
Experience using a Coordination-based
Architecture for Adaptive Web Content

Provision?

Lindsay Bradford, Stephen Milliner, and Marlon Dumas

Centre for Information Technology Innovation
Queensland University of Technology, Australia

{l.bradford, s.milliner, m.dumas}@qut.edu.au

Abstract. There are many ways of achieving scalable dynamic web con-
tent. In previous work we have focused on dynamic content degradation
using a standard architecture and a design-time “Just In Case” method-
ology. In this paper, we address certain shortcomings witnessed in our
previous work by using an alternate coordination based architecture,
which has interesting applicability to run-time web server adaptation.
We first establish the viability of using this architecture for high-volume
dynamic web content generation. In doing so, we establish it’s ability to
maintain high throughput in overload conditions. Then we go on to show
how we used the architecture to achieve a “Just in Time” adaptation to
achieve dynamic web content degradation in a running web application
server.

1 Introduction

Researchers have recently discussed the need for adaptable web-provision tech-
nologies, particularly in terms of architectures that cater to varying degree of
adaptability [1]. This focus on architectures is perhaps due to a growing realisa-
tion that the architecture chosen is one of the key factors to successful system
deployment [2]. If we want an adaptable system, its architecture must first sup-
port adaptation.

Architectures that offer a coordinated model of interaction (for example,
JavaSpaces [3]) provide certain characteristics that are attractive to achieving
adaptation. These architectures separate components from how the components
interact via some form of coordination, and in turn, should make run-time com-
ponent replacement and changes to component interaction easier to accomplish.
Such architectures introduce decoupling across space (allowing distributed be-
haviour), time (allowing asynchronous communications) and interface (allowing
easier replacement and interaction of components), in turn, allow a wide range
of choice in the types of adaptation that can be implemented.

Many modern web-centric architectures take a somewhat coarse-grained/static
approach where components and their interactions are fixed at design time. As a
? This research is funded in part by SAP Research Centre, Brisbane.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10873509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


result, developers can be locked into limited types of adaptability, and at worst,
could be forced to construct adaptation techniques at design time along with the
core deliverables and in ways that may not be appropriate. Adaptive systems
that take this “Just In Case” (JIC) approach run the risk of not being able
to adapt key components to environmental changes. Even if the components to
adapt are correctly identified and alterable, the system designer needs to also
successfully guess the right type and amount of adaptation to apply when de-
signing their systems. That is, they must have complete a priori knowledge of
all possible situations.

JIC adaptation techniques are highly predictive, whereas “Just in Time”
(JIT) adaptation techniques are highly reactive, even to the point of being man-
ually constructed for specific short-lived circumstances. More formally, we de-
scribe JIT adaptation as the introduction of behavioural change into a system
once some event has occurred that requires such change, and that the adaptation
made is targeted specifically to this event. By breaking HTTP content delivery
of a web application server into a number of components interacting via architec-
tural coordination, the degree of predictiveness required for adaptation can be
minimised, or even removed, by altering just those components and interactions
that need changing at run-time.

In this paper, we aim to establish whether our coordination architecture, with
its optimisations for localised coordination of network deliverable components,
is capable of web content delivery with sufficient latency and throughput make
it viable for use as a web application server. We also aim to establish whether
the architecture can significantly and rapidly adapt via a JIT delivery of new
behaviour, even under extreme load conditions.

Our focus in web application adaptation is on achieving scalability at a sin-
gle web application server via behavioural change. In contrast, other popular
techniques for supplying adequate web scalability involve the over-provision of a
service-provider’s computing resources, typically by supplying several duplicate
machines that share requests through some load balancer. This solution is not
only costly, but also requires increased configuration and administration effort.

In previous work [4], we constructed a dynamic web content degradation
system based on elapsed-time measured at the server. Elapsed-time is a critical
factor of user-perceived quality of service on the Web [5] [6] [7], and in human-
computer interactions more generally [8]. Aspects such as layout, graphics and
such are far less likely to effect user-perceived quality of service, suggesting
that degrading such aspects for better elapsed-time responses is an area of web
adaptability deserving further investigation.

