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Abstract—Mapping algorithms commonly use “radial 

sweeps” of the surrounding environment as input. Producing a 
sweep is a challenging task for a robot using only vision. 

With no odometers to measure turn angles, a vision-based 
robot must have another method to verify rotations. In this paper 
we propose using the Radial Obstacle Profile (ROP) which gives 
the radial distance to the nearest obstacle in any direction in the 
robot’s field of view. By matching the ROPs before and after a 
turn, the robot should be able to verify that the expected angle of 
rotation matches the actual angle. Combining successive ROPs 
then produces a radial sweep.  

Keywords—computer and robot vision;wheeled mobile robots; 
mapping; radial obstacle profile  

I. INTRODUCTION  
Computer vision research has been underway for over 30 

years. Although there have been significant advances, the 
current state of the art for mobile robots is still fairly primitive 
[1]. Part of the reason for this is that other sensors, such as 
sonar and infra-red, have been used to perform obstacle 
detection, thereby making it unnecessary to solve some of the 
difficult problems in vision. 

The objective of our research is to perform mapping using 
only vision, and to do so using cheap off-the-shelf hardware. 
Therefore, our robot is equipped with a single color camera as 
its only sensor. 

In order to build accurate maps a robot must be able to 
track its own motions with a high degree of precision. This 
involves measuring both translations and rotations. 

In the classical approach using Occupancy Grids [2], the 
robot makes radial sweeps of the surrounding environment to 
detect obstacles. This data is then incorporated into the map 
by applying Bayes Rule and a sensor model.  

Sweeps are easy for a robot equipped with a ring of sonar 
sensors because the sensors all have known orientations. 
However, sonar measurements are imprecise due to the fact 
that the beam expands as it moves away from the robot, and so 
the resulting sensor model is complex. Sonar also suffers from 
problems caused by noise and sound-absorbing surfaces. 

In contrast to sonar, vision-based sweeps have a very 
simple sensor model. Another advantage of vision is that color 
information can be used to distinguish between obstacles. 
However, making radial sweeps using a single camera is quite 
difficult because the robot must turn through a full 360º 
capturing images as it turns. The mapping information from 
these images has to be “stitched together” accurately. 

Tracking the robot’s position can be simplified by limiting 
the robot to two types of motion: forward movements and in-
situ rotations. (Rotation on the spot is possible for a robot with 
two direct-drive wheels. Many robots commonly used in 
research are of this design.) This approach results in piece-
wise linear motion. To produce a map the robot must know 
how far forward it has traveled with each move, and how far it 
has turned with each rotation. It should be noted that the robot 
is limited to this mode of operation by choice. It is perfectly 
capable of simultaneous translation and rotation by 
appropriate control of the differential drive signals. 

One advantage of this approach is that the robot does not 
have to make real-time steering decisions – it can take as long 
as is necessary to decide whether to move or rotate. It also 
allows the use of complex segmentation methods, e.g. [3], 
which are very slow to compute. This eliminates the problem 
of limited CPU power which can be solved in other ways, but 
they are not the subject of this paper. 

Cumulative errors are known to present problems for 
robots using odometers [4]. This is why localization and 
mapping are normally performed together, i.e. Simultaneous 
Localization and Mapping (SLAM). 

Errors in the estimates of the distance traveled in forward 
motions will result in a scaling of the map, assuming the errors 
are consistent. For instance, if the robot determines that it has 
moved 5cm but it has only moved 4.5cm, then the map will be 
incorrect by a factor of 10%. However, if there are errors in 
estimating the rotations, this will distort the map and could 
even cause the robot to lose its position. Therefore it is vital 
that the angle of rotation be determined as accurately as 
possible. 

To allow the robot to confirm the amount of a rotation, the 
Radial Obstacle Profile (ROP) is used. The ROP is calculated 
for use in the Mapping algorithm as a form of “visual sonar”, 
and is constructed as follows: 
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1. Determine which parts of the image constitute the floor 
(as distinct from obstacles); 

2. Calculate the boundary between floor and obstacles, 
called the obstacle profile; 

3. Convert the obstacle profile into radial coordinates 
using an Inverse Perspective Mapping to obtain the ROP. 

Note that the obstacle profile can also be converted into 
real-world Cartesian coordinates for a “top-down view”. This 
is much easier for a human operator to comprehend, and it is 
useful when making forward motions, but it is not the main 
subject of this paper. 

