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Abstract

A spatially explicit model (MIGRATE) was developed to simulate the spread of a single

species at the landscape scale. Current models such as forest stand models operate at a

very small scale (typically less than one hectare) or at a very large scale as in the case of

biome models. The biome models predict the final outcome to environmental change but

give no indication as to how this state may be reached or how long it will take. The

forest stand Models show how successional changes may occur at a small scale but can

not be used to predict changes involving species migrations that occur over tens of

kilometres or more. MIGRATE is an attempt at bridging the gap between these two

scales of modelling. It incorporates biologically meaningful parameters that have been

identified as being the most important factors in determining migration rates and

patterns.

The two-dimensional version of MIGRATE was applied to the particular problem of the

response of trees to changes in both climate and land use. Data from the Institute of

Terrestrial Ecology were used in order to create a model landscape that could be

considered to represent a real landscape. The use of these data enabled both the effects

of habitat loss and fragmentation and the effects of climate change to be explored. The

simulation modelling work concentrated on the migration of Tilia cordata since its

ecology is particularly well documented and its response to climate well understood.

Results from these simulations showed that habitat loss and fragmentation could have a

significant effect on the ability of trees to respond to future climatic change.

A one-dimensional version of MIGRATE was also developed as a tool for investigating

the sensitivity of the model to the values given to its parameters. The palaeoecological

record of the response of trees to past climatic change has indicated that they migrated at

the remarkably rapid rates of 100 - 2000 m yr- 1 (Huntley and Birks, 1983). However, due

to difficulties in interpreting the fossil record there are areas of uncertainty regarding the

exact nature of their migration. MIGRATE was used to attempt to address the particular

question of whether migration occurred as a continuous front or by the establishment of

small isolated populations with gradual infilling.

Attention is given both in the literature review discussed in Chapter 1 and in the field

work described in Chapter 3 to the measurement of propagule dispersal distances since

dispersal is believed to have played an important role in facilitating the rapid migration of

trees in response to past climatic change.
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CHAPTER 1

INTRODUCTION

This chapter starts with a brief introduction to the subject area focussed on by the

research presented in this thesis. The remainder of the chapter then provides reviews of

the various topics relevant to the research.

1.1. General Introduction to the Area of Research

It is known from palaeoecological evidence that species responded to post-glacial

climatic change through shifts in their distribution which enabled them to track the

climate to which they are adapted. This change in distribution has been referred to as

migration (Huntley and Webb, 1989). The research presented in this thesis has focussed

on the development of MIGRATE, a simulation model which produces graphical output

of the rates and patterns of the migration of a single species based on its reproductive

and dispersal ecology and its interaction with the environment. It was intended that

MIGRATE should be a spatially explicit model, operating at the landscape-scale. Current

models operate at a scale which is either very small (for example, forest stand models) or

very broad (for example, biome models). MIGRATE therefore represents an

intermediate between these two extremes. Existing models will be discussed in order to

put the MIGRATE model into context. It was the hoped to use MIGRATE to try to

provide answers to some of the questions that the palaeoecological record can not

satisfactorily answer alone, for example, did post-glacial migration occur by the

progression of a steep continuous population front or by the establishment of small

isolated populations with gradual infilling. In addition to using MIGRATE as a tool for

investigating the processes involved in migration it was hoped to carry out some

simulations which would enable investigation of the response of trees to both the effects

of habitat loss and fragmentation as seen in the modern day landscape and the effects of

anthropogenically induced global climatic change predicted for the next century. In

conjunction with the modelling work, it was hoped to obtain values for the dispersal

parameters required by MIGRATE through field studies. This area of research was given

particular attention since early work by Skellam (1951) showed the importance of

dispersal in facilitating the rapid rate of post-glacial migration of oaks.
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1.2. Introduction to Ecological Modelling

The application of models to scientific problems is an area which has grown rapidly

during the last forty years. Its development has been enhanced by advancements both in

mathematical techniques and computer technology. A model may be defined as any

abstraction or simplification of a real system (Hall and Day, 1977). A mathematical

model is one in which the relationship between defined entities is described by a

mathematical expression. One of the earliest and best known biological models is the

Lotka-Volterra model which uses a pair of simultaneous differential equations to

describe the relationship between predator and prey. Since this early model, ecological

models have been developed to simulate a wide variety of ecological processes. The

journal "Ecological Modelling" is dedicated to the subject.

Models provide scientists with a means of conceptualising, organising and

communicating complex phenomena. This is particularly relevant to ecologists since

ecological processes are often very complex and involve the interactions between a wide

variety of organisms and their abiotic environment. Such interactions may be dynamic

(i.e. vary with time) and may exhibit feedback mechanisms. In developing and

experimenting with ecological models, ecologists may also increase their understanding

of ecological systems. Many ecological problems are too complex to be solved by

commonsense rules of thumb or by intuition. Models therefore provide a tool for

predicting the consequences of an action that would be expensive, difficult or destructive

to perform upon the real system. Ecological models have been used to predict the

environmental impact of proposed actions by man, for example, in assessing the effect of

electric power plants on aquatic environments. Hall and Day (1977) give case histories of

the development and use of liarious ecosystem models.

More recently, spatially explicit models have been used as a tool for studying population

dynamics in a heterogeneous landscape (Dunning et al., 1995). These models incorporate

the reproductive and dispersal characteristics of the species being modelled. The real

environment is represented as a grid-based map which is- created using a geographic

information system. Such models have been used for making qualitative predictions

regarding the response of one or more species to environmental change. In order to

obtain quantitative predictions more accurate estimates of the parameter values are

needed together with testing and further refinement of the models themselves. Some

spatially explicit models are currently being applied to species conservation problems, for

example, the effect of land management plans on the distribution of the northern §potted

owl (Strix occidentalis) in Oregon and the control of the exotic bush lupin (Lupintis
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arborea) in California with the view to conserving the native dune plant, Menzies'

wallflower (Erysimus menziesii) with which it competes (Turner et al., 1995).

The use of sensitivity analysis in which parameter values are varied in isolation and

combination enables identification of those parameters where accurate values are most

important (Conroy et al., 1995). Most ecological data, especially those on dispersal

distances, are of poor accuracy (Mollison, 1991) so sensitivity analysis is a useful tool for

determining where efforts in improving parameter estimates are best targeted. Model

validation involves comparing the output of the model with independent observations.

However, a good agreement does not necessarily imply that the model is correct, it could

be coincidental. It is also possible for more than one model to give the same outcome

(Conroy et al., 1995).

Theoretical modelling and experimental research should be considered to share many

similarities (Caswell, 1988). Models are constructed to improve our understanding of

theoretical problems in the same way that experiments are used to increase our

understanding of empirical problems. The same general principles which are used in

experimental research can be applied to modelling.

1.2.1. Modelling Terminology

Stochastic versus Deterministic Models

There are two main types of model, deterministic and stochastic. Deterministic models

always produce the same output for any given input. They do not therefore take into

account the inherent variability of natural systems. Stochastic models, however,

incorporate probabilities and random numbers with a statistical distribution. They are

usually executed several times in order to obtain an average or 'most likely outcome'. The

main advantage of stochastic models is that they can give an indication of the range and

frequency of possible outcomes. It may be very important to know what the rare

extremes might be. Stochastic models should only be used when chance plays an

important role in the problem being modelled (Starfield et al., 1990). Mollison (1986)

stresses the importance of incorporating the effects of chance, especially when

populations are small. The case for using a stochastic model needs to be carefully

considered. In some cases deterministic models can be regarded as approximating a more

detailed stochastic model. For example, if a population never becomes too small, then a

deterministic model may closely resemble its stochastic equivalent (Renshaw, 1991). In

order to test whether or not a deterministic model is an accurate predictor of what may

3



happen in reality it is necessary to check that a series of results from a stochastic version

of the model lie close to that predicted by the deterministic model (Renshaw, 1991).

Simulation versus Analytical Models 

Models may also be classified as analytical or simulation models. Analytical models

attempt to describe the whole problem using a single mathematical equation. Simulation

models, however, break the problem down into smaller components, each of which is

then represented mathematically. Models may be subdivided further according to the

branch of mathematics they employ (Jeffers, 1982).

Variable Types

Models are composed of state variables, driving variables and output variables. The

measurable properties (for example, biomass, age, number of individuals etc.) are the

state variables. Their value varies with time in accordance with changes in other variables

which constitute the system. The complexity of a real-world system may be simplified by

aggregating processes and components that are similar into single state variables. Some

aggregation may be necessary as data may not be available to provide estimates for all

the required parameters. The degree of aggregation possible also depends on the output

required. Driving variables are those which act upon the system from outside, for

example, climatic factors. They may also be referred to . as forcing functions or

exogenous variables. The output variables are the quantities that the model is required to

predict.

1.2.2. Outline of the Tasks Involved in Modelling

The process of developing a mathematical model may be broken down into a series of

logical steps (Jeffers, 1982).

1. The setting of goals and objectives and definition of boundaries.

2. The production of a written description ("word" model) which describes what is

known about the system to be modelled. This should include the components,

interactions and mechanisms that operate and may state any assumptions that are to

be made. It may be based on pure logic or experience/data already collected.

3. The production of a diagrammatic model which takes the form of a flow chart and

may use special symbols to indicate the relationship between variables.
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4. The construction of mathematical formulae which describes the relationships

between the variables.

5. The implementation of a computer program which incorporates the mathematical

relationships.

6. The validation of the model. This may involve checking the results of the model

against existing data which have not been used in the determination of any of the

model's parameters or using the model to make predictions which may be compared

with the real system when such conditions occur or are made to occur in the future.

The Institute of Terrestrial Ecology has produced a checklist of points to consider when

modelling (Jeffers, 1982).

1.2.3. Simple versus Complex Models

Ecological models have been the subject of much criticism, often on the grounds that

they are not sufficiently realistic to be applied to real situations. Even some of the most

widely accepted models such as the Lotka-Volterra predator-prey model and the density

dependent stock recruitment model used in fisheries are only superficially supported by

data from the literature (Hall, 1988). The data used to support some of the historically

most influential models used in ecology are reviewed by Hall (1988). Abstract models

such as these are often so general that they omit the key factors of specific situations. In

order to make abstract models more realistic they need to explicitly consider the

individual processes which make up the system. A realistic model is one that accounts for

as much of the knowledge of a population or community structure and function as

possible. Therefore in order to be realistic, models are often complex (Onstad, 1988).

DeAngelis (1988) discusses an approach based on envirograms for breaking up the

problem to be modelled into its mechanistic components. An envirogram has been

described as "a dendrogram whose branches trace the pathways from distal causes in the

web to proximate causes..." (Andrewartha and Birch, 1984). Only when a model includes

all of the process known to be involved in the system being modelled can the model be

used as a tool for making predictions. However, before this is done, the model should be

tested as far as possible using data from the field in order to verify that all the important

processes are being correctly modelled. In the absence of sufficient data and/or tested

ecological theories, it may be necessary to develop simple models and then let empirical

testing indicate the limits of applicability (Onstad, 1988).
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Mollison (1986) emphasises the importance of keeping the structure of models as clear

and simple as possible. For example, the components of a model of population spread

should have straightforward ecological interpretations such as, net population growth

rate, dispersal distribution etc. It may be found that the results of a model with a large

number of parameters actually depends on a subset of parameters which dictate the

model's behaviour. It may also be more difficult to analyse the behaviour of a model with

a large number of parameters. In modelling the spread of rabies, Murray (1987) warns

that:

"a model which incorporated all the possible aspects of the epidemic would be impossible

to use, since nothing would be known about many of the parameters, nor would there be

much hope of estimating them with the data available."

Rastetter et al. (1992) discuss ways in which fine scale ecological knowledge can be

aggregated and used in coarser scale ecosystem models. They suggest that aggregation is

likely to result in some loss in model accuracy, however, this may be balanced by the loss

in precision which would have arisen through the accumulation of errors associated with

the estimation of the larger number of parameters in the more complex model.

More complex models are usually easier to relate to realistic situations and have

parameters which are easier to measure (Onstad, 1988). However, if the required

parameters are difficult to measure or have a high degree of variability then the predictive

value of the model will be reduced. Simple models are highly aggregated and can

therefore only be applied to the specific situations for which their parameters were

determined. They can, however, be useful in enabling one to understand the relative

importance of the components making up the system being modelled.

In conclusion, it seems that a sensible compromise needs to be made in deciding how

complex a model should be. This decision should be based upon the depth of

understanding of the system being modelled and the accuracy with which the required

parameter values can be determined.
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1.3. Historical Record of Tree Response to Climatic change

There is a large amount of fossil evidence mostly in the form of pollen which can be used

to gain an insight into the post-glacial response of plants to climatic change. In particular

the pollen record provides data on the rates of geographic spread, population growth and

the competitive interactions of migrating plants (MacDonald, 1993). It has been

suggested that palaeoecological studies of the response of plants to post-glacial climatic

change may provide an understanding as to how plants may respond to future climatic

change. However, the interpretation of the pollen record is not easy as there are many

potential sources of uncertainties. The application of palaeoecology to the study of plant

invasions and the problems involved in interpreting the pollen record have been reviewed

recently by MacDonald (1993).

1.3.1. Past and Predicted Future Climatic change

According to the Milankovitch Theory, historical climatic changes have been induced by

changes in the orbital geometry of the Earth. These cycles produce glacial periods lasting

approximately 100,000 years and interglacial periods lasting approximately 15,000 years

(Gribbin, 1988). It is now generally believed that the anthropogenic increase in the

concentrations of greenhouse gases will cause a warming of the Earth in the next century

(Ratcliffe, 1995). The Intergovernmental Panel on Climate Change (IPCC) predict that

an effective doubling of carbon dioxide concentration will occur by between 2030 and

2050 if present trends continue. Predictions made using General Circulation Models

suggest that a doubling in the concentration of carbon dioxide will cause global mean

temperatures to rise by around 1.5-4.5°C. The IPCC best guess is a 2.5°C increase in

global mean temperature (Houghton et al. 1990, 1992). The variations in the GCM

predictions are largely a consequence of the uncertainties associated with the modelling

' of moisture, clouds and changes in albedo (Ratcliffe, 1995). The GCMs also predict that

the warming will be greatest near the poles and that there will be changes in precipitation

and prevailing winds. There may also be an increase in the number of storms. The rate of

predicted climatic change due to an increase in greenhouse gases is likely to be 10-100

times faster than the rate of post-glacial warming (Schneider, 1989).

1.3.2. Palaeoecological Evidence of Past Response to Climatic change

The palaeoecological record provides a valuable resource for studying the response of

plants to the climatic changes of the past. Much of the evidence comes from the

7



palynological record as pollen grains have been well preserved in the fossil record.

Various workers (for example, Huntley and Birks, 1983; Birks, 1989; Davis et aL,

1991) have used pollen data to map the range extension of trees since the last glacial

maximum (18,000 yr. BP). The remains of fossil tree stumps have also been studied

(Gear and Huntley, 1991). The results of such studies have enabled ecologists to

understand how trees have responded to climatic change in the past and therefore predict

how they may respond in the future.

The palynological record has been used extensively to show the response of different

taxa to climatic change. Huntley and Birks (1983) have produced isopoll maps for

European taxa. These show the spatial distribution of a pollen taxon and its relative

abundance pattern. A similar technique adopted by Davis for North America uses

isochrone maps in which isolines are drawn to connect localities showing a first

consistent sharp ten fold increase in pollen values at the same time (for example, Davis

1981, 1983a). Birks (1989) has also used isochrone maps to show the migration of trees

in the British Isles.

1.3.3. Difficulties in Interpreting the Pollen Record

Very low pollen counts may be due to either the presence of small local source

populations or long-distance dispersal from a large population: It is often not possible to

decide which case applies. The use of different criteria for determining the presence of a

plant species near a fossil pollen site may result in markedly different reconstructions of

plant migration. For example, Davis (1983b) mapped the spread of Fagus grandifolia in

North America as occurring as a gradual northward migration, however, Bennett (1985)

produced a map for the same region and concluded that there had been an early rapid

spread of Fagus grandifolia through the establishment of small isolated populations.

These two different reconstructions are a result of the fact that Davis (1983b) used the

time at which there was a sharp increase in Fagus pollen whereas Bennett (1985) used

the first continuous deposition of pollen (MacDonald, 1993). Davis considers the early

deposition of small quantities of pollen to have been a consequence of dispersal from

large distant populations, whereas Bennett believes it to have been due to the local

presence of trees.

Davis et al. (1991) have investigated the problem of determining range boundaries from

the fossil record. They compared U.S. Public Land Survey maps of tree distribution prior

to clearance by man with pollen data from the same period. This enabled them to identify

an area 20 km wide which enclosed the range limit of Fagus and Tsuga. Pollen counts
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were expressed as percentages of the total arboreal pollen grains present in the sample.

At least 300 arboreal pollen grains were counted. Intermediate pollen of 1-4% lying

within 20 km of the limit were bounded by high pollen counts of greater than 4% within

the species range and very low pollen counts of 0-1% 20 km beyond the range limit. It

was not possible to identify small outlying populations within 20 km of the main

population limit due to the blurring effects of pollen from the main population. Very low

pollen counts (0-1%) outside the main population limit may provide evidence for small

outlying populations or a very sparse distribution of the taxa. However, in order to

support the hypothesis of the existence of small outlying populations it is necessary to

use a dense sampling grid in order to show that the proposed outlying population is

surrounded by an area of consistently lower pollen count. This is not often possible due

to a lack of suitable sites (MacDonald, 1993).

Taxa also vary in the relative amounts of pollen they produce, how far their pollen may

be dispersed and how well it is preserved in the fossil record. All these factors need to be

taken into account when interpreting the fossil record (Sauer, 1988 pages 145-146). For

example, the pollen deposited in lakes comes from plants growing within a few metres to

tens of kilometres from the shore. It has been shown that the size of the pollen source

area for a lake is dependent on the settling velocity of the pollen taxon and the diameter

of the lake (for example, Prentice, 1988).

Plant population densities of less than 1 ha-' can not be reliably detected in the pollen

record. This means that a species could exist undetected outside the range boundary

determined from the pollen record (Bennett, 1986). Differences in population growth

rates might affect the time between when a species first invades and when it is detected in

the pollen record. This time lag is of the form:

t lag = aa
-1
	

(1.1)

where t iag is the lag between the establishment of the species and the time when the

population density reaches the required size for registration in the pollen record, a is a

constant related to the population density required for the detection of the species in the

pollen record and a is the intrinsic rate of population increase (MacDonald, 1993).

Regional differences in population growth rates may therefore produce spurious

estimates of migration rates.

Another area of uncertainty lies in the form of the relationship between pollen abundance

and plant population size (Huntley, 1992). Bennett (1983, 1986, 1988a), suggests that

the sigmoid curve of pollen accumulation rates is a result of local population -growth

whereas Davis and Sugita (submitted) suggest that it is a consequence of the linear
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increase in the area occupied and that the actual shape of the sigmoid curve is determined

by the migration rate, the dispersability of the pollen and the size of the lake from where

the pollen sample was taken. However, in contrast to Bennett (1983, 1986, 1988a),

Davis and Sugita (submitted) consider migration to occur by the progression of a well-

defined steep population front. MacDonald (1993) suggests that the form of the

relationship between pollen abundance and population size could be highly .dependent on

the spatial configuration of invading plants relative to the sampling site. If population

growth occurs by the establishment of many small populations then the pollen record

may provide a reasonable estimate of plant population growth rates. Under these

circumstances the potential bias introduced by the leptokurtic pollen depositional

gradients will be mitigated by the contemporaneous establishment of both nearby and

distant individuals (MacDonald, 1993).

Other areas of uncertainty include the reliability of the radiocarbon dates from lake

sediments and the effect of sediment mixing. Finally, some pollen grains can only be

identified down to the level of genera (for example, Pinus and Quercus) so any

reconstructions based on the pollen record may reflect the response of more than one

species and must therefore be interpreted with caution (MacDonald, 1993).

1.3.4. The Response of Trees to Climatic Change (Migration versus Evolution)

The palaeoecological record indicates that species respond to climatic change by

"migrating". Palaeoecologists have used migration in this context to describe the

movements of populations of forest trees in response to long-term environmental change

(Huntley and Webb, 1989). Migration enables species to track environmental change and

thus continue to occupy the environmental space to which they are adapted (Huntley,

1989). Some workers prefer to refer to "spread" or "range extension" to describe the

establishment and directional movement of a taxon into a new geographical area (for

example, Bennett, 1985; Birks, 1989). Diffusion has also been used to describe species

spread by Pielou (1977).

Huntley et al. (1989) have used pollen response surfaces for Fagus to show that climate

is the major determinant of its distribution and that it responded to past climatic change

by migration rather than evolution. Pollen abundance was plotted onto a graph with

mean July temperature and mean January temperature forming the axes. Response

surfaces produced for Fagus spp. using contemporary data have been used to

successfully predict the present pollen abundance pattern using current climatic data.

This implies that climate plays an important role in determining the present patterns of
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distribution and abundance. In addition, response surfaces for Fagus in North America

correctly predict the distribution of Fagus in Europe and vice versa, despite the two

species having been separated between 25 and 10 My ago. This therefore supports the

theory that trees respond to climatic change by migration and not evolution.

Present knowledge of dispersal, vegetation dynamics and population growth also

supports the hypothesis that trees respond to climatic change by migration and not

evolution. The long life span of trees probably acts as a major limitation on their ability

to evolve. The rates of evolutionary change are too slow to enable species to respond to

climatic change (even though the cycles of climatic change are in the order of 100,000

years). However, species have evolved over time to deal with climatic change by

developing mechanisms which facilitate migration (Huntley and Webb, 1989).

A comprehensive account of plant migration is given by Sauer (1988). The descriptions

of migration illustrate the importance of long-distance dispersal agents. Birds and

humans are thought to have often played a significant role. In the northern hemisphere,

north flowing rivers were also believed to have been important.

1.3.5. Rates and Patterns of Migration

From isopoll and isochrone maps it is possible to calculate the migration rates of trees as

being in the order of 100-2000 m yr- 1 (Huntley and Birks, 1983). The consistency of

these realised rates between different geographical areas implies that these rates may be

the maximum achievable. Bennett (1986, 1988a) suggests that these rates may not be

equal to the rate of migration at the range margin because pollen levels there are too low

to be recorded in the fossil record. He therefore suggests that rates of spread determined

from the pollen record should be referred to as rates of spread of the taxon at a given

threshold density above which the taxon can be detected. It is quite possible that the

spread of a species may have taken place at population densities too low to be visible in

the pollen record (Bennett, 1986, 1988a, b).

The maximum migration rates simulated by a model of tree migration in response to

climatic change should be comparable with those estimated for post-glacial migration

since these are thought to represent the maximum rates achievable. However, it is

unlikely that trees will be able to migrate as fast as they did during post-glacial warming

due to a reduction in natural dispersal agents and a decline in the availability of suitable

sites (Davis, 1989). Man-made features of the modern environment, such as areas of

intensive agriculture and urbanisation may pose significant barriers to species trying to
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migrate between fragmented habitats. Future changes in land use could be important in

governing the rates of migration, for example the creation of wildlife corridors and tree

planting schemes such as the creation of community forests.

Two models have been suggested for the pattern of tree migration. The outlier model

suggests that populations spread by the formation of small outlying populations with

gradual infilling. Supporters of this model (for example, Godwin, 1975; Watts, 1973;

Tsukada, 1982a, b; Bennett, 1983, 1986, 1988a, b) believe that the initial low pollen

abundance values are due to the presence of a small number of local trees and that the

subsequent sigmoid pollen abundance curve is a direct result of local population increase.

The continuous front model supported mainly by Davis (for example, Davis, 1976, 1981,

1983a, b; Davis and Sugita, submitted), predicts that migration occurs as a more or less

continuous front and that the initial low pollen abundance values are due to the long

distance dispersal of pollen. It is important to consider the pattern of migration in the

context of scale, since the discontinuous expansion of a range limit may appear to be

continuous at a broader scale.

