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Gaussian type wave functions do not reproduce the interparticle cusps which result in a slow
convergence of the expectation values of the operators involved in calculations of the relativistic and
QED energy corrections. Methods correcting this deficiency are the main topic discussed in this
paper. Benchmark expectation values of the singular operators for several few-electron systems are
presented. ©2005 American Institute of Physics. fDOI: 10.1063/1.1888572g

I. INTRODUCTION

The method of exponentially correlated GaussiansECGd
wave functions provides a means of obtaining very accurate
solutions of the Schrödinger equation for small, few-electron
atomic and molecular systems. In the last decade it was
shown that the method is capable of supplying the most ac-
curate variational estimations of the nonrelativistic energy of
two- to four-electron systems.1–7 Recently, the ECG wave
functions also proved useful in determining relativistic and
radiative corrections.1,4,8–11 A precise determination of the
corrections requires access to high quality fully correlated
wave functions. However, the expectation value of the en-
ergy is not the only factor determining the quality of the
wave function. It is commonly known that the Gaussian-type
wave functions, apart from their advantages, also have some
drawbacks which lower their usefulness in certain applica-
tions. These drawbacks are related to the Kato cusp condition
which is not fulfilled by the Gaussian functions. The excep-
tion are wave functions with a linear correlation factor like
the LECG function.12,13 Such wave functions are also em-
ployed in the family of the R12 methods based on Kut-
zelnigg’s idea.14,15

In this paper we shall concentrate on relativistic and
QED energy corrections. The singular operators involved in
these corrections are very demanding with respect to local
properties of the wave function. In this case the Gaussian-
type wave functions exhibit a convergence which can hardly
be recognized as satisfactory. The operators in mind are the
one- and two-electron Dirac delta operators,dsrd, the relativ-
istic kinetic energy operator¹4, and the distributional opera-
tor Ps1/r ij

3d entering the QED energy correction. In this pa-
per we describe two, in principle general, regularization

methods which allow the convergence of the pertinent expec-
tation values to be significantly improved. We propose to use
the nameDrachmanizationfor the first methodology as it
was introduced by R. J. Drachman.16 The other method,
which is introduced here, is based on a suitable integral
transform and an asymptotic formula for the resulting inte-
grand. Referring to these methods we will use the abbrevia-
tions Dr and IT for Drachmanization and integral transform,
respectively. We illustrate our approaches by one molecular
sH2d and three atomicsHe, Li, and Bed cases using accurate
ECG wave functions. The atomic units are used throughout
the paper.

II. THE WAVE FUNCTION

The energies and wave functions of the studied systems
were obtained by variationally solving the stationary

Schrödinger equationĤC=EC with the nonrelativistic
clamped nuclei Hamiltonian

Ĥ = −
1
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uRI − RJu
, s1d

wherer i andRI are, respectively, the electronic and nuclear
coordinates, andZI are the nuclear charges. Our trial wave
function was assumed in the form of aK-term linear expan-
sion in ann-electron basis

Csr,sd = ÂSJn,S,MS
ssdP̂o

k=1

K

ckcksrdD , s2d

where Â and P̂ are the permutation and spatial symmetry
projectors, respectively, andJn,S,MS

ssd is ann-electron spin
function with the spin quantum numbersS and MS. As the
n-electron spatial basis functions,ck, we employed the ex-
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ponentially correlated GaussiansECGd functions of Singer,17

cksrd = expf− sr − skdAksr − skdTg, s3d

where the superscriptT denotes a vector transpose. The lin-
ear parameters,ck, were determined by the inverse iteration
method of solving the standard general symmetric eigen-
value problem. The nonlinear parameters, contained in the
vectorssk and the positive definite matricesAk, were found
in an extensive variational optimization process. Detailed de-
scription of the ECG method including the optimization
strategy employed may be found in Refs. 5 and 18–21.