Many systems that use vision for navigation, e.g. [5,6,7,8], 
take the approach of identifying the floor (also called the 
ground plane or free space) as the first step. An approach 
based primarily on edge detection is effective if the floor is of 
a reasonably uniform color [9]. 

These systems all assume a planar floor of uniform color, 
which is the case for many office environments. In our 
previous work [10] we outlined one method for handling the 
color variations that normally occur in images due to 
illumination. (This is an active field of research which is 
referred to as color constancy.) Other research [11] has relied 
on training the robot to distinguish between floor pixels and 
all other objects, but this still requires distinct colors between 
the floor and obstacles. Even in commercial products [12], the 
limitation of a uniform floor color still exists. 

In this particular research a single camera (i.e. monocular 
vision) is used for reasons of cost, size and weight, but other 
researchers have used binocular (stereo) vision [13,14] and 
even triocular vision [15]. Panoramic cameras have also been 
used [16], but they are more expensive to build and image 
processing is complicated due to radial distortion introduced 
into the image. 

For now, assume that the floor can be identified somehow 
– the exact method is not important to this discussion. 

Calculating the ROP involves an Inverse Perspective 
Mapping and conversion to real-world polar coordinates. For a 
given camera geometry, the process of converting the obstacle 
profile to polar coordinates can be performed quickly and 
easily via a table lookup, as explained in [10]. The final step is 
to separate the data into “accumulator bins” with a particular 
granularity, e.g. one degree of arc. 

The image resolution determines the ROP granularity that 
is possible without interpolation. For our camera with a 60º 
field of view and a 320 x 240 pixel resolution, the ROP can be 
in increments of about a fifth of a degree. To date we have 
used a one degree increment for simplicity. 

The ROP has the useful property that, because it is a 
simple linear array, any rotation of the robot is equivalent to 
sliding the array elements to the left or the right (depending on 
the direction of rotation). Therefore, two successive ROPs can 
be compared to determine the amount by which the robot has 
rotated by sliding one array across the other and calculating a 
dissimilarity measure at each step. The location of the 
minimum should correspond to the angular disparity (angle of 
rotation) between the two ROPs. 

Once the relationships between successive ROPs have 
been established, multiple ROPs can be combined to produce 
a full radial sweep. In effect, the robot performs a vision-based 
pirouette to build up a complete sweep based on ROP 
information. 

II. MEASURING ROTATIONS 
The two basic motions that our robot is allowed to make 

are rotations and forward moves (translations). This paper is 
concerned only with rotations. 

The camera Field of View (FOV) sets a limit on how far 
the robot is allowed to turn in a single rotation. In order to 
have a reasonable area of overlap between successive images, 
the robot should not turn any more than half of the FOV. For 
our camera, with a FOV of 60º, we found that it is reasonable 
to turn no more than 20º to 30º in a single rotation so that 
there is a good overlap between images. The FOV therefore 
becomes a limiting factor in applying this work. Although it 
would be possible to use a camera with a wide-angle lens, or 
even an omni-directional camera, one objective of this 
research is to use simple, cheap, readily available components. 

A. Obtaining Range Data from Video Images 
The first step in mapping is to distinguish between free 

space and obstacles. There are various methods for doing this 
as outlined above. In essence, this is a segmentation problem. 
The output from this step is a Floor Map, an example of which 
is shown in Fig. 1 below. 

From the Floor Map, the boundary between the floor and 
surrounding obstacles (the obstacle profile) can be determined 
for each vertical column in the image. Horswill [5] referred to 
this as a Radial Depth Map, but it is neither Radial nor a true 
Depth map. Although depth (distance from the robot) is 
directly related to the height of a pixel in an image, this 
relationship is highly non-linear. Furthermore, Horswill 
simply used the pixel coordinates of the boundary, which are 
not radial coordinates, although it is a reasonable first 
approximation and it worked well in his application. 

