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Gaussian type wave functions do not reproduce the interparticle cusps which result in a slow
convergence of the expectation values of the operators involved in calculations of the relativistic and
QED energy corrections. Methods correcting this deficiency are the main topic discussed in this
paper. Benchmark expectation values of the singular operators for several few-electron systems are
presented. €005 American Institute of PhysidDOI: 10.1063/1.188857]2

I. INTRODUCTION methods which allow the convergence of the pertinent expec-
tation values to be significantly improved. We propose to use
The method of exponentially correlated GaussiB8G)  the nameDrachmanizationfor the first methodology as it
wave functions provides a means of obtaining very accuratevas introduced by R. J. Drachm&hThe other method,
solutions of the Schrédinger equation for small, few-electrorwhich is introduced here, is based on a suitable integral
atomic and molecular systems. In the last decade it wasansform and an asymptotic formula for the resulting inte-
shown that the method is capable of supplying the most aggrand. Referring to these methods we will use the abbrevia-
curate variational estimations of the nonrelativistic energy otions Dr and IT for Drachmanization and integral transform,
two- to four-electron systen?!;7 Recently, the ECG wave respectively. We illustrate our approaches by one molecular
functions also proved useful in determining relativistic and(H,) and three atomi¢He, Li, and B¢ cases using accurate
radiative correction$*®* A precise determination of the ECG wave functions. The atomic units are used throughout
corrections requires access to high quality fully correlatedhe paper.
wave functions. However, the expectation value of the en-
ergy is not the only factor determining the quality of the Il. THE WAVE FUNCTION
wave function. It is commonly known that the Gaussian-type
wave functions, apart from their advantages, also have somg
drawbacks which lower their usefulness in certain applica-
tions. These drawbacks are related to the Kato cusp condmoﬁ
which is not fulfilled by the Gaussian functions. The excep-
tion are wave functions with a linear correlation factor like . 1
the LECG function>*® Such wave functions are also em-  H= “E Vi+ 2 E Py
ployed in the family of the R12 methods based on Kut- =i M=y
zelnigg's idea:"*® o N2z,
In this paper we shall concentrate on relativistic and E E R -R,’ (1)
QED energy corrections. The singular operators involved in =1 9=+ T T
these corrections are very demanding with respect to locabherer; andR, are, respectively, the electronic and nuclear
properties of the wave function. In this case the Gaussianeoordinates, and, are the nuclear charges. Our trial wave
type wave functions exhibit a convergence which can hardlyfunction was assumed in the form ofkaterm linear expan-
be recognized as satisfactory. The operators in mind are thsion in ann-electron basis
one- and two-electron Dirac delta operatais,), the relativ- K
istic kinetic energy operatdv*, and the distributional opera- W(r, o) = «21<En,sm (0)732 Ck¢k(f)), )
tor P(l/r ) entering the QED energy correction. In this pa- s k=1

per we descnbe two, in principle general, regularization . . ) )
where 4 and P are the permutation and spatial symmetry

projectors, respectively, arﬂn,SMs(a) is ann-electron spin

The energies and wave functions of the studied systems
ere obtained by variationally solving the stationary
chrédinger equatiori:hIf—E\If with the nonrelativistic
clamped nuclei Hamiltonian

|r|

N-1
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ponentially correlated GaussigBCG) functions of Singet, <\If‘ P(%) \P> 5 <V\If Inrj V‘If>

i(r) = exd = (r = s)A(r -89 ], 3 Mk : Fik
where the superscrigt denotes a vector transpose. The lin-
ear parameters,, were determined by the inverse iteration + <q’ 4ar(1 + ) 8(ry)
method of solving the standard general symmetric eigen-
value problem. The nonlinear parameters, contained in the " 2(Eq,—\A/)|n—rj'—‘ q,> (9)
vectorss, and the positive definite matricés, were found ik

in an extensive variational optimization process. Detailed de,

scription of the ECG method including the optimization :scgzj?ngetoslgg(ndl) e;g;ﬂ}afz(;jekgtgg;ﬁecsg I(?r?ggfgséi(::nt
strategy employed may be found in Refs. 5 and 18-21. ’

on the right-hand side of Eq9), but instead new types of
integrals appear. In the ECG basis these integrals can be
Ill. REGULARIZATION METHODS evaluated by means of elementary and the ClausgiiRef.

