
DIAGRAM RECOGNITION USING HIDDEN MARKOV MODELS

David Henry & Aster Wardhani

Centre for IT Innovation
Faculty of Information Technology

Queensland University of Technology
2 George St

Brisbane, QLD
Email: {a.wardhani@, dw.henry@student.}qut.edu.au

ABSTRACT

User input interfaces are quickly become more natural and
intuative, relying less and less on the traditional mouse and
keyboard interface, and moving towards a pen based input
system. Current technologies which take advancement of
these developments in hardware have been based primarily
on handwriting recognition to allow the user to write there
instructions instead of typing. Some work has been per-
formed regarding diagram recognition from on-line input,
however these system have been developed using hardcoded
parameters with fuzzy sets and common feature sets.

Hidden Markov Models are a powerful mathematical
recognition tool, which is current being used in feilds such
as speech recognition, handwriting recognition and DNA
cell searching and classification applications. This is the
first attempt at using a hidden markov model to recognize
input from a two dimensonal spacial environment, the result
of the initial implementation have shown promising results
for more complex recognition models.

1. INTRODUCTION

The aim of this project is to develop a framework for in-
put, processing and recognition of hand drawn diagrams us-
ing Hidden Markov Model (HMM). Current technologies
supporting pen based input devices include: Digital Pen
by Logitech [1], SmartPad by Pocket PC [2] and Digital
Tablet’s by Wacom [3] and Tablet PCs by Compaq [4]. The
emergence of pen-based user interactive tool has increased
the need for more hand-based recognition techniques. Cur-
rently, this tool has been used primarily for direct input
or used as a substitute mouse interface. There have been
numerous works on handwriting recognition [5], however
works such as diagram recognition is still limited. Using
pen device, engineers in the field, or online collaborators,
etc, can sketch various types of diagrams and rather than
just store them as bitmap, they can be converted into vector

formats using diagram recognition. This can then be im-
ported into various applications.

Existing work in diagram recognition include: on-line
Scribble Recognizer [6] and Distributed Architectures for
Pen-Based Input and Diagram Recognition [7]. The scrib-
ble recognizer uses object identification based on a finished
image, without using real-time input streams. It describes
common feature of varies objects and how statistics can use
to create a fuzzy set which can then be used to classify each
object. The approach is shown to be fast and reasonably
flexible based on the features used to identify each diagram
object. While this approach shows promising results from
the trials conducted, it does not provide any real-time pro-
cessing of the users input streams.

The pen-based architecture provides the implementation
of a pen-based input system using a PDA front-end and
desktop computer back-end. The PDA is responsible for
low level object recognition and editing, while high-level
recognition is performed by the desktop PC. The use of the
PDA input device allows diagram input in the field which
can be uploaded to the desktop PC on return to the office or
real time communication between the PDA and PC if used
in the office.

This provides an initial approach for real-time process-
ing. The main aim of the system implementation being the
development of standard system architecture, applicable to
any diagram recognition application requiring high perfor-
mance and / or mobility. They proposed the use of layered
design architecture. The lowest level is the domain invari-
ant system to input stream from the pen, include x-y coor-
dinates and directional/velocity vectors. Input streams are
combined in strokes, in the next layer, this is performed us-
ing fuzzy sets to determine the the stroke type based on pre-
set criteria. Strokes are then combined to form basic shapes
such as polygons, lines and circles. The top level of the
design is responsible for grouping shapes into complex di-
agrams. The limitations to the system include slow recog-



nition, small screen size and slow communication between
PC and PDA. The above system limitations are a result of
inadequate hardware for the processing task, with resent ad-
vances in technology it is expected that these will be short
term problems.

Existing technologies such as voice and handwriting recog-
nition have successfully shown that HMM can be imple-
mented within a design framework to perform statistically
based recognition tasks. HMM’s can be used in systems
to recognize and predict outcomes using only an indirect
knowledge of the users input sequence. Speech recogni-
tion is a series of unique sounds while handwriting recog-
nition is a series of unique stokes patterns; these patterns
repeated in different orders are used to determine the most
probable users input. This is done by calculating the statis-
tical probability of possible inputs, at a word level using a
trained model, and at a symbol level using the actual input.
A number of papers have investigated the use of HMM’s
for cursive handwriting recognition however no research is
currently published relating to diagram recognition using
HMM’s. One report [5] used a HMM speech recognition
model as the basis for a cursive handwriting recognition ap-
plication. This resulted in error rates as low as 1.1% when
using both context and grammar to determine individual
words and sentence structure.

