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Abstract— In this paper we investigate the statistical properties
of the path power and Doppler frequency shift for the recently-
proposed hyperbolic macrocell channel model. It is well-known
that the Doppler spectrum is dependent on the probability density
function of the direction-of-arrival (DOA) of the multipath
components at the mobile station and the direction of motion of
the mobile. We derive and simulate the joint probability density
functions (pdfs) of the power-DOA and the power-Doppler shift.

I. I NTRODUCTION

Geometrical-based channel models are defined as those
models that specify the region in space where scatterers are
distributed as well as the distribution of these scatterers [1].
These models are useful for both simulation and analysis
purposes. Utilization of the geometric models for simulation
involves randomly placing scatterers in the region according
to a spatial probability density function. From the location of
the scatterer we can determine the direction-of-arrival (DOA),
time-of-arrival (TOA), and the signal amplitude. From the
spatial probability density function of the scatterers, it is
possible to derive the joint and marginal power and Doppler
probability density functions [2]. Knowledge of these statistics
can be used to predict the performance of an adaptive array.
Furthermore, knowledge of the underlying structure of the
resulting array response vector may be exploited by beam-
forming and position location algorithms [3].

In [4] we devised a geometrical-based hyperbolic channel
model for macrocell environment, which provides the direc-
tional information of the multipath components. This model
assumes a circular distribution of scatterers around the mobile
station (MS), and the distances between the MS and the
scatterers are subject statistically to a hyperbolic distribution.

It is well known that the Doppler spectrum is dependent
on the probability density function of the direction-of-arrival
(DOA) of the multipath components at the mobile station and
the direction of motion of the mobile. The Doppler spectrum
is U-shaped as noted by Clark [5], [6], when the pdf of the
DOA of the multipath components at the mobile is uniform.

In this paper we investigate the behavior of the model
proposed in [4]. The joint probability density function (pdf)

of the power/ DOA and the power/ Doppler frequency shift
are derived and simulated. If an exponential path-loss model
is assumed, the multipath components that travel a shorter
distance will have greater power. Since the time-of-arrivals
(TOA) vary with DOA, the signal power level (being a function
of TOA) will be dependent upon DOA. Furthermore, since
the Doppler frequency is a function of the DOA, the signal
power level may also be viewed as a function of the Doppler
frequency [6].

II. JOINT POWER/ DOA AND POWER/ DOPPLER
SHIFT PROBABILITY DENSITY FUNCTIONS

In this section we derive the joint power/ DOA and the
power/ Doppler shift pdfs for the hyperbolic macrocell channel
model proposed in [4]. The geometry used to derive the pdf
is shown in Fig. 1. This model assumes that the scatterers
are arranged within a circle of radiusR around the mobile.
The distancesrk between the mobile and the scatterers are
distributed according to the reciprocal cosh pdf [4]. The angle-
of-departureψk is uniformly distributed in the interval [0,2π].
D denotes the distance between the base station and the
mobile unit. The angleθk is the direction-of-arrival at the base
station, which is evaluated geometrically [4]. The base station
is located at the origin (0,0).

The joint probability density function of scatterers inside a
circle of radiusR denoted byfx,y(x, y) is given by

fx,y(x, y) =
{ a

tanh(aR) cosh2(ark)
for 0 ≤ rk ≤ R

0 elsewhere
(1)

where (x, y) denotes the location of the scatterer,R is the
radius of the circle enclosing the scatterers, and the applicable
values ofa lie in the interval (0,1) [4], [7]. The value of the
parametera controls the spread of the scatterers around the
mobile station. Increasinga reduces the spread of the pdf of
rk [7].

It will be useful to express the joint scatterer probability
density function with respect to the polar coordinates,(lk, θk)
as an intermediate step before deriving the joint power/
Doppler frequency density function [1]. To determine the joint
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Fig. 1. Geometry of the hyperbolic macrocell channel model.

pdf f(lk, θk ), a transformation of the random variable(x, y)
into the random variable(lk, θk ) is performed by

fl,θ(l, θ ) = |J(x, y)| fx,y(x, y)
∣∣∣∣
x=Q(lk,θk), y=G(lk,θk)

(2)

whereJ(x, y) is the Jacobian of the transformation and we
restrict it to be positive. From Fig. 1 we get

lk =
√

x2 + y2 (3)

x = Q(lk, θk ) = lk cos(θk ) (4)

y = G(lk, θk ) = lk sin(θk ) (5)