A. Drachmanization (Dr) 22) functions, for example

The first regularization method is based on the idea de- f e'alf2 ~ayr5-agi T, In rldr =- g[dz(qﬁ 2b) + bc],
3

scribed in 1981 by Drachmafi,who expressed the expecta- Mz
tion value of 3(rj) in an equivalent form containing global (10
operators with the exact wave functidhand its energ.y,
namely where
< . > a= \"/alaZ + a;ag + aras,
b= arctar(é) , (11
-2 <V v =V, \If> (4) a
Jk

4
whereV is the potential energy operator. Analogously we can ¢~ v+ I”( a,+ a3> :

reduce the singularity of the electron-nucleus Dirac delta op-
erator, The above-described methodology is an extension of the

original Drachman'’s idea to a couple of new operators, there-

Am(W|8(r )| W) = 4<\p‘ i(Eq, -V) ‘ \p> fore, we dare to call this approach Drachmanization. Formu-
Mk las (4)—(6) and (9) are general but an analytic evaluation of

the right-hand-side integrals in the ECG basis is possible

—22 Vv | — V¥ (50  only for atoms. This prompted us to search for another

method which, while preserving the accuracy, would be

In a similar way, the relativistic kinetic energy term can €dually effective for atoms and molecules.

Iy

B. Integral transform  (IT)

be evaluated using
<q, v ~P> = (V|(Ey - V)W) - 23 (VAV|VAV).
i
(6) out of an expectation value to the new integral, and to derive
the correct asymptotic formula for the integrand from the

P> The idea of the IT approach is to move the singularity
The QED energy correction contains a distributiBn  analytic behavior of the exact solution of the Schrodinger

which is defined as the limit equation. This is the simplest approach, which can be applied
1 to atoms as well as to molecules.
¢ P(ﬁ) = I|m f ¢ (r)glr(r){ —=0(r-a)
1.(¥|a(n|w)
+478(r)(y+1n a)}dr, 7) For the Dirac delta operators this method works as fol-
lows. One uses the Poisson equation

with ® andy being the step function and the Euler constant, (1)
respectively. In order to obtain a more regular expression for v r) T 4m(r), (12)
P we need to find a function for whicR? gives P(l/rf‘k),

namely and replaces /by an integral with the Gaussian function
1+y+Inr; 1 1 2 (" 2
Vf(y—”—() =—P<—3). (®8) S==| et (13
Mk Fik r~mlo

Next, we perform similar rearrangements as before and obFhis combination leads to the following integral form of the
tain Dirac delta function:
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1 o . TABLE |. The nonrelativistic energyE, its relative errorAE, and the larg-
<\If|5(r)|\[l> = > 3/{[ <\If|2t2(3 - 2t2r2)e‘t r |\I’>dt. est expansion lengthg, of the ECG wave function applied.
T Jo
(14) System K E/Eq AE/Ey Reference
. . . He 600 -2.903724377022 441012 1
Irlza2 yvel!-optlmlzed ECG b:T:ISIS set the matrix elemgnt of Li 2000 7478060315 1210 10
e is highly accurate, provided thats not very large, i.e., Be 1600  —-14.667 355536 34108 31
t<t,. Therefore, the integral over>t, is evaluated using H, 1200 —1.174475714037 1610710 1

an analytically derived asymptotic formula. This formula re-
sults from the Kato cusp condition, which is fulfilled by the
exact solution of the Schrédinger equation with Coulombg (w|v4|w)
interactions. If one denotes kyt) the integrand in Eq(14),
then for larget we use the expansion A different approach is applied in the case of
(W|Vi[W)=(W|pj|¥). We switch to the momentum represen-
(1) :4722<‘If|5(r)|\lf)<1 Py, %2 +_+...)' (15) tation and calculate the one-electron momentum density
\art t ot function, I(p;), employing the Fourier transform of the coor-
dinate wave function