Video images are a two-dimensional view of a three-
dimensional world. The process of capturing an image 
introduces a perspective transformation. In order to perform 
reliable mapping, the information in the images needs to be 
converted back into real-world coordinates through an Inverse 
Perspective Mapping. This allows a map to be produced that 
shows a top-down view. Badal et al. [17] referred to this as an 
Instantaneous Obstacle Map (IOM), but they used it for 
reactive navigation, not for map building. 

Figure 1. A Robot View and corresponding Floor Map. 
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Figure 2. Coordinate System and Parameters for IPM. 

Assume that the camera is mounted in the center of the 
robot and is at the origin of a world coordinate system relative 
to the robot. It is possible to do an Inverse Perspective 
Mapping (IPM) [10] as shown in Fig. 2. 

Four parameters must be measured for the IPM calculation 
(see Fig. 2 above): 

 b – Blind area between the camera (in the center of robot) 
and the point visible in the bottom scanline of the image; 

h – Height of the camera off the floor; 
d – Distance along the floor between the bottom scanline 

and the center scanline of the image; and 
w – Distance across the floor measured from the robot 

centerline to the edge of the image at the center scanline of the 
image. 

In Fig. 2 above, α is one-half of the vertical FOV; γ is one-
half of the horizontal FOV; and δ is the camera tilt angle. (γ 
and α are related through the aspect ratio of the camera, which 
is usually 4:3 for conventional video cameras.)  

Image pixel coordinates are represented by (u,v) in the 
horizontal and vertical directions respectively. Note that, by 
convention, v is measured down from the top of the image. 
The camera resolution is m by n pixels. 

The real-world coordinates (x,y) can then be calculated as 
follows: 
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A lookup table can be constructed that transforms image 
pixel coordinates to world coordinates. Similarly, a lookup 
table can be created that maps pixel coordinates to polar 
coordinates, i.e. the radial distance from the robot’s center and 
the angle measured from the robot’s centerline. 

B. Vision-based Pirouettes 
The calculations outlined above allow the ROP to be 

obtained. It is then possible to compare successive ROPs as 
the robot turns. In our case, the robot can be commanded to 
turn through a specified angle, but the turns are based on 
experimentally calibrated amounts of time required to turn the 
robot through given angles at particular wheel speeds. This 
means that turns are not completely reliable because the time 
intervals cannot be measured or executed with high precision.  

To verify the amount of a turn, the ROP following a turn 
can be slid across the ROP obtained prior to the turn looking 
for the best match. By comparing the ROPs it is possible to 
determine the number of degrees of difference between the 
two. However, there are some complications. 

The amount of overlap between ROPs might be small. As 
one ROP slides across the other, any portions that are not in 
the field of view of both images cannot be compared. This 
means that the number of elements being compared might be 
small, reducing the reliability of this process. The number of 
elements available for comparison is affected by the angle of 
rotation as a portion of the camera FOV, and the granularity of 
the ROP, which is in turn determined by the camera 
resolution. 

A further complication is that the robot might not turn 
exactly on the spot. Objects at large distances from the robot 
can change position in successive images by as little as one 
vertical pixel (due to perspective). The resulting offset (after 
Inverse Perspective Mapping) causes significant differences in 
the ROP between two images, even though a human operator 
would readily recognize that the two ROPs exhibit the same 
profile. This is the subject of ongoing research. 

Once the angles between successive images have been 
determined, the ROPs can be combined. Combining all of the 
ROPs for a full 360 degrees of rotation results in a “radial 
sweep”, which is similar to the classical sonar sweep. 
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Figure 3. Yujin Robot with Wireless Camera. 

III. EXPERIMENTAL RESULTS 
Our work so far has involved robots that are small – about 

10cm in diameter. Consequently, they are limited in what they 
can carry, and too small for effective stereo vision. The robots 
are equipped with wireless color video cameras that run off 
9V batteries. These cameras are small, light and cheap. Fig. 3 
shows a Yujin soccer robot with a camera attached. 

Video images are captured using a USB capture device 
attached to a PC at a resolution of 320 by 240 in 24-bit color. 
The PC controls the robots remotely via a wireless link. 