Isopoll and isochrone maps imply that populations migrate as a continuous front,

however, if as Bennett (1983, 1986, 1988a, b) suggests, there is a sparse distribution of

trees beyond the range limit deduced from the pollen record, then migration may have

occurred by the expansion of small populations of trees beyond the range boundary of

the main population. If Bennett is correct then the rate of migration as detected by the

pollen record will be limited by the rate of population increase and not by dispersal. The

realised rate of spread may also be greater than the rate determined by the pollen record

if spread occurs by the establishment of small outlying populations with gradual infilling.

Mack (1985) has shown that many small isolated populations spread faster than a large

single population. This is because many small populations have a greater total

circumference than a single large population occupying the same total area, therefore a

greater proportion of their propagules fall into the adjacent unoccupied areas. Therefore

relatively rare long-distance dispersal events coupled with local population increase and

spread may help to explain how the fast post-glacial migration rates were achieved

1.3.6. Individualism

Isopoll and isochrone maps also show that species exhibit very individualistic responses

to climatic change (Davis, 1976; Huntley and Birlcs, 1983; Birlcs, 1989). The

individualistic nature of the response means that species have different time constants of
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response resulting in lags in range expansion in the order of years to decades (Davis,

1976). This results in communities being temporary assemblages of taxa (Huntley, 1989,

1991).

1.3.8. Lags in Migration

Migration rates may have lagged the rates of climatic change resulting in a disequilibrium

between the migrating species and climate. The extent and cause of such lags is still

under debate. One school of thought believes that lags may not have represented

disequilibrium but may have been due to the different regional patterns of temperature

and precipitation change i.e. climatic restrictions prevented migration into areas which

may superficially have seemed suitable. Another group believes that the lags were real

and caused by factors such as limitations in dispersal, rate of population increase, soil

development, disturbance and problems in establishing and competing with the present

occupier of space. Prentice eta!. (1991) have used response surfaces which describe the

relationship between surface pollen percentages and climate to infer past climates from

palynological data. Their results lead them to conclude that at the continental-scale with

a time resolution of 3000 years, vegetation patterns responded to continuous changes in

the climate from the last glacial maximum to the present, with lags no greater than about

1500 years.

The role of dispersal and climate in the range expansion of Fagus has been investigated

in North America (Davis et al., 1986). Johnson and Webb (1989) have reviewed the role

of blue jays (Cyanocitta cristata L.) in the post-glacial dispersal of fagaceous trees. They

conclude that dispersal by blue jays should have allowed Castenea, Fagus and Quercus

to migrate in equilibrium with climate.

1.3.9. Comparison with Succession

Much of the subject matter on recent plant migrations is shared with ecological studies of

succession. However, succession is usually regarded as a change in a community as a

whole within fixed spatial borders (Sauer, 1988).
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1.4. Factors Controlling Rates and Patterns of Spread

Both biotic (for example, dispersal and competition) and abiotic (for example, climate

and soil) constraints may have played important roles in influencing the patterns of

spread at different spatial and temporal scales (Birks, 1989).

Work by Brubaker (1986) indicates that the following factors were probably important in

controlling the response of trees to climatic change:

• life spans and length of juvenile period;

• seed productivity;

• seed dispersability;

• phenotypic plasticity;

• genetic variability;

• competition;

• disturbance.

The ecological literature holds a wealth of data on the life history characteristics of many

tree species. There is also a great deal of data to be found in the silviculture literature, for

example, Savill (1991). Researchers at the University of Sheffield have constructed a

database on the field behaviour of most native plants which include some tree species

(Grime et al., 1988; Grime, 1992).

1.4.1. Role of Climate in Controlling Species Distribution

The distribution of species is primarily governed by climate. Minimum winter

temperature, growing degree days and water balance have been shown to be the most

important factors in determining broad-scale vegetation patterns. Evidence supporting

this comes from the results of global vegetation prediction models based on the response

of major vegetation types to climatic variables (for example, Woodward and Williams,

1987; Woodward and Mckee, 1991; Prentice et al., 1992) and from work on climate

response surfaces (for example, Huntley eta!., 1989; Beerling et al., 1995).

Studies of physiology and growth response of species have shown the importance of:

• freezing tolerance;

• growing season length;
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• drought intolerance;

• critical conditions for the completion of particular stages in the life cycle.

1.4.2. Rate of Population Increase

If trees did exist as small isolated populations then the rate of population increase could

have been a major factor limiting spread. The major factors limiting the rate of

population increase are the time taken to reach reproductive maturity, reproductive

output and probability of survival to maturity (Brubaker, 1986).

Bennett (1988a, b) suggests that some species may have existed for some time at

population densities too low to be recorded in the pollen record. As the climate

improved, these populations would have increased in size. Their rate of migration as

determined from the pollen record would therefore have been limited by the intrinsic rate

of population increase.

Bennett believes that the early low levels of pollen recorded in the fossil record represent

the expansion of local tree populations and not long-distance dispersal from a large

distant population as is thought by other workers (for example, Woods and Davis, 1989).

He has plotted graphs of pollen accumulation rate against time and fitted exponential or

logarithmic curves to the data as appropriate. He has then used the data to determine

population doubling rates in the order of 20-500 years.

1n2
doubling time = —	 (1.2)

a
where a = intrinsic rate of population increase.

These results agree with those from modern day observations (Bennett, 1986, 1988).

This approach has also been used by Tsukada (1982a, b), who obtained similar results.

1.4.3. Competition

Competition from existing vegetation may have been an important factor where trees

were migrating into forested areas. In particular, light limits the establishment of new

trees (Brubaker, 1986). Therefore the migration rate of late successional trees may have

been slowed down by competitive interactions with existing species. For example,

Kullman (1981) noted that the rate of expansion of Pinus sylvestris was faster in sparse

stands of Betula pubescens than in dense stands. In general, however, competition is not
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thought to have played an important role in controlling the response to climatic change

during the Holocene. For example, Davis (1976) suggests that the rapid rates of

migration and the apparent ease with which established communities were invaded are

indications that competition was not a major barrier to most invaders. Huntley et al.

(1989) have used climate response surfaces to show that the distribution of Fagus is

primarily determined by climate in both North America and Europe. The distribution is

insensitive to the presence or absence of Tsuga which has a close association with Fagus

in eastern North America.

Evidence of the occurrence of interspecific competition may also be obtained from the

pollen record. If the arrival of a new taxon corresponds with decreases in pollen

concentrations or accumulation rates of taxa already present then there is evidence that

competitive displacement has occurred. For example, Bennett and Lamb (1988) analysed

pollen sampled from sites in Fennoscandia and observed a decrease in the pollen

accumulation rate for Betula which was accompanied by an increase in the pollen

accumulation rate for Pinus. They suggested that this could be explained as the

competitive displacement of Betula by Pinus. Delcourt and Delcourt (1987) used a

population model to test for a competitive interaction between Fraxinus nigra and the

taxa Ostrya and Carpinus. Using values of the intrinsic rates of population increase and

equilibrium densities obtained from the pollen record they fitted values for the

interspecific competition coefficient by OstryalCarpinus on Fraxinus nigra and found

that it was nearly twice as high as the coefficient of intraspecific competition for

Fraxinus nigra. MacDonald (1993) warns that care should be taken in attributing such

observations to competition as other factors such as climate could be involved in the

apparent concurrent rise in one taxon and fall in another.

Prentice (1989) suggests that the broad-scale distribution of taxa is controlled by climate

and not by competition because within large areas of vegetation there are a range of

microhabitats which are suitable for the establishment and growth of different taxa.

However, at the smaller scale of the stand or vegetation patch the species composition

will be determined by several non-climatic factors such as interspecific competition,

succession and time since disturbance. Malanson (1993) -suggests that competition will

probably play an important role in the future, since the predicted climatic changes are

likely to occur over a much shorter time scale than those of the Holocene. Competition is

thought to be more important than climate in determining the southern range limit of

species (in the northern hemisphere).
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1.4.4. Disturbance

Those trees which invaded later were forced to migrate across forested terrain. Huntley

(1989) refers to them as secondary migrants and proposes that their rates of migration

may have been limited by the rate of gap formation in the existing forest canopy.

Experiments with forest simulation models have shown that disturbance plays an

important role in facilitating the change in community composition in response to

climatic change (Overpeck et aL, 1990). Disturbance probably increases the response

time of ecosystems to climatic change by eliminating resident long-lived individuals and

allowing organisms which may be better adapted to the changed climate to invade

(Davis, 1989). It is probable that the future climate will show an increase in disturbance

events. In addition to an increase in the number of gales which create gaps caused by

windthrow, there may be an increase in fire due to a combination of summer drought and

thunderstorms.

1.4.5. Dispersal

The first species of trees to migrate had to become established in unforested terrain.

Huntley (1989) refers to these as primary migrants and suggests that their rate of

migration was limited by their dispersal capacity.

The definition of dispersal as given in the Oxford dictionary implies that something which

was concentrated is spread about more evenly. However, dispersal usually achieves a

strikingly uneven distribution (Harper, 1977). Seed dispersal may be classified into local

dispersal within the present habitat and long-distance dispersal outside the present

habitat. Local dispersal enables propagules to escape competition with parent plants and

reduces density dependent mortality. In contrast, long-distance dispersal may bring about

the colonisation of new habitats. The distinction between local and long-distance

dispersal may be quite arbitrary (Sauer, 1988). Some examples of observations of long-

distance dispersal are given in Table 1.1.

The modern existence of outlying populations of beech and the establishment in the past

of outliers beyond water barriers, implies that long-distance dispersal occurs at a non-

trivial frequency (Woods and Davis, 1989). Palaeoecological research by Davis et al.

(1986) suggested that Fagus (animal dispersed) and Tsuga (wind dispersed) were

dispersed distances of over 100 km. They argue that such long dispersal distances were

not unreasonable as colonies of Tsuga, apparently established within the last several
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thousand years, exist today in Minnesota, 50-150 km west of the main range limit in

Wisconsin. Kinloch et al. (1986) have also suggested that the establishment of a disjunct

population of Pinus sylvestris in Scotland 300 km from the main population in England

was most likely to have been due to rare long-distance dispersal. The alternative

hypothesis that the Scottish population expanded from a small indigenous source which

survived the last glacial period is considered to be very unlikely. Webb (1986) suggests

that tornadoes at the right time could transport seeds of all sizes 50 km or more.

In Europe, the rapid migration rates of Alnus (500-2000 m yr') and Corylus

(1500 m yr- 1) may be explained by transport along rivers. Even a relatively slow flowing

river (1 m s-1) would carry fruit 3.6 km in 1 hour and over 80 km in a single day (Huntley

and Birks, 1983). This mechanism may also explain why such rapid rates of spread are

not observed in eastern North America since many of the major rivers flow eastwards or

southwards (Davis, 1976).

The recolonisation of the volcanic island of Krakatau also illustrates how effective long-

distance dispersal can be (Ernst, 1908). All the vegetation on Krakatau was destroyed by

the volcanic eruption which took place in 1883. Krakatau is separated by 19-25 km from

the neighbouring islands of Sebesi and Seboekoe (half-destroyed by the 1883 volcanic

eruption) and 35-45 km from the nearest points of the Java and Sumatra coasts.

However, despite this an expedition three years after the 1883 eruption found algae,

ferns, mosses and eight species of flowering plants, six of these (two grasses and four

compositae) were obviously transported by air currents since their seeds are light and

show special adaptations to wind dispersal.

Several classic studies on dispersal have been carried out. For example, Ridley (1930)

gives values for the furthest distance covered by a seed from its source for various

species. He notes that the height of a tree is important in determining its maximum

dispersal distance and that the size of a tree (not its age) will determine when it will first

fruit. Another classic account of dispersal is given by Van der Pijl (1972) who describes

in detail the various modes of dispersal. Mechanisms for dispersal include sea and rivers

(hydrochory), animals (zoochory), wind (anemochory) and humans.
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Table 1.1. Some observations of long-distance dispersal events for various wind and animal dispersed

trees.

Species 

Acer pseudoplatanus

Observed long-distance dispersal event

Seeds carried 85 m in a 'tolerably' strong breeze

(Ridley, 1930).

Acer spp.	 Maple samaras found in the Alps which were 4 km

from their nearest source (Vogler, 1901).

Betula pendula and Betula Establishment at low densities at 500+ m from parent

pubescens	 trees (Miles, 1988).

Fagus grandifolia

Pinus edulis

Pinus sylvestris

Jays observed to carry nuts up to 4 km from source

(Johnson and Webb, 1989).

Clark's nutcracker observed caching seeds 22 km from

source area (Vander Wall and Balda, 1977).

Saplings found over 3 km from the nearest seed source

(Welch et al, 1990).

Young trees found up to 810 m from the forest edge in

Tentsmuir in Fife (Smith, 1900).

Establishment at low densities at 500+ m from parent

trees (Miles, 1988).

Pinus spp.	 Individuals frequently recorded at distances of up to 8

km from nearest source (Ledgard, 1988).

Individuals observed up to 25 km from source (W.G.

Lee pers. comm. in Richardson et al., 1994).

Quercus palustris	 Jays observed to carry nuts up to 1.9 km from source

(Johnson and Webb, 1989).

Quercus spp.	 An isolated tree on the island of Hoy in Scotland must

have dispersed at least 16 km (Jones, 1959).
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1.5. Field Studies of Seed Dispersal

Most dispersal studies on trees have involved either single isolated trees (for example,

Cremer, 1965; Augspurger, 1984) or dispersal from the edge of a forest clearing.

Isolated trees may be difficult to locate, especially in regions of low tree diversity and

they may not exhibit recruitment processes which are representative of the species being

investigated. The pattern of seed dispersal from forest margins may be different to that of

isolated trees (Harper, 1977). It is difficult to study a tree in a more or less continuous

stand because of the problem in distinguishing its seed from that of others of the same

species which are dispersing into the same area. This problem could be overcome by

using paints, dyes or isotopes to mark seeds before dispersal (Harper, 1977). Another

approach to this problem has been the application of maximum likelihood analysis to

match values in dispersal functions to observed field observations (Ribbens, 1994). Most

field studies have looked only at primary dispersal i.e. the movement of seeds from the

parent plant to their first site of repose (Chambers and MacMahon, 1994). The subject of

secondary dispersal is reviewed by Chambers and MacMahon (1994) who conclude that

this is an area where much more research is needed if the ultimate fate of seeds is to be

understood.

Various workers ( for example, Roe, 1967; Boyer, 1958; Hughes and Fahey, 1988) have

carried out seed trapping experiments which have shown that seeds are dispersed

according to a negative exponential distribution (i.e. seed density decreases at a constant

percentage over equal units of distance) with half distances occurring in the range 8-68

m. Results from these studies have lead to the conclusion that most seeds fall within a

few hundred metres of the canopy (for example, Boyer,1958; Brown and Neustein,

1972; Mair, 1973; Miles, 1988; Pigott, 1991). Most of the studies on seed dispersal by

trees have been done on commercial forest species since foresters need information on

seed dispersal in order to be able to effectively use natural regeneration as a means for

restocking areas cleared of trees. Isaac (1930) claims to have done the first field study on

seed dispersal. He carefully details the procedures he used, including how to construct

the seed traps, so that they may be followed by subsequent workers. A large number of

studies have since been carried out in the United States, mainly by their Forestry Service.

Very few British studies have been done and most of these have focussed on sitka spruce

(Mair, 1973).

Isaac (1930) carried out experiments in which seeds were artificially released under

known conditions. He showed that a doubling of the height of release more than doubles

the distance of seed dissemination. This is largely due to the higher wind velocities at

20



greater elevations. He also collected data which showed that an increase in wind speed

had it greatest effect on the maximum dispersal distance. These results are given in Table

1.2:

Table 1.2 Relationship between wind speed and dispersal distance for Douglas fir.

wind	 speed mode (m)	 maximum distance

(miles per hour)	 (m)

6.5 300 540

8.0 390 780

23.0 480 960

Mair (1973) used seed traps to investigate the dispersal of sitka spruce (Picea sitchensis)

seeds from the forest edge. A small artificial trial was carried out in which seeds were

released from a height of 15 m under three different, but known wind speeds. The results

from the artificial trial were similar to those obtained from the seed trapping studies of

the natural seed fall. Both studies showed that most of the seed is deposited within 20 m

of the source. During his field studies, Mair (1973) observed the effects of turbulence

which caused seeds to be lifted higher into the air thus increasing their dispersal

potential. Siggins (1933) observed the same phenomenon when carrying out experiments

on the dispersal of conifer seeds.

The dispersal distances measured by Isaac (1930) and Mair (1973) are considerably

shorter than those noted as examples of long-distance dispersal. This may be because the

occasional high winds that result in long dispersal distances occur too infrequently to be

observed during field studies. Turbulence is also thought to be responsible for the

occasional long-distance transport of seeds.

Johnson (1988) has studied the dispersal of Acer saccharum, Fraxinus pennsylvanica

and Tilia americana in abandoned agricultural fields in Wisconsin. The seed source was

either an isolated individual or a row of trees in a hedge row (linear source). Instead of

carrying out seed trap studies, Johnson counted the number of seedlings occurring in

quadrats along transects from the seed source into the abandoned fields. It was found

that the seedling density curves for one-year old and all aged seedlings approximated to

the negative exponential. However, if the survival of the seedlings was followed over a

longer time period then the shape of the recruitment curve could alter significantly due to

density and distant dependent mortality. Johnson (1988) also suggests that the slope of

the seed and seedling density curves should be similar if the micro-environmental
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conditions for germination and survival and the spatial distribution of seed predators are

both reasonably uniform along the distance axis. A similar study has been carried out by

Welch et al. (1990) on the invasion of Scots pine (Pinus sylvestris) into moorland in the

Cairngorms National Nature Reserve in Scotland. They found saplings at distances

greater than 3 km from the source. The major problem with this method of investigating

dispersal is therefore the selection of a suitable study site where these conditions apply.

This type of study could be used to give estimates for the dispersal parameters of trees.

However, the values estimated would depend on the environmental conditions affecting

germination and recruitment as well as the initial seed distribution. It would be better to

separate seed distribution from seedling recruitment since they are affected differently by

environmental conditions. If, however, the initial seed distribution were known then the

probabilities of seedling survival with respect to dispersal distance from the parent plant

could be quantified.

Some work has also been done on the dispersal of seeds by animals. This has either

involved direct observations of animals dispersing propagules or the use of radioactive

isotopes to label propagules. The former technique has been successful in recording long-

distance dispersal events (for example, Vander Wall and Balda, 1977) whereas the latter

has been used to look at more local dispersal distances (for example, Vander Wall,

1992). Johnson and Webb (1989) suggest that for bird dispersed species such as the

Fagaceae the observed dispersal distances will depend on the habitat structure of the

landscape. For example, maximum dispersal distances would be expected in a landscape

where large isolated nut sources are intervened with habitat suitable for nesting.

Propagules dispersed by animals are also often cached in places favourable for

regeneration.

1.6. Models of Seed Dispersal

It is generally accepted that the deposition of seeds .dispersed by wind decreases

exponentially from the source. However, the pattern of seed dispersal by animals may be

different since seeds are more likely to be dispersed at centres of animal activity (Stiles,

1989). Despite this, dispersal models based on stochastic diffusion processes which may

seem more appropriate for wind-dispersed propagules may be a good approximation for

animal-dispersed propagules since, for sufficiently large distances enough "random"

effects would occur to make such models a good enough representation of reality

(Portnoy and Willson, 1993).
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Most anemochorous seeds and fruits are adapted for wind dispersal by having features

which reduce their rate of descent. This makes them sensitive to variations in wind

velocities which are of the same order of magnitude as their terminal velocities (Burrows,

1975). The pattern of propagule dispersal is therefore dependent on air flow and can be

expected to vary between sites depending on meteorological conditions, local

topography and the aerodynamic characteristics of the surface over which dispersal is

occurring.

1.6.1. Empirical Models

Empirical models attempt to fit mathematical formulae to experimentally measured

dispersal gradients. The main disadvantage of this type of model is that they provide no

way of extrapolating from one situation to another based on independently measured

parameters. Empirical models include the inverse power law (y = ax-b) and the negative

exponential (y = ae-br ) both of which have been widely used in dispersal modelling.

These describe the asymptotic distribution of seeds, spores or pollen from a point source

(McCartney and Fitt, 1985, 1986; Okubo and Levin, 1989). Both these models predict

that seed density decreases by a constant percentage over equal units of distance. They

are also examples of the general exponential model:

y ae -h'"	 (1.3)

where y = density associated with dispersal, x = distance from source, n = power

function which determines the shape of the curve and a and b are constants (McCartney

and Fitt, 1985).

In the case where n = 2, the corresponding model is a bivariate normal distribution:

a(—_x2
y	 2 expr)

27r.s	 2s

This assumes that there is a normal distribution around a point source with variance s2.

Although the inverse power law and the negative exponential have been more widely

used, the general exponential model may give a better fit to a given set of data since the

curve can take variable shapes. The inverse power law tends to over estimate deposition

near the source since as x 0, y —> co. It may therefore be unsuitable for spread with

steep density gradients. In contrast, the exponential model tends to under estimate

deposition near the source, but does predict finite values for y at all distances

(McCartney and Fitt, 1985).

(1.4)
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McClanahan (1986) has developed a simple model of seed dispersal based on the

negative exponential model. This model simulates the dispersal of seeds to the

surrounding environment based on the size of the seed source(s) and their proximity to

the area under investigation. The density of seeds arriving at a location is given by:

Qd =Ce-kdi

	

(1.5)

s-

where Qd = density of seeds at distance di from the seed source; k is a measure of the

species dispersal capacity and C = density of seeds at distance zero from the source.

k is equal to the gradient of the logarithmically transformed dispersal curve. It may also

be calculated from:

In 2
k=

	

	 (1.6)
dh

where dh is the half distance of dispersal or the distance where the seed fall is half that of

the source.

This model assumes k to be constant although in reality it varies not only between species

but also as a function of location and time. Therefore if the model is to be used under

different environmental conditions a new value for k must be determined.

McClanahan (1986) used data from the literature on the longleaf pine (Pinus palustris,

Mill.) to assign values to the model's parameters. The results from the model compared

well with the field data although the model had a slower decay rate than is found for field

data. It was suggested that this may be due to the fact that k was estimated from seed

trap studies using a forest edge as the seed source and that the value used for k should be

that determined from a single source as this is likely to differ from that of a linear source.

McClanahan (1986) recommends the use of a curve-fitting procedure which varies the

individual values of k until there is a good agreement between the predicted dispersal

curve and the field observations.

Another technique which has more recently been used for looking at seed dispersal and

seedling recruitment patterns is that of maximum likelihood analysis (Ribbens et al.,

1994). This involves identifying values for the parameters in a function describing

seedling distribution so that the model output most closely matches the observed

distribution This technique does not require the identification of the parent of each

recruit. Field data were collected by counting the number of seedlings in successive 1m2

quadrats along a transect running through mixed stands of adult trees. The location and
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size of every reproductively active tree within 20 m of the quadrat was mapped. The

basic equation for the distribution of seedlings used by Ribbens et al. is:

P=STRHdbh )P —e
1 (-Dm.)

where P = number of recruits; STR = number of recruits produced by a tree of

standardised dbh, in this case 30 cm; dbh = diameter at breast height; fi = a number

which modifies the STR according to a power function of the actual dbh observed; n =

normaliser (ensures' area under curve = 1); D = rate of decline in recruitment number

with increasing distance from parent; M = distance from parent; 0 = determinant of the

shape of the distribution.

The approach used by Ribbens et al. does not deal well with long-distance dispersal

events. They also stress that their results only apply to dispersal and recruitment within

forest stands since more open areas are subject to different weather and wind dynamics.

They found that values of p = 2 and 0 = 3 tended to produce models with the highest

likelihood. By simulating dispersal patterns around single trees, they were able to use the

model to estimate values for the mean dispersal distances of various trees in North

America.