whereA; depend on the state under consideratibnand are
obtained by fitting to a large grid of points @ft). For the
electron-nucleus Dirac deltd,is the nuclear charge whereas

for the interelectron deltaz=-3. It remains to make a

proper choice of the value fory, which depends on the We note in passing that the Fourier transform of the ECG
numerical accuracy of(t). This accuracy is estimated by basis function of Eq(3),

calculatingf(t) for several lengths of basis sets and we found ~ . _ =~ _3p .\ ~ T

that most precise results with our wave functions are ob- didp) = A exid = (p~SIA(P =50+ C] 2D
tained witht,~100. In performing the integration in EQ. wjth 3 =-2isA,, Rk=:11AE1, and E=‘SKA|<SI, preserves the
(14) one, at first, neglects the asymptotic formula, obtainsshape and all the advantages of the original ECG function,
approximate value for the Dirac delta, and in the next steRyhich enables the evaluation of integrals in the momentum
uses it for the calculation of the integral over the asymptoticspace to be readily accomplishe® The integration with
region. The result converges quickly with only a few itera- respect to all the momenta bpt leads to

V(p, o) = f Y (r,o)e Pdr. (20)

tions. .
V> pHw)=n | piW(p)w = f i
2. (‘I’IP(l/I’S)l‘l’) < ‘2 p| > nj pl (p) (p)dp 0 pl (pl)dply
A similar approach can be applied to the calculation of (22
the Araki—Sucher term, which is defined in E(). One
transforms this term with the help of where
n
Inr+ ” ~ =,
- 7:f t(2Int - y)e " dt (16) I(p)=4wnp2f‘lf(p,pz,---,pn)\1' (p,P2.....pw) L dp.
0 i=2
and of the integration by parts to the following form: (23
1 Inri+y d The density functiori(p), as obtained from Gaussian gemi-
f P(j)‘l’z(r)df = —f —;Jg—;‘l’z(r)df nals, is accurate for not too large values of the momentum.
1 ! . Therefore, the last integral in E¢R2) is evaluated directly
(7 for p<p, whereas forp>p, we use a large asymptotic
- fo (2Int=y)f(dt, 17 expansion. This expansion can be obtained as follows. The
large momentum behavior is related to snmath the coordi-
where nate representation. For example, for hydrogenic states
- 2 1) 22y 32, -8
f(t)= [ 2t| t°r;; - e iW4(r)dr. (18) I(p) = FZ (W] &)y +O(p~9). (24)
ij

As in the case of the Dirac delta function, the integral withThe generalization to arbitrargbut nonrelativisti¢c atoms
t<t, is calculated directly withf(t), while for t>t, one  with n electrons is

applies the asymptotic expansion n N
w2 AL A A I(p) = 3—52 (ZZ<‘I’|5(ri)I‘I’> + }E <‘I'I5(ri,-)|‘l’>>
f(t)=¥<‘1’|5(fij)|‘1’> 1+T+t—2+t—3+"' (19 P’z 25

-8
and calculateg\, by fitting to f(t). The value oft, is chosen +0, (25

as equal to that in the corresponding calculation of the Diraavhich will be proven in the following. The result for mol-
delta. ecules is more complicated and involves an oscillatory term
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TABLE Il. Helium atom. Convergence of the expectation values computed directly, using the Drachmanization
(Dr), and by the integral transforrfiT). An implicit summation over all the electrons and electron pairs is
assumed in the notation used here and in Tables IlI-VI.