We used a mainstream web application server, namely Tomcat1, to supply
several approaches to generating web content for a given URI. An elapsed-time
based algorithm was used to decide when to degrade the web content delivered
by choosing between these approaches. For example, a baseline approach might
be a complete web-page portal collating results from several other web-pages.
Under load, the base approach generating this complete portal might be replaced

1 http://jakarta.apache.org/tomcat/



by a lightweight approach that returns only those portlet images that the server
has cached. The algorithm and alternate approaches required are an example of
JIC web adaptation, and is typical of the extra pre-emptive overhead inherent
in such schemes.

What is uncertain in using coordination architectures such as ours for web
content delivery is firstly, how they would behave under load conditions, and
secondly, how they should be used to achieve high-performance web content de-
livery. To that end, we offer two contributions in this paper, being i) we establish
that our coordination architecture can be used to serve high-demand dynamic
web content fast enough to be considered viable and show that it exhibits good
throughput characteristics under load, and ii) we present a method for exploit-
ing our architecture to seamlessly adapt to very different behavioural patterns
in a JIT fashion. To illustrate out second contribution, we introduce automated
content degradation into an overloaded web application server at run-time.

Section 2 discusses the design of the system by first describing the base
architecture (Sec. 2.1), then the adaptation of the base architecture into a web
application server at run-time (Sec. 2.2), and finally the adaptation this web
application server into one capable of automated content degradation (Sec. 2.3).
Section 2.4 discusses some of the lessons learned with early attempts. Section 3
establishes the viability of our design via experiments. Section 4 discusses related
work and section 5 concludes the paper.

2 Design

In Section 2.1, we discuss our coordination architecture and the localised op-
timisations that make this architecture a viable candidate for delivering both
high load web service provision and for flexible service adaptation. In Section
2.2, we discuss how we used this architecture to deliver our JIT adaptable web
application server.

2.1 Service provision with ActiveObjectSpaces

ActiveObjectSpaces (AOS) is a distributed coordination middleware drawing on
three main predecessors: Blackboard Architectures (for example, Hearsay [9]),
Linda [10] and Sun’s JavaSpaces [3]. It supports three main primitives read(),
write(), and take(). The AOS has a extended notification API compared to
JavaSpaces (notification can trigger on arrival, existence and on deletion). Like
JavaSpaces, coordination is achieved via notification templates describing essen-
tial aspects of objects on the Object Space that clients wish to interact with.
Perhaps the most novel aspect of the AOS is the notion of Active Objects.

Active Objects are simply AOS-aware objects that execute in their own
thread of control within the AOS middleware itself. By sending the appropriate
active objects to a running AOS, and incorporating a coordination protocol for
their interaction, we can dynamically deploy the components of a stand-alone



server. By constructing a service via such a collection of loosely coupled co-
ordinated components we can achieve adaptability at the level of granualarity
required for a single server.

An AOS server initially knows nothing about receiving HTTP requests or
delivering web content. Our HTTP module (section 2.2) is delivered to the AOS
which the AOS then executes. Once the module is running, the AOS has dy-
namically been converted into a web application server. Later, when the server
exhibits poor response times, a content degradation module (section 2.3) is deliv-
ered to the AOS, converting the AOS into a server capable of selecting degraded
content based on elapsed server response-times.

2.2 Dynamic Web Content Delivery via ActiveObjectSpaces

A number of active objects and object class definitions are delivered to the AOS
via the HTTP module (see figure 1). The class definitions and active objects are
removed from the object space and installed for use by the AOS. For most of
the active objects, this simply means informing the server to execute a callback
method on them when data objects matching notification templates they specify
are delivered to the object space. Later, when the AOS starts accepting client
requests, the class definitions delivered via the module will allow the active
objects to create and manipulate objects needed for HTTP content delivery.

Fig. 1. Turning the AOS into a HTTP Server

Most of the content delivered in the HTTP module is generic HTTP handling
code, and much like ’out of the box’ application servers, is expected to remain
unchanged over time. However, we do have the option of making quite radical
changes even at the HTTP layer if required. The content degradation module
discussed later, alters behaviour, and is roughly analogous to delivering a new
WAR file to a running Tomcat application server. What makes our approach
novel with respect to more contemporary application servers is that both the



HTTP generic behaviour as well as content delivery behaviour can be adapted,
and at a very fine level of granularity. By using the space as our core state
repository, we can also draw on looser, more interactive ways of generating web
content that are not possible with call and return style architectures.