Portnoy and Wilson (1993) have looked at the tail of the distribution curve for various

plant species. The tail was defined as the part of the dispersal curve beyond the modal

distance value. They developed a four parameter model which may have an algebraic or

exponential tail:

fRi. (r)= Br" a e-br` (1.8)

where RT = horizontal distance; B, a, b and c are constants and r is at least 2 or 3

standard deviations bigger than the mean of R T. Algebraic tails tend to be longer than

exponential tails and have greater reach. They suggest that since the ratio of algebraic to

exponential tail probability tends to infinity, the nature of the tail behaviour can have

important implications. They carried out statistical tests to see whether dispersal was

exponential, algebraic or both. For example, if the tail is algebraic then a is not equal to

0. Their results indicated that algebraic tails tend to be more common than exponential

tails, but more data were needed in order to confirm this.

Peart (1985) examines five hypothetical dispersal density functions and their associated

probability functions. The graphical illustrations of the dispersal curves show that the use

of seed density rather than seed number can change the overall shape of the curve,

including the proximity of the peak to the source.

30 n
(1.7)
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1.6.2. Mechanistic Models

Mechanistic models attempt to describe dispersal mathematically using theories based on

the laws of physics. They therefore must incorporate the effects of wind, turbulence and

gravity. The physical models include those based on ballistics and atmospheric diffusion.

The distances seeds are dispersed by wind depends on (Cremer, 1977):

• how fast seed falls through air (terminal velocity) - this depends on the

morphology and weight of the seed (V);

• height of release (11);
• speed and turbulence of wind between ground and point of release (R).

These variables are related by the simple ballistic equation:

x

	

	 (1.9)
VI

where x is the predicted horizontal distance from the seed source to the deposition site

(Pasquill and Smith, 1983). This model has been extended by Greene and Johnson (1989)

to give:

Q  
exp 

ln(x17111Ti ) 2dQ

[ 12-1 a. g 1}dx xcr. V2n
(1.10)

where Q = total number of propagules to be dispersed; x = predicted horizontal distance

from point source; H = release height; Vf = constant descent velocity (terminal velocity);

= geometric mean horizontal wind speed assuming the distribution of wind speeds to

be lognormal; a. = standard deviation of ln(u).

Variation in the terminal velocity between seeds from the same source results in a

distribution of dispersal distances even under steady winds (Isaac, 1930). From equation

1.9, it would be expected that seeds with a low terminal velocity (V) would be dispersed

further than those with a higher terminal velocity. However, field studies by Johnson

(1988) found that Fraxinus disperses further than Acer despite Fraxinus having a higher

terminal velocity. Johnson suggests that this is due to the samaras of Fraxinus having a

greater stability in gusty high speed winds. In addition to this, Fraxinus disperses its

seeds later in the season after leaf abscission and when the average wind velocities are

higher.
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Sharpe and Fields (1982) have used the simple ballistic model in SEDFAL to simulate

the dispersal pattern for a single isolated tree. They reasoned that not enough is known

about wind in forests to enable dispersal to be modelled in a forested environment. A

comparison between simulated results and published data for Douglas fir (Pseudotsuga

menziesit) revealed some disparities. It was suggested that these could have been due to

atmospheric turbulence affecting the length of time in the air, errors in measuring wind

speed during seed flight or not assigning the correct variability to the terminal velocity.

They suggest that a seed dispersal model should account for:

• variable terminal velocity;

• phenology of seed release;

• effect of humidity, temperature and wind speed on seed release;

• coincidence of events leading to seed release with wind speeds and direction

leading to dispersal;

• average wind speeds between the height of release and the ground.

Atmospheric diffusion models have been used to describe the dispersal of light particles

such as fungal spores (McCartney and Fitt, 1986; McCartney, 1991a), pollen

(McCartney, 1991b) and air pollutants (for example, the UK-ADMS model developed by

Meteorological Office). They assume that the particles being dispersed are light enough

to follow air currents exactly and include gradient transfer theory models, Gaussian

plume models and random walk models.

Gradient transfer theory (K Theory) models are based on an analogy with molecular

diffusion as described by the classical diffusion-advection equation. In three dimensions

this equation is very complex, however, it can be simplified to consider particle

movement in the direction of the mean wind speed only. It has been applied to the

dispersal of plant pathogens. Gaussian plume models have been widely used for

predicting the concentrations of atmospheric pollutants, but can also be applied to the

dispersal of other light particles. They assume that the average distribution of particles

across the height and width of a plume downwind from a continuous point source can be

described by Gaussian curves. Both these models assume that the particle release rate is

independent of wind speed which may often be an invalid assumption. They are both

mechanistic models which consider the horizontal and vertical distribution of particles

under the influence of advection and diffusion. The horizontal advective force is mean

wind speed and the vertical advective force is gravity.
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The Gaussian plume model has been modified to derive the tilted-plume model which

takes into account the gravitational settling of heavier particles such as seeds (Pasquill

and Smith, 1983):

Q(x) 1_2	 Vfx /IV—	 e}
v2ncr, xP
	

2o

n17

where Q(x) = concentration of seeds at distance x downwind from point source; H =

source height above ground; V/ settling velocity of seeds; 17 = mean wind speed in the

direction x; n = effective source strength at distance x; cr = 2Ax/,- where A is the

coefficient of diffusion in the vertical direction. A further refinement of this model which

incorporates vertical variation in wind velocities is given by Godson (1957).

Gaussian plume models have been used to predict the mode of the dispersal distances

(Okubo and Levin, 1989; Andersen, 1991). Unlike empirical models they relate dispersal

distance to measurable parameters such as wind speed and settling velocity. They are

both more appropriate to the dispersal of light particles since due to the effects of inertia,

large or heavy particles do not follow air currents exactly. They have been mainly used

for predicting dispersal over flat, uniform terrain.

Andersen (1991) has compared seed dispersal data with the predictions of the Gaussian

tilted-plume, Godson, Weibull and stochastic differential equation (SDE) models. Seed

shadows were generated analytically for the first three models and by the simulation of a

large number of trajectories for the SDE model. The Weibull model assumes that wind

speeds are Weibull-distributed and that seeds are too heavy to be buffeted about

significantly by wind turbulence. The SDE model incorporates the effects of turbulence

by using Brownian motion as a model for the vertical positions of seeds. Andersen

(1991) found that although none of the four models satisfactorily fitted the distribution of

artificially released seeds the SDE model performed the best. The discrepancies were

attributed to inaccuracies in the modelling of turbulence, variations in wind speed during

seed flights and imperfect transfer of momentum from moving air to suspended seeds.

Andersen (1991) considers that the SDE model could be refined to take into account

these factors as well as variations in settling velocities and release heights. A threshold

wind velocity for seed release could also be incorporated in the SDE model. Despite the

promising results obtained from the SDE model, Andersen (1991) concludes that

secondary dispersal may be responsible for the final distribution of many seeds.

A mathematical model has also been developed for the dispersal of seeds by animals from

a single source of a given size (DeAngelis et al., 1977; Johnson et al., 1981). The

28



model traces the movement of an animal assumed to be dispersing seeds through a grid

of cells. The movement of an animal to an adjacent cell is determined by a combination

of its preference for certain habitat types, its tendency to continue forward in the same

direction and the presence of 'attractors' and 'repellers'. At each cell there is a certain

probability that a seed will be deposited. In order to develop a realistic model,

quantitative information is needed on the behavioural interactions of the dispersing

animals with the environment. In the absence of such data, the values of various

probabilities which determine animal movement were estimated using what information

there was in the literature. Further field studies need to be done in order to test the model

and improve its paramaterisation.

Both the animal dispersal model developed by DeAngelis et al. (1977) and the wind

dispersal model developed by Sharpe and Fields (1982) have been considered to be too

unwieldy for use in simulating the dispersal of seeds from more than one tree.

As has already been noted by Andersen (1991), secondary dispersal may determine the

final resting place of seeds. Following initial settlement, seed may blown along the

ground by wind etc. Dispersal along the ground depends on the morphology of the seed

and the nature of the ground's surface. Animals may also play an important role in the

secondary dispersal of seeds, for example, Vander Wall (1992) found that between 95%

and 99% of artificially distributed Jeffrey pine (Pinus jeffreyi) seeds were removed within

two days by rodents. The dispersal models described in this section may predict the

general dispersal pattern, however, in reality this will vary between sites depending on

the speed and direction of local winds and the topography of the area.

1.7. Relationship Between Dispersal and Recruitment

The pattern of regeneration is likely to be highly variable depending on both the shape of

the dispersal curve and the availability of sites suitable for establishment. Bunce et al.

(1990) suggest that the distribution pattern of established plants is unlikely to reflect that

of the seed rain since many factors such as density dependent seed predation, caching by

seed-feeding animals and subsequent density dependent mortality of seedlings and
*

growing plants are involved in determining the final pattern. The number of trees

regenerating depends also on the number of seeds dispersed, the quality of the seed bed

and the proportion of the seeds that will grow into trees (Cremer, 1977).
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Stiles (1989) has suggested that the probability of recruitment should reach a peak at

some distance from the parent. This peak is a consequence of the interaction between the

decreasing dispersal curve and the increase in the probability of escaping predation due

to density dependent mortality.

Howe and Smallwood (1982) discuss three hypotheses for the advantages of dispersal.

The escape hypothesis implies that there is a greater probability of survival for those

propagules that escape the vicinity of the parent. The colonisation hypothesis supposes

that dispersed propagules may arrive in habitats that have recently become suitable and

the directed dispersal hypothesis assumes that propagules possess special adaptations

which ensure they reach sites suitable for establishment. These three hypotheses are not

mutually exclusive. However, they suggest that as forest trees tend to recruit best in

disturbed areas the colonisation hypothesis offers the strongest explanation for dispersal.

Augspurger (1984) has looked at the relationship between initial seedling density and

seedling survival after two months and one year in nine species of wind dispersed tropical

trees. All but one species supported the escape hypothesis i.e. dispersal increases the

probability that offspring escape density dependent and/or distance dependent mortality

that may be higher near the parent.

The final recruitment pattern is therefore determined by the distribution of dispersed and

germinated seeds and the relative survival probabilities of seeds and seedlings at various

distances from the parent. In addition, recruitment may be enhanced for seedlings which

germinate in favourable conditions (colonisation hypothesis), for example, for a shade

intolerant species light gaps would be particularly favourable. In this case, the

recruitment pattern would be dependent upon the location of light gaps.

Ribbens et al. (1994) list the following sources of spatial variation in recruitment:

• abundance and fecundity of parents;

• primary dispersal patterns;

• secondary dispersal agents;

• seed predation;

• distribution and frequency of microsites favourable to establishment.

Harper (1977) suggests that it is quite possible that seed predators fail to affect plant

distributions because they rarely push the density below that at which competition

ultimately limits occupation of space. A recent review of seed dispersal and regeneration
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by Wilson (1992) concludes that there is still much remaining to be discovered in the

field of dispersal ecology. In particular, very little is known about how the probability of

survivorship changes with increasing dispersal distance (Willson, 1993).

1.8. Models of Range Expansion/Invasion

Much work has been done on the spread of invading organisms (for example, the

SCOPE programme on ecology of biological invasions). Such studies could be applied to

tree migration in response to climatic change and are reviewed in this section. Hengeveld

(1989) provides a comprehensive review on the subject of biological invasions.

Mollison (1986, 1995) breaks down invasion into four phases:

• arrival;

• competitive ability to succeed initially;

• rate and manner of spread;

• competitiveness to persist.

The first three of these show similarities with the spread of disease. Studies in
I
epidemiology have helped improve the understanding of invasion and some of the most

sophisticated models have arisen in the context of epidemics (Mollison, 1986). The

application of contact models and diffusion models are reviewed by Mollison (1977).

Diffusion models have been extensively applied to population spread. They may be

considered to be an approximation of the contact models which have been used in

epidemiology studies (Mollison, 1977). Some examples of the application of diffusion

models to biological invasions will be given in the following section.

1.8.1. Application of Knowledge from Diffusion Studies

The simplest model of spread relates to the spreading out of a homogeneous population

into a homogeneous environment. If the size of the population is assumed to remain

constant and to be spreading in a homogenous environment then the following equations

can be applied (Levin, 1986 and Pielou, 1977 p 170). In one dimension:
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This equation is often referred to as Fick's equation of diffusion. It can be extended to a

two dimensional system as follows:

as r
1-.1
fa2s

+
 a)2s

.2	-	 ..*	 (1.13)
at	 ax2 ay`

where S = population density; t = time; x and y are the spatial coordinates; D = dispersion
rate which is analogous to diffusivity or coefficient of diffusion and is sometimes also

referred to as the mean square dispersion per unit time.

When the spreading population is moving randomly (i.e. behaving in a Brownian fashion)

then a solution for equation 1.13 is a normal probability function with mean zero

(Okubo, 1980):

Af —x2
S(x,t) ,— exp{—}}

47tDt	 4Dt

where M = total number of individuals at time t = 0 and variance = cr: — 2Dt

In two dimensions, the corresponding solution is:

M 
exp{ 

—r2 
1S (r,t) =

47tDt	 4Dt

where horizontal variance = cr 2= 4Dt,

(1.14)

(1.15)

These basic equations can be easily modified to take into account variations in the

coefficient of diffusion (for example, due to variation in habitat) and also population

growth, for example, see Levin (1986) and Okubo (1980). The latter gives a

comprehensive account of the application of mathematical models of diffusion to

ecology. Hengeveld (1989) also discusses the application of diffusion models to the topic

of biological invasions.

Two density distributions may be pooled together to form a compound distribution. This

may be particularly useful if a population has two or more diffusion coefficients. This

approach has been adopted by Allen (1991) in the modelling of active and passive

diffusion of Opuntia imbricata. The shape of the compound distribution has been shown

to be leptokurtic (Okubo, 1980). A compound distribution could be used to model local

dispersal events coupled with rare long-distance dispersal events.

These diffusion equations predict that the population (at a given threshold density for

detection) will spread forwards as a continuous front with a velocity of:

32



C = 2j-: -1) (1.16)

where C = rate of spread; a = intrinsic rate of population increase and D = coefficient of

diffusion. This simple equation illustrates the importance of both population growth and

dispersal in range expansion.

The diffusion equation was first studied by Kendall (1948) and then independently by

Skellam (1951) and is a simplification of the earlier genetic equations used by Fisher

(1937) and Kolmogoroff et al. (1937). Skellam was able to use the diffusion model to

show that animals must have played an important role in the dispersal of oak during its

post-glacial migration.

A graph of the square root of the area occupied against time is linear, the gradient being

equal to:

cl,,117--ea
- 2 7.Fc—cD	 (1.17)

dt

(Okubo, 1980 p108). This equation assumes that the population is increasing as a series

of continually expanding circles. An incorrect formula for the gradient (-1 -c—cD) has been

used by several workers including Williamson and Brown (1986) and Birks (1989).

Equation 1.17 can be confirmed as correct as follows:

Vrr-e-a- = r .137-c

Putting r/t = C into equation 1.17 then:

r =2t-src---ED

.-. ,217-1,--ea = 2t 7.FcED

d.r111----ea
..	 - 2 nrc----0

dt

The assumption of random movement may be a valid simplification when looking at

population spread. Although the individual patterns of movement may not be random

(for example, an animal may use information from its surroundings when moving around

the environment), the overall pattern produced by the population may approximate to

randomness. This simplification offered by the diffusion model does seem to offer a good
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approximation to population spread (for example, Lubina and Levin, 1988; Andow et

al., 1990)

The range expansion of the sea otter has been investigated by Lubina and Levin (1988).

One of the reasons for choosing this species was that its spread can be considered to be

one-dimensional (i.e. along the coast). This therefore avoids the complications that occur

with two-dimensional spread such as physical barriers obstructing the diffusion process

and causing a distortion in the spread of the population. They predicted rates of spread

by substituting estimates for a (rate of population increase) and D (movement in north

and south of range) in equation 1.16. The predicted rates compared well with those

observed. The model correctly predicted the faster rate of expansion in the south. The

faster expansion rate in the south can probably be accounted for by the difference in the

diffusion constants which arise because the otters move around more in the less suitable

habitat in the south of their range. Other explanations could include habitat differences in

mortality and ocean currents (advective force) tending to promote southward movement.

More studies need to be carried out to provide the independent parameters necessary to

resolve this issue.

Diffusion models have also been successfully applied to the spread of invading organisms

in two-dimensions. For example, Andow et al. (1990) have examined the match between

the observed rate of spread of the muskrat, the cereal leaf beetle and the cabbage white

butterfly and that estimated using equation 1.16. They used microscale observations to

estimate a and D. For the muskrat and the cabbage white butterfly the predicted rates

compared well with the observed rates. However, for the cereal leaf beetle the theory

was wrong by two orders of magnitude, this was thought to be due to processes not

observable at the microscale level (for example, long range movements on air currents

and hitch hiking on human transport).

Reeves and Usher (1989) have used a diffusion model for the spatial spread of an

invasive species through the cells of a grid. They parameterised the model for coypu

using data from the literature to estimate values for a, D and IC,„„x (maximum carrying

capacity per 10 km square). The environment of East Anglia was represented by

assigning values for diffusivity and carrying capacity to each cell according to the extent

of the distribution of suitable coypu habitat. Values for these parameters were estimated

from 1:50,000 O.S. maps. They considered their model to be successful since it was able

to predict the coypus' range reasonably well. Their model predicted a distribution with a

continuous front, whereas the actual distribution of coypu shows the presence of some

outlying populations. They suggest that a stochastic element should be added in order to
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more realistically model the process of dispersal. In addition to carrying out simulation

runs, sensitivity tests were made in which the values of parameters were varied in relation

to each other (other parameters were held at their default values). The resulting

expansion rates were then analysed by analysis of variance. Significant results were

obtained for the principle dispersal and reproductive parameters, a, D, and K

The models discussed so far have all been single species models. However, Okubo et al.

(1989) have used a , competition-diffusion model to examine the spread of the grey

squirrel (Schtrus carolinensis) in Britain through habitat already occupied by the red

squirrel (Scittrus vulgaris). In addition to the usual parameters of the diffusion model,

their model included competition coefficients. They were able to show that the spread of

the grey squirrel was slowed down by the presence of the red squirrel. From this they

concluded that simple diffusion, logistic population growth and some form of

competition were sufficient to account for the progressive replacement of the red squirrel

by the grey in England and Wales.

Van den Bosch et al. (1990,1992) have developed models for range expansion based on

the population growth/diffusion model. They reformulated equation 1.16 to give:

,_,	 a ni ns
1... -=-1.F.1./10	 (1.18)

Itt
where Ro = net reproductive rate; 17. = mean age at child bearing; a2 = variance of

marginal dispersal density.

They claim that this equation gives a good approximation for C when R 0 s1.5. For

populations with larger net reproductive rates the following formula was developed:

/ N2

C = -
a

VIT—ilq1+ [ 7') – (3+ Tlyy]InRo l	 (1.19)
IA.

where v2 = variance of age at child bearing; y = kurtosis of marginal dispersal density; B

= measure of the interaction between dispersal and reproduction.

These models can be applied to any organism which disperses once only during its life

history. They both use reproductive parameters which can be estimated from data in life

tables and allow for variations in fecundity and survival throughout the species' life

history. Values for the dispersal parameters can be derived from observations on

dispersal distances. The model given by equation 1.19 no longer assumes that dispersal
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distances are normally distributed so strictly speaking this model should not be referred

to as a diffusion model, but rather a spatial spread model (Hengeveld, 1989). The

predicted value of C from these equations showed a good approximation to the observed

values for the five animal species Van den Bosch et al. (1992) investigated. Both

equations tended to predict lower rates than those observed. This was believed to be due

to an underestimate of the dispersal distances. In most cases equation (1.19) gave a

better prediction than equation (1.18). This was thought to be due to the incorporation

of the kurtosis of dispersal density. This supports the earlier work of Van den Bosch et

al. (1990) which concluded that the parameters of dispersal density are more critical than

the demographic parameters in determining the rate of spread. With a slight modification,

equation 1.19 can be adapted for use with species which disperse throughout their life

(Marinissen and Van den Bosch, 1992).

Diffusion and spatial spread models that incorporate population growth can therefore

provide a useful first approximation to rates of spread. In some instances it may be

relevant to construct models that incorporate variations in a and D. Where movement

occurs on two different scales it may be appropriate to use two-phase models which

couple models for long-distance jumps forward with diffusion models representing the

short range spread from a point of introduction (Andow et al., 1990). Most of the work

done with diffusion models and similar mathematical models of spread has assumed the

environment to be homogeneous. However, some recent work has used these models to

look at spread in a heterogeneous environment (for example, Reeves and Usher, 1989;

Holmes et al., 1994; Van den Bosch and Hengeveld, submitted). Most of these models

(with the exception of that by Reeves and Usher, 1989) are not spatially explicit, i.e. they

allow predictions to be made about the rate of spread but do not incorporate any

graphical display showing the actual pattern of spread.

Auld and Coote (1980) have produced computer generated simulations for population

spread in a homogeneous environment. They looked at the effects of varying the

population growth rate, the fraction of population dispersing (s) and the distande over

which the dispersing fraction is distributed (d). Results from their simulations showed

that the rate of spread and total population growth depended on both mobility

(determined by values of s and d) and population growth rate. The distribution patterns

were also more complex when growth rates and mobility were high. Comparisons of

spread in central and scattered initial populations showed that the scattered populations

had a greater rate of spread. The inverse cube law for seed dispersal predicts that spread

occurs as an advancing front (Harper, 1977). However, the curve describing the

distribution of daughter plants could be less steep and therefore imply that spread may
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occur as a ragged edge. Empirical data on the distribution of daughter plants would

enable the model to be refined. This model could also be developed to simulate spread in

a heterogeneous environment.

The rates of spread of trees in the British Isles during the Holocene are high compared

with theoretical predictions based on diffusion models (Skellam, 1951; Birlcs, 1989). This

implies that chance, long-distance dispersal events by birds, small mammals, rivers, ocean

currents and possibly man were important. By plotting the square root of the area

occupied against time, Birks (1989) has estimated the velocity of expansion of various

forest trees in the British Isles during the Holocene. Using estimates of a derived by

Bennett (1983), Birks also derived estimates for the diffusion constants of the different

taxa (using equation 1.17). The results obtained assume that the population was

expanding into an area unpopulated by that taxon. However, if trees were distributed

sparsely beyond the range determined using the pollen record than the model would be

inappropriate and the estimates derived too large. Unfortunately Birks used the formula

gradient = V(aD) in his calculations rather than the correct formula as given by equation

(1.17). However, his approach is still valid and the same conclusions would have been

reached with the correct formula.

The diffusion model has also been used in conjunction with other models to investigate

the relative importance of adaptation and dispersal as mechanisms for responding to

environmental change (Pease and Lande, 1989).

1.8.2. Possible Alternatives to Diffusion Models

Particle Dispersion Models 

Woodward and McKee (1991) have adapted the particle dispersion model used by

Solomon (1975) to produce a simple dispersal model which predicts the rate of spread of

trees:

t7H
C=	 ln F	 (1.20)

TV f

where C migration rate; ri = mean wind velocity; T = source longevity; H = release

height; 1/1 =-- terminal velocity; F = proportion of deposited seeds necessary to cause an

individual tree to regenerate. They used parameter values for spruce to obtain a

migration rate of 115 m yr- i which is at the low end of the range estimated by Huntley

and BirkS (1983). It was suggested that this was because the model ignores the effects of

turbulence which is believed to be important in rare long-distance dispersal events.
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Gap Dynamics Models in Conjunction with Dispersal Models 

Dispersal models have been used in conjunction with gap models (see section 1.9) which

simulate the dynamics of small plot (typically 1/12th of a hectare) in order to look at

vegetation change at a large spatial scale. The gap models are arranged in a grid with

dispersal occurring between them (for example, Coffin and Lauenroth, 1989). By

modelling dispersal between a large number of gap models it would be possible to

investigate tree migration. However, due to the fine resolution of the forest gap models it

would be virtually impossible to simulate landscape dynamics at the broad-scale due to

both computational and data limitations (Smith et al., 1992).