K Direct Dr IT
(8(r))
75 3.608 216 79 3.620 805 82 3.620 610 00
150 3.617 782 37 3.620 856 06 3.620 854 50
300 3.619 595 30 3.620 858 21 3.620 858 39
600 3.620 611 21 3.620 858 62 3.620 858 63
“Exact™ 3.620 858 637 B)
(a(rij)
75 0.106 951 650 0.106 341 763 0.106 414 468
150 0.106 465 966 0.106 345 233 0.106 346 293
300 0.106 378 464 0.106 345 356 0.106 345 437
600 0.106 358 176 0.106 345 369 0.106 345 383
“Exact"™ 0.106 345 370 63@)
(P
75 107.849 86 108.181 61 108.173 524
150 108.097 26 108.177 55 108.176 048
300 108.143 96 108.176 53 108.176 115
600 108.169 77 108.176 29 108.176 135
“Exact"® 108.176 134 @)
(P(LIr)
75 0.948 4220 0.989 485 6 0.978 2955
150 0.978 706 2 0.989 284 5 0.9891200
300 0.985 876 4 0.989 274 8 0.989 261 8
600 0.987 804 9 0.989 2735 0.9892721
“Exact”® 0.989 272 413

“Reference 24.
PReference 25.
‘Reference 26.

of the order ofp™. Let us present more detailed derivation and at the other electron
for the diatomic moleculéAB consisting of two electrons.

The generalization to arbitrary molecule will be obvious. The
wave function isV =W (r,,r,). We perform the Fourier trans-

1

form in the variabler;, while keepingr, intact,

{i’(pb ry) = f W(ry,rp)e Padry. (26)

+ 87TZB

1

The large p asymptotics is related to the cusps at both nucleiThe momentum densitl(p)

~ 817 .
W(py,ra) = %‘I’(RA,rz)e_'leA
2 W (Rg,rp)e P1Re

187 r
- Ep_‘ltql(rz'rZ)e Pafz,

(27)

TABLE Ill. Lithium atom. Expectation values computed from the 2000-term ECG wave function by means of
three methods: directly, using the Drachmanization, and by the integral transforiiT) in comparison with

accurate Yan and Drake valuéRef. 27.

(alry) (alry)) P! (P(LIr}))
Direct 13.8350 0.544 669 628.157 0.2410
Dr 13.842 606 23 0.544 324 4 628.453 1 0.27354
IT 13.842 609 63 0.544 326 6 628.449 0 0.273 37
2 13.842 609 64(55) 0.544 329 731) 628.449 1445) 0.273 6726)

“Reference 27.

Downloaded 13 May 2005 to 150.254.172.1. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



184101-5 Convergence of singular operators J. Chem. Phys. 122, 184101 (2005)

is th =2
s then(n=2) I(p) = ni—f[ziwm(rl— RWIW) + Z2(P|(r, - Re)|F)

l(p) = I’147Tp2 f{if*(p r )ﬁ/(p ro)dr
= 3 12 112 2 . . .
o + =(W|8(ry = rp)| W) + ZAZBM
o ! ' 4 p|Ra— Rgl
~ n_6 j ZA‘P(RA,rz)e‘lpRA + ZB\P(RB, rz)e_lpRB
p 8 f V' (Rar)W (R rp)dry | +0(p™°). (30

2
+ ZgW(Rg,rp)e'PRe — %\If(rz,rz)e‘iprZ]drz. (28)

1 . .
- _‘I’(rzrz)e_'prz] X [ZA\I’(RA,rz)e_IpRA

For arbitrary diatomic moleculesB of the X symmetry, the
large momentum behavior of the angularly averagel is

After expanding the product of two square brackets, the mix-

ing terms withe PRxe7 P2 do not contribute to the largp 3.
asymptotics because of the integration oxgr I(p) = FE (zi(\ma(ri -Rp)|P) + zé(\lr|5(ri -Rp)| V)

i=1

32
I(p)=n"5 f {ZiW2<RA,r2>+ZE\I'Z<RB,r2> 1
P + 52 (W[ 8(rij)|¥)
1 j>i
+ =W(r,,1,) + 2Z,Z5 codp(Ry— R
4 (ra,ra) aZg COSP(Ra— Rg)) 32 2 sin(p|R, - Rg) n
+5ZpZs——— = > pi(|[Ra—Rg))

Ra—-R i
X\If(RA,rZ)‘If(RB,rz)]dr2+o(p'g)_ (29 P B PIRA=Rel i
+0(p™), (31)

One averages with respect to all orientationp eélative to
R,—Rg and obtains where

TABLE IV. Beryllium atom. Convergence of the expectation values computed directly, using the Drachman-
ization (Dr), and by the integral transforitT).