III. REGULARIZATION METHODS

A. Drachmanization „Dr…

The first regularization method is based on the idea de-
scribed in 1981 by Drachman,16 who expressed the expecta-
tion value ofdsr jkd in an equivalent form containing global
operators with the exact wave functionC and its energyEC,
namely

4pkCudsr jkduCl = 2KCU 1

r jk
sEC − V̂dUCL

− o
i
K=iCU 1

r jk
U=iCL , s4d

whereV̂ is the potential energy operator. Analogously we can
reduce the singularity of the electron-nucleus Dirac delta op-
erator,

4pkCudsrkIduCl = 4KCU 1

rkI
sEC − V̂dUCL

− 2o
i
K=iCU 1

rkI
U=iCL . s5d

In a similar way, the relativistic kinetic energy term can
be evaluated using

KCUo
i

¹i
4UCL = 4kCusEC − V̂d2uCl − 2o

i. j

k¹i
2Cu¹ j

2Cl.

s6d

The QED energy correction contains a distributionP
which is defined as the limit

KfUPS 1

r3DUcL ; lim
a→0

E f*srdcsrdF 1

r3Qsr − ad

+ 4pdsrdsg + ln adGdr , s7d

with Q andg being the step function and the Euler constant,
respectively. In order to obtain a more regular expression for
P we need to find a function for which¹2 gives Ps1/r jk

3 d,
namely

¹ j
2S1 + g + ln r jk

r jk
D = − PS 1

r jk
3 D . s8d

Next, we perform similar rearrangements as before and ob-
tain

KCUPS 1

r jk
3 DUCL = o

i
K=iCU ln r jk

r jk
U=iCL

+KCU4ps1 + gddsr jkd

+ 2sEC − V̂d
ln r jk

r jk
UCL . s9d

As can be seen, except fordsr jkd, which can be handled
according to Eq.s4d, singular operators are no longer present
on the right-hand side of Eq.s9d, but instead new types of
integrals appear. In the ECG basis these integrals can be
evaluated by means of elementary and the Clausen Cl2 sRef.
22d functions, for example

E e−a1r1
2−a2r2

2−a3r12
2 ln r1

r1r2
dr = −

2p2

aa3
fCl2sp + 2bd + bcg,

s10d

where

a = Îa1a2 + a1a3 + a2a3,

b = arctanSa3

a
D , s11d

c = g + lnS 4a2

a2 + a3
D .

The above-described methodology is an extension of the
original Drachman’s idea to a couple of new operators, there-
fore, we dare to call this approach Drachmanization. Formu-
las s4d–s6d and s9d are general but an analytic evaluation of
the right-hand-side integrals in the ECG basis is possible
only for atoms. This prompted us to search for another
method which, while preserving the accuracy, would be
equally effective for atoms and molecules.

B. Integral transform „IT…

The idea of the IT approach is to move the singularity
out of an expectation value to the new integral, and to derive
the correct asymptotic formula for the integrand from the
analytic behavior of the exact solution of the Schrödinger
equation. This is the simplest approach, which can be applied
to atoms as well as to molecules.

1. ŠCzd„r…zC‹

For the Dirac delta operators this method works as fol-
lows. One uses the Poisson equation

¹2S1

r
D = − 4pdsrd, s12d

and replaces 1/r by an integral with the Gaussian function

1

r
=

2
Îp
E

0

`

e−r2t2dt. s13d

This combination leads to the following integral form of the
Dirac delta function:
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kCudsrduCl =
1

2p3/2E
0

`

kCu2t2s3 − 2t2r2de−t2r2
uCldt.

s14d

In a well-optimized ECG basis set the matrix element of
e−t2r2

is highly accurate, provided thatt is not very large, i.e.,
t, tL. Therefore, the integral overt. tL is evaluated using
an analytically derived asymptotic formula. This formula re-
sults from the Kato cusp condition, which is fulfilled by the
exact solution of the Schrödinger equation with Coulomb
interactions. If one denotes byfstd the integrand in Eq.s14d,
then for larget we use the expansion

fstd =
4Z

Îpt2
kCudsrduClS1 +

A1

t
+

A2

t2
+

A3

t3
+ ¯D , s15d

whereAi depend on the state under consideration,C, and are
obtained by fitting to a large grid of points offstd. For the
electron-nucleus Dirac delta,Z is the nuclear charge whereas
for the interelectron delta,Z=−1

2. It remains to make a
proper choice of the value fortL, which depends on the
numerical accuracy offstd. This accuracy is estimated by
calculatingfstd for several lengths of basis sets and we found
that most precise results with our wave functions are ob-
tained with tL<100. In performing the integration in Eq.
s14d one, at first, neglects the asymptotic formula, obtains
approximate value for the Dirac delta, and in the next step
uses it for the calculation of the integral over the asymptotic
region. The result converges quickly with only a few itera-
tions.

