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The radiative ortho-para transition in molecular hydrogen is studied. This highly forbidden transition is very
sensitive to relativistic and subtle nonadiabatic effects. Our result for the transition rate in the ground vibra-
tional level ��J=1→J=0�=6.20�62��10−14 yr−1 is significantly lower in comparison to all the previous
approximate calculations. Experimental detection of such a weak line by observation of, for example, cold
interstellar molecular hydrogen is at present unlikely.
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The hydrogen molecule in the ground electronic state can
exist in a nuclear triplet state �S=1, ortho-H2� with the odd
angular momentum L, or in a singlet state �S=0, para-H2�
with the even L. The question we raise is, what are the physi-
cal mechanisms for possible transitions between these two
classes of states? The nonradiative transition, for example, in
interstellar molecular hydrogen is mostly induced by colli-
sions with atomic H. The corresponding rates were obtained
by Sun and Dalgarno in �1�. The radiative transition which is
much weaker can, in principle, take place at sufficiently low
densities and temperatures. The relativistic spin-orbit inter-
action �nuclear spin and the electron momenta� is the most
obvious source of this transition as it mixes slightly the
ortho-H2 and para-H2 states �see Eq. �1��. This effect has
been considered in the original work of Raich and Good in
�2�, although not in a complete and systematic way. It has
happened that a tiny nonadiabatic correction to the total H2
wave function significantly changes the theoretical predic-
tions for this rate. Moreover, the spin-orbit mixing is not the
only effect, which makes this transition possible. There are
also relativistic corrections to the E1 coupling to the electro-
magnetic field which are barely known in the literature.
These corrections in the context of the H2 molecule have
been derived for the first time by Dodelson in �3� using the
Feinberg-Sucher formalism. Here we rederive this result in a
much simpler way. Because of the summation over the infi-
nite H2 spectrum, the calculations of the ortho-para transition
amplitude are not completely trivial. The most elaborate cal-
culations so far, by Raich and Good �2� including Dodelson
corrections �3�, gave the rate of 1.85�46��10−13 yr−1, which
did not include all important contributions. The purpose of
this work is to present a complete theoretical description of
the radiative ortho-para conversion of the H2 molecule, in-
cluding the results of direct numerical calculations of the
transition probability for the lowest rotational levels.

The interaction of an arbitrary molecule with the electro-
magnetic field, whose characteristic wavelength is much
larger than the size of this molecule, including the relevant
spin-orbit interaction is �4�
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In the above, A ,b are the indices of the nuclei and electrons,
respectively, xA ,xb are the coordinates of the nuclei and elec-
trons with respect to the mass center, x�Ab=x�A−x�b, and gA is
the nuclear g factor. Moreover, the electromagnetic fields

E� ,B� and their derivatives are assumed in Eq. �1� to be at the
mass center.

For ortho-H2 �the first excited rotational state� the nuclear
spin S=1 couples to the orbital angular momentum J=1 of
the nuclei, giving the total angular momentum characterized
by quantum numbers F=0,1 ,2. In the para-H2 �the ground
rotational state� the total angular momentum is F=0, there-
fore the one photon ortho-para transition from any other F
=0 level is strictly forbidden, while the F=1 level decays by
the E1 transition and the F=2 level decays by the M2 tran-
sition.

Let us first consider the M2 transition from the F=2 level
of ortho-H2, to the F=0 level of para-H2. This transition
comes from the following interaction with the electromag-
netic field, which is obtained from Eq. �1�:

�H = −
egp

4mp
�sA

j − sB
j �RiB,i

j , �2�

with R=xA−xB and the proton g factor gp
=5.585 694 713�46� �5�. From this Hamiltonian one obtains
the transition rate ��M2���2,
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where R0 is the average distance between protons, and the
last equation holds for the nuclear H2 wave function, which
is strongly peaked around R0, as is the case for the lowest
rovibrational levels.

The calculation of the rate for the E1 transition from the
F=1 level of ortho-H2 to the F=0 level of para-H2 is more
complicated as it includes corrections to the wave function
coming from the spin-orbit interaction. Since it is the 	F
=1 transition, the operators in the interaction Hamiltonian in
Eq. �1� can be simplified, namely, xA

i sA
j →
ijk�x�A�s�A�k /2 and

this Hamiltonian becomes

�H = HLS + e�x�1C + x�2C� · E�

+
e

4mp
�gp

2
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The resulting transition rate ��E1���1 is
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where
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and H is the four-body nonrelativistic Hamiltonian. In order
to simplify the evaluation of Qk we perform the adiabatic
expansion, namely, the expansion of the resolvent in the ki-
netic energy of the nuclei