The HMM design is proposed as a suitable recognizer
for diagram recognition due to its ability to recognize com-
plex object representations without the need for a complete
understanding of all system parameters. Added to this the
HMM is a flexible and increasingly popular recognition tools
which has shown its ability to revolutionalise recognition
tasks for speech and handwriting applications amongst oth-
ers. The HMM implementation can be designed as a sep-
arate module within the system and hence can be easily
modified and/or updated to include new shapes, design ob-
jects. The modularity also always different diagram formats
to be processed by simply changing the HMM module being
used.

Another advantage of HMM is their ability to be re-
calibrated using tested training algorithms. This allows the
recognition process itself to be modified to the user input
patterns, while other methods currently being investigated
rely on more complex fuzzy sets or common feature sets
which need to be reprogrammed for each new shape which
is identified within the system.

2. PROPOSED SYSTEM

A major difference between diagram recognition and other
applications using HMM is the non-linearity of the input
stream. Both speech and handwriting recognition applica-
tions are intrinsically linear. When writing, standard con-
vention dictates that the input is entered from left to right

horizontally on the page with the sentence structure follow-
ing a logical and preset format. A diagram however, does
not have the same constraints, with hundreds of different
ways that even the simplest shape can be drawn. Added to
this there is no requirement that a shape be completed be-
fore starting the next shape within the drawing as there is in
handwriting. To overcome this non-linear input of symbols,
the data must be preprocessed once the input stage is fin-
ished. This processed data can then be passed to the HMM
for recognition. This results in system which is not capable
of real-time recognition.

Fig. 1. Symbol Generation Phases - a. Point input stream. b.
Normalized point stream. c. Line type and rotation determined. d.
Symbol representation. e. Ordered symbol list.

The system is implemented and tested using the Wacom
Graphire tablet. This device uses a USB interface to the
computer. However the same principple can be applied to
other pen-based sevices.

The proposed system will process the user input point-
stream, however, no real-time processing has been imple-
mented at this stage, refer to Section 4.

2.1. Data input

The input stream is captured using the MFC messaging sys-
tem. The advantage of this initial implementation is that
all Microsoft supported devises can now be used within the
application.

The input stream is generated at regular time intervals,
this input stream is captured whenever the primary button is
depressed. This results in a data stream where the points are
spaced inversely proportional to the speed of mouse move-
ment at the time of input, refer Figure 1-a.

2.2. Data Normalization

During the input process the captured data stream is normal-
ized to a point stream where each point is a fixed distance
apart. This processing is performed to assist in minimizing
errors during data processing. Figure 2-b illustrates the data
stream from the input process of a straight line drawn within



ƒI@i“•š™@dƒ™ƒ

„I@n”—’ƒ‘‹˜‡†@dƒ™ƒ

Fig. 2. Each circle represents the data stream as seen by the sys-
tem. a) Shows the stream which is generated by the system mes-
sages, note the variable intervals, this is produced by moving the
mouse at different speeds as the points are generated at regular
time intervals. b) Shows the data stream after normalization has
occurred.

the system drawing window, while Figure 1-b shows the
output of the normalization process. To ensure the normal-
ization process does not alter the user inputed data stream
the length of the finial point in the list will be adjusted so
that it falls on the last point of the user input.
Data Normalization is performed using the following algo-
rithm:

While data input exists.
Measure distance to next input point, d (1).
Calculate distance until next

normalized point, 1 (2).

If l < 0
While l < 0

Create new Normalized Point
l = l + normalized distance

Else
process next point

Equation 1 - d =
√

x2
diff + y2

diff

Equation 2 - l = l − d

2.3. Corner detection and line segmentation

Once the data has been normalized it is segmented into line
intervals. This segmentation occurs when either a corner is
detected by the system or the input stream is stopped (i.e.
input device leaves input area or the primary ”‘draw”’ but-
ton is released).

Corner detection is performed by simply comparing the
line angles of adjoining normalized points. If the differ-
ence between the adjoining segments is larger than a present
value then a corner point is generated and a new input stream
is created.