2. ŠCzP„1/r3
…zC‹

A similar approach can be applied to the calculation of
the Araki–Sucher term, which is defined in Eq.s7d. One
transforms this term with the help of

−
ln r + g

r2 =E
0

`

ts2 ln t − gde−t2r2
dt s16d

and of the integration by parts to the following form:

E PS 1

r ij
3 DC2srddr = −E ln r ij + g

r ij
2

]

]r ij
C2srddr

=E
0

`

s2 ln t − gdfstddt, s17d

where

fstd =E 2tSt2r ij −
1

r ij
De−t2ri j

2
C2srddr . s18d

As in the case of the Dirac delta function, the integral with
t, tL is calculated directly withfstd, while for t. tL one
applies the asymptotic expansion

fstd =
p3/2

2t2
kCudsr i jduClS1 +

A1

t
+

A2

t2
+

A3

t3
+ ¯D s19d

and calculatesAi by fitting to fstd. The value oftL is chosen
as equal to that in the corresponding calculation of the Dirac
delta.

3. ŠCz=4zC‹

A different approach is applied in the case of
kCu¹1

4uCl=kCup1
4uCl. We switch to the momentum represen-

tation and calculate the one-electron momentum density
function, Isp1d, employing the Fourier transform of the coor-
dinate wave function

C̃sp,sd =E Csr,sde−iprdr . s20d

We note in passing that the Fourier transform of the ECG
basis function of Eq.s3d,

c̃kspd = uÃku−3/2expf− sp − s̃kdÃksp − s̃kdT + C̃g s21d

with s̃k=−2iskAk, Ãk= 1
4Ak

−1, and C̃=−skAksk
T, preserves the

shape and all the advantages of the original ECG function,
which enables the evaluation of integrals in the momentum
space to be readily accomplished.7,23 The integration with
respect to all the momenta butp1 leads to

KCUo
i

pi
4UCL = nE p1

4C̃spdC̃*spddp =E
0

`

p1
4Isp1ddp1,

s22d

where

Ispd = 4pnp2E C̃sp,p2,…,pndC̃*sp,p2,…,pndp
i=2

n

dpi .

s23d

The density functionIspd, as obtained from Gaussian gemi-
nals, is accurate for not too large values of the momentum.
Therefore, the last integral in Eq.s22d is evaluated directly
for p,pL whereas forp.pL we use a large-p asymptotic
expansion. This expansion can be obtained as follows. The
large momentum behavior is related to smallr in the coordi-
nate representation. For example, for hydrogenic states

Ispd =
32

p6Z2kCudsrduCl + Osp−8d. s24d

The generalization to arbitrarysbut nonrelativisticd atoms
with n electrons is

Ispd =
32

p6o
i=1

n SZ2kCudsr iduCl +
1

2o
j.i

n

kCudsr i jduClD
+ Osp−8d, s25d

which will be proven in the following. The result for mol-
ecules is more complicated and involves an oscillatory term

TABLE I. The nonrelativistic energy,E, its relative error,DE, and the larg-
est expansion length,K, of the ECG wave function applied.

System K E/EH DE/EH Reference

He 600 −2.903 724 377 022 4.1310−12 1
Li 2000 −7.478 060 315 1.2310−9 10
Be 1600 −14.667 355 536 3.1310−8 31
H2 1200 −1.174 475 714 037 1.6310−10 1
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of the order ofp−7. Let us present more detailed derivation
for the diatomic moleculeAB consisting of two electrons.
The generalization to arbitrary molecule will be obvious. The
wave function isC=Csr1,r2d. We perform the Fourier trans-
form in the variabler1, while keepingr2 intact,

C̃sp1,r2d =E Csr1,r2de−ip1r1dr1. s26d

The large p1 asymptotics is related to the cusps at both nuclei

and at the other electron

C̃sp1,r2d <
8pZA

p1
4 CsRA,r2de−ip1RA

+
8pZB

p1
4 CsRB,r2de−ip1RB

−
1

2

8p

p1
4 Csr2,r2de−ip1r2. s27d

The momentum densityIspd

TABLE II. Helium atom. Convergence of the expectation values computed directly, using the Drachmanization
sDrd, and by the integral transformsITd. An implicit summation over all the electrons and electron pairs is
assumed in the notation used here and in Tables III–VI.