K Direct Dr IT
(a(r))
100 33.379 145 35.174 770 35.324 216
200 34.897 648 35.339 657 35.362 596
400 35.029 311 35.340 791 35.365 872
800 35.297 307 35.368 099 35.368 676
1600 35.317 352 35.368 900 35.368 880
0 35.369 %5)
(a(rij))
100 1.627 741 1.604 558 1.620 185
200 1.618 229 1.605 055 1.610551
400 1.610911 1.605 253 1.606 134
800 1.608 106 1.605 293 1.605 446
1600 1.606 742 1.605 303 1.605 341
0 1.605 321)
(oy)
100 2137.407 2164.851 2164.780
200 2153.618 2165.594 2165.503
400 2155.764 2165.567 2165.681
800 2161.966 2165.644 2165.613
1600 2162.989 2165.637 2165.622
o 2165.641)
(PLIT))
100 -8.552 39 -7.304 29 -7.554 00
200 -8.12310 -7.318 37 -7.408 33
400 -7.73023 -7.324 54 -7.346 32
800 -7.552 88 -7.326 22 -7.33315
1600 —7.455 34 -7.326 63 -7.328 56
o0 -7.326 §3)
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TABLE V. Hydrogen moleculeR=1.4 bohr. Convergence of the expecta-
tion values computed directly in comparison with those obtained by the

n
p1(|Ra— Rg) =f‘1' (RAvrzi---*rn)w(RB’rZ""'r“)g dr;. integral transforn(IT).

(32) K Direct IT

The higher order terms in the expansi@d) are obtained by (8(ry))

fitting to 1(p) and the whole expansion is integrated analyti- 75 0.457 670 262 0.459 447 637
cally for p>p,. The parametep, is selected differently for 150 0.458 771 435 0.459 653 671
each system as it depends on the quality of the wave function 300 0.459 254 845 0.459 666 311
but, in a wide range of its choice, has no influence on the 600 0.459509 138 0.459 667 951
final result. 1200 0.459 588 096 0.459 668 101

% 0.459 668 21)

IV. RESULTS AND DISCUSSION (8(ry))

The above-described methodology was applied to three 175:50 g'gig Ziiz g'gig 33; 22
atomic(He, Li, Be) and one moleculaiH,) sy;tem. For the|.r 300 0.016 771 8 0.016 743 95
ground states accurate ECG wave functions are available gqq 0.016 758 3 0.016 743 32
from our previous paperésee Table | for detai)s Table | 1200 0.016 761 6 0.016 743 39
lists energy and its estimated accuracy corresponding to the ® 0.016 743 2)
largest expansion used for each out of the four systems. .

The regularization methods were tested first on the he- (P
. : 75 13.184 83 13.234 252
lium atom casdTable Il). For this system very accurate ref- 150 13914 49 13 237 555
erence results, obtained from specialized exponential wave 5., 13:227 20 13:237 908
functions, are availabl&® The direct and Dr values of 600 1393376 13,937 955
(a(rij)) were already published in Ref. 9, but are repeated 1200 13.235 68 13.237 960
here for the sake of completeness. Let us first note that the % 13.237 96%5)
Dirac delta expectation value obtained in the direct ECG 3

; (P(L/r)
computation converges rather slowly, so that from the 600- 75 0.385 92 I 0.397 508
term expansion merely four significant figures of the exact 150 02392 95 0'.397 692
value can be recovered despite the fact that the same wave 5, 0.395 61 0.397 899
function gives eleven figures of the exact energy. Both types o9 0.396 59 0.397 956
of regularization allow us to get another four significant dig- 1200 0.396 34 0.397 944
its. A similar observation can be made f(qnf‘) but this time w 0.397 9%5)

the IT approach is more effective and yields eight significant
figures of the exact value. The expectation valué’(ﬂf/rﬁ)

is particularly slowly convergent and in direct computations ey jation—the regularization enables the stabilization of at

only two S|gr_m‘|cant digits are obtam_ed._ The convergence 'Seast two additional digits. We also present our recommended
dramatically improved after the application of any of the two . . e .
values estimated by an extrapolation to the infinite basis,

regularization methods so that an accuracy of six decimals is . .
regched 4 using data combined from Dr and IT sequences. Our result