The robots operate on custom-built “playing fields”. These 
are similar to robot soccer fields. The floor is of a uniform 
color (matte black) and can be distinguished from the walls 
and other obstacles placed on the field. Even with the 
supposedly uniform floor color, lighting conditions affect 
what is seen by the camera and the pixel values for the floor 
can vary widely. This is quite apparent in the robot’s view in 
Fig. 1 above where the bottom left and right corners of the 
image are almost black. Edges are therefore important as well. 

Initially the robots were programmed to use an algorithm 
that drove them towards the maximum amount of free space 
that was visible, i.e. towards the maxima in the ROPs. If the 
robot became trapped, it would back up and turn 90º to the left 
or right. This simple behavior, effectively a random walk, will 
soon be replaced by a more complex exploration and mapping 
algorithm. 

A. Radial Obstacle Profiles 
Radial Obstacle Profiles can be calculated once the 

parameters for the IPM calculations are known. When the 
robot control program starts up, it builds a lookup table to 
translate image pixel coordinates to polar world coordinates. 
The robot is then commanded to capture successive images as 
it turns around. After each turn, the ROP is calculated. 

In addition to the ROP, a top-down view is also calculated, 
also using a lookup table. This is drawn onto the Sweep map. 
Fig. 4 below shows the ROP and Sweep diagrams for the 
robot view from Fig. 1. This is only one step in a full sweep. 

The ROP diagram (Fig. 4) shows the radial distance from 
the robot as a function of the angle in the field of view. Each 
horizontal grid line represents 10cm in the real world, and the 
vertical grid lines are 10 degrees apart. Note that plotting the 
viewing angle in this way on a linear scale results in what 
might be perceived as a distortion of the obstacle profile 
because straight edges become curved. 

Figure 4. Example of a Radial Obstacle Profile and Radial Sweep. 

The Sweep diagram is a top-down view, but with a radial 
grid. The grid markings are at the same intervals as in the 
ROP diagram. The “V” shape at the base of the floor area is a 
consequence of the FOV of the camera, and is very close to 
the 60º in the camera specifications. The hollow in the map is 
the obstacle that is visible in Fig. 1. Notice that there is a 
“shadow” behind the obstacle because the robot cannot see 
this area from its vantage point. To completely map the area, 
the robot would have to move to a different location, and this 
exploratory behavior is the subject of further research. 

In practice, it has been found that range estimates become 
unreliable beyond a certain distance (between 60cm and 
100cm), depending on the tilt angle of the camera. This is due 
to the effects of the perspective transformation which means 
that a difference of a single vertical pixel in the image is 
equivalent to a very large distance in the real world. In fact, it 
is possible for the radial distance to range up to infinity well 
before the top of the image is reached. This happens if the 
camera can see above the horizon, as per Fig. 2 above. 

When it comes to mapping, it should be noted that if the 
range exceeds the maximum reliable distance as set in the 
software, then this should not be recorded as an obstacle. This 
is a “soft” boundary. 

B. Radial Sweeps 
In preliminary work with the ROPs we have been able to 

construct radial sweeps by assuming that the robot turns by 
exactly the requested amount. Two issues have been 
encountered when comparing ROPs: the registration between 
successive ROPs is sometimes not good enough for accurate 
matching; and the segmentation process can occasionally 
produce outliers which introduce spikes into the ROP. 

Another difficulty with matching successive ROPs is that 
large open spaces do not give sufficient detail for comparison. 
In effect, this is an aperture problem similar to the familiar 
problem in optic flow when motion is perpendicular to the line 
of vision. 

Fig. 5 below shows how the program can combine all of 
the top-down views from a dozen images taken at 30º intervals 
to build a full 360º sweep. The sweep (the gray area) has been 
overlaid on a picture of the actual playing field. In this sweep, 
the maximum visual range was set so that it covered the entire 
field. (We usually make the robot more “near sighted” than 
this so that it cannot see the whole field in one sweep.) 
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Figure 5. A full Radial Sweep overlaid on the Playing Field. 

The registration of the sweep with the playing field is not 
perfect. This is partially an artifact of the diagram due to the 
difficulty of matching the overhead image to the scale of the 
data in the map. It is apparent, however, that the robot has 
identified the basic layout of its environment, at least to the 
accuracy necessary to start moving around without colliding 
with obstacles. 