More Explicit Mathematical Models 

Smith (1975) has developed a model which explicitly models the process of invasion. He

gives the following mathematical models for the input (1), germination and first year

survival (G) and survival to maturity for a plant species (M):

Input to each site:

= I(SP)	 (1.21)

P.1

where I xi = input of viable seeds per site j of species x; S = number of viable seeds of

species x per source i; 1 = probability of dispersal of species x from source i to site j.

Germination per site:

n

Gx1 =	 (1.22)

where G xi = number of seedlings produced per site; I xi = seed input per site; /D: =

probabilities per seed of each factor determining G, includes ability to germinate (I'd,

ability to escape predation (Pa) and location of safe sites (/Ds).

Adults per site:

M xi = G xj11.13
	

(1.23)
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where Mxi . number of plants maturing per site per cohort; G' number of seedlings

produced per site; Px1 = probabilities for yearly survival including first year of

reproduction.

These models are intuitive and simplistic, however, the major problem with them will be

that of estimating the values for the various probabilities. Smith has made an attempt at

doing this for a selection of bird dispersed woody plants by carrying out a series of field

observations and experiments. Although he was able to estimate I, G, Pg and Pe it was

not possible to estimate probabilities for yearly survival beyond the first year since this

requires studies of a longer duration (Smith, 1975). Another limitation of this model is

that the values for the probabilities are site specific and therefore the model can not be

used in other situations since the environmental variables which determine the

probabilities will be operating at different intensities.

More recently, Schwartz (1992) has used a similar but less detailed spatially explicit

model in which dispersal occurs by either a negative exponential function or an inverse

power function. Population growth occurs by assuming that newly colonised sites have

an initial density of 6% of the maximum. The density is then doubled in each of the four

following generations to reach the maximum value. Schwartz was able to use this model

to show that tree migration rates fall well below historically observed migration rates at

low levels of habitat availability, regardless of the dispersal function that was used.

1.9. Models used to Predict the Effect of Climatic Change on Plant
Distribution

These have recently been reviewed by Malanson (1993) who recognises three general

types of model:

• transfer functions;

• gap dynamics models;

• physiological models.

None of these models project spatially, temporally and biologically detailed responses to

climatic change at the continental-scale. One of the main reasons for this is the need for

more computational resources. The direct effects of an increase in carbon dioxide

concentration is incorporated into very few models. These effects are reviewed by Eamus
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and Jarvis (1989) who conclude that the effects of the rise in carbon dioxide

concentration may be relatively small in relation to impending changes in land use and

management practices.

Transfer Functions 

These predict the future distribution of vegetation based on the present day relationship

between vegetation and climate. These models are known as static or equilibrium models

since they predict the final vegetation pattern produced as a result of climatic change.

They give no indication as to how this change may occur or how long it may take. They

are, however, useful in predicting the magnitude of potential changes. Examples of these

models include climate response surfaces which predict the future distribution of a

species or taxon based on its current distribution with respect to selected climatic

variables known to be important in determining its present day range (for example,

Beerling et al., 1995; Huntley et al., 1995; Carey et al., 1995).

Physiological Models 

Models based on plant physiology and dominance, soil properties and climate have been

developed to predict global vegetation patterns (Prentice et al., 1992; Woodward and

Williams, 1987; Woodward and Rochefort, 1991; Woodward and McKee, 1991). Such

models are often mechanistic using rules which are derived from experimental

information and not from correlations. They include parameters such as cold tolerance,

chilling requirement, heat requirement, moisture requirement and dominance hierarchy.

They may be considered to be a more complex and sophisticated form of transfer

function model. As for transfer functions, physiological models at the global-scale are

static models. Some physiological models have also been developed at smaller scales.

Gap Dynamics Models 

Another approach has been to use gap dynamics models to predict the effect of climatic

change on the forest ecosystem. Most of the research in this area has focussed on forest

ecosystems and in this context gap dynamics models are often referred to as forest stand

models. Models such as JABOWA and FORSKA have been used to simulate the forest

dynamics in a gap (usually less than 1 hectare) by considering the birth, growth and death

of individual trees. A major limitation of most of these models is that they assume that

the seed bank consists of all species of trees that could grow in the changed climate

(Pacala et aL, 1993). This assumption is clearly not valid as some species would have to

migrate great distances before they could start establishing themselves in the simulated

forest.
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A few stand models do however, consider limitations in the seed supply. For example,

FORET (Shugart and West, 1977) allows seed source limitations to be specified for 6

old-field successional species. The FOREST stand development model (Ek and

Monserud, 1974; Monserud, 1975) explicitly models local seed production and dispersal.

Seed production can either be held constant or allowed to vary stochastically based on

the frequency of good and bad seed years. Johnson et al. (1981) have further developed

FOREST to enable it to handle exogenous seed dispersal into the sample plot. They

simulated the invasion of Acer saccharum into a pure stand of Prunus serotina under

three levels of exogenous A. saccharum seed supply. The results supported the

hypothesis that seed source proximity can significantly affect the vegetation dynamics of

forest islands. Johnson et al. (1981) suggest that the use of seed dispersal models in

conjunction with forest gap models may provide a basis for simulating forest dynamics in

patchy landscapes.

A more recent forest stand model (SORTIE) developed by Pacala et al. (1993) includes

the spatial position of all trees and explicitly models recruitment by simulating the

seedling recruitment pattern for each individual tree. They are trying to use field data to

estimate values for parameters used in forest dynamic models which can not be

determined from the published literature and which have been insufficiently dealt with in

earlier stand models. By doing this they are hoping to develop a more realistic model of

forest stand dynamics.

Hanson et al. (1990) have used FORFLO, a forest gap model derived from FORET in

conjunction with a dispersal model to look at the effects of habitat fragmentation on

forest composition. They used a 3 x 40 array of 30 m x 30 m simulation plots to model

an area of 90 m x 1200 m. In the modern landscape where forests often occur as

fragmented islands separated by large areas of unsuitable habitat, the dynamics of the

individual islands may be significantly affected by the degree of isolation from

neighbouring islands. They chose not to use the models of wind dispersal and animal

dispersal developed by DeAngelis et al. (1981) since these were considered too complex

to be applied to the situation they wished to investigate. They also rejected the negative

exponential model used by McClanahan (1986) on the basis that the values for the

dispersal capacity and seed production were too variable under the conditions of their

model. Instead they used a simple model based on a set of rules for different modes of

dispersal. Their results supported the theory that an increase in fragmentation will result

in a decrease in species diversity due to a reduction in the immigration rate of species

into patches.
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Some forest stand models have also attempted to include the direct effect of carbon

dioxide on vegetation by modifying the growth equation (for example, Kienast, 1991).

Another effect which is associated with an increase in greenhouse gases is the depletion

of the ozone layer, this may have an effect on plant productivity.

Stand models predict forest dynamics on a very small scale and would become

computationally complex if applied directly to larger scales such as the landscape. For

example, a personal computer operating at 0.2 Mflops takes 1 hour for SORTIE to

simulate one year's forest dynamics in a 1 km square.

Markov Models

Another type of model which is frequently applied to succession are Markov models. In

these models each tree is given a probability of being replaced by another tree of a

different species. Most of these models assume that the replacement probabilities do not

change over time (Horn,1975, 1981). The replacement probabilities for each species of

canopy tree is determined from the percentage of saplings of each species found growing

beneath it. It is assumed that every sapling has an equal chance of replacing the canopy

tree.

1.10. Outline of the Structure of this Thesis

Chapter 1 reviews the literature relevant to the research presented in this thesis. Topics

covered include the palaeoecological record of post-glacial tree migration, existing

models of species' spread and the dispersal of propagules.

Chapter 2 describes the implementation of the model of species migration developed as

part of this research project. The model (MIGRATE) exists in the form of a one-

dimensional and a two-dimensional model. The two-dimensional version is a spatially

explicit model designed to simulate the spread of a species across a heterogeneous

landscape. The use of environmental data such as land cover, climate and probability of

occurrence values for simulating migration across a realistic landscape is described.

Chapter 3 describes the field work which was carried out in order to obtain seed

dispersal curves for sycamore (Acer pseudoplatanus), Scots pine (Pinus sylvestris) and
_

larch (Larix decidua Mill.). Computer simulations are described in which an attempt is
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made at investigating the relationship between the seed dispersal curve produced by a

forest edge and the seed dispersal curve produced by an individual tree. Most field

studies, including those carried out for this research, have looked at dispersal from a

forest edge. However, the dispersal function required by MIGRATE is that for an

individual tree.

In Chapter 4 the results from MIGRATE are examined. The initial simulations were

carried out with a single cohort, single dispersal function system, as this represents the

most simplistic case. Further simulations were then carried out using multiple cohorts

and two dispersal functions as this is more representative of reality. An attempt was

made at investigating some of the issues raised in Chapter 1 regarding the post-glacial

migration of trees. Finally, two-dimensional simulations were carried out in which the

spread of the small-leaved lime (Tilia cordata) was investigated under various

environmental conditions.

Chapter 5 draws together the major conclusions that have arisen from this research and

suggests areas where further work is needed.
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CHAPTER 2

Model Development and Parameter Estimation

This chapter describes the design and implementation of the MIGRATE model and the

assumptions which are made. The one-dimensional and two-dimensional versions of the

model are compared and the estimation of the reproduction and dispersal parameters

discussed with particular reference to trees. The problem of scaling with respect to

dealing with local and long-distance dispersal is addressed. For the two-dimensional

model details regarding the . creation of habitat suitability maps are given. Two

approaches for the investigation of the response to climate are discussed. These include

the use of climate response surfaces to modify the relative carrying capacity values and

the creation of climate suitability maps to determine whether or not reproduction can

occur.

2.1. The MIGRATE Model

MIGRATE is a simple deterministic model which can be used to simulate the migration

of any sessile organism. For the purposes of the MIGRATE model, a sessile organism is

defined as one which disperses once during its life history and then settles down.

Therefore MIGRATE may be applied to many animal species as well as all plant species.

For example, many bird species disperse once during their life cycle and then settle down

in a relatively confined area to breed. In section 4.3 the migration rates predicted by the

one-dimensional version of MIGRATE for the collared dove, house sparrow and

muskrat are compared with the rates predicted by the analytical models of migration

developed by Van den Bosch et al. (1992). MIGRATE currently allows the investigation

of the migration of a single species across either a homogeneous or a heterogeneous

environment. It does not take into account interspecific competition, this is assumed to

be incorporated into the relative carrying capacity values. Intraspecific competition does,

however, occur in the form of competition for available space. MIGRATE has been

implemented in the C programming language. Routines from the Uniras subroutine

library are called from within the program to produce a graphical display of the

simulation results.
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Two forms of MIGRATE have been implemented, one for simulating migration in one-

dimension and the other for simulating migration in two-dimensions. If the environment

is assumed to be homogeneous then the one-dimensional version of MIGRATE is the

most appropriate model to use since this is less computationally demanding. In this case

the environment is represented by a single row of cells which are labelled cell (where i =

1, ..., m). However, for a heterogeneous environment it is necessary to use the two-

dimensional version, in which the environment is represented by a grid of cells made up

of m rows and n columns. These are labelled cell ii (where i = 1, ..., m; j = 1, ..., n).

Although the formulation of both models is the same, it should be noted that one-

dimensional dispersal functions do not always give rise to the same migration rate in two-

dimensions. This phenomenon will be explained in section 2.1.4.

The two-dimensional version of MIGRATE also has the facility to explore the effects of

climate on migration. This may be done either by the use of a climate map which assigns

cells as either suitable or unsuitable for reproduction or by the use of a probability of

occurrence map whose values act directly on the relative carrying capacity values of the

cells.

The output from the one-dimensional version of MIGRATE takes the form of two

graphs. The upper graph shows the wave-like progression of the population front over

successive generations. The lower graph shows the change in population density with

time at various distances from the origin. Unless otherwise stated the lines represent the

population increase at distances of 100 km, 110 km, 120 km 130 km and 140 km from

the origin. The population densities are plotted as natural logarithms so that the gradient

of the line is an estimate of the intrinsic rate of population increase. A threshold value of

-5 was set so as to avoid the plotting of large negative values. In most cases the lines will

appear as five evenly spaced parallel lines. However, in cases where the chance long-

distance dispersal events play an important role the spacing between the lines becomes

erratic. Various analytical models have been developed which use mathematical

equations to calculate migration rates. The main advantage that the one-dimensional

version of MIGRATE has over these analytical models is that the graphical output it

produces enables the shape of the wave front to be readily visualised. In particular, the

extent of the wave front can easily be measured. It is possible to derive so called .

"travelling plane wave solutions" which describe the shape of the migration front in

mathematical terms (for example, Van den Bosch et aL 1990, 1992 and references

therein). However, the mathematics involved are quite complex and probably only

accessible to those in the field of mathematical biology.
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The parameter values used in the simulation are printed above the upper graph. The

notation is as follows:

Line 1: L = cell length; a = area occupied by an individual; T . generation length.

Line 2: An ordered list of the survival probabilities for each cohort class starting with the

probability of a propagule recruiting to the first cohort class.

Line 3: A list of the number of propagules (S) produced by an individual in each cohort

class during a generation length starting with the first cohort class.

Line 4: A dispersal parameter (for, example, RMSD if a normal distribution is being used)

followed by the probability of dispersal by that dispersal function. Parameter values are

given for each dispersal function. Any number used as a suffix to the parameter name

refers to the dispersal function number. In most cases it is necessary to use only one or

two dispersal functions.

Line 5: A list of the dispersal sums for each dispersal function. These should be the same

as their corresponding dispersal probabilities. The sum of all the dispersal probabilities

(this should add up to 1.0). The furthest cell from the parent cell for which a dispersal

probability is calculated. Cells beyond this value do not receive any propagule input.

Line 6: K . relative carrying capacity (i.e. the fraction of each cell which is available for

colonisation). If the number of individuals was rounded to a whole number then the

random number used in this process is given. Details of any climatic restraints which

were operating during the simulation are given.

Line 7: The interval in generations between each successive migration front. The number

of generations over which the simulation occurred.

A typical output of the upper graph from the one-dimensional.version MIGRATE is

shown in Fig. 2.1. Each line represents the population density at the end of a generation.

The number of generations which are output and the time interval (in terms of

generations) separating them are specified by the user at the start of the simulation. The

extent of the population front is the distance between the leading edge of the front and

the point where the population stabilises at its maximum value. The migration rate is

determined by dividing the distance between migration fronts (d) by the time interval

which separates them. Fig. 2.2 was taken from Van den Bosch et aL (1992) and shows
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how an observer at position x will observe local exponential population growth. In the

lower graph of the one-dimensional version of MIGRATE, the population density is

expressed as a natural logarithm so that the gradient can be used as an estimate of the

intrinsic rate of population increase.

Fig. 2.1 A typical output of the upper graph of the one-dimensional version of MIGRATE. Each

successive migration wave shows the density of individuals at increasing times from the start of the

simulation.
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time

Fig. 2.2 The mechanism by which a population front having an exponential shape in space and

travelling at a constant velocity induces apparent local exponential population growth (from Van den

Bosch et al. 1992).

a: population density as a function of position in space at different times.

b: Population density as a function of time at position x.

2.1.1. Parameters used in MIGRATE

One of the first tasks in developing the MIGRATE model was to identify the biological

and environmental components which have been shown to be important in species

migration. Once these elements and their interactions were identified then it became

possible to begin to formulate the model. There is an extensive amount of literature on

biological invasions and species migration some of which was reviewed in Chapter 1.

Hengeveld (1994) suggests that invasions can be conceived to consist of two processes,

that of spatial spread followed by local population increase. The earliest models of spread

were the reaction-diffusion models such as the classic model of Skellam (1951) and

Fisher (1937). These combined local population growth with Brownian random

dispersal. Since then, models of spread have become more advanced in that they allow

for more complicated life histories and dispersal functions. The analytical models

developed by Van den Bosch et al. (1990, 1992) and Mollison (1990) consist of a

reproduction kernel and a dispersal distribution. The reproduction kernel describes the

production of offspring throughout a species' life time. This incorporates parameters

which can be obtained from life table data i.e. the number of offspring produced by each

age class and the probabilities of survival between successive age classes. These

parameters are the average values for the species and are assumed to be constant,

therefore density dependent factors which may affect survival are not taken into account.
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The dispersal function describes the distribution of propagules about their parent and

incorporates the variance and kurtosis of dispersal. In some models, a carrying capacity

has been included so as to set an upper limit on the population density. For models which

predict migration rates only, this parameter is not essential as by the time the population

has increased above what may be considered to be a realistic density it is so far away

from the migration front as to have no effect on the migration rate. Most models have

concentrated on the migration of a single species, however, some models have been

developed which use , competition coefficients to model the interaction between two

species, for example Okubo et al. (1989). Despite the poor accuracy of most ecological

data (Mollison, 1991) the models of spread using the parameters described so far have

been used successfully to predict the spread of a wide variety of species. (for examples

see Van den Bosch et al., 1992; Okubo et al., 1989; Andow et al. 1990; Reeves and

Usher, 1989; Marinissen and Van den Bosch, 1992).

In view of the recent success in the modelling of biological invasions and the desire to

keep the model as simple as possible, it was decided to restrict the model to the

parameters listed in Table 2.1. They have been categorised into reproductive, dispersal

and landscape parameters. From these parameters, the following secondary values are

derived:

A	 Cell area i.e. L2;

Potential number of offspring produced by an individual during one

generation i.e. S.Pi;

Intrinsic rate of population increase i.e. approximately ln(F)/T.

MIGRATE calculates the number of propagules Mi (t) arriving in each cello at time t (i =

m; j = 1, ..., n) and from this updates the number of individuals Nii(t) in each cello

In order to take into account variations in fecundity and survival throughout a species'

life history the facility to use more than one age class has been implemented. Each age

class is given its own value for survival (fcohort no) and propagule output (Scohortno.)'
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N_DISP

RMSD (for

normal

distribution) or

D H (for negative

exponential

distribution)

P(RMSD), P(DH)

FURTHEST CELL

a

Parameter NameParameter Type

Reproductive

Characteristics

Dispersal

Characteristics

Landscape

Characteristics

L

j_max

i_max

Ki

Table 2.1 The parameters required by the MIGRATE model.

Parameter Description 

Time in years to reach the age of first

reproduction i.e. generation length.

Number of propagules produced per

individual during one generation length.

Probability of propagules establishing and

surviving to the age of first reproduction in

the absence of self thinning.

Probability of mature individuals surviving a

further interval of one generation length.

Number of dispersal functions.

Dispersal parameters which define the

distribution of propagules from their parent

(e.g. root mean square displacement for a

normal distribution, half distance for a

negative exponential distribution or shape and

scale parameters for a Weibull distribution).

Probability of dispersal for each dispersal

function (must sum to 1.0).

Maximum distance (in terms of number of

cells) over which dispersal is calculated.

Area occupied by a mature individual.

"Cell length.

Number of cells in the north-south direction.

Number of cells in the east-west direction.

7'

S

P1

P2

Relative carrying capacity for each cell (i.e.

the area available for occupation by the

species or taxon being simulated expressed as

a proportion of the total cell area).
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2.1.2. Word Description of MIGRATE

MIGRATE is a cell-based model with the real environment being represented by a grid

of square cells. Each cell has a relative carrying capacity associated with it which

determines the fraction of that cell which is available for occupancy. The number of

individuals in each age class and the number of propagules arriving are MIGRATE's state

variables. The values of these variables for each cell are calculated at intervals of one

generation length.

MIGRATE takes each cell in turn and calculates the total number of offspring which will

reach the age of first reproduction produced by that cell i.e. the number of potential new

recruits. If the number of potential recruits is greater than zero then the recruits are

dispersed into the neighbouring cells according to the dispersal distribution specified by

the user. The area over which dispersal can occur is controlled by the value given to

ifurthest_cell'. Some of the individuals in each age class are then removed according to

the probability of survival value assigned to that age class. As there is a difference in the

recruitment process of the model when only a single age class is used compared with

multiple age classes the two cases will be described separately.

In single cohort simulations, MIGRATE keeps a tally of the number of individuals who

are older than the age of first reproduction. Following removal of some individuals due

to death, the arriving offspring are recruited according to the amount of space available.

This means that the offspring are able to reproduce themselves in the next cycle of the

model i.e. it has been implicitly assumed that all the offspring were produced at the

beginning of the time step.

In multiple cohort simulations, MIGRATE starts with the oldest age class and works

through to the second age class and recruits all the surviving individuals from the

immediately younger age class i.e. the third age class receives all the surviving individuals

from the second age class and the second age class receives all surviving individuals from

the first age class. During this stage there is no competition for space since it is assumed

that all individuals occupy the area of an adult. Therefore competition needs to occur

only during recruitment into the first age class. The number of individuals recruiting to

the first age class depends on the amount of space available in the same way as it does

for single cohort simulations. The advantage of using multiple cohorts compared with

just a single cohort is that the assumption that all the offspring were produced at the

beginning of a time step and can therefore reproduce in the next cycle of the simulation

can be relaxed. By assigning a non-zero fecundity value to the first age class the fact that
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individuals were born continuously throughout the previous time step can be taken into

account i.e. the propagule output of the first cohort class can be estimated as:

1+2+3+ 	 +T S(cohort

S(cohort 1)
T

The value of S(cohort 1) is approximately half of the value of S (cohort 2)•

If at the end of the time step that particular generation is to be output then the density

values expressed as the total number of individuals per hectare in all age classes is

plotted.

A flow chart illustrating the processes which occur during a simulation is given in Fig.

2.3. The incorporation of changes in the relative carrying capacity and climate will be

discussed in sections 2.3.2 and 2.3.3.

(2.1)
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Jr
Assign a carrying capacity to each cell

Is the current
generation no. <= no. of

generations over which
model is to be run?

Recruit individuals into the first cohort from propagule
input assuming propagules are randomly distributed

within the cell

,MII.

Read in values for
parameters

Assign initial numbers in each cohort
class for each cell at time t = 0

For each cell calculate the propagule input
from all cohorts and from all cells within given

radius during 1 generation length.

Remove some individuals from each
cohort due to death

'Jr

'Jr

Jr

For each cohort, recruit individuals from
the next youngest cohort

Jr
Calculate proportion of cell available for
recruitment of individuals into first cohort

Output total number of individuals in

each cell at time t + T

Fig. 2.3 Flow chart showing the sequence of events occurring in the MIGRATE model.
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a. Pi . Mii(t)
(2.3)Qo —

A

2.13. Mathematical Description of MIGRATE

In this description, in order to keep the equations as easy to understand as possible, it is

assumed that there is only one cohort consisting of the number of reproductively mature

individuals. The dispersal function f(r) can be any function which gives the probability of

arrival with respect to distance (r) from the parent. The sum of the dispersal probabilities

should be 1.0. The notation below refers to the two-dimensional version of MIGRATE.

The one-dimension version of MIGRATE functions in the same way as the two-

dimensional version, but summation occurs over cell i only.

The number of propagules arriving in each cell is calculated from the following

summation over all cells:

M4 (t) =	 E, f(r).A.N„ i (t).S	 (2.2)

where r is the distance between propagule source and cell receiving dispersed

propagules, calculated by Pythagoras's formula (r2 	 L2((i_02+ (NA2\ .) ) For a bivariate

normal distribution it can be shown that only 1.8 x 10-0 offspring are dispersed beyond a

distance of 5xRMSD. In practice, summation can often be restricted to a distance of less

than 5xRMSD.

If all the propagules grew to maturity, they would occupy an area a.Mij(t). In the

absence of self-thinning, only a proportion P 1 will grow to maturity. Thus at the next

generation, in the absence of self-thinning, a proportion

of the area should be covered by mature individuals. It is assumed that the propagules fall

randomly so that in practice, a proportion

= 1— exP(—Q0)
	

(2.4)

of the cell will be covered (Hill, 1992). From equation 2.4 it can be seen that even when

the potential area occupied by all the propagules is greater than the area of the cell in

which they arrive some of the cell will remain unoccupied. The total proportion- of the
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cell available for colonisation by propagules, Q2, is its relative carrying capacity less the

area occupied by surviving mature individuals i.e.

a.P2 . N (0
Q2 = Ki

A

Hence at time (t + I) the number of individuals in the cell is:

4 (t + T) = P	 02 . 4 ( + A

	

s a	 (2.6)

2.1.4. Modelling Dispersal

The number of dispersal functions is specified by the user so it is possible to have as

many dispersal functions as required. Multiple dispersal functions may be particularly

appropriate in cases where different dispersal mechanisms are operating. For most

purposes two dispersal functions are probably sufficient. One can be used to represent

local dispersal and the other long-distance dispersal. This results in a compound

distribution. For the purposes of dispersal all the individuals are notionally located at the

centre of their square.