Fig. 2. HTTP Server Design

Figure 2 gives an overview of the design principles employed when building
our server, supporting a subset of the HTTP/1.1 standard [11]. The active object
that communicates with HTTP clients first asks the object space to deliver it any
completed responses that may be deposited there. It then establishes a server
socket and falls into a continuous loop, accepting client HTTP requests that
it converts into request objects and delivers to the object space. Whenever a
completed response is placed on the object space, the response is delivered back
to this active object and the object transmits the response back to the client.
Response delivery is managed via notification template processing.

In early experiments, we discovered that the active object responsible for
communicating with the HTTP clients needed to contain a mapping of open
client sockets to requests as part of its internal state. Java Socket objects rep-
resent underlying Operating System resources, a class of object that cannot be
sensibly delivered into the object space. It was therefore necessary to have this
active object retain open socket state to support the HTTP/1.1 requirement for
using the same socket for request receipt and response delivery.

With careful usage of notification templates, the active objects cooperate to
produce HTTP responses in a way reminiscent of a “Pipes & Filters” architec-
ture [12], where each active object acts as a filter and enacts some self-contained
transformation of the HTTP content. However, there are some important kinds
of adaptation our architecture allows that are not available to more rigidy coor-
dinated architectures.

Firstly, the object space allows decoupling of response generation across time.
A response in a partially complete state could be left that way for an arbitrary
amount of time, and service other requests instead in a manner reminiscent of



Floyd and Jacobson’s link-sharing [13]. We might find this desirable for cer-
tain classes of HTTP client, such as screen-scraping bots that adversely effect
response-times, and in turn, displease human clients who are far more judgmen-
tal of poor web response times [6].

Secondly, the active objects are loosely decoupled across their interfaces,
using template matching to move data through its life-cycle. Though we have not
taken full advantage of this loose coupling, we could (as an example) have certain
active objects with the same template effectively “compete” for processing a
HTTP request at a given point in its life-cycle. As active objects are just a
special type of client for the object board, certain behaviour and its partially
complete state could be relocated to a remote location if it made sense to do so.

To make behaviour replacement easier, we deliberately minimise the state
each object needs to hold by making as much use of the object space as is
appropriate. Data objects represent the core state of a HTTP response at various
points in its life-cycle from request receipt through to response delivery.

We separate active objects loosely into a “fixed” layer and a “variable” layer.
The fixed layer typically focuses on communication with the object space. It
delegates behaviour that manipulates the content retrieved from the object space
to its variable layer component(s). The notification template that this layer
establishes with the object space describes the nature of objects it is willing to
manipulate from the object space. The fixed layer is also responsible for spotting
and refreshing variable layer components when they are delivered to the object
space, again by using notification templates.

The variable layer consists of one or more objects that work together to
process data handed to it by the fixed layer. There is nothing stopping a variable
layer object from talking directly to the object space or even containing a nested
fixed/variable layering itself.

We considered an alternative to behaviour update, where active objects ask
the object space to inform them of the delivery of a replacement for them. A
receipt of notification that a replacement had arrived would signal their need for
termination. A drawback we saw to this is that a great deal of code (especially
code for marshaling data to and from the object space) would be essentially
the same across two versions of an active object. We opted for an active object
design that expects more frequent changes in component behaviour than changes
to coordination.

2.3 Dynamic Web Content Degradation via ActiveObjectSpaces

Figure 3 shows what happens generally when we vary our HTTP Server be-
haviour. A number of new active objects, class definitions and variable-layer
objects are delivered to the object space. The server then installs the active ob-
jects and class definitions. Finally, active objects that are informed of matching
variable-layer objects will retrieve and internally install these new variable-layer
objects.

In our specific case for web content degradation, a second client module
connects to the server and delivers a single active object and a number of support



Fig. 3. Content-Degrading HTTP Server via AOS

objects and their class definitions. As this active object is being installed in the
server, it first asks the server to deliver it any ResponseTime objects (a new type
of data object the server was initially unaware of) from the object space. The
active object then delivers a variable-layer object to the server space capable of
generating these new data objects.

The active object responsible for HTTP request/response communications
objects is informed of the existence of the new variable-layer object, and installs
it as a new piece of functionality to be run each time a response is successfully
delivered back to a client.

This newly delivered active object implements the algorithm for elapsed-
time web content degradation that we described in [4]. We leave a more detailed
discussion of the algorithm to section 3.4. Here, we will simply state that if this
active object decides a new approach to generating web content is needed to
ensure adequate response times, it delivers a new variable-layer object to the
object space which will be picked up and installed by the appropriate active
object, for use in content generation from then on.