In Table IIl the expectation values for the lithium atom (&(r))=35.36985) agrees very well with 35.3700 and
computed directly from the 2000-term ECG wave function35-3695 derived from the CI wave function expanded in
and by means of the regularization methods are confronteglater-type orbitals obtained by Burffeand Esquivel and
with the very accurate results obtained by Yan and Drakdunge?’ respectively.
from an exponential wave functidi.In this case the direct Within the Dr approach, computing the necessary mo-
computations give only three significant figures for the Diraclecular matrix elements involves a numerical integration. For
deltas andp;’) and just the leading figure fd@P(1/r})). We  H,, therefore, we concentrated on the IT method, which is
gain several more decimal digits from the regularized calcumore convenient to apply, and our analysis of the conver-
lations. In the case of lithium the IT approach seems to bgence is based on the IT results given in Table V. The gen-
consistently superior to the Drachmanization, with the eXgrg| observations are similar to that for atoms. Despite em-

ception of the Igtter operator, where both technigues Seem_ﬁfﬂoying energetically extremely accurate wave functitths
perform approximately equally well but the precise compart-1 560-term ECG function yields energy with an accuracy of a

son is impossible due to the uncertainty of the rGferenc?raction of nanohartree the direct computation yields only

value. hree significant digits for the Dirac deltas, four digits i
The largest atomic system considered is beryllium. F0|I ree43|gn| icant digits for the Lirac dettas, four digits in case

Be there are no reference values of an accuracy comparabf (Pi?, and just two for(P(1/r). As we can see from the

to that of He and Li, therefore, the precision of the computedast column of Table V, the regularization allows the next
expectation values can be assessed merely by inspecting thgee significant figures to be recovered. Our recommended
convergence patterns in Table IV. The effectiveness of Dvalues  of  (d(r;;))=0.459 668 21) and  (4(r;;))

and IT methods reminds one of that from the lithium atom=0.016 743 42) can be confronted with 0.459 663 and
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TABLE VI. Convergence op, see Eq(32), for the hydrogen molecule at
R=1.4 bohr.

K p

75 0.442 126
150 0.443 213
300 0.443 680
600 0.443 925
1200 0.444 001

% 0.444 042)

J. Chem. Phys. 122, 184101 (2005)

ever, this approach requires a numerical integration and
therefore becomes less practical. The integral transform of
the expectation values in connection with the corrected
asymptotic expansion turns out to be a convenient alterna-
tive, at least equally efficient in most cases and with a clear
advantage of being easily applicable to atoms and to mol-
ecules. Both methods lead to results two to four orders of
magnitude more accurate than those computed directly. Al-
though we employed in our calculations the exponentially
correlated Gaussian functions to generate benchmark results,
the techniques presented in this work are, obviously, more

0.016 774 0, respectively, computed by Wolniewicz from hisgeneral and can be used with any Gaussian basis. This opens

279-term explicitly correlated wave function of the Kotos—
Wolniewicz type®

For molecules, the expectation value f requires a
slightly different treatment than for atoms. The molecular
asymptotic formula, Eq(31), unlike for atoms, involves an
oscillatory term of the order op™’. The amplitude of the
oscillation is determined by a new quantity=3p;(|Ra
-Rg|), defined in Eq(32) and related to a nondiagonal one-
electron density matrix. In Table VI we show the conver-
gence and the extrapolated valuepdr the hydrogen mol-
ecule atR=1.4. Note that foR,=Rg, p reduces tqd(r;)),
therefore, at small argumengshas numerical values close to
that of (8(r;;)). This relation can be illustrated by comparing
our recommended value pE0.444 042) with the density at
the nucleus equal to 0.459 6682 Modeling the largep
momentum density using Eq31) enables the precision of

(p) to be extended by an additional three digits in compari-

son with the direct evaluatio(see Table V.

the possibility of very accurate calculations of relativistic
and QED effects using standard and well-established basis
sets.
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