At the start of each simulation, MIGRATE creates a "look-up" table. This stores the

probability values for the dispersal function(s) in a way that can be accessed when

calculating the number of propagules arriving in cells within a given distance of a

propagule source. This increases computational efficiency since it is quicker to access the

stored values than to have to continually recalculate the probability values. The dispersal

functions which are used in MIGRATE have tails which extend out to infinity. However,

beyond a certain distance the probability values become so low as to be negligible. The

area over which dispersal is allowed to occur is determined by the value given to the

parameter "furthest_cell" which is specified by the user at the beginning of the

simulation. A "window" is then effectively placed over each cell in the habitat grid and

the cell at the centre of the window disperses its offspring to all the cells within the

window according to the dispersal function. As a check that the values assigned to the

dispersal parameters, the cell length and the furthest_cell have been set appropriately,

MIGRATE calculates the sum of the dispersal probabilities over the area specified by the

value of furthest cell. The dispersal sum should be equal to the dispersal probability

value associated with each dispersal functions. The total of the dispersal probability

(2.5)
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values should be equal to 1. Values which are less that 1 indicate that the value of

furthest cell may have been too small, whereas values which are greater than 1 indicate

that the cell length was too large in relation to the length of the realistically achievable

part of the dispersal curve.

Deterministic versus stochastic modelling

MIGRATE is essentially a deterministic model. Although some of the processes involve

the use of random numbers (see section 2.1.5) this is done merely to ensure that whole

numbers are being dealt with. In order to make MIGRATE stochastic it would be

necessary to use the Poisson distribution in conjunction with the long-distance dispersal

probability values to determine the actual number of propagules which arrive in a cell.

The Poisson distribution is a simpler form of the Binomial distribution and can be used to

calculate the number of successes (i.e. arriving propagules) when the number of trials

(dispersing propagules) is very large but the probability of success on each trial is very

small. The probability of k successes is given by:

e-Puk
P(k) -

	

	 (2.7)
k!k

where n is the number of trials, p is the probability of success and tx=pn. The

incorporation of this extra equation into MIGRATE would, however, result in

simulations taking much longer to run. In addition to this, simulations may have to be run

several times over in order to get a picture of the average outcome. The area where

chance plays its most important role in migration is in the dispersal and establishment of

offspring. However, since our knowledge of long-distance dispersal is so poor there is no

advantage in trying to improve MIGRATE by modelling this process stochastically. The

analytical models of van den Bosch et al. (1992) and Marinissen and van den Bosch

(1992) are deterministic but have been shown to be good predictors of observed

migration rates. In modelling the metapopulation dynamics of butterflies, Hanslci and

Thomas (1994) found that a stochastic version of their spatially explicit model produced

results which were qualitatively the same as their deterministic model. Hengeveld (1989)

states that although processes such as diffusion are stochastic when viewed at a small

scale, the overall process of particle flow can be described in deterministic terms.

Therefore the assumption is made in MIGRATE that the essentially stochastic processes

of dispersal and establishment can be successfully modelled in a deterministic way.

Choice of dispersal function 

Various dispersal functions have been implemented in both the one-dimensional and two-

dimensional versions of MIGRATE. These include the normal distribution, the negative

exponential distribution and the Weibull distribution. The formulae for these dispersal
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functions are given in Appendix A. The one-dimensional dispersal functions take the

form f(x) where x is the distance between offspring and parent. The two-dimensional

dispersal functions are of the form f(r) where r is f7,7 and x and y are the distances

in the east-west and north-south directions respectively. Dispersal is assumed to be a

rotationally symmetrical process occurring equally in all directions from each cell.

One of the unique features of the normal distribution which made it a particularly

attractive distribution to include in MIGRATE is that its two-dimensional form can be

integrated with respect to y to give the one-dimensional form. As a consequence of this,

the migration rate produced by normal dispersal functions is the same in both one and

two-dimensions. The integral of a two-dimensional function with respect to y gives the

marginal distribution of dispersal distances i.e. the relationship between the density of

individuals and the distance between the origin and the projection of the place of arrival

onto the x axis of the Cartesian grid. It is the marginal distribution of a two-dimensional

dispersal function which should be used in order to derive the same migration rate in

one-dimension as in two (Van den Bosch et al., 1992).

For the negative exponential and Weibull distributions, it is riot possible to obtain a two-

dimensional equation which can be integrated with respect to y to produce the one-

dimensional equations given in Appendix A. It can be shown by plotting the numerical

solution of the two-dimensional integral with respect to y (i.e. the marginal distribution)

and the corresponding one-dimensional function given in Appendix A that the two

distributions are not quite the same. For example, for the negative exponential

distribution, the marginal distribution has a slightly higher tail than the one-dimensional

formula given by equation A3. This explains why the negative exponential distribution

produces a slightly slower migration rate in one-dimension compared with two-

dimensions.

The negative exponential distribution has been included as a possible dispersal function

since this is a distribution which has been commonly observed in the field. The Weibull

distribution was added at a later date since this was found to give a good fit for the

dispersal of Senecio vttlgaris (Bergelson et al., 1993). This is a two parameter

distribution which may take on a variety of shapes including the negative exponential and

is therefore a potentially good dispersal function to use if the dispersal densities can be

determined quite accurately. As a consequence of this, the Weibull distribution is

probably more suitable for modelling the dispersal of seeds which are dispersed over only

a few metres and can be successfully trapped over this distance. This was the case for

Senecio vulgaris where sticky traps were used to catch the wind dispersed plumed seeds.
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The one-dimensional version of MIGRATE also has the facility for the empirically

measured dispersal densities to be entered directly, thus avoiding the need to fit any

dispersal curve. As most data in the literature are on distances only and lack any

directional information it was inappropriate to develop this for the two-dimensional

version of MIGRATE. In order for the empirical observations of dispersal densities to be

used, the distance values must first be converted into marginal dispersal distances. This

was done using a computer program which converted observed dispersal distances into

marginal dispersal distances. For the purposes of this calculation, it was assumed that

dispersal occurred symmetrically in all directions. For each dispersal observation, 20

marginal dispersal distance values were calculated and 1/20th of the propagule density at

the observed distance assigned to the distance category within which the marginal

dispersal distance occurred„The distance categories are user-defined, but should be equal

to the cell length to be used in the MIGRATE simulations. The marginal dispersal

distances were calculated using the formula:

Marginal dispersal distance = xcosei

where O. = '
' (i— 0.5)2 20 

where i is all integers � 1 and s 20 i.e. the marginal dispersal distances were calculated

by taking a 90° (It/2 radians) sector and dividing it into 20 equal sectors. The marginal

dispersal distance was then calculated as the cosine of the angle made between the x axis

and the line bisecting each sector.

In addition to these dispersal functions, the two-dimensional version of MIGRATE also

has the option of placing most of the offspring into the parent's cell. This allows for the

possibility of population increase without dispersal. This option is appropriate where the

local dispersal function is very short in relation to the length of the cell. At the start of

the simulation, MIGRATE creates a grid composed of one cell divided into 400 equal

squares. Dispersal is calculated from the centre of the grid according to a local bivariate

normal dispersal function and the proportion of propagules Which escape the grid i.e. are

capable of escaping from the parents cell is determined. Since these individuals would be

placed in the centre of one of the adjacent cells, the dispersal probability values

associated with the adjacent and corner cells have to be reduced in small equal

proportions until the RMSD of the original local dispersal function is obtained. In the

one-dimensional version of MIGRATE a less accurate version of this option was

implemented whereby all the locally dispersed offspring were placed in the parent's cell.

Sensitivity analyses using the one-dimensional model have shown that this is a good

(2.8)
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approximation when the tail of the long-distance dispersal function is long (section

4.1.3). As the number of computations is much less in the one-dimensional model, it is

easy to test this approximation by repeating the simulation with a small cell length

appropriate to the length of the local dispersal function.

The problem of scale 

In order to allow for a dispersal function where successful dispersal occurs over

distances of much more than ten times the cell length a system of amalgamating cells has

been developed in the two-dimensional version of MIGRATE in order to increase

computational efficiency. This facility was not needed in the one-dimensional version of

MIGRATE because the number of computations involved here is so much less. The

degree of amalgamation is-specified by the user at the beginning of the simulation. The

way in which the process of amalgamation works is best illustrated by an example. With

a cell length of 1 km and a long-distance bivariate normal dispersal function with an

RMSD of 10 km an amalgamation of 5 cells could be set without any significant loss in

accuracy. Dispersal probability values at a 5 km resolution are calculated i.e. for the

purposes of long-distance dispersal the cell length has been effectively increased to half

the value of the RMSD. As there are 25 1 km squares within each 5 km square, the

probability of arrival in each 1 km square is simply approximated as being 1/25th of the

probability of arriving in the 5 km square within which the 1 km square falls. This

approximation is a simple extension of what is already happening in the modelling of

dispersal, since a continuous process is being modelled as a discrete process.

Loag,ing of dispersal distances 

From the values given to the dispersal parameters and the product of S and P1 it is

possible to predict the furthest distance over which successful establishment may occur.

However, in order to gain a better idea of what is happening, a procedure has been

implemented in the two-dimensional version of MIGRATE to count the number of

potential recruits dispersing into various distance categories. The recruits are referred to

as potential recruits because whether or not they actually establish depends upon the

availability of suitable habitat within the cell where they arrive. The sampling interval for

the distance categories is equal to the cell length. As the logging of dispersal distances

significantly reduces the run-time of MIGRATE the procedure was implemented as an

option which could be compiled and therefore included as part of the simulation if

required. The one-dimensional version of MIGRATE simply outputs the value of the

furthest distance over which a prospective recruit is dispersed. It should be noted

however, that the value of the longest dispersal distance is partly determined by the
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number of generations which are simulated. This is because for simulations of a longer

time span there is more opportunity for long-distance dispersal events to occur.

2.1.5. The "rounding" Option and Stochastic Events

MIGRATE has been created as a deterministic model for purposes of clarity and

simplicity , however, both the one-dimensional and the two-dimensional versions of

MIGRATE include the facility to round the number of individuals to a whole number

according to a random number between 0 and 1. This introduces a small area of

stochasticity, but serves mainly to prevent the occurrence of fractions of individuals.

Fractions of individuals are generated as a direct consequence of the survival and

dispersal probabilities and the random nature in which individuals fall in a cell (equation

2.4). Sensitivity analyses using the one-dimensional version of MIGRATE have shown

that rounding does not have a significant effect on the migration rate although in some

cases it may lead to a slight reduction in the rate. Its main effect is to cause the shape of

the migration front to become less smooth. This effect is usually only observed in cases

where there are a small number of individuals being dispersed over a long distance. In the

case of the two-dimensional version of MIGRATE, rounding is always carried out. If this

were not done, then the very small fractions of individuals at the migration front would

appear as yellow shaded areas on the output plots making the extent of spread appear

larger than it would be in reality. In the one-dimensional plots, the low values at the front

of the distribution are so small as to be indistinguishable from zero.

The random number generator "rani" from the C programming library (Press et aL,

1992) was used to generate random numbers between 0 and 1. The fractional part of

each real number is compared with a random number generated by rani. If the random

number is less than the fractional part of the real number against which it is being

compared then the real number is rounded up to the nearest whole number. If the random

number is greater than the fractional part of the real number then the real number is

rounded down.

2.1.6. Summary of Assumptions Made in MIGRATE

1. All individuals in a cohort are identical with respect to fecundity and survival etc. The

parameter values used are the average values for the cohort.

.	 _
2. The fecundity and survival parameter values are dependent on the age of an

individual and not its size.

60



3. For the purposes of dispersal, all individuals are considered to be at the centre of the

1 km square which they occupy.

4. Dispersal occurs in a radially symmetrical fashion.

5. The organism settles down for life after dispersing from its place of origin.

6. All individuals occupy the same area therefore intraspecific competition for space

occurs once only i.e. during recruitment to the first cohort.

7. The stochastic processes of dispersal and establishment can be effectively simulated

in a deterministic way...

8. The probability of a propagule reaching the age of first reproduction is random and

does not depend on the distance from its parent.

2.1.7. Miscellaneous Technical Details Regarding MIGRATE

The number of cells which can be used in a simulation is limited by the amount of

memory available on the computer. MIGRATE has been successfully used to model the

dispersal of rhododendron over an area 10 km by 12 km at a 10 m resolution i.e. 1000 x

1200 cells were used to represent the habitat (Griffin, 1994). As eight cohorts were used,

a further 8 x 1000 x 1200 cells were used to hold the number of individuals in each age

class in each cell of the habitat map. This research represented the limits of what is

possible on the Sun SPARC station IPX used to carry out the simulations.

Execution times depend on the number of generations over which a simulation is run, the

number of cells used to represent the environment and how extensive the spread of the

species being modelled is. They vary from less than a minute for simple one-dimensional

simulations to up to a few hours for more complex two-dimensional simulations.

Double precision arithmetic was used where appropriate, for example in calculating the

dispersal probabilities and the number of propagules arriving in each cell. Double

precision was used here because it was considered that the small values which may arise

should be calculated accurately. In order to conserve memory space, single precision

variables were used to store the number of individuals in each cohort, the -relative

carrying capacity values and the climate suitability map. The larger values of these

variables meant that precision here was not so important.
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2.2. Estimating Parameter Values for Tree Species

One of the reasons that much of the modelling work on migration has been concentrated

on short-lived species is because quantitative data on their ecology can be more readily

obtained, either through field work or from the literature. The great longevity of trees

has meant that there is very little direct evidence on their population dynamics (Crawley,

1990).

The following parameter values may usually be obtained from the literature:

1. age to reproductive maturity (7);

2. number of propaples produced per year;

3. frequency of mast years where appropriate;

4. typical age of death.

From 2 and 3 it is possible to estimate the number of propagules (S) produced per

generation. There are very limited amounts of quantitative data on the probability of

survival for long-lived species such as trees. One possible means of deriving survivorship

and fecundity data is to carry out long-term studies of the kind carried out by Pinero et

al. (1984) where the fate of individual seedlings was followed Over time. Survivorship

curves also could be obtained by analysing the current age structure of a population

(Crawley, 1983). The assumption made with such a study is that if recruitment is

constant and age-specific mortality is neither time dependent nor density dependent, then

the fraction of individuals in an age class is a good estimate of survivorship to that age.

However, in most cases, the age structure of a forest will have been determined by past

disturbance events such as storms, fires and pest outbreaks and will not therefore reflect

progressive age-specific mortality. If it is assumed that following initial establishment

survivorship is constant, then the probability of adult survival (P2) may be estimated from

the equation:

P2 = exp( 7:i 7: T)
	

(2.9)

Whittaker (1975) suggests that the death rate of Quercus alba is roughly constant over

its 300 year life span, so constant survivorship may not be such an unrealistic assumption

to make. In the absence of more accurate data, equation 2.9 probably represents the most

satisfactory means of estimating the probability of adult survival.
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It is known that the probability of a tree seed reaching the age of first reproduction is

very low, for example, Crawley (1983) assumes a probability of survival to the age of

first reproduction of 5x10-5 when estimating the range within which the intrinsic rate of

population increase for a tree which first reproduces at 40 years lies. Clarke (1992) lists

the many reasons why sitka spruce seedlings fail to establish. From the mortality data

which Clarke has gathered from various sources it is possible to deduce that the

probability of a seed surviving until its second winter is 1.4x10-4. Watt (1919) discusses

why so few acorns become mature trees.

The field studies that have been done on dispersal distances were discussed in section

1.5. These studies have generally measured only local dispersal due to the difficulties in

obtaining quantitative data on long-distance dispersal events. Results from these studies

have lead to the conclusion that most seeds fall with a few hundred metres of the canopy

The data on long-distance dispersal events are mostly anecdotal. However, it is possible

to use the one-dimensional version of MIGRATE to obtain values for the probability of

survival to reproductive maturity and the long-distance dispersal parameters. This may be

done by varying the values of these parameters in order to determine the area of

parameter space in which the required migration rate (as determined from

palaeoecological studies) occurs.

2.3. Setting up the Environmental Conditions

2.3.1. Initial Distribution of Individuals

MIGRATE has been developed so that there are various ways in which the initial

distribution of the species being modelled may be entered. For the two-dimensional

version of MIGRATE these include:

1. As an ASCII file consisting of a grid reference followed by the number of trees in

the square defined by the grid reference. The number of figures in the grid reference

should correspond with the cell size used in the model simulations. For example, a

six figure grid reference is require for a simulation with a 1 km square resolution.

Missing grid references are interpreted as meaning that there are no individuals

present at that location. The grid references are checked to ensure that they fall

within the boundary of the area being modelled.
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2. As an ordered list of tree numbers starting with the south west corner and finishing

with the north east corner.

Distribution data files are read in for all cohort classes and the total number of individuals

present in each cell checked to ensure that it does not exceed the maximum value

determined by the relative carrying capacity. If the maximum value has been exceeded

then the number of individuals in each cohort class is reduced in equal proportions so

that the total number of individuals is equal to the maximum value.

For the one-dimensional version of MIGRATE, the initial distribution is read in as an

ordered list of either actual numbers or the fraction of the cell which is occupied. The

initial distribution is checked against the relative carrying capacity values in the same way

as for the two-dimensiorial model.

2.3.2. Creation of Habitat Suitability Maps

For the one-dimensional version of MIGRATE the value of the relative carrying capacity

which is constant for all cells is specified by the user. It would not be appropriate to use

heterogeneous relative carrying capacity values in the one-dimensional version of

MIGRATE since the one-dimensional migration process can not allow for a species to

spread around areas of unsuitable habitat. For the two-dimensional version of

MIGRATE, the area covered by the habitat map and its resolution is determined by the

array size (number of cells in the habitat map) and the cell length. The array size is

defined by the constants i_max and j_max which are defined at the beginning of the

program. For technical reasons, these values have to be explicitly set to the exact number

of cells required to represent the study area. The cell length should be set to correspond

with the resolution of the habitat data.

Format of the input file

The data can be entered in the following formats:

1.	 nrows 140

xllcorner 250000

yllcorner 460000

cell size 1000

NO DATA value -9999

6.56 0.68 0.43 8.21 	
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Line 1 is the number of rows i.e. number of cells in the northerly direction. Lines 2 and 3

give the 6 figure grid reference for the southwest corner of the habitat grid. Line 4 gives

the cell length in metres and line 5 the data value which indicates the presence of the sea.

The actual data values expressed as percentages follow in order starting with the

northwest corner and finishing with the southeast corner.

2. 276.0 544.0 348.0 654.0

561 321 16.1

561 322 8.3

The first line lists the lower northerly, lower easterly, upper northerly and upper easterly

grid references expressed is real numbers. The data then follow in any order as an

easting, northing and % value. Missing data values indicate the presence of the sea.

3. 0A3140125

74930IAA6

This is an ordered list starting with the southwest corner and finishing with the northeast

corner. The relative carrying capacities are converted into numbers according to the rule

0 = 0.0, 1 = 0.1, 	 A — 1.0.

In order to create a habitat suitability map which can be considered to be representative

of the modern day landscape, data from the 1 km resolution Institute of Terrestrial

Ecology land cover of Great Britain database can be used to create files of either of the

first two formats. These data consist of percentage coverage values for twenty five

different land cover types. MIGRATE currently allows the percentage cover of one land

cover type to be read in and used to assign the relative carrying capacity value. However,

it would be very easy to use more than one land cover type and generate the relative

carrying capacity values based on these. The third format was used by Griffin (1994)

where a conversion program was used which took input from several GIS coverage maps

(holding data on for example, the presence/absence of roads, rivers, forests and grazing

regime) and produced output in the required format. By using this approach a more

versatile relative carrying capacity map can be created.

Once the data have been read in and expressed as a fraction of the cell available for

occupancy (in the range 0.0 to 1.0) then they may be modified further if required by

multiplying by some fraction which determines the final relative carrying capacity value.

This option is most useful where the relative carrying capacity values have been set using
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the percentage cover of one of the land cover types as it effectively determines how

much of that land cover type the migrating species can come to occupy.

With the third option the facility for allowing the relative carrying capacity values to

change during the simulation, for example in response to changes in land management

practices, has been implemented. This option was used by Griffin (1994) to investigate

the potential spread of rhododendron in Glen Etive and possible control strategies. It

would be straight forward to include this facility with the other options if the need were

to arise.

A final option for setting up the relative carrying capacity map is to set up a random

habitat map. In this case . the relative carrying capacity is either 0 or some constant

specified by the user. The fraction of cells which are non-zero is specified by the user.

This option allows simple investigations to be made into the effects of habitat availability

on migration rates in the same way as has been done by Schwartz (1992).

In order to set up a homogeneous environment, the option to set all land cells to a

constant value has been implemented.

The use of probability of occurrence values for investigating the response to climate 

The relative carrying capacities may be modified by using a probability of occurrence file.

This file is read into MIGRATE in the form of an easting and a northing value followed

by a probability of occurrence value. The probability values were calculated by fitting the

current presence/absence data for a species in Europe (obtained from the Atlas Florae

Europea) to three bioclimatic variables at a 50 km resolution (Huntley et aL, 1995). The

resulting response surface consisted of probability of occurrence values at a 10 km scale

with respect to the mean temperature of the coldest month, the temperature sum above a

5°C threshold and the ratio of the actual to the potential evapotranspiration rate. In order

to use the response surface to generate a current distribution of a species which

resembles its observed distribution, it was found that a probability threshold had to be

set. If this threshold probability is exceeded then the species is predicted to occur

otherwise it is predicted to be absent. The response surface can be used to generate

probability of occurrence values for each 10 km square in the British Isles using climate

data obtained from the Climatic Research Unit (Huntley, unpublished results). These data

can then be read into the MIGRATE model and used to modify the values of the relative

carrying capacities. Where the probability of occurrence threshold is exceeded, the

relative carrying capacity values are modified by multiplying by the probability of

occurrence value for that square. However, if the threshold is not exceeded then the
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relative carrying capacity is set to zero. By using a climate scenario for a doubling in the

concentration of carbon dioxide, it would be possible to derive probability of occurrence

values for the species being modelled under future climatic conditions. A climate

response surface for the invasive weed Fallopia japonica (Japanese knotweed) derived

from European climate and distribution data has been successfully used to predict its

native distribution in Southeast Asia (Beerling et al., 1995). The close agreement

between the simulated distribution and the observed distribution indicates the robustness

of this static correlative modelling approach.

Smoothing the relative carrying, capacity values 

In order to investigate the effect of the distribution of habitat availability, the option to

smooth the relative carrying capacity values has been implemented. Each cell is taken in

turn and a new relative carrying capacity value assigned by taking the average relative

carrying capacity value of all non-sea cells within a specified distance. The new carrying

capacity values are stored separately until all the cells have been assigned a new value.

The old values are then replaced by the new smoothed values.

2.3.3. Climate Suitability Map

The facility to read in a temperature dataset as a means of determining whether or not

reproduction can occur in a particular grid square has been implemented. Temperature

was chosen as a means of deciding whether or not reproduction can occur because much

of this research project has concentrated on the response of Tilia cordata to future

climatic change since the factors which determine its range limit in northern England are

well understood (Pigott, 1992 and references therein). From this research, it has been

established that the northern limit of T. cordata in the British Isles is correlated with the

mean August daily maximum temperature. The MIGRATE model could be refined to

take into account any variable which correlates with or is known to influence the

distribution of the species being modelled (for example, precipitation). In the absence of

detailed data on the relationship between temperature and propagule output it was

decided to simply use a threshold temperature below which no reproduction can occur.