This method of line segmentation produces roughly straight
line segments, and allows the drawing style of the user to be
ignored in terms of implemented a predefined input order or
method. This is achieved by breaking the user input up into
straight line segments, as a result a shape which is drawn
in a single pen movement is equivalent to the same shape

a“‰‘‡€d‹ˆˆ@]@
@@@@ƒQ@M@ƒR

ƒQ
ƒR

pQ pR

pS

Fig. 3. Three normalized points (P1, P2 and P3) are used to cal-
culate two adjoining line angles (a1 and a2). The difference be-
tween these two line angles determines the Angle Difference (An-
gle Diff). If the value of AngleDiff is greater than the system
parameter maxCornerAngle, then a corner is detected.

being drawn withx̂ (x̂ = any integer number of elements
greater than 1) separate pen movements.

2.4. Connect & Classify Line Types

The system is also able to recognize a single line segment if
it is drawn in one movement or in̂y (ŷ = any integer number
of elements greater than 1) short sections. This recognition
is achieved by attempting to join all line segments end-to-
end with all other line segments, updating the list where
the ends meet. If more than two line segments meet at a
single point then none of these line segments can be joined
together (can still be joined at the other end if line segments
meet. This is due to the current systems limitation of only
processing line segments at line ends in later stages of the
system, refer section 4.

Once the line interval data has finished processing it is
analyzed to determine its type. There are two recognized
types of line segments, straight line and arc. This classifica-
tion is performed based on:

• Average distance between input stream and a line join-
ing the start and stop points of the line segment.

• The ratio of the distance between the start and stop
points, to the maximum distance along a perpendicu-
lar line to the user inputted data point

When a straight line segment is selected it is classified into
a rotational angle, the current system implements 4 possible
angle selections, each represents two of the cardinal points,
Figure 1-c shows how a set of input points are normalized
to the possible rotational values.

To eliminate unnecessary processing cycles all line seg-
ments which consist of less than 3 normalized points are
ignored for the processing stage.

At this stage arc segments are ignored by the system,
refer 4.

2.5. Generate Symbols

DEFINITION



Symbol- In HMM theory symbols refer to a simple repeated
data pattern which can be easily identified within the data
set. Symbols are generated from the users input, the set of
symbols should be capable of adequately representing all
parts of the user input. Symbol selection is an important
part of ensuring HMM’s successfully recognize user input
into the system.

The symbol generation process is the key to abstracting the
users input sequence from the recognition model. Each
symbol is representative of a change point in the diagram, as
it is a joining point on small line segments. Currently only
using Straight line in symbol generation, refer to Section 4.

Each symbol that is generated by the system should be
representative of the users input. At present only two dis-
tinct user generated symbols are recognized, they are a90o

angle and a45o angle where the second arm - anti-clockwise
rotation - is at least 2.5 time longer that the first arm.

<- - - - -i- - - - ->

<-j->

i > 2.5 x j

a. b.

Fig. 4. Current user input generated symbols - a.90o angles.
b. 45o angles.

The symbol generation process works by performing a
linear search on all sets of straight line elements. If a symbol
element is detected then a factory method is used to generate
the corresponding symbol. This allows the system to easily
add new symbol definitions.

Once a symbol has been detected its rotation must also
be calculated. At present the system supports eight different
rotation angles, each45o from the next, refer Section 4.

In addition to the symbols generated from the user input
there are also a number of system generated control sym-
bols. These symbols are used to assist in the HMM recogni-
tion process. The following system generated symbols are
currently recognized by the system:

1. Space - Used to separate object sequences from each
other. This symbol indicates that the users would nor-
mally start a new diagram object at this point in time.

2. Apostrophe - Used within an object when a line splits
into two elements.

3. Start - Used to indicate the start of an input sequence.

4. Stop - Used to indicate the end of an input sequence.

These system generation symbols will be discussed in more
detail in Section 2.7.

2.6. Generate symbol lists for shape and join objects

Once all possible symbols have been generated it is a mat-
ter to join these symbols together to form ordered lists. This
process has two steps; firstly join all possible symbols to-
gether, then determine the type of list it forms and order the
symbol list.

Symbol lists are generated recursively using the follow-
ing pseudo algorithm:

While Symbols remain in list
Select the first symbol, S1, in the

symbol list.
Delete symbol, S1, from the symbol list.
Loop while shape not detected.

