and 
holding and rehearsal of interim calculations (of which there were many).  However, 
Group 3 students did not have number facts in LTM, so the PL could not retrieve these.  
Further, there was evidence that the VSSP supported some strategies.  The visual 
representation of the pen and paper algorithm, including interim calculations was stored 
and manipulated in the VSSP.  However, there was little evidence of the use of the VSSP 
for Group 1 students.  Although it was expected that numbers would be represented in 
some visual form, no Group 1 student reported this.  The reason might lie in the young 
age of the students.  They might have been unaware of their use of any mental imagery, 
or they may have been so preoccupied with their strategies, that they could not remember 
using any mental imagery.  

Integration and compensation 

Proficiency in mental computation (accurate and efficient mental strategies) 
required integrated understanding of number facts (speed, accuracy, and efficient number 
facts strategies when facts could not be automatically recalled), numeration, and number 



and operation.  Proficient students also exhibited some metacognitive strategies and 
possessed reasonable short-term memory and executive functioning.   

Where there was less knowledge and fewer connections between knowledge, 
students compensated in different ways, depending on their beliefs and what knowledge 
they possessed.  One choice was to employ teacher taught strategies in which strong 
beliefs were held, as long as the procedures could be followed, and if they were 
supported by fast and accurate number facts and some numeration understanding (as in 
Group 2).  Further, working memory (slave systems and central executive) had been 
sufficient.  In particular, there was evidence of employment of the VSSP as a visual 
memory aid.     

Another form of compensation was inventing strategies (as in Group 3) when the 
teacher taught strategies could not be followed.  Although working memory was 
sufficient, the knowledge base was minimal and disconnected (in particular, number facts 
were not well known), thus compensation strategies were not efficient, and resulted in 
errors.  Further, the knowledge base did not support high-level strategies.  Some 
numeration understanding and sufficient memory (including executive functioning) 
supported the development of some alternative strategies, but no high level strategies.  
Access to wholistic strategies was only partially successful. 

Finally, students who exhibited deficient and disconnected understanding (Group 
4) tried to compensate by using teacher-taught procedures, but they were unsuccessful, as 
they also lacked procedural understanding and had poor memory (including diminished 
executive functioning).       

Mental computation model 

It appears there are four steps to mental computation when problems are 
presented:  

1. recognise the numbers and operation involved,  
2. select a strategy,  
3. implement the strategy to arrive at a solution, and  
4. check the solution.   

All students in the study were capable of recognising the numbers and operation 
involved in the calculations.  Factors involved in both selecting and implementing the 
strategy included access to and utilisation of facts, skills, strategies, and support from 
memory.  Finally, it would be expected that students would check their solutions 
(although checking may occur during calculation as well).  After analysing the results of 
the students it became evident that different students, in particular, different groups of 
students utilised different aspects of the framework.  The “ideal” framework was 
formulated after identifying essential and threshold knowledge that supported accuracy in 
mental computation and flexibility in mental computation.  Thus, the framework for 
Group 1 students who were accurate and flexible was the “ideal framework” (Figure 1).   

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Limitations to the study 

Because only two schools were approached to participate in this study, findings 
are not generalisable to all eight and nine year olds.  Further, the two schools served 
similar socio-economic areas (although not geographical areas).  Socio-economic factors 
could have had a great deal of influence on contextual factors, such as parental 
expectations and support.  It was evident that most parents from the two schools expected 
their students to achieve.    

Another limitation of this study was that only one obvious representative of 
Group 2 was interviewed in depth; therefore, this category might be artificial.  There 
were a number of students in the pilot study, who were identified as Group 2 (4 out of 15 
students); however, only one student participated in the in-depth interviews (as with other 
groups in the pilot study).  Why there were more Group 2 students in the pilot study is 
not clear.  It could be posited that to be accurate in mental computation, more efficient 
strategies than mental image of pen and paper algorithm need to be employed.  It is 
possible that high accuracy when using pen and paper algorithms might require superior 
short-term recall and retention.  This cannot be confirmed from the present study, as the 
only obvious Group 2 representative (Mandy) was not tested for memory, as memory was 
not a factor that was investigated at this stage.  

Recognise 
number 

and 
operation
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efficient 
mental 
strategy 

 
Implement 

strategy 

 
Check 

numeration – canonical 
             noncanonical 
             composition of number 
  multiplicative 

number and operation 

number facts – speed and accuracy 
                        − strategies metacognitive skills 

metacognitive beliefs 

memory 

Figure 1  Process model for accurate and flexible mental computers 
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Finally, there seemed to be difficulties eliciting some information from the 
students because of their age.  Metacognitive knowledge did not appear to be present.  
Why strategies were chosen could not be elicited from the students.  Further, students 
who employed high-level strategies did not report using any visual imagery, yet it would 
seem feasible that visual imagery would have supported these strategies.       

Implications for teaching 

There was evidence of the importance of connected knowledge, including domain 
specific knowledge, and metacognitive strategies for proficient mental computation.  This 
demonstrated the need for teaching practices to focus on the development of an extensive 
and integrated knowledge base to develop understanding; that is, concepts, facts, and 
strategies should not be learnt in isolation.   

Students can and do formulate their own strategies (but not always accurately).  
However, invented procedures were more accurate and showed more number sense than 
teacher taught strategies.  Therefore, students should be encouraged to formulate their 
own strategies.  Because of memory load involved in mental computation, students 
should be permitted to use external memory aids (e.g. pen and paper).  Further, mental 
strategies can be used to solve pen and paper exercises.  It is posited that efficient mental 
strategies are also efficient written strategies.  Pen and paper should be used as external 
memory aids for “jotting down” interim calculations and other scribbling, for instance, 
the empty number line.  The empty number line has been successfully used in various 
Dutch studies (e.g., Selter, 1995).  Selter had the students use the empty number line as a 
tool for thinking, and to reflect on and discuss their solution methods.  Finally, by having 
students formulate their own computational algorithms, they have to call upon their own 
knowledge of numeration, number facts, etcetera; thus they develop connected 
knowledge while they develop their algorithms.  This is in contrast to students using 
teacher-taught procedures, which require little connected knowledge.         

Knowing number facts by immediate recall also decreases memory.  Students in 
Year 3 were not expected to know number facts by recall.  Heirdsfield (1996) found that 
even Year 4 students did not always know number facts by recall.  Just as many Year 4 
students calculated number facts by using efficient DFS, many Year 3 students in the 
present study also used DFS when they could not recall number facts.  However, this 
caused extra load on working memory (at times).  Therefore, permitting students to use 
pen and paper would alleviate working memory load due to lack of number fact 
knowledge.  Further, students should be encouraged to build on their intuitive 
understandings, and should not be taught number facts strategies as drilled procedures 
(Van de Walle & Watkins, 1993).  Moreover, students should be encouraged to choose 
their own appropriate number facts strategies, as not every student uses the same strategy 
(Gravemeijer, 1994).  Finally, the development of number facts strategies (derived facts 
strategies) promotes the development of mental computation strategies. 

Although some students were able to use the traditional pen and paper algorithms 
successfully, considering the amount of time that is spent in teaching these procedures, it 
appears that time could be better spent in having students develop their own strategies.     
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