2.4 Pitfalls discovered

In building the base server module, we learned several important lessons in
ensuring high throughput and low latency using the AOS to serve web content.

One lesson learned was to minimise the number of objects on the space
growing over time. An early attempt at building the server had tried to place
nearly all state on the object space. Some information however, needed mutual
exclusion sections to ensure the correct history was being generated. As the
state requiring mutex was in the object space, the mutex behaviour was coded
using AOS primitive methods. The application-level implementation of mutual
exclusion was enough to ensure that ResponseTime objects started backing up
on the object space, which in turn slowed down template matching on take()



operations, establishing a systemic collapse of response times as more and more
new request messages mixed in with the steady growing number of ResponseTime
objects.

In a related theme, the object space requires a great deal more object cre-
ation and destruction than a traditional call and return architecture. We learned
through profiling that garbage collection on our single CPU server machine
tended to contribute to poor response times when large amounts of memory
were being reclaimed. Through careful configuration of the garbage collector,
we were able to minimise its impact, though a more attractive proposition for
future work is having a machine where garbage collection can run in parallel
with service provision.

Finally, without centralised control, it became difficult to determine that we’d
achieve intended behaviour until run-time. Run-time diagnostic tools such as
server logs and profilers, giving real-time views into the running system became
our primary method for debugging and system validation. Unit testing tended
to be trivial, involving testing highly specialised, mostly stateless active objects.
We couldn’t verify intended overall behaviour had been achieved until actually
seeing the AOS successfully marshaling request state between the loosely coupled
active objects in a running environment.

3 Experiments

3.1 Experimental Setup

Experiments were carried out on a set of eight dedicated Sun boxes running
Debian Linux, and a single target web server machine. The target web server
machine was an 804MHz Pentium 3, with 256Mb of memory, running Fedora
Core 12. The AOS was run within a Sun 1.4.2-b28 JVM. The machines were
connected on an isolated 100 megabit per second LAN.

One of the machines acted as a traffic synchronizer by broadcasting UDP
messages to synchronise the activity of the other client machines. The remaining
seven machines were used as test clients and would listen on heartbeat signals
from the traffic synchroniser. For the tests we describe here, the traffic synchro-
niser was used only to ensure that all client machines started requesting content
from the server at the same moment.

One of the test client machines was used to generate a sufficient request rate
to ensure response times for the baseline approach were above one second. This
client machine sent a request and once the request was received, would imme-
diately disconnect without informing the server, generating the equivalent of a
denial of service attack. Both architectural styles (Tomcat and AOS) continue
to process requests and fail only when attempting to transmit responses back to
the non-sampling client on a defunct client socket. The remaining six machines
sent requests and waited for responses before sending new requests. The figures

2 http://fedora.redhat.com/



reported in our third experiment have been sourced from the data collected off
these six machines.

We simulated memory-intensive web content provision by generating HTML
responses that ran a number of loops, accessing a random element of a 2K block of
memory in each loop as they processed output. We considered four approaches
for supplying a reply to a given URI that we wanted to automatically vary
content generation on. Given the capacity of the target machine running the
web server, we settled on four approaches doing 1,000,000, 500,000, 250,000 and
125,000 loops respectively. The 1,000,000 loop approach we name our “baseline”
approach, which represents the original content being delivered before content
degradation becomes necessary.

There is compelling Human/Computer interface research suggesting that we
should try returning responses to web requests within one second for human
clients if we want them to remain unaware of having waited for those responses
[6]. When we present our results, we label responses adequate if they took under
one second to return to the sampling clients. The aim we set out to achieve
with our content degradation module is to maximise the number of adequate
responses returned by trying to get response times back under one second once
a server fails to do so for some type of web content.

3.2 Experiment 1: Sustainable Throughput per Approach

We used the tool httperf [14] to establish the sustainable throughput each ap-
proach can deliver, and used that figure to establish the number of client ma-
chines required to significantly tax the server past this rate for our baseline
approach. We did this by sequentially requesting 10,000 results per approach,
and recording the output from httperf. The average response time we get from
this is around where a server starts degrading performance if requests arrive at
rates faster than this. The key results are displayed in figure 4(a).

Resp. Time (ms) Std.
Loops Avg. Med. Min. Max. Dev.