Call search procedure,
returning list of joined symbols, PJoinL.

If PJoinL has more than one symbol.
Search all possible links from all

symbols, created shape if possible.
If no joined shape can be created.

Ignore shape as too complex.
Else.

Add the Apostrophe symbol to
indicate where the shape splits.

Add as Symbol List object.
Shape Detected so start

processing again.
Else if PJoinL is empty.

Invert list.
Attempt to process from new end.
Exit Procedure.

Else.
Update S1, to next symbol in PJoinL.
If S1 joins to first symbol in list.

Create Shape List object, SList.
Shape Detected process next symbol.

Search procedure
------------------
Select the first line element, L1, from symbol.
For all Symbols, Si, in the symbol list.

If line element, L1, is in symbol, Si.
Add symbol, Si to join list, PJoinL.
Remove symbol Si from Symbol List.

Process next symbol.
\normalfont

This search process is recognized as being inefficient, how-
ever is not currently presenting any process delays, refer
section 4 for future implementations.

Once the search procedure is complete, the resulting
symbol list is classified as being either:

1. Shape List - The Start Shape is required to join the
end shape, thus constructing a completed shape ob-
ject.



2. Join List - Joins are used to connect shape object to-
gether. A join object is determined is the following
conditions are met:

• Last two symbols have the same rotational an-
gle.

• Last symbol is a90o angle and the second last
symbol is a45o angle.

3. Unknown List - This is any list of symbols which can
not be classified as one of the previous types.

Once each symbol list has been generated and its type
determined it is then ordered. The general ordering algo-
rithm works by rotating the list until the symbol with the
smallestidentifier is the first object in the list. The list
should then rotate so that the next smallestidentifier in the
list is as close as possible to the start of the list.

Some custom ordering algorithms have been implemented
for special shape object such as join shapes and shapes con-
taining the special Apostrophe symbol.

The ordering process is performed as it allows a simpli-
fied left-right HMM to be used, refer [5] for detailed expla-
nation of HMM theory.

2.7. Join shape objects together using join objects

The symbols lists are then joined together to result in the
HMM input. This input should have the following parts:

1. Start symbol to indicate the beginning of a new se-
quence.

2. Object symbol list.

3. Space symbol

4. Join symbol list

5. Space symbol.

6. Object symbol list.

7. End symbol to indicate the end of the sequence, this
can only be followed by a new start symbol.

These hmm data structures are created by processing
each Join symbol list using the following pseudo code:

While Join symbol list left to process
For all Shape Objects.

Find object touching start of join list
If start of join list connects to object.

For all shape objects.
Find object touching end of join list

If end of join list connects to object.
OutputComplete shape object
Remove join list from processing pile.

Else
For all unknown objects.

Find object touching end of join list
If end of join list connects to object.

OutputComplete shape object
Remove join list from processing pile.

Else
Mark as "‘Processed-No Match"’

Else
For all unknown Objects.

Find object touching start of join list
If start of join list connects to object.

For all Shape Objects.
Find object touching end of join list

If end of join list connects to object.
OutputComplete shape object
Remove join list from processing pile.

Else
For all unknown objects.

Find object touching end of join list
If end of join list connects to object.

OutputComplete shape object
Remove join list from processing pile.

Else
Mark as "Processed-No Match"

The joining algorithm works by calculating the mini-
mum distance between the start or end point of the join
symbol list and one of the edges of the symbol list. A
shape object is detected as connecting to the join object is
this minimum distance if less than the system parameter,
minCornDist(minimum corner join distance). If this does
not produce a match then the unknown symbol list is also
searched for a connecting shape object.

If the process is able to find a shape to connect with the
start and end point then the symbol lists for these three sym-
bol lists are concatenated with the appropriate system gen-
erated symbols; start symbol first; space symbol between
shape and join objects and end symbol last.

2.8. Generating Transition Table and Most Likely State
list

Once the symbol sequence has been generated it is passed
to the HMM procedure. This produces a pstate transition
table and most likely state transition sequence. The pstate
transition table holds the probability of being any individual
state are any position in the symbol sequence. The pstate
transition table is then used to calculate the most likely state
sequence.