1

E� − H
=

1

EBO − HBO
−

1

EBO − HBO
��E� − �HM�

�
1

EBO − HBO
+ ¯ , �11�

similarly for 1
E�−H , and the expansion of the wave function

�� = ��x�1C,x�2C;R�0�R�/�4� + ���, �12�

��
k = ��x�1C,x�2C;R�1

k�R� �/�4� + ���, �13�

with 1
k =1Rk /R and with normalization

� dR R20
2�R� =� dR R21

2�R� = 1. �14�

While the exact nonadiabatic correction to the wave function
is unknown, we need only the first order m /mp part of the
correction, which explicitly depends on the nuclear state �6�

��� = −
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We introduce now the perturbed electronic wave functions

�1
i =

1
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�x1C

i + x2C
i �� , �17a�

�2
j =

1

EBO − HBO
h1
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�3
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�R
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to simplify the matrix elements of Qk in Eq. �10�,

���Qk��k� =
1
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�gp

2
− 1��2R0 −

��gp − 1�
mp

2R0

+ �2 gp�
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where we used the commutator

i�p1
k + p2

k,HBO − EBO� = �h2
k , �19�

and

X1 = 
ikjnk��1
i ��2

j �R0
, �20a�

X2 = ��kl − nknl�
ikj���R
l �1

i ��2
j � − ��1

i ��R
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, �20b�
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X3 = ��kl − nknl�
ikj���3
l ��x1C

i + x2C
i ���2

j � + ��3
l �h1

j ��1
i ��R0

,

�20c�

with n� �R� 0 /R0. One notes that derivatives of nonlinear and
linear parameters in � �see Eq. �24�� with respect to R do not
contribute to the above matrix elements, which significantly
simplifies the numerical computations.

Results for Xi can be expressed in terms of dimensionless
factors Fi,

X1 = −
9

m2�4R2F1�m�R� , �21a�

X2 =
9

m2�4R3F2�m�R� , �21b�

X3 = −
2m

�
F3�m�R� , �21c�

which are chosen in such a way that Fi�m�R� vanish at R
=0 and approach 1 for R→�. However, in the case of F2
this large R limit is only a rough approximation, since we
have not been able to perform this limit analytically. We can
now return to Eq. �18� and obtain a compact formula for the
matrix element in the transition rate �1 of Eq. �9�,

���Qk��k� =
�2R0

2mp
��gp

2
− 1� −

9

2

gpF1

�m�R0�3�
−

�

mp
2R0

��gp − 1� − gpF3 +
9

4

gpF2

�m�R0�3� .

�22�

Numerical evaluation of the �2 rate according to formula
�3� is straightforward. To obtain the ortho-para energy spac-
ing � and the average internuclear distance R0, we em-
ployed the accurate Kołos–Le Roy–Schwartz interaction po-
tential �7�, which includes the adiabatic and relativistic
energy corrections. With this potential we solved numerically
the radial Schrödinger equation to obtain the energies and
wave functions corresponding to the lowest ortho and para
levels. The numerical values used here are �=2�
�118.49 cm−1 and R0=1.449 a.u., and the resulting M2
transition rate with physical constants from Ref. �5� is

�2 = 1.07�1� � 10−14 yr−1. �23�

The accurate evaluation of �1 and the corresponding elec-
tronic matrix elements Fi in Eqs. �21� is a challenging task.
We have represented the electronic ground state wave func-
tion as well as the first order perturbed functions defined by
Eqs. �17�, in the form of properly symmetrized linear com-

binations �=�kckP̂g,u�k of Gaussian geminals

�k = �kexp�− �kx1A
2 − �kx1B

2 − �kx2A
2 − �kx2B

2 − �kx12
2 � .

�24�

The projection operators

P̂g,u =
1

4
�1 + P̂12��1 � ı̂� �25�

ensure the proper symmetry with respect to the exchange of
the electrons and with respect to the inversion operation,
yielding singlet gerade or ungerade functions. Required �+,
�−, or � symmetry of the electronic wave function was im-
posed by the Cartesian prefactor �k. The linear and the non-
linear parameters were optimized variationally with the goal
function being the ground state energy in the case of the
unperturbed wave function � or pertinent Hylleraas func-
tional

J��k
i � = ��k

i �EBO − HBO��k
i � + 2���Ô��k

i � , �26�

in the case of the perturbed functions �k
i . Table I shows ex-

TABLE II. Numerical values of the optimum goal functions Eq.
�26� and the expectation values comprising the Xi factors Eqs. �27�
in atomic units.