125,000 51 50.5 50 162.5 2.4

250,000 84.1 83.5 83 105.8 2.1

500,000 149.7 148.5 148.6 477.8 4.4

1,000,000 280.5 279.5 278.3 696.3 6.8

(a) AOS HTTP Module

Resp. Time (ms) Std.
Loops Avg. Med. Min. Max. Dev.

125,000 47.4 47.5 47.1 58.4 0.5

250,000 91.6 91.5 91.1 104.0 0.6

500,000 179.9 179.5 179.3 192.2 0.9

1,000,000 356.5 356.5 355.5 413.3 1.6

(b) Tomcat Application Server

Fig. 4. Sequential approach response times across architectures

Using the same hardware, we ran httperf against a Tomcat 5.0.28 imple-
mentation [15] configured as closely as possible to our HTTP module with the
approaches embedded in servlets. Our aim was simply to establish whether AOS
could handle a similar amount of throughput for the same workloads as a con-
temporary web application server. The results are displayed in figure 4(b).



Minimum, average and median response times were similar in both the AOS
and Tomcat. As the AOS implements a subset of the HTTP protocol, we argue
only that the architectural overhead of the AOS makes it a viable candidate for
delivering HTTP content. We note the large difference in maximum response
times and thus standard deviation between AOS and Tomcat. A small minority
of AOS responses reported much longer response times. The remainder, like
Tomcat, returned much closer to their minimum response times.

Via profiling, we saw two contributors to this variability in AOS response
times. Firstly, AOS requires significantly more short-lived objects than Tomcat in
response processing, and is thus more prone to the excessive dynamic allocation
anti-pattern [16]. Secondly, how the AOS uses threading has introduced extra
non-determinism. There is a single thread per request for Tomcat, meaning no
extra threading overhead whilst requests were being fed to it sequentially. In
the AOS, each active object notification is executed in a separate thread. Even
when sending requests sequentially, the AOS still invokes threading overhead as
requests moves through its life-cycle.

We conclude that in non-overload conditions, the overheads of the AOS archi-
tecture do not exclude it from being used as a viable HTTP application server.
We can expect occasionally longer response times than a single-thread per re-
quest architecture, but for the most part, responses will be returned with little
extra evident latency.

3.3 Experiment 2: Understanding Overload Behaviour

As the architectures handle request processing very differently, we were inter-
ested in what to expect in worsening overload conditions on each server. In this
experiment, we used httperf to request the baseline approach at varied request
rates: from below, at around, and above the sustainable request rates derived
from Experiment 1.

From Fig. 5 we see that as we increase our request rates past the sustainable
point, Tomcat rapidly degraded in terms of responses per second, but the AOS
settled on an average response rate at around it’s sustainable request rate. We
also see worsening AOS response times as request rates increases beyond sus-
tainable rates. Either way, past the sustainable request rate, both architectures
rapidly reached the point of poor adequacy.

The reason behind this difference in throughput between architectures is
described by Welsh et.al [17]. Architectures that combine threading (primarily
for IO and network blocking) with event-driven task scheduling offer excellent
throughput characteristics for overload situations, though latency increases as
request rates exceed a sustainable limit. Because of our globally shared object
space amongst active objects with no inherent queuing per thread, we suspect
that the AOS lies somewhere between Tomcat and SEDA [18] (the architecture
Welsh et.al built from the principles described in [17]) in its ability to maintaining
high throughput in overload conditions.

We conclude that the AOS will maintain high throughput rates that should
slowly degrade (as a function of number of objects in the object space) in over-



Requests Response Time (ms) Std. Resp. per Sec.

per Sec. Avg. Median Min. Max. Dev. Avg. Std. Dev.

2 279.1 278.5 277.8 338.6 3.2 2 0

3 287.4 286.5 277.9 301.5 2.5 3 0.1

5 9358.9 12635.5 298.9 13341.3 4986.1 2.8 0.4

10 10854.5 12722.5 319.7 13382.6 4009.8 3.3 0.3

(a) AOS HTTP Module

Requests Response Time (ms) Std. Resp. per Sec.

per Sec. Avg. Median Min. Max. Dev. Avg. Std. Dev

2 357.4 357.5 356.0 467.4 2.7 2 0

3 2382.9 1048.5 381.9 9804.4 2602.3 0.4 0.9

5 3597.3 1782.5 536.1 9680.8 3288.7 0.1 0.3

10 1475.3 1606.5 1475.3 1746.9 135.8 0 0.1

(b) Tomcat Application Server

Fig. 5. Request Rates on Baseline across architectures

loaded server conditions, but that latency will continue to increase until such
time as we make content cheaper to generate or offload requests elsewhere.