2.9. Output Diagrams to specified format

Once the state sequence has been generated the resulting
data is used to build a flow tree which represents the user
input diagram. This representation is then used to extract
exact parameters for each shape objects which allows the
graphical representation to be updated. In addition this rep-
resentation is used to output the diagram as a series of vector
representation, which can then be imported into other pro-
grams.



3. RESULTS

Fig. 5. Processing Stages; a) Representation of the users in-
put stream; b) Normalized input stream with lien line type
and rotation calculated; c) Representation of all generated
systems; d) Shape symbol list for first shape object; e) Join
symbol list; f) Shape symbol list for second shape object;
g) Represenattion of joined symbol sequence; h) numeri-
cal representation of join symbol sequence to be passed to
HMM decoder; i) The HMM determined most likely state
transition (refer Section 3 for state defintions)

Training and testing of the HMM was performed using
the Matlab [8] at QUT [9].

Initial results have been produced for a HMM system
with the following characteristics:

• State Count (M) = 6

• State List: Start (1), Box (2), Down Arrow (3), First
Space(4), Second (5) Space and Stop (6)

• Symbol Count (N) = 24 (8 system, 890o Angle and 8
45o Angle)

• Symbols in use: 1..4 (System Symbols) ,8..15 (90o

Angle), 16..23 (45o Angle)

• Training Dataset Size: 500 Symbol sequence.

Using the trained model within the Matlab application,
initial detection probabilities for 99.2% were achieved for
simple data sets. These have proved to be encouraging re-
sults and implementation in an increased number of system
states is currently beg implemented. Figure 5 illustrates teh
processing stages which the system performs and a repres-
ntation of the data sets used. The output data shown domes
from a simple HMM models without any input errors, as
such the recognition rate is 100%.

4. CONCLUSION AND FUTURE WORK

HMM recognition models have been successfully imple-
mented in an increasingly large number of applications. The
work currently being performed to implement this recogni-
tion model within a less structured two dimensional envi-
ronment such as diagram recognition has shown some ini-
tially promising results. It is expected that continued work
on this application will result in a product which is able to
efficiently perform diagram recognition and output in vector
format in real-time.

The following items have been identified for future work:

1. Increase number of rotational angles as this will re-
quire larger more complex training sets, but will al-
low an increased range of differing systems to be pro-
duced.

2. Increase symbol set to include all possible angle com-
binations.

3. Increase system states to include all normal diagram
input shapes and objects.

4. Add the ability to generate a symbols at a point where
the end of one line joins to the middle of another
straight line segments or two lines segments cross in
their middles.

5. Include arc type lines as possible symbol generation
elements, this will allow recognition of circles, ovals
and other shapes incorporating rounded sections.

6. Implement the recognition algorithm to function in
real-time so shapes and objects are recognized as they
are completed where possible.

7. Improve the performance of search algorithms, espe-
cially in the symbol list generation phase where join
knowledge can be generated during the symbol gen-
eration stage.



5. REFERENCES

[1] ioTM LogitechR© Personal Digital Pen,
http://www.logitechio.com/.

[2] Seiko Instruments USA Inc., SmartPad for Pocket
PC, http://www.siibusinessproducts.com/products/
sp580p.html.

[3] Wacom, Gaphire2 Pen, Mouse and Tablet set
- G-410 Series, http://ap.wacom.co.jp /prod-
ucts/graphire/graphire2index.html.

[4] Compaq, Compac Tablet PC TC 1000,
http://h18000.www1.hp.com/products/tabletpc.

[5] R Schwartz T Starnert, J Makhoul and G Chou,
“On-line cursive handwriting recognition using speech
recognition methods,” inIEEE, BBN Systems and Tech-
nologies, 1994.

[6] Manuel J. Fonseca Joaquim A. Jorge, “Experimental
evaluation of an on-line scribble recognizer,”Pattern
Recognition Letters, vol. 22, no. 12, pp. 1311–1319,
10/2001.

[7] Citrin W.V. and M.D Gross, “Distributed architectures
for pen-based input and diagram recognition,” inACM
Conference on Advanced Visual Interfaces ’96, 1996.

[8] Matlab Mathsworks,Statistical Toolkit 4.1 for Matlab
6.5, http://www.matlab.com.

[9] Computational (and/or data visualisation) resources,
services used in this work were provided by the HPC,
and Research Support Group, ,” inQueensland Univer-
sity of Technology, Brisbane, Australia, 1996.