R0=1.449 R=12.0 Asymptotic

EBO −1.174 073 569 −1.000 002 546 −1.0

J��1
x� −3.3582 −4.5241 −4.5

J��1
y� −2.3684 −4.4885 −4.5

J��2
x� −7.87�10−3 −2.22�10−7 0.0

J��2
z� −0.4925 −5.06�10−5 0.0

J��3
y� −2.90�10−2 −0.2500 −0.25

��1
y ��2

z� 0.7824 0.0312

X1 −1.5649 −0.0623

F1 0.3651 0.9975 1.0

��R
y �1

x ��2
z� 0.7467 0.0014

��1
z ��R

y �2
x� 0.0034 0.0002

X2 3.0003 0.0062

F2 1.0142 1.1989

��3
y � �x1C

x +x2C
x � ��2

z� 0.0707 −0.0029

��3
y � �x1C

z +x2C
z � ��2

x� −0.0010 −0.0001

��3
y �h1

z ��1
x� −0.2579 −0.5026

��3
y �h1

x ��1
z� 0.1066 0.4980

X3 −0.3984 −2.0037

F3 0.1992 1.0019 1.0

TABLE I. The definitions of the functions used in the
computations.

�k P̂, Eq. �25� Ô, Eq. �26�

� 1 Gerade

�1
x x1, x2 Ungerade x1+x2

�1
y y1, y2 Ungerade y1+y2

�1
z z1, z2 Ungerade z1+z2

�2
x y1z2−y2z1 Ungerade h1

x

�2
z y1, y2 Ungerade h1

z

�3
y y1, y2 Gerade �R

y
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plicitly the elements defining particular functions with the
assumption that the molecule is placed along the Cartesian X
axis. The unperturbed wave function has been expanded in a
600-term basis set which enables the electronic ground state
energy to be obtained with an error of only 3�10−9 a.u. A
1200-term expansion has been employed to represent the
perturbed functions. Values of the J functionals correspond-
ing to the optimum parameters are displayed in Table II.

The general formulas �20�, in the particular case of the
molecule oriented along the X axis, can be explicitly written
as follows:

X1 = − 2��1
y��2

z�R0
, �27a�

X2 = 4���R
y �1

x��2
z� − ��R

y �1
z ��2

x��R0
, �27b�

X3 = 2���3
y��x1C

x + x2C
x ���2

z� − ��3
y��x1C

z + x2C
z ���2

x�

+ ��3
y�h1

z ��1
x� − ��3

y�h1
x��1

z��R0
. �27c�

Table II contains all the expectation values appearing in Eqs.
�27� as well as the final Xi and Fi values computed at R0
=1.449 bohr. To check the correctness of our codes we per-
formed additional calculations at large internuclear distance
�R=12.0 bohr� and compared the resulting goal functions
and the expectation values with analytically derived
asymptotic values. This comparison is presented in Table II.

Using Eqs. �9�, �22�, and Table II one obtains the numeri-
cal value for the E1 transition rate

�1 = 1.68�17� � 10−13 yr−1, �28�

and finally the rate averaged over the total angular momen-
tum F,

� = �5�2 + 3�1�/9 = 6.20�62� � 10−14 yr−1. �29�

Our result for the averaged transition rate is in disagree-
ment with the result of Dodelson �3�, �=1.85�46�
�10−13 yr−1, which is in turn based on the former work of
Raich and Good �2� and included direct coupling of nuclear
spin to the radiation field. We confirm in this work the exis-
tence of these additional couplings, which here are expressed
by the third term in Eq. �1�. In our opinion, the difference
from our result is due to the omission of the M2 transition,
omission of the nonadiabatic contributions corresponding to
X2 and X3 in Eq. �20�, less accurate �, and a lower accuracy
of the numerical calculation of the matrix elements in Ref.
�2�. In particular, without X3 the overall rate � would be
about 24% larger.

The possibility of the experimental detection of the ortho-
para H2 line is questionable. Much stronger E2 lines have
already been observed at the Infrared Space Observatory
�ISO� and served for estimation of the temperature of inter-
stellar hydrogen clouds and of the ratio of abundance
ortho-H2 to para-H2, which sometimes differs significantly
from the equilibrium one �8�. The much weaker E1 line has
not been observed yet. In fact there is a potential opportunity
related with the Herschel Space Observatory to be launched
in 2008 �9�. Its spectral range covers the ortho-para line at
84.4 �m, but its resolution is, probably, not high enough at
this wavelength.
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Krzysztof Meissner, and thanks the Laboratoire Kastler
Brossel in Paris for kind hospitality during his stay, when
this work was written.
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