 Rotation was counter-clockwise in this example, with the 
robot starting out by facing towards the top center of the 
playing field. The robot’s estimates of the wall position 
became progressively worse as it turned. Some of this is due 
to the fact that the camera cannot be exactly centered on the 
robot, but also the robot does not turn exactly on the spot. 

Other minor issues are that the map overlaps the obstacles 
slightly, and there is an outlier visible in the bottom left-hand 
corner (the sharp indentation in the map). Clearly it will 
require multiple sweeps over a period of time to produce an 
accurate map. Another avenue being investigated is averaging 
multiple images before processing. 

IV. FUTURE RESEARCH 
At the time of writing, the robots can wander at random 

and avoid obstacles. They can also perform 360º sweeps on 
command. These sweeps have not yet been incorporated into a 
SLAM system. For full mapping of the environment, the 
robots will also have to do some path planning in order to 
move towards unexplored areas. 

The determination of the obstacle profile assumes that the 
floor has a uniform color. Outliers sometimes occur due to 
reflections on the floor, shadows produced by uneven 
illumination, pieces of lint or scratches, etc. The problem is 
aggravated by the low light situations that are common in a 
typical office environment. These outliers produce spikes or 
distortions in the ROP which make it difficult to match with 
the next ROP. A simple smoothing filter (an average over 
three ROP array elements) has been applied to reduce the 
problem of outliers, but this does not eliminate it entirely. 

If no suitable match can be found, i.e. within a reasonable 
range of the expected angle, the robot has to assume that there 
is some problem with the ROP and that it has in fact turned by 
the anticipated amount. 

Figure 6. DCT of the ROP overlaid on the Playing Field. 

One approach that we are investigating is taking the 
Discrete Cosine Transform (DCT) of the ROP. Dropping the 
higher-frequency coefficients is equivalent to a low pass filter 
which removes the outliers. 

The DCT is phase-sensitive. In other words, if a signal is 
shifted slightly then its DCT will be different. Therefore, 
comparing two successive ROPs can be done by shifting one 
and comparing the DCT coefficients. 

We have also tested a slightly different approach where the 
odd and even ROPs are combined into two full sweeps. This is 
possible because the amount of a rotation is half of the FOV, 
i.e. concatenating alternate ROPs makes up a full sweep. 

Fig. 6 shows three curves: the odd ROPs, even ROPs and 
the average of the two. They have been obtained by taking the 
DCT, truncating the result to only 24 coefficients, and then 
applying the inverse DCT. The resulting curves do not fit the 
actual obstacle profile well, but this is not the intention. We 
expect that the overall shape will be representative of the 
obstacles in the local environment, and possibly sufficient to 
allow localization, e.g. using a Self-Organizing Map (SOM). 

One significant advantage of using the DCT is that the 
amount of memory required to save the coefficients, i.e. the 
description of the view from a particular location, is several 
orders of magnitude less than storing the original images or 
even the full ROP. 

Another area that we are investigating is using color to 
assist in comparing ROPs. The color of the obstacles at each 
point in an ROP can be recorded. However, it is not simply a 
matter of saving the RGB pixel value because this suffers 
from the same color constancy problem as the uneven floor 
color. Some processing of the color will be necessary in order 
to ensure that obstacles viewed from different positions are 
still recorded as having the same color. 

Color information could also be used in the Occupancy 
Grid to help with localization. When the robot is looking for a 
match to its current pose, it might significantly reduce the 
search space by only looking for objects that are of a similar 
color to those that it can currently see. 
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V. CONCLUSION 
This paper has explained how to calculate the Radial 

Obstacle Profile and shown how it might be used for visually 
verifying the amount of a rotation. 

The ROP allows the creation of “radial sweeps” for 
mapping. Comparing successive ROPs is one means for a 
robot to visually confirm the amount of an in-situ rotation. 
This is very important for producing accurate maps of the 
robot’s surrounding environment and maintaining its pose 
when performing a mapping task. 

More work is still required in the areas of comparing and 
storing ROP information. 
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