K Direct Dr IT

kdsr idl
75 3.608 216 79 3.620 805 82 3.620 610 00
150 3.617 782 37 3.620 856 06 3.620 854 50
300 3.619 595 30 3.620 858 21 3.620 858 39
600 3.620 611 21 3.620 858 62 3.620 858 63
“Exact”a 3.620 858 637 7s3d

kdsr i jdl
75 0.106 951 650 0.106 341 763 0.106 414 468
150 0.106 465 966 0.106 345 233 0.106 346 293
300 0.106 378 464 0.106 345 356 0.106 345 437
600 0.106 358 176 0.106 345 369 0.106 345 383
“Exact”b 0.106 345 370 636s2d

kpi
4l

75 107.849 86 108.181 61 108.173 524
150 108.097 26 108.177 55 108.176 048
300 108.143 96 108.176 53 108.176 115
600 108.169 77 108.176 29 108.176 135
“Exact”a 108.176 134 4s8d

kPs1/r ij
3dl

75 0.948 422 0 0.989 485 6 0.978 295 5
150 0.978 706 2 0.989 284 5 0.989 120 0
300 0.985 876 4 0.989 274 8 0.989 261 8
600 0.987 804 9 0.989 273 5 0.989 272 1
“Exact”c 0.989 272 4s13d
aReference 24.
bReference 25.
cReference 26.

TABLE III. Lithium atom. Expectation values computed from the 2000-term ECG wave function by means of
three methods: directly, using the DrachmanizationsDrd, and by the integral transformsITd in comparison with
accurate Yan and Drake valuessRef. 27d.

kdsr jdl kdsr i jdl kpi
4l kPs1/r ij

3dl

Direct 13.835 0 0.544 669 628.157 0.241 0
Dr 13.842 606 23 0.544 324 4 628.453 1 0.273 54
IT 13.842 609 63 0.544 326 6 628.449 0 0.273 37
a 13.842 609 642s55d 0.544 329 79s31d 628.449 144s5d 0.273 67s26d
aReference 27.
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is thensn=2d

Ispd = n
4pp2

s2pd3 E C̃*sp,r2dC̃sp,r2ddr2

< n
32

p6 E FZACsRA,r2de−ipRA + ZBCsRB,r2de−ipRB

−
1

2
Csr2,r2de−ipr2G*

3 fZACsRA,r2de−ipRA

+ ZBCsRB,r2de−ipRB − 1
2Csr2,r2de−ipr2gdr2. s28d

After expanding the product of two square brackets, the mix-
ing terms withe−ipRXe−ipr2 do not contribute to the largep
asymptotics because of the integration overr2,

Ispd = n
32

p6 E FZA
2C2sRA,r2d + ZB

2C2sRB,r2d

+
1

4
C2sr2,r2d + 2ZAZB cosspsRA − RBdd

3CsRA,r2dCsRB,r2dGdr2 + Osp−8d. s29d

One averages with respect to all orientations ofp relative to
RA−RB and obtains

Ispd = n
32

p6FZA
2kCudsr1 − RAduCl + ZB

2kCudsr1 − RBduCl

+
1

4
kCudsr1 − r2duCl + ZAZB

2 sinspuRA − RBud
puRA − RBu

3E C*sRA,r2dCsRB,r2ddr2G + Osp−8d. s30d

For arbitrary diatomic moleculesAB of the S symmetry, the
large momentum behavior of the angularly averagedIspd is

Ispd =
32

p6o
i=1

n SZA
2kCudsr i − RAduCl + ZB

2kCudsr i − RBduCl

+
1

2o
j.i

n

kCudsr i jduClD
+

32

p6ZAZB

2 sinspuRA − RBud
puRA − RBu o

i=1

n

risuRA − RBud

+ Osp−8d, s31d

where

TABLE IV. Beryllium atom. Convergence of the expectation values computed directly, using the Drachman-
ization sDrd, and by the integral transformsITd.