The climate data relating to temperature were obtained from the Climatic Research Unit

(University of East Anglia) and are in the form of nine ASCII files which hold the

minimum, mean and .maximum temperatures for each month at the lowest, modal and

highest elevations for each 10 km square of the British Isles. A separate program was

written to extract the relevant temperature values and output them as an ordered list. The
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input required for this data extraction program are the grid references of the south west

and north east corner of the area being modelled, the number of the month for which the

temperature data are required and the name of the chosen temperature data file.

In order to produce a 1 km resolution climate map from the 10 km resolution data,

altitude data from the Bartholomew's 1993 contour data were used. As the relationship

between climate and altitude is linear, a computer program was written which read in the

data from the three climate files corresponding with the three elevation categories. Linear

regression was then performed on the relationship between temperature and altitude for

each 10 km square. The temperature value for each 1 km square was output by inserting

its elevation as given by the Bartholomew's contour data into the linear solution.

As temperature is not constant from year to year, a final refinement to the model was to

include a mechanism for allowing the climate to fluctuate. Statistical analysis of the mean

August daily maximum temperatures for Durham for the period 1960 to 1990 revealed

that this variable had a good fit to a normal distribution (correlation coefficient 0.8) with

a standard deviation of 1.57°C. The same dataset for Morecambe yielded a standard

deviation of 1.47°C. In order to use these data to determine an estimate of temperature

variability it was assumed that there was no trend during this period and that temperature

variability remained constant. During a simulation in which climate is acting as a limiting

factor, MIGRATE reads in the climate data as described above and then uses random

numbers to vary the temperatures about their mean values. This is done by multiplying

the standard deviation (which is specified by the user) by a random number from a

standard normal distribution and then adding this value to the actual temperature value.

The routine "gasdev" in conjunction with rani from the C programming library (Press,

1992) was used to generate the normally distributed random numbers. So that climate

may vary on an annual time scale, a temperature value is generated for each year, i.e. if

the generation time is 25 years then 25 temperature values are generated for each square

during each time step of the simulation. The fecundity of the species is then modified by

multiplying it by the number of times the temperature threshold has been exceeded

expressed as a fraction of the number of years in a generation.
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CHAPTER 3

Field Work: An Investigation into Seed Dispersal

Much of the , data required for MIGRATE can be obtained or estimated from the

literature. However, there are very few data on seed dispersal distances. The data which

do exist are mostly anecdotal observations of long-distance dispersal. There are also a

few detailed studies on local dispersal done mainly by commercial foresters. This chapter

describes the field work .which was carried out in order to obtain a seed dispersal curve

i.e. the change in seed density with respect to the distance from the seed source. The

results are compared with those obtained in other studies. As for most other studies,

dispersal was measured from a forest edge rather than from an isolated tree. Computer

simulations were done in order to look at how the dispersal curve at a forest edge relates

to the dispersal curve from an individual tree since it is this which is used in the

MIGRATE model.

3.1. Choice of Species

The choice of species was restricted by the availability of a suitable site for that species.

Wind dispersed seeds are more easy to study since seed traps can be used, although these

may also be appropriate for some bird dispersed propagules (for example, Smith, 1975).

Where animals are the main agent of dispersal it is usually more appropriate to examine

seedling recruitment.

3.2. Choice of Site

The following conditions were needed in order for a site to be considered suitable:

• an isolated tree or block of trees acting as a good seed source;
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• a large area adjacent to the seed source over which dispersal and preferably also

establishment is occurring;

• no reproductively mature trees of the same species as that being studied in the

area where dispersal is being measured.

Although other published work on seed dispersal does not explicitly state the criteria

used in the selection of a study site, the above criteria are generally met. The reasons for

the first two criteria are fairly obvious. It is necessary to have a good seed source so as

to increase the number of seeds which will be trapped and therefore increase the

reliability of the fit of the field data to a dispersal curve. A large seed source effectively

allows dispersal to be measured over a longer distance. Most studies have been from

forest edges (Willson, 1993) because these are more often to be found with large

expanses of land adjacent to them into which dispersal can occur. A solitary tree,

however, is much more difficult to find. The size of the area into which dispersal is

occurring should be as large as possible. Ideally, the study site should be large enough to

permit the recording of the longest dispersal event which is likely to occur. This distance

may be estimated by multiplying the post-glacial maximum migration rate by the

minimum age to seed production. For example, if the maximum migration rate of Pinus

in England is taken as 700 m yr- 1 (Birks, 1989) with 15 years as the minimum age to first

reproduction (Miles, 1988), then the required dispersal distance per generation is 10.5

km. This long-distance dispersal event needs to occur only once every 15 years in order

for the post-glacial migration rate of 700 m yr- i to be achieved. As it is so rare it is very

unlikely to be detected by field studies.

The maximum distance over which dispersal has been measured by other workers varies

considerably, from about 100 m (for example, Boyer, 1958; Hughes and Fahey, 1988) to

up to 4 km (for example, Welch et al., 1990). The tail of the dispersal distribution is

notoriously difficult to measure because of the low frequency at which the long-distance

dispersal events occur Willson (1993). However, by extrapolating the proximal part of

the dispersal curve it may be possible to make predictions about the frequency at which

the long-distance dispersal events may occur.

The last criterion is necessary so that one can be certain of the origin of the seeds.

Statistical techniques such as maximum likelihood analysis could have been used to

determine which tree a seed was most likely to have originated from. However, this

would require the mapping of all the conspecific trees in the study area. This would be a

very substantial task in a large study area with a large number of seed producing

conspecifics spread throughout. In addition, the amount of computation required in the
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use of maximum likelihood analysis would become unmanageably large where dispersal

occurs over a large area. Ribbens et al. (1994) used maximum likelihood analysis to fit

parameter values to a dispersal model. These values were then successfully used in their

stand model SORTIE. However, they were effectively concerning themselves only with

local dispersal as they found that mapping all adult trees within a 20 m radius was more

than adequate for all species except those with a mean dispersal distance greater than 15

m. The wider confidence interval found for those species with a mean dispersal distance

greater than 15 m was thought to be due to the uncertain effects of recruits derived from

trees located outside the mapped area. This would be a major problem where long-

distance dispersal events are the main area of interest. It is therefore possible to conclude

from their work that maximum likelihood analysis is suitable for fitting a curve to the

locally dispersed seeds, bu.t not for the more widely dispersed seeds. For forest stand

models such as SORTIE which operate at a small spatial scale, it is the local dispersal

distribution which is most important in determining recruitment patterns and so the use

of maximum likelihood analysis is appropriate. However, at a larger scale when the

subject of interest is migration, the long-distance dispersal events play a more important

role than the local dispersal events so maximum likelihood analysis is less appropriate.

There are several ways in which dispersal could be investigated. Those approaches which

involve looking at established seedlings require that the area under study is as

homogeneous as possible so that establishment is not complicated by factors other than

distance from the seed source (for example, soil type, altitude, aspect, existing vegetation

cover etc.). These conditions are particulary well met where dispersal is occuring into

abandoned agricultural fields (for example, Johnson, 1988; Myster, 1993). The

alternative approach which involves the trapping of seeds does not demand such

stringent criteria.

If a site has a series of aerial photographs available spanning a period of several decades

then these may be useful in obtaining a measure of the rate of spread. From this, together

with a knowledge of the generation time of the species, it is possible to estimate the

maximum successful dispersal distance but not the shape of-the whole dispersal curve.
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3.3. Sites Visited

A considerable amount of time was spent looking for a suitable study site. Various

people were contacted for suggestions and visits were carried out where appropriate.

North Yorkshire Moors 

Various sites were visited within Cropton and Dalby forests in the North Yorkshire

Moors National Park with the help of the forest district manager. A site in Givendale

(Grid Reference 879845) was considered to be suitable for investigating sycamore (Acer

pseodoplatantis) dispersal. The site had recently been clear felled to leave 15 metre wide

strips of sycamore trees separated by about 120 metres of newly planted spruce (see Fig.

3.1). Another site near. Keldy Castle in Cropton Forest (Grid Reference 778921) was

chosen for studying Scots pine (Pinus sylvestris) and larch (Larix decidua Mill.)

dispersal. This site consisted of recently replanted clear felled land which was enclosed

on four sides by plantation. Scots pine was restricted to the northerly and southerly

plantations (see Fig. 3.2).

Hamsterley Forest (County Durham) 

As for the sites in the North Yorkshire Moors there were various possible sites within

Hamsterley Forest (Grid Reference 040290) for looking at the dispersal of seeds into

clear felled land adjacent to plantations of Scots pine, Norway spruce and larch etc.

Farmland adjacent to Houghall Woods (County Durham) 

The fields adjacent to Houghall Woods (Grid Reference 280278) were examined for

recruitment in spring 1993. However, due to grazing by sheep and cattle very few tree

seedlings were found.

Hartside Nursery near Alston (Cumbria)

This site (Grid Reference 708468) consisted of mixed deciduous woodland alongside a

stream. Adjacent to the woodland was some rough grassland which was ungrazed

although mown in early summer. No seedlings were found where the grass was growing

densely, however, plenty of sycamore seedlings were found on a steep bank where the

vegetation cover was less dense. Unfortunately, this area of recruitment was too small

for a meaningful survey to be carried out. There also was evidence that grazing rabbits

were stunting the growth of the seedlings.
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Cockle Park (Northumberland) 

This site (Grid Reference 201913) consisted of some mature sycamore trees adjacent to

currently ungrazed pasture. Sycamore seedlings were very obvious in the disturbed area

by the field gate. However, in the less disturbed area where the grass was over 6 inches

high no seedlings could be found.

Castle Eden Dene National Nature Reserve (Cleveland) 

The woodland at Castle Eden Dene (Grid Reference 425390) occurs in fairly discrete

blocks of different National Vegetation Classification types. However, the small size of

the blocks coupled with the fact that many otherwise suitable sites occurred on rather

steeply sloping ground meant that no really suitable site was found. The only site which

may have been suitable for seed trapping studies was considered to be liable to vandalism

due to its close proximity to the town of Peterlee.

Carrbride Fire Site (Spevside) 

A large area of Scots pine forest (Grid Reference 890230) was destroyed by fire in 1978

so it was thought that this may offer an opportunity to study invasion. An aerial

photograph exists of the site ten years after the fire. However, as for many of the

potential sites in Scotland the land has been subject to grazing by deer thus inhibiting re-

establishment. Since the aerial photograph was taken the land has been ploughed up and

planted with Scots pine.

Muir of Dinnet National Nature Reserve (Deeside) 

There is an area within the Dinnet National Nature Reserve where birch and pine are re-

invading due to a reduction in grazing pressure. From the 1976 1:50,000 Ordnance

Survey map, it is possible to see that the original plantation was restricted to a small area

at Lochhead to the west of the A97 (Grid Reference 435006). However, there is now

substantial re-colonisation of pine and birch all the way up to the summit of Culblean Hill

(approximately 500 metres in altitude and 2 kilometres from the original plantation

edge). Some of these trees are now reproductively mature, as a result the site is no

longer suitable for carrying out seed trap studies or seedling surveys.

Tulloch Moor (Speyside) 

A series of aerial photographs for the years 1948, 1966, 1978 and 1988 are available for

Tulloch Moor (Grid Reference 960170). From these it is possible to see the spread of

trees into the moor from the woodland to the north. Between 1966 and 1978 when re-

invasion occurred most rapidly the rate of spread can be measured as approximately 16
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m yr-1. This is an order of magnitude slower than that determined by palaeoecologists for

post-glacial migration. This slow migration rate is most likely to be a result of grazing by

sheep and deer. Within more recent years, regeneration has been removed from parts of

the moor so as to ensure it retains its moorland character which is an important habitat

for birds. The moor itself is not more than two kilometres wide and so would not be

suitable for looking at dispersal distances greater than one kilometre.

Northern Conies. Cairngorms National Nature Reserve (Speyside) 

The moorland area to the north of Cairn Gorm and the south of The Queens Forest (Grid

Reference 970050) is developing into subalpine scrub. The re-invasion of pine has

already been studied by the Institute of Terrestrial Ecology who did a detailed survey of

the area in September 1985 (Welch et al. 1990). It was considered inappropriate to

attempt to repeat their work especially as it took 72 man days of field work to collect the

data from which the Scots pine dispersal curve was produced.

3.4. Method

Two of the approaches for investigating dispersal which were reviewed in section 1.4

were tried. The first involves counting the number of saplings along transects running

from the seed source (for example, Smith, 1900; Van Wilgen and Siegfried, 1986;

Johnson, 1988). The other approach was one which has been used by Hughes and Fahey

(1988) and commercial foresters (for example, Isaac, 1930; MacKinney and Korstian,

1938; Boyer, 1958; Roe, 1967) and involves the use of seed traps to catch seeds. For this

method it was preferable to choose species which produced good seed crops most years.

Trees with mast years separated by several years of very low seed production were

avoided, as only two seasons were available for studying dispersal. This problem is not

likely to occur when it is the distribution of seedlings which is being recorded.

3.4.1. Sampling Seedlings

At the Givendale site in the summer of 1993 sycamore seedlings were counted along

transects running perpendicular to the seed source (Fig. 3.1). Contiguous 2 metre square

quadrats were marked out along the line of the transect and the number of 1, 2 and 3_
year old sycamore seedlings counted. A brief note was also made of the vegetation cover
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in each quadrat so that it would be possible to see if this was affecting recruitment in any

way.

3.4.2. Seed Trapping

This method was used for sycamore seeds at the Givendale site in autumn 1993 and for

Scots pine and larch seeds at the Keldy Castle site in the springs of 1994 and 1995. The

seed traps had a catchment area of 0.25 m 2 and were constructed as shown in Fig 3.3.

The collecting bag was made out of nylon net curtain fabric which was stapled to a wire

frame. The frame was attached to the cane legs with electrical insulation tape. A large

stone was placed in the bottom of the bag and some string tied above it and across to a

pair of diagonally opposite legs. This was to prevent the trap from blowing inside out.

Hughes et al. (1987) used a similar design for their seed traps. They did not consider the

predation of seeds to be a problem because the seeds were funnelled down into the

bottom of the trap where they were not clearly visible. There was also no evidence of

rodents gnawing at the collecting bags. It seems reasonable therefore to assume that the

seeds within the traps were not exposed to predation. There was no evidence to suggest

that this was not a valid assumption. The traps themselves took only a few minutes each

to erect in the field. The collecting bags had to be replaced after about one year in the

field since exposure to weather and sun light caused the material to rot.

The traps were set out in a 10 m square grid arrangement. At Givendale there were 10

traps running along 9 transect lines (A to I) perpendicular to the seed source (Fig. 3.4).

The first trap was within a few metres of the canopy of the sycamore trees. At Keldy

Castle there were 7 transect lines with 11 traps in each (Fig. 3.2). The first trap was

positioned 5 m from the canopy of pine and larch. The sites were visited at intervals of

approximately six weeks in order for the seeds to be collected and any necessary repairs

carried out to the traps.

Plate 1 shows a photograph of a seed trap in position at the Givendale site. Plate 2 shows

photographs of the seed traps in position at Givendale (top) and Keldy Castle (bottom).
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Plate 1 A seed trap in position at the Givendale site.



Plate 2 Seed traps in position at the Givendale site (top) and the Keldy Castle site (bottom). 	 -



3.5. Results

3.5.1. Givendale Seedling Survey - Summer 1993

The results from the two transects are given in Tables 3.1 and 3.2. For transect 1, further

quadrats seemed pointless beyond 20 m. A brief examination was made along the

remainder of the transect and although no sycamore seedlings were found the remains of

seeds were seen. Transect 2 started further away due to the dense vegetation which was

immediately adjacent the seed source.

The results from these two transects are obviously insufficient for obtaining a dispersal

curve. The very patchy distribution of seedlings probably reflects the heterogeneous

nature of the ground cover.

The dense vegetation cover also seems to inhibit the establishment of seedlings. In the

woodland adjacent to the northern strip of sycamore, the bracken and brambles were

much reduced. The density of sycamore seedlings here was much greater than found

along the transects. Approximately 10 to 15 seedlings were counted in a 2 m square

quadrat.

3.5.2. Givendale Seed Trap Results - Autumn 1993

An attempt was made at estimating the size of the seed source by using binoculars to

make rough counts of the seed stalks remaining on the parent trees. The largest trees

probably produced around 1,000 seeds whilst the smaller trees probably produced only a

few hundred seeds. This very low seed output is most likely to be due to the spindly

growth form of the trees. This is a consequence of them growing close together and until

recently amongst a stand of mature coniferous plantation.

The seed trap data are given in Table 3.3. Only 17 seeds were trapped in total which was

very disappointing. This could have been a result of the low seed output or damage to

the seed traps rendering them ineffective. At this site, the traps seemed to be quite

vulnerable to damage, probably by wind and deer.
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3.5.3. Keldy Castle Seed Trap Results - Spring 1994

The traps were emptied three times during the dispersal season. In addition to Scots pine

seeds, birch and larch seeds were frequently found. However, counts were only made for

Scots pine and larch.

The larch seed counts for 3rd March, 25th April and 9th June are given in Tables 3.4, 3.5

and 3.6 respectively. The data are then amalgamated in Table 3.7 to show the average

number of seeds found at each sampling distance from the edge of the seed source. A

total of 390 larch seeds were collected.

The computer program "Curvefit" was used to fit both a normal and a negative

exponential distribution to the mean number of seeds trapped (expressed as a proportion

of the total) at each distance interval. The normal distribution had a correlation

coefficient of 0.92 with the fitted equation having the formula:

cp = 1.62 exp
{

--(x+ 143)21

11887

where x is the distance from the seed source. The RMSD for this distribution is 109 m

11887) with the peak occurring at a distance of 143 m into the forest.

The negative exponential distribution had a correlation coefficient of 0.91 with the fitted

equation having the formula:

cp = 0.3403 exp(-0. 0334x)

The half distance of dispersal (i.e. the distance over which the seed density falls by a half)

is given by:

ln(2)	 In (2) 
H	 21m

k	 0.0334

This corresponds with an RMSD of 73 m (see Appendix A) which is of the same order

of magnitude as that obtained for the normal distribution. These curves together with the

dispersal data from which they were derived are shown graphically in Fig. 3.5.
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The total seed trap data for Scots pine are given in Table 3.8. Unfortunately only 59

Scots pine seeds were collected during this period. The apparent increase in seed density

beyond 75 m resulted in Curvefit fitting a "normal distribution" with a positive exponent

which is obviously wrong. However, the fit for the negative exponential distribution was

more realistic with a correlation coefficient of 0.64 and the formula:

cp 0.2068 exp(-0. 0216x)

The half distance of dispersal in this case is 32 m. These results are displayed in Fig 3.6.

The apparent increase in seed density beyond 75 m could have been due to an input of

seeds from the northerly plantation of Scots pine. Alternatively it could simply be an

artefact resulting from chance effects due to the low numbers of seeds trapped.

In many cases the seed had become detached from the wing and it was often only the

wing which was recovered. The seed itself was sometimes found amongst the litter in the

seed trap. However, where only a wing was recovered, it was not clear what had

happened to the seed. It could have been eaten by a bird or mammal, or have become

detached from the wing before landing in the trap, or have become hidden in one of the

folds in the bottom of the seed trap and been missed when the trap was emptied. Where

only a wing was found, it was assumed that the seed had become detached after landing

in the trap but for some reason had not been recovered.

3.5.4. Keldy Castle Seed Trap Results - Spring 1995

As the net collecting bags needed replacing following a year in the field, the number of

seed trap transects was reduced to five during this period since this was considered to be

sufficient for catching enough seeds to obtain a dispersal curve. Seed counts were made

for larch and Scots pine on 19th April and 8th June 1995.

The larch seed counts are given in Tables 3.9 and 3.10 respectively with Table 3.11

showing the combined results. The line of best fit for the negative exponential had a

correlation coefficient of 0.58 and the formula:

O. 646 exp (—O. 075x)

This corresponds with a half distance of 9 m. For the normal distribution the correlation

coefficient was 0.61 with the formula:
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cp — 
O. 0006 exp{(x — 117)  2 1

However, this formula predicts an increase in seed density beyond 117 m and so is not a

good model for seed dispersal.

The seed counts for Scots pine were again disappointingly low with over 90% of the

seeds being collected on 8th June. The combined counts for Scots pine are displayed in

Table 3.12. The line of best fit for the negative exponential had the formula:

q) = 0.230 exp (-0. 023x)

with a correlation coefficient of 0.97 and a half distance of 30 m. The fitted normal

distribution had the formula:

1664

cp — 99. 05 exp
{

—(x + 388)21
28492

•
with a correlation coefficient of 0.35. This corresponds with an RMSD of 169 m and a
peak which occurs 388 m into the forest.
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Table 3.1 The number of 1, 2 and 3 year old sycamore seedlings observed in contiguous 2m square
quadrats along transect 1 at the Givendale site in June 1993.

Quadrat

No.

Distance

from seed

source

1 year 2 year 3 year Existing Vegetation

1 3.6 1 0 0 Thick - grass, bracken and willow herb.

2 5.6 2 0 0 Not as thick as quadrat number 1.

3 7.6 . 0 0 0 Very thick - rowan, spruce, grass, bracken and

bramble.

4 9.6 0 0 0

5 11.6 0 0 0

6 13.6 0 0 0 Thick grass, some bracken, brambles, one oak

sapling. Remains of sycamore seeds.

7 15.6 0 0 0 Fallen tree, brambles, bracken, grass, one oak

sapling. Sycamore seed remains.

8 17.6 0 0 0 Thick grass, one coppiced sycamore. Sycamore

seed remains.

9 19.6 0 0 0 Thick grass, tree stump, bracken. Sycamore seed

remains.
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Table 3.2 The number of 1, 2 and 3 year old sycamore seedlings observed in contiguous 2m square

quadrats along transect 2 at the Givendale site in June 1993.

Quadrat

No.

Distance 1

year

2

year

3

year

Existing Vegetation

1 8 0 0 0 Willow herb, bracken and grass. One sycamore

seedling observed just outside quadrat.

2 10 1 0 0 Thick vegetation. The seedling was growing at the

base of bracken.

3 12 0 0 0 Heather and grass.

4 14 0 0 0 Thick vegetation.

5 16 1 0 0 Thick vegetation with seedling growing amongst

grass.

6 18 0 0 0 Very thick vegetation - bracken, willow herb and

brambles.

7 20 0 0 3 Grass. One seedling observed just outside the

quadrat.

8 22 0 0 1 Mostly grass.

9 24 1 0 0 Grass and heather.

10 26 0 0 0 Dense vegetation - bracken and brambles.

11 28 1 0 0 Grass very tall and thick.

12 30 0 0 0 Very dense vegetation.

13 32 0 0 1 Very thick and tall vegetation.

14 34 0 1 0 Bracken and grass (sparse in places). Seedling

found growing in grass.

15 36 0 1 1 Mostly fairly thick grass.

16 38 0 0 0 Thick vegetation - long grass.

17 40 0 0 0 Thick vegetation - brambles and gorse.

18 42 0 0 0 Thick vegetation - bracken, brambles and willow

herb.

19 44 0 0 0 Thick vegetation..

20 46 0 0 0 Long grass, bracken and spruce.

21 48 0 0 0 Spruce, bramble, grass.

22 50 0 2 2 Gorse, birch, grass and bracken. Seedlings

growing in grass.
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Table 3.3 The total number of sycamore seeds collected from the seed traps at Givendale in autumn

1993. The traps were placed at 10 m intervals from the seed source starting with trap number 1 which

was positioned just beneath the canopy.

Trap

No.

Transect

Average

A B C D E F G H I

1 0 0 0 0 0 0 1 0 0 0.11

2 0 1 0 0 0 0 0 0 0 0.11

3 1 0 0 0 0 0 0 0 0 0.11

4 0 0 0 0 0 0 0 0 0 0.00

5 0 0 0 1 0 0 0 0 2 0.33

6 0 0 o o 0 o 0 o 0 0.00

7 1 0 0 0 0 0 0 1 0 0.22

8 0 0 o 0 o o o o 2 0.22

9 0 0 0 1 1 0 0 0 0 0.22

10 0 2 0 0 0 0 0 3 0 0.55
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Table 3.4 The number of larch seeds collected from the seed traps at Keldy Castle on 3rd March 1994.