The JacobianJ(lk, θk) is given by

J(l, θ) =

∣∣∣∣∣
∂Q
∂lk

∂Q
∂θk

∂G
∂lk

∂G
∂θk

∣∣∣∣∣ =
∣∣∣∣

cos(θk)− lk sin(θk)
sin(θk) lk cos(θk)

∣∣∣∣ = lk (6)

By substituting (1), (3), (4), (5) and (6) into (2) we get

f(lk, θk ) =
{ a lk

tanh(aR) cosh2( a h(lk, θ))
, l1 ≤ lk ≤ l2

0 elsewhere
(7)

where
h(lk, θ ) =

√
l2k − 2 lkD cos(θ ) + D2 (8)

l1 = D cos(θ )−
√

R2 −D2 sin2(θ) (9)

l2 = D cos(θ ) +
√

R2 −D2 sin2(θ). (10)

Limits on the parameterlk were determined by fixingθ
and then computing the points at which the resulting line
intersected the scattering circle in Fig. 1.

We apply the law of cosines to the triangle BSM in Fig. 1
to derive the joint power/ Doppler pdffp,fd

(p, fd) wherep is
the power of the multipath components andfd is the Doppler
frequency. Applying this law gives

r2
k = D2 + l2k − 2 lk D cos(θk ) (11)

The total path propagation distance is given by

d = lk + rk = lk +
√

D2 + l2k − 2 lk D cos(θk ) (12)

Squaring both sides of (12), and solving forlk gives

lk =
D2 − d2

2(D cos(θk)− d)
(13)

The joint distance(d)/ DOA pdf is given by

fd,θ(d, θ ) = |J(l, θ)| fl,θ(l, θ)
∣∣∣∣
l= D2−d2

2(D cos(θ)−d)

(14)

whereJ(l, θ) is the Jacobian transformation given by

J(l, θ) =
∣∣ ∂l

∂d

∣∣ =
D2 + d2 − 2Dd cos(θk)

2(D cos(θk)− d)2
(15)

Substituting (15) into (14) yields

fd,θ(d, θk) =
D2 + d2 − 2Dd cos(θk)

2(D cos(θk)− d)2
flk,θk

(
l(d, θk), θk

)

(16)
The jointd/ DOA pdf fd,θ(d, θk) for the hyperbolic macro-

cell channel model is given by substituting (7), and (13) into
(16)

fd,θk
(d, θk) = p(d,θk)

cosh2(g(d,θk))
(17)

where

p(d, θk) =
a(D2 − d2)(D2 + d2 − 2 D d cos(θk))

4 tanh(aR)(D cos(θk)− d)3
(18)

and

g(d, θ) = a

√
(n(d, θ))2

4
−D cos(θ)n(d, θ) + D2 (19)

where

n(d, θ) =

(
D2 − d2

)

(D cos(θ)− d)
. (20)

When an exponential path-loss model is assumed, the power
will be related to the total path propagation distanced by [6],
[2]

pk = po

(
d

D

)−n

(21)

wherepk is the power level of thekth path,po is power of
the direct line-of-sight path, andn is the path loss exponent.

The above equation can be re-arranged to give

d = D

(
pk

po

)− 1
n

. (22)

The joint power (p)/ DOA pdf fpk,θk
(pk, θk) for the channel

model in [4] is given by

fpk,θk
(pk, θk ) = |J(d, θk)| fd,θk

(d, θk)
∣∣∣∣
d=D( pk

po
)−

1
n

(23)



where the Jacobian transformation,J(d, θk), is given by

J(d, θk) =
∣∣∣ ∂d

∂pk

∣∣∣ =
D

npo

(
pk

po

) (n+1)
n

(24)

Substituting (24) into (23) yields

fpk,θk
(pk, θk) =

D

npo

(
pk

po

) (n+1)
n

fd,θk

(
d(pk), θk

)
(25)

The joint power/ DOA pdf fpk,θk
(pk, θk) is given by

substituting (17), and (22) into (25)

fpk,θk
(pk, θk) = aD(D2−D2( pk

po
)−

2
n )h(pk,θk)

4npo tanh(aR) cosh2(Φ(pk,θk))
(26)

where

h(pk, θk) =
(D2 + D2

(
pk

po

)− 2
n − 2 D2

(
pk

po

)− 1
n

cos(θk))
(

pk

po

)n+1
n

(D cos(θk)−D
(

pk

po

)− 1
n

)3

(27)
and

Φ(pk, θk) = a

√
(m(pk, θk))2

4
−D cos(θk)m(pk, θk) + D2

(28)
where

m(pk, θk) =

(
D2 −D2

(
pk

po

)− 2
n

)