3.4 Experiment 3: Validating JIT Content Degradation

Our web content degradation module uses an “elapsed-time of response gen-
eration” based algorithm to choose faster or slower approaches to generating
content for a given URI [4] 3. Other content degradation algorithms could have
been attempted, but are outside the scope of this research. Instead, our aim is
to use the algorithm to verify that the AOS is capable of handling quite radical
adaptation of both its coordination and bottleneck components in an already
overloaded web application server.

We chose not to compare AOS content degradation against Tomcat. The
difference between the two architectures seen in Experiments 1 and 2 led us to
suspect that the behaviour of our algorithm was not readily comparable across
architectures given their very different behaviours in overload conditions. Here
we concentrate on the AOS architecture only.

We used the results from Fig, 4(a) to guide us in configuring the request-rate
of our denial of service client. Our aim was to find a request rate, that combined
with requests from the sampling clients would ensure that response-times for the
AOS baseline approach would be above one second. We settled on a request rate
of one request every 10 milliseconds from this client.

Experiment 3 was run for 20 minutes. The first 10 minutes used the base-
line approach delivered with the first module, and the second 10 used content
degradation, delivered via the second module.

3 We pessimistically configure the algorithm’s parameters to 300ms for our upper-time
limit, and 200ms for our lower-time limit in these experiments.



Fig. 6. AOS Responses Times

Figure 6 shows a scatter-plot diagram of response times recorded from our
sampling clients. At the 600 second (10 minute) mark, the content degradation
module’s delivery radically altered the response-times being reported by our tar-
get server. Where most responses were definitely taking longer than one second
to deliver pre-adaptation, most responses delivered post-adaptation fell below
our one-second target.

Fig. 7. Measured AOS Adequacy pre- and post-adaptation

Figure 7 shows the number of adequate responses returned pre- and post-
adaptation. We achieved very high adequacy. What we draw from this result is
that the AOS allows relatively complex adaptation to occur under load condi-
tions, not only in terms of a one-off change in active-object coordination, but



also in terms of automated, rapid, fine-grained changes to content-generation
behaviour. We have establish that the AOS is a viable candidate for further
exploration in JIT adaptation of web-service architectures, even under taxing
conditions.

Of secondary importance, no special effort was made here to better match
the content degradation algorithm to the AOS. Because of the the very different
way in which the AOS behaves in overload conditions, there is some argument
for making the algorithm less reactive to severe, short-lived changes in response
times, and for it to take more consideration of how object space numbers might
influence overall response latency.

4 Related Work

There are many ways to scale dynamic web content at a single server, such
as caching ([19] lists several strategies), resource management (see [20] as an
example), and content degradation. Caching dynamic web content is limited
both in terms of when it can be applied, and how much benefit it can deliver [21].
Resource management policies often also have the undesirable “denial of service”
characteristic that breaks a web user’s expectations of “service on demand” from
web service offerings [6].

As users seem less concerned with content makeup than with response times
[5], we see web content degradation as an area deserving further exploration.
Web content degradation techniques (also called transcoding, see [22], [23] and
[24]) rely on the idea that web content can be degraded to a user-tolerable degree
when servers are overloaded. The degraded content should require less resources
to deliver, and in turn, allow more clients to consume the desired content.

Until recently, very little has been discussed in terms of degrading dynamic
web content. New adaptive architectures are being introduced that look to sup-
port dynamic web content degradation, but they do not explore specific degrada-
tion techniques [1]. Chen and Iyengar described a dynamic web content degrada-
tion system involving a number of tiered servers, offering content at decreasing
degrees of fidelity the further from the core server a support server is in the tier
[25]. We are currently unaware of any other dynamic web content degradation
techniques targeting a single server besides our own [4].

Our early work has led us to the conclusion that the architecture is the key to
the degree of adaptability we can achieve. Our longer-term goal is a wide range
of adaptations to suit changing situations, so maximising the range of run-time
adaptability we can achieve has been a driving force in this more recent work.