The traps were placed at 10 m intervals from the seed source starting with trap number 1 which was

positioned 5 m from the edge of the canopy.

Trap

No.

Transect

-

TotalA B

.

C D E F G

1 2 1 2 3 3 1 0 12

2 1 0 1 0 3 1 1 7

3 0 0 2 0 0 1 0 3

4 1 1 o o o 1 1 4

5 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0

9 0 0 0 0 0 o 0 o

10 0 o o o o o 0 o

11 _	 o o o o o o 0 0

Grand Total 26

Table 3.5 The number of larch seeds collected from the seed traps at Keldy Castle on 25th April 1994.

The traps were placed at 10 m intervals from the seed source starting ' with trap number 1 which was

positioned 5 m from the edge of the canopy.

Trap

No.

Transect

TotalA B C D E F G

1 1 13 13 9 7 9 - 52

2 5 7 3 8 9 7 14 53

3 3 7 7 3 - 4 8 32

4 1 2 1 4 - 4 - 12

5 2 1 1 4 1 3 4 16

6 1 3 4 3 1 2 2 16

7 1 1 4 - 1 2 2 11

8 1 1 0 1 - 3 0 5

9 0 2 1 2 1 o 0 6

10 0 3 0 1 0 2 2 8

11 0 0 1 0 0 1 _	 0 2

Grand Total 213 ,
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Table 3.6 The number of larch seeds collected from the seed traps at Keldy Castle on 9th June 1994.

The traps were placed at 10 m intervals from the seed source starting with trap number 1 which was

positioned 5 m from the edge of the canopy.

Trap

No.

Transect

TotalA B C D E F G

1 4 3 15 3

_

16 10 7 58

2 1 0 3 2 3 6 4 19

3 3 1 2 2 3 6 5 22

4 0 2 2 0 0 0 4 8

5 2 0 2 3 5 2 5 19

6 1 0 0 2 0 2 0 5

7 0 0 1 1 1 4 1 8

8 0 1 1 2 0 0 1 5

9 1 1 0 2 1 1 0 6

10 0 0 0 0 0 0 1 1

11 0 0 0 0 0 0 0 0

Grand Total 151 .

Table 3.7 Total number of larch seeds recovered from seed traps at the Keldy Castle site during spring

1994. The traps were placed at 10 m intervals from the seed source starting with trap number 1 which

was positioned 5 m from the edge of the canopy.

Trap

No.

3/3/94
No.
seeds

24/4/94
No.
seeds

9/6/94

No .
seeds

Total no.
of seeds

Total no.
of traps
sampled

Average
no. of
seeds per
trap

Average as
a proportion

1 12 52 58 122 20 6.10 0.318

2 7 53 19 79 21 3.76 0.196

3 3 32 22 57 20 2.85 0.149

4 4 12 8 24 19 1.26 0.066

5 0 16 19 35 21. 1.67 0.087

6 0 16 5 21 21 1.00 0.052

7 0 11 8 19 20 0.95 0.050

8 0 5 5 10 20 0.50 0.026

9 0 6 6 12 21 0.57 0.030

10 0 8 1 9 21 0.43 0.022

11 0 2 0 2 21 0.10 0.005

Total 26 213 151 390 225 19.19 1.001
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Table 3.8 Total number of Scots pine seed remains recovered from the seed traps at the Keldy Castle site

during spring 1994. The traps were placed at 10 m intervals from the seed source starting with trap

number 1 which was positioned 5 m from the edge of the canopy. These figures include cases where only

a wing was found and no seed i.e. it was assumed that the seed had become detached from the wing after

it had landed in the seed trap but was not recovered.

Transect

Trap Total No. of Average Average as a

No. AB.CDEF G traps

sampled

no. of

seeds per

trap

proportion

1 1 1 3 2 0 4 1 12 20 0.600 0.207

2 2 0 2 1 4 1 4 14 21 0.667 0.230

3 2 1 3 1 2 1 2 12 20 0.600 0.207

4 1 0 0 1 1 2 0 5 19 0.263 0.091

5 1 0 0 0 1 0 0 2 21 0.095 0.033

6 1 0 2 0 0 1 0 4 21 0.190 0.066

7 0 1 0 0 0 1 0 2 20 0.100 0.035

8 1 0 0 0 0 0 0 1 20 0.050 0.017

9 0 0 1 0 1 0 0 2 21 0.095 0.033

10 0 1 0 0 1 0 0 2 21 0.095 0.033

11 0 0 1 0 1 0 1 3 21 0.143 0.049

Grand Total 59 _	 225 2.898 1.001
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Table 3.9 The number of larch seeds collected from the seed traps at Keldy Castle on 19th April 1995.

The traps were placed at 10 m intervals from the seed source starting with trap number 1 which was

positioned 5 m from the edge of the canopy.

Trap

No.

Transect

TotalA B C D E

1 0 0 1 1 4 6

2 2 0 0 5 2 9

3 0 0 2 2 4 8

4 0 1 3 2 3 9

5 0 0 0 0 3 3

6 1 0 - 0 0 1

7 0 0 0 0 0 0

8 1 0 0 - - 1

9 0 0 0 0 0 0

10 0 0 0 0 0 0

11 0 0 0 0 0 0

Grand Total 37

Table 3.10 The number of larch seeds collected from the seed traps at Keldy Castle on 8th June 1995.

The traps were placed at 10 m intervals from the seed source starting with trap number 1 which was

positioned 5 m from the edge of the canopy.

Trap

No.

Transect

TotalA B C D E

1 2 3 3 5 9 22

2 3 4 0 3 1 11

3 1 6 4 1 1 13

4 1 2 1 1 1 6

5 0 0 1 0 1 2

6 0 0 0 _ 1 0

7 0 o o o - o

8 0 0 0 0 0 0

9 0 0 0 0 0 0

10 0 0 0 0 0 0

11 0 0 0 1 0 1

Grand Total 55
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Table 3.11 Total number of larch seeds recovered from seed traps at the Keldy Castle site during spring

1995. The traps were placed at 10 m intervals from the seed source starting with trap number 1 which

was positioned 5 m from the edge of the canopy.

Trap

No.

19/4/95

No.

seeds

8/6/95

No.

seeds

Total no.

of seeds

Total no.

of traps

sampled

Average

no. of

seeds per

trap

Average as

a proportion

1 6 22 28 22 1.273 0.304

2 9 11 20 22 0.909 0.217

3 8 13 21 22 0.955 0.228

4 9 6 15 22 0.682 0.163

5 3 2 5 22 0.227 0.054

6 1 0 1 20 0.050 0.012

7 0 0 0 21 0.000 0.000

8 1 0 1 20 0.050 0.012

9 0 0 0 22 0.000 0.000

10 0 0 0 22 0.000 0.000

11 0 1 1 22 0.045 0.011.-

_ Total 37 55 92 237 4.191 _	 1.001
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Table 3.12 Total number of Scots pine seed remains recovered from the seed traps at the Keldy Castle

site during spring 1995. The traps were placed at 10 m intervals from the seed source starting with trap

number 1 which was positioned 5 m from the edge of the canopy. These figures include cases where only

a wing was found and no seed i.e. it was assumed that the seed had become detached from the wing after

it had landed in the seed trap but was not been recovered.

Transect

Trap Total No. of Average Average as a

No. A B. C D E traps

sampled

no. of

seeds per

proportion

trap,

1 4 3 8 4 2 21 22 0.955 0.251

2 1 4 4 2 2 13 22 0.591 0.155

3 1 4 6 4 0 15 22 0.682 0.179

4 1 4 2 1 1 9 22 0.409 0.107

5 1 1 2 1 2 7 22 0.318 0.084

6 0 2 1 0 0 3 20 0.150 0.039

7 1 1 1 2 0 5 21 0.238 0.063

8 1 1 0 0 0 2 20 0.100 0.026

9 0 0 0 0 1 1 22 0.045 0.012

10 1 0 1 1. 0 3 .	 22 0.136 0.036

11 1 1 1 1 0 4 22 0.182 0.048

Grand Total 83 237 3.806 1.000
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Fig. 33 The observed distribution of larch seeds at Keldy Castle in spring 1994. Lines of best fit for the

negative exponential (r2 = 0.91) and normal distribution (r2 = 0.92) are shown.
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Fig. 3.6 The observed distribution of Scots pine seeds at Keldy Castle in spring 1994. Lines of best fit for

the negative exponential (r2 = 0.64) and normal distribution (r2 = 0.81) are shown.
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Fig 3.8 The observed distribution of Scots pine seeds at Keldy Castle in spring 1995. Lines of best fit for

the negative exponential (r2 = 0..97) and normal distribution (r2 = 035) are shown.
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3.6. Discussion

3.6.1. Comparison with Results from Other Studies

Johnson (1988) fitted negative exponential curves to the distribution of seedlings of

American lime (Tilia americana), sugar maple (Acer saccharum) and red ash (Fraxinus

pennsylvanica) and obtained half distances of 8 m, 27 m and 68 m respectively. A seed

trap study done on the longleaf pine (Pinus palustris) produced a dispersal curve which

had a negative exponential distribution with a half distance of 23 m (Boyer, 1958). A

similar study done on the Engelmann spruce (Picea engelmannii) by Roe (1967) also

obtained a negative exponential distribution with a half distance of between 30 m and 50

m depending on the study site. Although Hughes and Fahey (1988) do not quote the half

distances they obtained for sugar maple and yellow birch (Betula lutea), it is possible to

deduce from their seed dispersal graphs that these were of the same order of magnitude

as the half distance values obtained in this study. They also found that the seed densities

began to increase beyond about 100 m from the forest edge due to an input of seeds

from the opposite side of the forest clearing. Bjorkbom (1971) obtained half distance

values of between 15 m and 20 m for the paper birch (Betula papyrifera). It would

therefore seem that the half distance values of 9 m and 21 m obtained for larch and 22 m

and 32 m for Scots pine are in good agreement with other studies.

However, Welch et al. (1990) obtained a much larger value for the half distance of

dispersal of Scots pine. Their value of approximately 700 m is an order of magnitude

larger than those values given above. The reason for this is not clear, although it is likely

that their study site in the Cairngorm mountains is more exposed to strong winds

resulting in longer dispersal distances. It would be interesting to carry out seed trapping

experiments in the Cairngorms using a similar trap layout to that at Keldy Castle to see if

there is any evidence to support this. Alternatively it may be that the longer dispersal

distances are more readily detected by seedling surveys than seed trap studies resulting in

the latter method determining shorter dispersal curves.

3.6.2. Local versus Long-Distance Dispersal

The dispersal distances measured in this study were very small. Distances of up to 100 m

from the seed source were measured but only with a low frequency (5x10-3 for larch).

Ideally, it should be possible to measure dispersal at distances up to 10 km from the seed

source. Palaeoecological studies of past migrations indicate that dispersal distances of

this order of magnitude must have occurred. However, even if a suitable study site could
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be found the number of seed traps required in order to detect seeds at such distances

would be so large as to make the study impracticable. However, surveys of seedling

distribution can potentially cover a much larger area because seedlings are more easy to

detect.

Both this study and those of other workers (For example, Johnson,1988; Boyer, 1958

and Roe, 1967 etc.) have concentrated on local dispersal. The only study which could be

considered to have looked at long-distance dispersal is that of Welch et al. (1990),

however, even they only studied distances of up to 4 km. In order for the post-glacial

migration rates of 100 to 1000 m yr l. to have been achieved successful dispersal must

have occurred over distances of at least 2 km (assuming a short generation time of 20

years and a slow migration rate of 100 m yr4). Such dispersal events would be virtually

impossible to detect through the use of seed traps. A more appropriate method would be

to do a survey of seedlings in the manner undertaken by Welch et al. (1990) However,

this requires finding a large homogeneous site where invasion is occurring. In today's

landscape which is heavily influenced by man it is extremely doubtful that such a site

exists.

It can therefore be concluded that although it is possible to measure local dispersal in the

field it is not feasible to measure long-distance dispersal. An alternative approach must be

sought if one is to obtain probability values for dispersal distances above a few

kilometres. One possibility would be to use a separate model to simulate seed dispersal.

Such models were reviewed in Chapter 1, however, they are not currently detailed

enough to model dispersal sufficiently accurately. A realistic seed dispersal model would

need to incorporate detailed meteorological data, including the effects of turbulent air

flow and the morphological adaptations of seeds for wind dispersal.

3.6.3. Relationship between the Dispersal Curve Observed from a Forest Edge and

the Dispersal Curve Produced by an Individual Tree

The studies reported here have looked at dispersal from forest edges. However,

MIGRATE simulates the dispersal of propagules according to a dispersal function for an

individual tree. As there is a good deal of uncertainty in the fitting of a dispersal curve to

the field observations there is little value in trying to make any accurate prediction as to

the shape of the dispersal curve produced by an individual tree. The dispersal curve

produced at the forest edge has therefore been used as an approximation to the actual

dispersal curve produced by an individual.
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In order to check that this approximation is reasonable, computer simulations have been

carried out to see how the dispersal curve at the forest edge relates to the dispersal curve

of the individual. A hypothetical environment was set up in which a block of trees

released seeds according to either a bivariate normal distribution or a two-dimensional

negative exponential distribution (see Appendix A). The environment consisted of a grid

of 80 x 100 square cells with the first 35 columns being occupied by a single tree each

producing 10 propagules for dispersal. The actual numbers used here are irrelevant as

they affect only the height of the dispersal curve and not its shape. The number of seeds

arriving in each column of cells was summed. The seed sums for each column beyond the

forest edge were converted into proportions by dividing by the total number of seeds

dispersed beyond the forest edge. Normal and negative exponential curves were then

fitted to these values using the computer program "Curvefit".

In the first simulation, dispersal occurred according to a bivariate normal distribution

with a RMSD of 0.1 km. The cell length was set at 0.01 km and the furthest cell to

which dispersal was calculated was set at 50 (i.e. 0.5 km). Density values up to 0.5 km

from the forest edge were used to fit the dispersal curves. The normal distribution

qa = 0.121 expf—(x + O. 02)2}

has a near perfect fit (correlation coefficient = 0.995) to the edge distribution. It has an

RMSD of 0.098 km which is in very close agreement with that of the individual tree.

The negative exponential distribution

= 8.2 exp(-56.2x)

also has a very good fit (correlation coefficient = 0.938) to the edge dispersal curve.

However, the fit is poor near the seed source where it severely over estimates the actual

distribution. The RMSD of this distribution is given by

RMSD = 4-6 =-0.044 km
k	 56.2 

which is a poor approximation to the RMSD of the individual dispersal function.

A comparable simulation was done in which individual trees disperse seeds according to

a two-dimensional negative exponential dispersal function. The half distance was set at

O. 0096
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ln ( 2). RMSD 
DE =	 0.0283 km

so that the RMSD was the same as for the bivariate normal distribution in the previous

simulation. The cell length was kept at 0.01 km but the furthest cell was increased to 100

to allow for the longer tail of the negative exponential distribution. As for the normal

distribution, seed density values up to a distance of 0.5 km from the forest edge were

used to fit the dispersal curves.

The negative exponential distribution

cp 0.23 exp(-22.7x)

had a correlation coefficient of 1.0 and a half distance of 0.031 km which is a 91%

agreement with the half distance of the individual dispersal curve.

For the normal distribution there was a correlation coefficient of 1.0 with the formula

cp 4. 6 x 1012	
x

exp
{  —( + 2.95)2}

Although this is an excellent fit, it is not a realistic model since it predicts that the

dispersal peak occurs at a distance of 2.95 km into the forest.

The results of these simulations are shown in Fig 3.9 and Fig. 3.10. The edge dispersal

curves are similar although that produced by trees dispersing according to a negative

exponential distribution has a longer tail than that produced when the trees disperse

according to a bivariate normal distribution. These results will hold for all normal and

negative exponential dispersal functions providing the cell length is not made too large in

relation to the RMSD and dispersal distances of at least 5xRMSD are allowed.

0.28

100



it

0.25

Edge distribution
- .0 -

Negative exponential distribution
- .1E1 -

Normal distribution

0.05	 0.1	 0.15	 0.2
Distance from seed source

t	 + +
0.25	 0.3

0.2

0.25

Edge distribution
--4a -

Negative exponential distribution
-E.

Normal distribution

7.-

" -......2
,....s. -

0 1 1 1 1 i 1 1 i I 1 i 1 C."1"."'---	 i 4i 01 I/3 115 42 42 119-414-11"11-'

0.00 	 0.05	 0.10	 0.15	 0.20	 0.25	 0.30
Distance from seed source (km)

Fig. 3.9 Simulated seed dispersal from a forest edge. Seeds were dispersed from individual trees

according to a bivariate normal distribution with an RMSD of 0.1 km. The computer program curvefit

was used to fit a negative exponential distribution and a normal distribution.

Fig. 3.10 Simulated seed dispersal from a forest edge. Seeds were dispersed from individual trees

according to a negaive exponetial distribution with a half distance of 0.0283 km. The computer program

curvefit was used to fit a negative exponential distribution and a normal distribution.
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3.7. Conclusions

Seed trapping has been shown to be an effective means of sampling the seed shadow at

distances of up to 100 m from the seed source.

In the cases where sufficient seeds were trapped, the dispersal curve showed a good fit

to both the negative exponential distribution and the normal distribution (with the mean

occurring at some distance within the stand). It would therefore seem that either one of

these distributions could be used to simulate the local dispersal of seeds.

In order to measure dispersal distances greater than 100 m, seedling surveys are

potentially more appropriate. However, it was not possible to find a site that was large

and homogeneous enough to use seedling establishment as a means of obtaining a seed

dispersal curve.

The seed trap results obtained in this study suggest that most seeds are dispersed only

over relatively short distances by wind. However, it would be useful to conduct a similar

experiment at a more exposed site to see if the dispersal distances there are significantly

greater.

Computer simulations have shown that if trees disperse their seeds according to a

bivariate normal distribution then the RMSD of a normal distribution fitted to the

dispersal curve at the forest edge will be a good approximation to the RMSD of the

dispersal curve produced by an individual tree. Similarly, if trees disperse their seeds

according to a negative exponential distribution then the half distance of a negative

exponential distribution fitted to the edge dispersal curve will be a good approximation

to the half distance of the dispersal curve produced by an individual tree. Although a

negative exponential distribution has a good fit (as indicated by the correlation

coefficient) to the edge dispersal curve produced by normally dispersed seeds and vice

versa, a closer examination of these fitted curves reveals that they do not make realistic

sense.
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CHAPTER 4

Model Behaviour and Simulation Results

The first part of this chapter describes the sensitivity of MIGRATE to the values used for

its parameters. This is important firstly because it enables one to understand how the

model behaves and secondly because it allows one to identify those parameters to which

the model is most sensitive and therefore where it is important to have accurate

parameter values. For the one-dimensional version of MIGRATE, it is sometimes

possible to predict the migration rate using the analytical equations first developed by

Skellam (1951) and later refined by Van den Bosch et al. (1990, 1992). The migration

rates simulated by MIGRATE are compared with those predicted by Skellam's model

and that of Van den Bosch et al. Next, the two-dimensional version of MIGRATE is

used as this is able to simulate the spread of an organism through a heterogeneous

environment. It is in this context that the MIGRATE model has a real advantage over the

analytical models since these assume the environment to be homogeneous. Van den

Bosch and Hengeveld (submitted) have made further refinements to their model to take

into account habitat heterogeneity. However, unlike MIGRATE their model is not

spatially explicit and therefore can not show the pattern • of spread through a

heterogeneous environment. The two-dimensional version of MIGRATE is used to

investigate the spread of Tilia cordata (small-leaved lime) through northern Britain. In

particular, the effects of habitat availability and climate are investigated.

4.1. Sensitivity Analysis

Sensitivity analysis been defined by Conroy et al. (1995) as "...the controlled variation in

parameter values in isolation and in combination, and the observed response of model

output". The simulations described in this section are not intended to be exhaustive but

have been chosen in order to give a good picture of the sensitivity of MIGRATE to its

parameter values. The one-dimensional version of MIGRATE was used to investigate

the sensitivity of the model to the values assigned to the reproductive and dispersal

parameters since the environment can be assumed to be homogeneous.
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The graphical results of the sensitivity analysis simulations are grouped together in

Appendix B.

4.1.1. Single Dispersal Function and Single Cohort Case

The initial simulations were done with just one cohort and one dispersal function since

this is the most simple case and can therefore be investigated most easily. It is assumed

that all individuals are produced at the beginning of a cohort period so that they are

reproductively mature at the start of the next generation. The results are summarised in

Table 4.1 at the end of this section.

The reproductive parameters given in Table 4.2 were set using values from the literature

(for example, Pigott, 1991) which seemed reasonable for a tree such as Tilia cordata. As

the exact nature of dispersal is so poorly understood it was decided that a normal

distribution would be an acceptable choice for modelling this process (see Appendix A).

There were no reasons for preferring any other dispersal function and as the normal

distribution results in the same migration rate in both one and two-dimensions (see

section 2.1.4) this seemed to be a sensible choice. The dispersal RMSD was chosen so as

to achieve a migration rate of 0.2 km yri . This is at the slow end of the range 0.05-0.5

km yr-1 recorded for Tilia during its post-glacial migration through the British Isles

(Birks, 1989). The value of the RMSD can be determined from the following equation

which is a reformulation of Skellam's (1951) model (equation 1.16):

C RMSD
—	 - 11.17/70-

T

where C is the migration rate, T the generation time and Ro the net reproductive rate.

Ro b — d	 (4.2)

where b is the number of successful offspring produced per individual per generation and

d the death rate per generation (Odum, 1971). In terms of the parameters used in the

MIGRATE model, this equation may be expressed as:

(4.1)

Ro = S.P0 — P1
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It will be shown later in this section that when F is greater than 1.7 the effect of P1 is

negligible, i.e.R0 may be considered to be equal to F.

The initial distribution was that the cells corresponding with the first 10 km were fully

occupied. The estimation of the probability of a seed becoming a mature tree is based

upon what is known in the ecological literature about the establishment and early survival

of trees. It is known that most seed fail to become reproductively mature trees because

of unfavourable germination conditions, predation and disease etc. (for example, Watt,

1919; Crawley, 1983 p29; Piller° et al., 1984; Brubaker, 1986 and references therein;

Clarke, 1992; Pigott, 1992; Crawley and Long, 1995).

Table 4.2 Default parameter values used in the sensitivity analysis

Parameter	 Default value

Cell length	 1 km

Area occupied by an individual 	 50 m2
'

Generation length	 25 years

Probability of a seed becoming a	 5 x 10-5

reproductively mature tree

Probability of an adult surviving a further	 0.913

interval of one generation length

Number of offspring produced each generation 160000

RMSD	 3.47

Carrying capacity	 1.0 for all cell

Cell Length 

Simulations Bl, B2 and B3 show the effect of using a cell length of 1.0 km, 10 km and

0.1 km respectively. These simulations show quite clearly that if the cell length is made

too large in relation to the length of a dispersal function then the model loses accuracy. It

is easy to tell if the cell length is too large because this results in the dispersal sums being

too large (i.e. greater than their associated probability value). The general effect of using

a cell length that is too large is an underestimation of the migration rate and an

overestimation of the intrinsic rate of population increase. In all of these simulations, the

furthest cell was set at a value that corresponded with a distance of at least 5xRMSD.

Beyond this distance, the probability of a propagule arriving is so small as to be_
negligible. For the purposes of computational efficiency it is best to choose a cell length
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which is as large as possible without any significant loss in accuracy. As a rule of thumb,

the cell length should not exceed the RMSD.

Martin (1993) suggests the following 'migration criterion' for ensuring that the cell length

is small enough to capture the migratory processes:

L sT.m

where L is the cell length, T the generation time and m the speed of the slowest

vegetation movement of ecological significance. This implies that when m = 0.2 km yr'

and T. 25 years the cell length should not exceed 5 km.