K Direct Dr IT

kdsr idl
100 33.379 145 35.174 770 35.324 216
200 34.897 648 35.339 657 35.362 596
400 35.029 311 35.340 791 35.365 872
800 35.297 307 35.368 099 35.368 676
1600 35.317 352 35.368 900 35.368 880
` 35.369 5s5d

kdsr i jdl
100 1.627 741 1.604 558 1.620 185
200 1.618 229 1.605 055 1.610 551
400 1.610 911 1.605 253 1.606 134
800 1.608 106 1.605 293 1.605 446
1600 1.606 742 1.605 303 1.605 341
` 1.605 32s1d

kpi
4l

100 2137.407 2164.851 2164.780
200 2153.618 2165.594 2165.503
400 2155.764 2165.567 2165.681
800 2161.966 2165.644 2165.613
1600 2162.989 2165.637 2165.622
` 2165.64s1d

kPs1/r ij
3dl

100 −8.552 39 −7.304 29 −7.554 00
200 −8.123 10 −7.318 37 −7.408 33
400 −7.730 23 −7.324 54 −7.346 32
800 −7.552 88 −7.326 22 −7.333 15
1600 −7.455 34 −7.326 63 −7.328 56
` −7.326 8s3d
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r1suRA − RBud =E C*sRA,r2,…,rndCsRB,r2,…,rndp
i=2

n

dr i .

s32d

The higher order terms in the expansions31d are obtained by
fitting to Ispd and the whole expansion is integrated analyti-
cally for p.pL. The parameterpL is selected differently for
each system as it depends on the quality of the wave function
but, in a wide range of its choice, has no influence on the
final result.

IV. RESULTS AND DISCUSSION

The above-described methodology was applied to three
atomicsHe, Li, Bed and one molecularsH2d system. For their
ground states accurate ECG wave functions are available
from our previous papersssee Table I for detailsd. Table I
lists energy and its estimated accuracy corresponding to the
largest expansion used for each out of the four systems.

The regularization methods were tested first on the he-
lium atom casesTable IId. For this system very accurate ref-
erence results, obtained from specialized exponential wave
functions, are available.24–26 The direct and Dr values of
kdsr i jdl were already published in Ref. 9, but are repeated
here for the sake of completeness. Let us first note that the
Dirac delta expectation value obtained in the direct ECG
computation converges rather slowly, so that from the 600-
term expansion merely four significant figures of the exact
value can be recovered despite the fact that the same wave
function gives eleven figures of the exact energy. Both types
of regularization allow us to get another four significant dig-
its. A similar observation can be made forkpi

4l but this time
the IT approach is more effective and yields eight significant
figures of the exact value. The expectation value ofPs1/r ij

3d
is particularly slowly convergent and in direct computations
only two significant digits are obtained. The convergence is
dramatically improved after the application of any of the two
regularization methods so that an accuracy of six decimals is
reached.

In Table III the expectation values for the lithium atom
computed directly from the 2000-term ECG wave function
and by means of the regularization methods are confronted
with the very accurate results obtained by Yan and Drake
from an exponential wave function.27 In this case the direct
computations give only three significant figures for the Dirac
deltas andkpi

4l and just the leading figure forkPs1/r ij
3dl. We

gain several more decimal digits from the regularized calcu-
lations. In the case of lithium the IT approach seems to be
consistently superior to the Drachmanization, with the ex-
ception of the latter operator, where both techniques seem to
perform approximately equally well but the precise compari-
son is impossible due to the uncertainty of the reference
value.

The largest atomic system considered is beryllium. For
Be there are no reference values of an accuracy comparable
to that of He and Li, therefore, the precision of the computed
expectation values can be assessed merely by inspecting the
convergence patterns in Table IV. The effectiveness of Dr
and IT methods reminds one of that from the lithium atom

calculation—the regularization enables the stabilization of at
least two additional digits. We also present our recommended
values estimated by an extrapolation to the infinite basis,
using data combined from Dr and IT sequences. Our result
kdsr idl=35.3695s5d agrees very well with 35.3700 and
35.3695 derived from the CI wave function expanded in
Slater-type orbitals obtained by Bunge28 and Esquivel and
Bunge,29 respectively.

Within the Dr approach, computing the necessary mo-
lecular matrix elements involves a numerical integration. For
H2, therefore, we concentrated on the IT method, which is
more convenient to apply, and our analysis of the conver-
gence is based on the IT results given in Table V. The gen-
eral observations are similar to that for atoms. Despite em-
ploying energetically extremely accurate wave functionssthe
1200-term ECG function yields energy with an accuracy of a
fraction of nanohartreed, the direct computation yields only
three significant digits for the Dirac deltas, four digits in case
of kpi

4l, and just two forkPs1/r ij
3dl. As we can see from the

last column of Table V, the regularization allows the next
three significant figures to be recovered. Our recommended
values of kdsr iIdl=0.459 668 2s1d and kdsr i jdl
=0.016 743 4s2d can be confronted with 0.459 663 and

TABLE V. Hydrogen molecule,R=1.4 bohr. Convergence of the expecta-
tion values computed directly in comparison with those obtained by the
integral transformsITd.