To that end, space-based architectures look particularly promising to us.
Early blackboard architectures such as Hearsay [9] introduced the concept of
expert software components watching a blackboard, and working on parts of a
problem they understood. These experts were basically self-contained compo-
nents with minimal state and were loosely coupled via the blackboard. As a
consequence they were easier to replace with equivalent components. Later, Gel-
ertner’s Linda project [10] on generative communication discussed the greater



flexibility available across both time and space by storing and manipulating
generic tuples via a tuple space.

JavaSpaces replaces tuples with Java objects, which supports the movement
of behaviour in addition to state [3]. JavaSpaces however, focuses on distributed
behaviour over a network. In contrast, our own interest in these architectures is
in how we might take advantage of such loose coupling to introduce localised,
fine-grained behaviour alterations whilst the server we are altering continues to
operate. This is where the notion of active objects plays a crucial role. To best
of our knowledge, there has been no previous attempt at applying coordination
architectures to the problem of highly adaptable web application servers.

5 Concluding Remarks

We have shown in this paper that our coordination architecture ActiveObjectSpaces
(AOS), can serve as a viable base for adaptive web application servers. The Ac-
tive Object primitives offered by our architecture allow us to easily deliver and
execute new components to a running AOS, and have them interact via localised
coordination.

We described a way of using the strengths of this architecture to construct a
simple HTTP server on top of the architecture, and then, to deliver significant
alterations to the behaviour of the running HTTP server under load. Along the
way, we learned that achieving good latency from the architecture required us
to minimise the number of objects stored in the object space at any one time.
We also discovered that mutual exclusion behaviour is best encapsulated inside
active objects; building mutual exclusion via AOS primitives proves too costly
in a busy server.

We have established that we can achieve our desired adaptability at the
cost of some extra variability in server response times when compared against a
more traditional web application architecture in unloaded conditions. The AOS
matches the throughput and latency results of this traditional architecture close
enough to make deployment viable. Overloading the architectures showed the
AOS capable of maintaining high throughput, whereas the throughput of the tra-
ditional architecture rapidly degraded as request frequency was increased. Previ-
ous research has shown that a mix of threading and event-driven task scheduling
(as implemented in the AOS) is the reason for the continued throughput under
load witnessed in the AOS.

We used an automated web content degrading adaptation based on elapsed-
time as a non-trivial example of the type of run-time adaptations we seek from
the AOS. The adaptation involved the delivery of behaviour and new class defi-
nitions from a remote location as the server was suffering overloaded conditions.
We have shown the AOS is capable of automated, rapid, and fine-grained changes
to content-generation behaviour. Given the radically different behaviours of the
architectures used under load, we’ve also seen that automated content degrada-
tion via elapsed-time measures should be handled differently to better suit each
architecture.



From here we aim to better understand the AOS and how to best use it
for adaptive, high volume HTTP service provision. Firstly, we wish to look at
the granularity of work each active object performs and its impact on overall
throughput and latency. We have seen in other research that thread queuing
mechanisms (including the joining of two tasks into a single queue) can be of
benefit and we are interested in how these concepts might carry across into our
own work.

Secondly, there is still much to understand in elapsed-time based automated
content degradation. With a better understanding of what elements matter in
such adaptations, we might be able to supply at least partial automation. For
example, we could deliver the framework for content degradation from a library
of standard adaptation modules to a running application server, and allow de-
velopers to insert new versions of degraded content as they become available.

Thirdly, our content degrading adaptation adds an extra step to the end of
a pipeline of coordinated tasks. This extra step supplies replacement behaviour
at run-time to the bottleneck in the process. We are interested in other types of
adaptation that benefit response times. Some examples might include i) altering
the flow of objects by changing notification templates at run-time, ii) introduc-
ing active objects to compete with others for certain steps, or iii) automated
migration of active objects and partially complete state to less loaded AOS en-
vironments.

References

1. Colajanni, M., Lancellotti, R.: System architectures for Web content adap-
tation services. Distributed Systems Online, Web Systems Topic (2004)
http://dsonline.computer.org/was/adaptation.htm.