(
D cos(θk)−D

(
pk

po

)− 1
n

) . (29)

To evaluate the joint power (p)/ Doppler frequency shift (fd)
pdf, fp,fd

(pk, fd), we use the Doppler shift formula, which is
given by [6]

fd = fm cos(θk − θv) (30)

where fm is the maximum Doppler shift (fm = v
λ ), λ is

the carrier wavelength,v is the speed of the mobile,θk is the
DOA, and θv is the direction where the mobile is travelling
[6]. Solving (30) forθk gives

θk = θv + cos−1

(
fd

fm

)
(31)

The joint power/ Doppler frequency pdf,fp,fd
(p, fd), is

given by

fp,fd
(p, fd) = |J(p, θ)| fp,θ(p, θ)

∣∣∣∣
θ=θv+cos−1

(
fd
fm

) (32)

whereJ(p, θ) is the Jacobian transformation given by

J(pk, θk) =
∣∣∣ ∂θk

∂fd

∣∣∣ =
1

fm sin(θk − θv)
=

1

fm

√
1−

(
fd

fm

)2

(33)

Let ξ =
(

pk

po

)− 1
n

, then the joint power/ Doppler frequency

pdf, fpk,fd
(pk, fd), is given by

fpk,fd
(pk, fd) =

2∑
i=1

aD2(1−ξ2)Υ(ξ,fd)
4npo tanh(aR) cosh2(β(ξ))

(34)

where

Υ(ξ, fd) =
(1 + ξ2 − 2ξ cos(θi))

ξ−(n+1)(cos(θi)− ξ)3fm

√
1−

(
fd

fm

)2
(35)

and

β(ξ, θi) = a

√
(m(ξ, θi))

2

4
−D cos(θi)m(ξ, θi) + D2 (36)

where

m(ξ, θi) =

(
D2 −D2ξ2

)

(D cos(θi)−Dξ)
(37)

and

θi =





θv + cos−1
(

fd

fm

)
: i = 1

θv − cos−1
(

fd

fm

)
: i = 2.

(38)

III. SIMULATION RESULTS

In this paper the joint power/ DOA pdffpk,θk
(pk, θk)

(eq. (17)) and the joint power/ Doppler frequency pdf,
fpk,fd

(pk, fd) (eq. (34)) has been simulated using MATLAB.
In this simulation we considered a path loss exponent of 2
(free space),a = 0.009, the distance between the mobile and
the base station is set toD = 1.5 km, the scatters’ circle radius
is R = 0.5 km, and the power of the direct line-of-sight path,
po, has been limited to 1 Watts.

Fig. 2 shows the joint power/ DOA pdffpk,θk
(pk, θk) for

the hyperbolic macrocell channel model. From the figure, As
this model is applicable for macrocell environment, it is clear
that there is no power around the direct line-of-sight path. It is
also evident that the powers of the other multipath components
are less than the assumed direct line-of-sight power,po.

Fig. 3 shows the joint power/ Doppler frequency pdf
fpk,fd

(pk, fd) for the hyperbolic macrocell channel model.
In this figure the directions where the mobile is travelling
are set toθv = π

2 . Similarly, Fig 4 and 5 show the joint
power/ Doppler frequency pdf whenθv = 0 and θv = π
respectively. The Doppler frequency,fd, is normalized by the
maximum Doppler frequency,fm. From the simulation results
we observe that the joint power/ Doppler frequency pdf is
highly dependent onθv.

IV. CONCLUSIONS

In this paper the joint probability density function (pdf)
of the power/ DOA and the power/ Doppler frequency shift
for the hyperbolic macrocell channel model are derived and
simulated. Simulation results showed that the joint power/
Doppler frequency pdf is highly dependent onθv. It is also
shown that the power pdf around the direct line-of-sight path
is nearly zero (this is in accord with the assumptions of the
hyperbolic macrocell channel model).
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Fig. 2. The Joint power/ DOA probability density function for the
hyperbolic macrocell channel model: (D = 1.5 km,R= 0.5 km,a =
0.009,n = 2, andpo = 1 W).
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Fig. 3. The Joint power/ Doppler frequency probability density
function for the hyperbolic macrocell channel model: (θ = π

2
, D

= 1.5 km,R= 0.5 km,a = 0.009,n = 2, andpo = 1 W).
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Fig. 4. The Joint power/ Doppler frequency probability density
function for the hyperbolic macrocell channel model: (θ = 0, D
= 1.5 km,R= 0.5 km,a = 0.009,n = 2, andpo = 1 W).
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