K Direct IT

kdsr iIdl
75 0.457 670 262 0.459 447 637
150 0.458 771 435 0.459 653 671
300 0.459 254 845 0.459 666 311
600 0.459 509 138 0.459 667 951
1200 0.459 588 096 0.459 668 101

` 0.459 668 2s1d

kdsr i jdl
75 0.016 953 5 0.016 857 29
150 0.016 814 3 0.016 748 22
300 0.016 771 8 0.016 743 95
600 0.016 758 3 0.016 743 32
1200 0.016 761 6 0.016 743 39

` 0.016 743 4s2d

kpi
4l

75 13.184 83 13.234 252
150 13.214 49 13.237 555
300 13.227 20 13.237 908
600 13.233 76 13.237 955
1200 13.235 68 13.237 960

` 13.237 965s5d

kPs1/r ij
3dl

75 0.385 92 0.397 508
150 0.392 95 0.397 692
300 0.395 61 0.397 899
600 0.396 59 0.397 956
1200 0.396 34 0.397 944

` 0.397 95s5d
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0.016 774 0, respectively, computed by Wolniewicz from his
279-term explicitly correlated wave function of the Kołos–
Wolniewicz type.30

For molecules, the expectation value ofp4 requires a
slightly different treatment than for atoms. The molecular
asymptotic formula, Eq.s31d, unlike for atoms, involves an
oscillatory term of the order ofp−7. The amplitude of the
oscillation is determined by a new quantity,r=SirisuRA

−RBud, defined in Eq.s32d and related to a nondiagonal one-
electron density matrix. In Table VI we show the conver-
gence and the extrapolated value ofr for the hydrogen mol-
ecule atR=1.4. Note that forRA=RB, r reduces tokdsr iIdl,
therefore, at small argumentsr has numerical values close to
that of kdsr iIdl. This relation can be illustrated by comparing
our recommended value ofr=0.444 04s2d with the density at
the nucleus equal to 0.459 668 2s1d. Modeling the large-p
momentum density using Eq.s31d enables the precision of
kpi

4l to be extended by an additional three digits in compari-
son with the direct evaluationssee Table Vd.

To our knowledge, there are no published attempts to
compute the Araki–Sucher terms7d for H2. This term, to-
gether with the Bethe logarithm, is indispensable for a pre-
cise determination of the radiative energy correction of the
order of a3. In Table V we present the convergence of
kPs1/r ij

3dl obtained from both direct and IT computations, as
well as our recommended value of 0.397 95s5d.

The integral transform can also be used when the mo-
lecular wave function happens to be not very accurate or for
not too short internuclear distances. Then theAi coefficients
can be taken from the corresponding atomic systems. We
have checked such an approach for the hydrogen molecule
and we claim that, even for such a small internuclear dis-
tance asR=1.4, the atomic values ofAi can be used, without
losing much accuracy, iftL*100.

V. SUMMARY

The main deficiency of any wave function expanded in a
Gaussian basis is the lack of the cusps which results in a
relatively slow convergence of expectation values of singular
operators. On a few examples we have shown that this defi-
ciency can be significantly weakened using a properly de-
fined regularization. The new formulas for Drachmanized ex-
pectation values of singular operators enable acceleration of
the convergence in the case of atoms. For molecules, how-

ever, this approach requires a numerical integration and
therefore becomes less practical. The integral transform of
the expectation values in connection with the corrected
asymptotic expansion turns out to be a convenient alterna-
tive, at least equally efficient in most cases and with a clear
advantage of being easily applicable to atoms and to mol-
ecules. Both methods lead to results two to four orders of
magnitude more accurate than those computed directly. Al-
though we employed in our calculations the exponentially
correlated Gaussian functions to generate benchmark results,
the techniques presented in this work are, obviously, more
general and can be used with any Gaussian basis. This opens
the possibility of very accurate calculations of relativistic
and QED effects using standard and well-established basis
sets.
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K r
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