2. Garlan, D.: Software Architecture: a Roadmap. In Finkelstein, A., ed.: The Future
of Software Engineering. ACM Press (2000)

3. Doberkat, E.E.: E. Doberkat, E. Freeman, S. Hüpfer, K. Arnold: JavaSpaces Prin-
ciples, Patterns and Practice. Softwaretechnik-Trends 20 (2000)

4. Bradford, L., Milliner, S., Dumas, M.: Scaling Dynamic Web Content Provision
Using Elapsed-time-based Content Degradation. In: Proceedings of the 5th In-
ternational Conference on Web Information Systems Engineering (WISE 2004),
Brisbane, Australia, Springer Verlag (2004) 559–571

5. Ramsay, J., Barbesi, A., Peerce, J.: A psychological investigation of long retrieval
times on the World Wide Web. In: Interacting with Computers. Volume 10.,
Elsevier (1998) 77–86

6. Bhatti, N., Bouch, A., Kuchinsky, A.: Integrating user-perceived quality into Web
server design. Computer Networks (Amsterdam, Netherlands: 1999) 33 (2000)
1–16

7. Bouch, A., Kuchinsky, A., Bhatti, N.: Quality is in the Eye of the Beholder:
Meeting Users’ Requirements for Internet Quality of Service. In: Proceedings of
the CHI 2000 Conference on Human factors in computing systems, ACM (2000)
297–304

8. Miller, R.: Response Time in Man-Computer Conversational Transactions. In:
Proc. AFIPS Fall Joint Computer Conference. Volume 33. (1968) 267–277



9. Reddy, D.R., Erman, L., Neely, R.: A model and a system for machine recognition
of speech. In: IEEE Transactions on Audio and Electroacoustics. Volume 21. (1973)
229–238

10. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. 7 (1985) 80–112

11. : HTTP/1.1 (RFC 2616) Standard (1999) http://www.ietf.org/rfc/rfc2616.txt.
12. Shaw, M., Garlan, D.: Software Architecture. Prentice Hall, Upper Saddle River,

New Jersey (1996)
13. Floyd, S., Jacobson, V.: Link-sharing and resource management models for packet

networks. IEEE/ACM Transactions on Networking 3 (1995) 365–386
14. Mosberger, D., Jin, T.: httperf-A Tool for Measuring Web Server Performance.

SIGMETRICS Perform. Eval. Rev. 26 (1998) 31–37
15. The Apache Group: Tomcat web application server (2004)

http://jakarta.apache.org/tomcat/.
16. Williams, L.G., Smith, C.U.: PASASM: A Method for the Performance Assess-

ment of Software Architectures. In: WOSP 2002: Third International Workshop
on Software and Performance, Rome, Italy, ACM Press New York, NY, USA (2002)

17. Welsh, M., Gribble, S.D., Brewer, E.A., Culler, D.: A Design Framework for Highly
Concurrent Systems. Technical Report UCB/CSD-00-1108, UC Berkeley (2000)

18. Welsh, M., Culler, D.: Adaptive Overload Control for Busy Internet Servers. In:
USENIX Symposium on Internet Technologies and Systems. (2003)

19. Shi, W., Collins, E., Karamcheti, V.: Modeling Object Characteristics of Dynamic
Web Content. Technical Report TR2001-822, New York University (2001)

20. Chen, X., Heidemann, J.: Flash Crowd Mitigation via Adaptive Admission
Control based on Application-level Observations. Technical Report ISI-TR-557,
USC/Information Science Institute (2002)

21. Thomas M. Kroeger, Darrell D. E. Long, J.C.M.: Exploring the Bounds of Web
Latency Reduction from Caching and Prefetching. In: 1st USENIX Symposium on
Internet Technologies and Systems, Monterey, California, USA (1997)

22. Amir, E., McCanne, S., Katz, R.H.: An Active Service Framework and Its Appli-
cation to Real-Time Multimedia Transcoding. In: SIGCOMM. (1998) 178–189

23. Chandra, S., Ellis, C.S., Vahdat, A.: Differentiated Multimedia Web Services using
Quality Aware Transcoding. In: INFOCOM 2000. Proceedings of the Nineteenth
Annual Joint Conference of the IEEE Computer and Communications Societies.
Volume 2., IEEE (2000) 961–969

24. Tarek F. Abdelzaher and Nina Bhatti: Web Server QoS Management by Adap-
tive Content Delivery. In: Proceedings of the 8th Internation World Wide Web
Conference, Toronto, Canada (1999)

25. Chen, H., Iyengar, A.: A Tiered System for Serving Differentiated Content. In:
World Wide Web: Internet and Web Information Systems. Volume 6., Netherlands,
Kluwer Academic Publishers (2003) 331–352