Area Occupied by an Individual 

Simulations B4 and B5 show the effect of using a small area (5 m 2) and a large area

(1000000 m2) on the migration rate. It is clear from these simulations that the area

occupied by an individual has no effect on the migration rate. It simply affects the density

of established individuals.

If the rounding option is used (see section 2.1.5) and the maximum number of trees in a

cell is less than 100, then the migration rate is less than the rate simulated without the

rounding option. Simulation B6 shows that rounding is just beginning to have an effect

when the maximum number of individuals in a cell is 100. In simulation B7 the rounding

option was used together with the same parameter values as in simulation B5 where the

maximum number of individuals per cell was 1. Rounding reduces the migration rate by

eliminating the small 'fractions' of propagules which arrive at the front of the migrating

wave. When the maximum density of individuals in a cell is less than 100 then these small

fractions play a more significant role in determining the migration rate. This is a

consequence of the reduced propagule input to the migration front due to the lower

maximum density of individuals behind the advancing front. This same phenomenon is

observed when a joint dispersal function is used and the long-distance component has a

long tail.

Generation Time

In changing the generation time, it is also necessary to Modify fecundity so that the

annual reproductive output remains constant. The adult survival probability also has to

be modified in accordance with equation 2.9. The migration rates from the simulations

given in Table 4.3 confirm that species with a short generation time have a faster

migration rate than those which take longer to reach maturity.
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Table 4.3 The relationship between the generation time (age to first reproduction) and migration rate as

determined with the MIGRATE model.

Generation Time	 Migration Rate	 Simulation

(Years)	 (km yr-i)	 Number 

10	 0.38	 B8

25	 0.20	 B1

50	 0.12	 B9

The results from these simulations agree with the rates predicted by Skellam's model

(equation 4.1). The graph shown in Fig. 4.1 shows the relationship between the

generation time and the migration rate (the migration rates were calculated using

equation 4.1). The curve shows a good fit to a negative exponential distribution

(correlation coefficient = 0.96).
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Fig. 4.1 The relationship between migration rate and generation time.

Fecundity

Fecundity (F) is defined as the number of successful offspring (i.e. number of propagules

produced per generation x probability of a propagule reaching reproductive maturity).

With the exception of very low fecundity values (<1.7) the migration rates simulated by

MIGRATE are in exact agreement with equation 4.1. For fecundity values less than 1.7

the migration rate predicted by MIGRATE is higher than that predicted by equation 4.1.

This is because in the MIGRATE model, individuals are able to breed in successive
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generations whereas equation 4.1 assumes that all the offspring are produced when an

individual becomes mature and none are produced in the following generations. If the

probability of adult survival is set to 0.0 then MIGRATE simulates the same migration

rate as equation 4.1.

From this result it can be concluded that if the number of successful offspring produced

per generation exceeds 1.7 and is constant for each cohort class then the adult survival

probability has no effect on the migration rate i.e. individuals can die after having

reproduced once without the migration rate being affected. The migration rate is simply

determined by the number of offspring produced in the first generation interval.

From equation 4.1 it can be shown that in order to double the migration rate, the net rate

of reproduction must be increased to the power 4:

VInR= 2 11-F/To.

In = 41n Ro

R:

where R;) is the net reproductive rate required to double the migration rate.

Adult Survival 

As described above, the adult survival probability has a negligible effect on the migration

rate except when the number of successful offspring is very low (<1.7).

RMSD 

When MIGRATE is used with a single normal distribution it behaves as is expected from

equation 4.1 i.e. in order to double the migration rate the RMSD must also be doubled.
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The Joint Role of Fecundity and the RMSD in Determining the Extent of the Population

Front

From the previous simulations it can be deduced that both the RMSD and fecundity

determine the shape of the population front. A series of simulations were done in which

the number of successful offspring and the RMSD were varied whilst maintaining a

constant migration rate of 0.2 km yr- 1. The effect of the fecundity and RMSD parameter

values on the extent of the population front is is shown in Figs 4.2 amd 4.3 respectively.

These results show that for a population migrating at 0.2 km yr- I very steep population

fronts (<3.5 km) are produced when the number of successful offspring exceeds 1000

and the RMSD is less than 1.9 km. Fig. 4.4 shows that the extent of the population front

is directly proportional to Rmsypn(F) . The data points were calculated from the same

simulations described above. These results imply that in order to get a migration front

which extends over at least 5 km the ratio of the RMSD to sqrt(ln(F)) must exceed 1.0.

A doubling of the RMSD results in both a doubling of the migration rate and an

approximate doubling of the extent of the migration front. Similarly if F is increased to

the power of 4 then the migration rate is doubled and the extent of the population front

approximately halved
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Normal Dispersal versus Negative Exponential Dispersal 

The half distance of a negative exponential dispersal function can be set so that it has the

same RMSD as a normal distribution (see Appendix A):

ln (2). RMSD 

-1-6-
	

(4.3)

— 0.9821cm

Simulation B10 shows a simulation using a negative exponential distribution with a half

distance of 0.982 km. The resulting migration rate of 0.21 km yr' is slightly faster than

the rate obtained for a normal distribution (0.20 km yr 1). This is due to the slightly

higher tail of the negative exponential distribution.

When using a cell length of 1.0 km the dispersal sum for the negative exponential

distribution comes out at 1.04. In order to reduce it to a value which is closer to 1 it is

necessary to make the cell length shorter and the value of the furthest cell larger.

Simulation B11 shows a simulation where a cell length of 0.1 km was used with

propagules being dispersed up to a possible maximum of 18 km from the parent tree. It

can be seen that although the dispersal sum is now much closer to 1 there has been no

significant effect on the migration rate.

Carrying Capacity 

Mathematically, the effect of changing the carrying capacity is the same as making the

same change to fecundity i.e. if the carrying capacity is reduced by a factor of 5 then

fecundity must be increased by a factor of 5 to maintain the same migration rate

(Simulation B12).
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4.1.2. Single Dispersal Function and Multiple Cohort Case

The simulations described in section 4.1.1 used only one age class which consisted of the

number of reproductively mature individuals. It was assumed that all offspring were

produced at the beginning of a cohort period and therefore reproduced in the next

generation cycle of the simulation. The use of additional cohorts makes the model more

realistic since each cohort class can have different fecundity and survival values. In

particular, the first cohort class may be used for juveniles which are not reproductively

mature.

It can be seen that if the fecundity and survival probabilities are the same for each cohort

in a multiple cohort simulation (Simulation B13) then the result is the same as that for a

single cohort simulation (Simulation B1).

By repeating the previous simulation but with a zero fecundity value assigned to all

cohort classes except the first it can be shown that it was the propagule input from the

first cohort class that determined the migration rate (Simulation B14). Propagules

produced by the older cohort classes therefore have a negligible effect on the migration

rate. This phenomenom will be true for all simulations where the number of successful

offspring per generation is both constant for each cohort class and greater than 1.7.

It is interesting to note that behind the population front the population density now

fluctuates in a wave-like manner. The troughs are due to an insufficient input of

propagules due to the presence of non-reproductive individuals in the immediate area.

If it is assumed that reproductively mature individuals produce offspring at a constant

rate throughout a generation period then the average number of offspring produced by an

individual in the first cohort class can be calculated as follows:

S(cohortl) = 
1+ 2 + 3+ 	 +T S(cohort2) 

7'

Simulation B15 shows the migration rate obtained for a 10 cohort simulation where the

first cohort class is given a fecundity value of 83200 (based on an adult fecundity of 1.6 x

105 per generation and a generation length of 25 years). The migration rate has been

reduced from 0.20 km yri (Simulation B12) to 0.17 km yr- 1. The slower migration rate

predicted by simulation B15 is more realistic than that predicted by simulation B13 since

it allows for a limited amount of reproduction to occur in the first cohort class as a

consequence of only a fraction of them reaching maturity during a simulated time step. In

(4.4)
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Simulation B16, an older cohort class produces significantly more offspring than the

other reproductively mature cohort classes, however, the migration rate has been

increased only very slightly.

In simulation B17 the probability of becoming a mature tree has been reduced by a factor

of 10 and the RMSD increased to 11 km so as to maintain the migration rate at

approximately 0.2 km yr i. The wave-like fluctuations behind the population front are a

result of the low propagule output of the first cohort class. These fluctuations disappear

if the number of propagules is increased to 1.6 x 105.

4.13. Joint Dispersal Function and Multiple Cohort Case

The RMSD for dispersal used in the above simulations is very large when compared with

field observations. These indicate that most propagules fall very close to the parent tree

with very few going beyond a few hundred metres. It therefore seems that there must be

at least two dispersal processes operating. In the following simulations, two dispersal

functions were used, one for local dispersal and one for the rare long-distance dispersal

events.

Simulation B18 is the result of a simulation in which 90% of the propagules were

dispersed according to a normal dispersal function with RMSD = 0.2 km. The RMSD of

the normal dispersal function for the remaining 10% of propagules was varied until a

migration rate of approximately 0.2 km yr i was obtained. The cell length was reduced to

0.1 km so as to operate at the scale of the shortest dispersal function. This meant that the

furthest cell had to be increased to 350 so as to accommodate the long-distance dispersal

function. This increase in computation resulted in the simulation taking considerably

longer to run. Although this is not a problem in the one-dimensional version of

MIGRATE it would become a problem in two-dimensional simulations. In simulation

B19 the previous simulation is repeated but with a cell length of 3 km and all the locally

dispersed propagules simply being placed in the parent's cell. It is clear that this

approximation has had no effect on the migration rate.

Simulations B20 and B21 are similar simulations but with the proportion of propagules

being dispersed according to the distant dispersal function set at 0.99 and 0.999

respectively. In both cases, the RMSD of the distant dispersal function was increased so

as to maintain the migration rate at approximately 0.2 km yr i. These results are

summarised in Table 4.4.
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Table 4.4 The relationship between the probability of dispersal by the long-distance dispersal function

and the RMSD of the long-distance dispersal function. The RMSD of the long-distance dispersal

function was varied so as to maintain a constant migration rate of 0.2 km yr- 1. All other parameter

values were held constant.

Probability of distant RMSD of distant 	 Simulation

dispersal	 dispersal (km)	 number

	

0.1	 6.7	 B19

	

0.01	 9.7	 B20

	

0.001	 12.3	 B21

When simulation B21 is repeated with a cell length of 0.1 km then the migration rate is 8

m yr-1 slower. The slightly faster migration rate obtained with a cell length of 3 km is due

to the fact that there can be more individuals in a cell and therefore the chance of long

distant dispersal is increased.

Simulations B23 and B24 are the same as simulations B19 and B21 respectively, but with

the use of the rounding option. It is clear from these simulations that the rounding option

causes a loss in the smoothness of the migration front. It has the greatest effect when the

probability of long-distance dispersal is small. There is also a small reduction of

approximately 10 m yr-1 in the migration rate due to the 'loss' of the very small fractions

of individuals at the migration front.

4.2. Comparison with Skellam's Model

Simulation B25 shows the migration of oak obtained when using the parameter values

used by Skellam (1951). The simulated rate of 0.05 km yr- 1 is in exact agreement with

that predicted by equation 4.1. This simulation shows quite clearly that the population

front is unrealistically steep, a consequence of the high fecundity.
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4.3. Comparison with Van den Bosch et aLs' Models

The following describes a comparison between a simulation done using MIGRATE and

the analytical approximation formulae developed by Van den Bosch et al. (1990, 1992).

The number of successful offspring as used in the previous simulations was reduced so

that the net number of successful offspring (R 0) did not exceed 7.0, the limit for an

accurate prediction by equation 4.9 (Van den Bosch et a/.,1992).

Following the notation of Van den Bosch et al. (1992) the hypothetical life table shown

in Table 4.5 was constructed. In contrast to Van den Bosch et al. (1992) and in

accordance with the MIGRATE model, I is taken to be the number of individuals alive at

the beginning of the cohort period (Odum, 1971 page 175).

Table 4.5 A hypothetical life table for a long-lived species with 10 cohort classes.

Cohort Age	 Average Number of Survivorship

No.	 interval	 age	 successful

(years)	 offspring

ai mi

1 0-25 12.5 0.416 1.0000 0.416 5.2000 65.00

2 25-50 37.5 0.8 0.9130 03304 27.3900 1027.13

3 50-75 62.5 0.8 0.8336 0.6669 41.6785 2604.90

4 75-100 87.5 0.8 0.7610 0.6088 53.2734 4661.42

5 100-125 112.5 0.8 0.6948 0.5559 62.5354 7035.23

6 125-150 137.5 0.8 0.6344 0.5075 69.7825 9595.09

7 150-175 162.5 0.8 0.5792 0.4634 75.2953 12235.49

8 175-200 187.5 0.8 0.5288 0.4230 79.3207 14872.64

9 200-225 212.5 0.8 0.4828 0.3862 82.0758 17441.11

10 225-250 237.5 0.8 0.4408 0.3526 83.7511 19890.89

above 250 0.0000 0.0000 0.0000 0.00

Total -5.1107 580.3027 89428.90
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(4.6)

(4.7)

The net reproductive rate was estimated as

=5.11	 (4.5)

The mean age at child bearing (u) was estimated as

1
=113.55

RO &	 t i t

The variance of the age at child bearing (v 2) was estimated as

2 1 I 2V .— a. 1
"'

.m. —u2 = 4605.7
Ro , 

The following equations developed by Van den Bosch et al. (1990, 1992) were used to

estimate the migrate rate:

C1 ..-2.-ulir—Li?;	 (4.8)

C2 0:$ Ci . {1 ÷ [(
)

2 + —112 . y ] ln Ro 1
u 

Where cy2 is the variance of the marginal dispersal density and y the kurtosis of the

marginal dispersal density. If the distribution is normal then the variance is equal to

1/2.RMSD2 and the kurtosis is equal to zero. The above calculations were performed on a

spreadsheet which was set up to allow the data to be entered in the form of a life table.

The migration rates were then calculated automatically using cells which had been

programmed accordingly.

A value of 11 km was used for the RMSD which together with the reproductive

characteristics estimated from the data in Table 4.5 using equations 4.5 to 4.7 gave

migration rates of 0.124 km yr- 1 (equation 4.8) and 0.196 km yr i (equation 4.9). These

migration rates are approximations to the migration rates obtained using the

reproduction and dispersal kernel formulae from which they were derived. C 1 is said to

be accurate when Ro 5 1.5, whereas the more complicated formula for C2 is reported to

be accurate when v/u � 0.6 and Ro 5. 7.0. It can therefore be assumed that in this example

C2 should be the better predictor of the migration rate. Equation 4.8 is the same as

Skellam's (1951) model if it is assumed that all the offspring are produced when the

Ro . Dimi

(4.9)

117



individuals become reproductively mature i.e. u = T. However, it is also a refinement of

Skellam's model in that it allows for multiple cohorts with variations in survivorship and

fecundity. C2 is a refinement of C1 since by incorporating the kurtosis of the marginal

dispersal density it does not assume that the dispersal function is normal.

Since the analytical models given by equations 4.8 and 4.9 assume the environment to be

homogeneous it was appropriate to use the one-dimensional version of MIGRATE when

comparing the migration rate simulated by MIGRATE with that predicted by the

analytical models. 10 cohort classes were used corresponding with the 10 cohort classes

in Table 4.5. The initial number of individuals in each cohort class is unimportant since

the migration rate eventually stabilises to a constant rate. The product of the number of

propagules (3) and the probability of surviving to maturity (P0) for each cohort was set

so as to equal the value of m in Table 4.5. The probability of surviving from cohort i to

cohort 41 was calculated as LX . A normal dispersal function was used with an RMSD

of 11 km. With these parameter values the simulated migration rate was 0.19 km yr-1

(simulation B16). This is a 65% agreement with C 1 and a 95% agreement with C,.

The close agreement between the predictions of the analytical models of van den Bosch

et al. and the MIGRATE simulations indicates that the models have a very similar

formulation. However, this does not imply that the formulation is correct. Only by testing

the models against observed migrations can the formulation be validated. Further

refinements can then be carried out to the models as necessary. Van den Bosch et al.

(1992) have attempted to validate their models using observed migration rates for the

collared dove, muskrat, house sparrow, starling and cattle egret. They found that given

the accuracy of the type of field data used the model predictions were in reasonable

agreement with the observed rates of spread (Van den Bosch et al., 1992; Hengeveld,

1994). The migration rates simulated by MIGRATE for the muskrat, house sparrow and

collared dove are compared with those predicted by the models of Van den Bosch et al.

(1992) in Table 4.6. Van den Bosch et al. (1992) do not give sufficient data for

MIGRATE to be used to simulate the migration of the starling and cattle egret. An

example showing how the MIGRATE simulations were carried out is given by simulation

B26 which shows the migration of the collared dove according to a normal dispersal

function. Some of the discrepancy between the rates predicted by MIGRATE and those

predicted by the formulae developed by Van den Bosch et al. is probably due to the fact

that Van den Bosch et aL assume that survivorship (4) is the number of individuals alive

at the end of the time interval and not at the beginning.
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Table 4.5. Comparison between the observed migration rate (km/yr) as given by Van den Bosch et al.

(1992) and the rates obtained from MIGRATE and the analytical models of Van den Bosch et al. (1992).

Migration rate (km yri)

Species Observed MIGRATE1

Gaussian	 Empirical

Dispersal	 Dispersal

Van den Bosch et al.

model

C1	 C2

Muskrat 10.9 5.4 4.8 7.0

1900-1930

Muskrat 5.1 4.9 3.3 3.9

1930-1960

House

sparrow

16.8 8.9 12.0 6.0 10.2

(U.S.A.)

House

sparrow

27.9 9.5 13.9 8.2 23.0

(Europe)

Collared

dove

43.72 81.0 80.0 56.3 65.6

lApproximate migration rate as determined from the graphical output of the MIGRATE simulation (see

section 2.1)

2It is interesting to note that the observed migration rate determined by Hengeveld and Van den Bosch

(1991) is much less than the rates predicted by any of the models. In all the other cases the observed

migration rate is greater than the predicted migration rates. Hengeveld and Van den Bosch (1991)

determined the rate of spread of the collared dove from a graph of the square root of the area occupied

against time. However, the rate determined by this process is only half of that recorded in the

ornithological literature (for example, Fisher, 1953; Welty, 1962; Sharrock, 1976) where the migration

rate was simply calculated as the distance travelled divided by the time taken. Without access to the

original calculations carried out by Hengeveld and Van den Bosch (1991) it is not possible to establish

the reason for this discrepancy.
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4.4. Comparison with Bennett's Model

Following the suggestion of Watts (1973), Bennett (1983, 1986, 1988a) has used pollen

accumulation rates to estimate the intrinsic rate of population increase. This is based

upon observations that graphs of the natural logarithm of the pollen accumulation rate

with respect to time are linear. This linear relationship is believed to be the direct result

of the exponential rate of population increase. However, Davis and Sugita (submitted)

argue that the shape of front has more to do with the dispersal properties of pollen and

the migration rate of the taxon. Bennett (1988a) also suggests that Fagus grandifolia did

not spread as a continuous front but as a series of outlying populations which gradually

increased in density before merging with the main population. As the very low densities

at the front of the expanding range are below the threshold required for detection by

pollen analysis, Bennett (1986) suggests that the real rates of migration may be greater

or lesser than those determined from pollen analysis. The following sections examine

how simulations from the one-dimensional version of MIGRATE fit in with Bennett's

model of migration.

4.4.1. Intrinsic Rate of Population Increase

The rates of population increase for the simulations done so far using MIGRATE (as

determined from the gradient of the lower graphs) are much larger than those determined

by Bennett (1983) for the post-glacial migration of trees in Norfolk. Simulation B17 has

the lowest rate of population increase (0.03). In order to achieve values which fall within

the range 0.022 to 0.002 given by Bennett (1983) and achieve a migration rate of 0.2 km

yrl, not only does fecundity have to be low, but there must be a small number of

individuals dispersing over a long-distance. Simulation B27 is the same as simulation B17

but with two dispersal functions rather than one. A small fraction of the propagules are

dispersed according to a long-distance dispersal function with the remainder simply being

placed in the parent's cell. The intrinsic rate of population increase has now been reduced

to 0.022. This is still rather high for a tree such as Tilia cordata where Bennett (1983)

gives the intrinsic rate of population increase as 0.0100-0.0039.

In order to further reduce the intrinsic rate of population increase the probability of seed

survival was reduced to 2x10-6. The RMSD of the long-distance dispersal function was

increased from 35 km to 75 km in order to compensate for the reduction in seed survival

and maintain the migration rate at 0.2 km yr- 1 (simulation B28). The intrinsic rate of

population increase is now 0.009. An alternative way to maintain a migration rate of 0.2
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km yri is to increase the probability of long-distance dispersal by a factor of 10 to 0.1.

The required RMSD of the long-distance dispersal function is now only 45 km which

intuitively seems more feasible (simulation B29). The consequence of this more

concentrated dispersal function was a small increase in the intrinsic rate of population

increase from 0.009 to 0.01. There was virtually no change in the extent of the

population front.

These results imply that if the rates of population increase as determined by Bennett

(1983) from fossil pollen analysis are realistic approximations of the intrinsic rate of

population increase then the number of successful offspring must have been very low.

Therefore in order for the post-glacial migration rates to have been achived dispersal

must have occurred at low frequencies over very long-distances (exceeding 100 km).

4.4.2. The Role of Long-Distance Dispersal Events

In order to obtain a value for the intrinsic rate of population increase which is in

agreement with Bennett (1983) it was necessary to couple a low reproductive success

rate with a high RMSD for the long-distance dispersal function. With the same parameter

values as used in simulation B28 and the number of individuals rounded to a whole

number according to a random number generator (see section 2.1.4), a maximum

dispersal event of around 240 km was recorded (average of 5 simulations) as occurring

during the 100 generations over which the simulation was run. For simulation B29 the

maximum recorded dispersal distance over the same time period was 170 km. It is likely

that such very long-distance dispersal events would have originated from the area where

the tree density was already high so they may not have had a significant effect on

migration.

MIGRATE currently assumes that the probability of a propagule becoming a

reproductively mature individual is constant. However, it is possible that those

propagules which are dispersed further will have a greater chance of survival. This

hypothesis is known as the escape hypothesis (Howe and - Smallwood, 1982). They will

escape density dependent factors such as herbivory and intraspecific competition.

MIGRATE accounts for intraspecific competition through a self-thinning mechanism

(see section 2.2 equation 2.3) but does not take into account herbivory which is likely to

be greatest where the seed/seedling density is highest.

In order to assess the implication of a different survival probability associated with each

dispersal function simulation B28 was repeated but with the probability of a propagule
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which is dispersed according to the long-distance dispersal function surviving to the age

of first reproduction increased by a factor of 6 (simulation B30). This was done by

assigning a probability value of 0.06 instead of 0.01 to the long-distance dispersal

function rather than by making explicit changes to MIGRATE, therefore the dispersal

sum does not equal zero. The simulated migration rate is now 90 m yr-1 faster than that

simulated in B28. However, the rate of population increase shows only a small increase

from 0.009 to 0.01. In order to bring the migration rate back down to 0.2 km yr- 1 the

RMSD of the long-distance dispersal function can be reduced to almost 50 km yr1

(simulation B31). The extent of the migration front is very similar to that observed in

simulation B28 with the rounding option. The maximum recorded dispersal distance

during the 100 generation simulation is now 185 km (average of 5 simulations).

These simulations show that the model is very sensitive to the number of successful long-

distance dispersal events. Given the very long-distances involved and their rarity it is

unlikely that such events could ever be measured in the field. However, it is known that

dispersal is capable of occurring over very long-distances (see Chapter 1). These

simulations show that a value for the intrinsic rate of population increase as observed at a

specific location over which the migrating species passes may help to determine the

correct parameter values for the long-distance dispersal function, but only if it can be

very accurately measured.

4.4.3. The Shape of the Migration Front

Bennett (1986) suggests that as pollen analysis can not detect tree population densities of

much less than one per hectare it is not possible to determine whether spread is actually

occurring at lower densities. Below the threshold for detection, the rate of migration may

be slower or faster than that detected by pollen analysis. MIGRATE offers some

evidence in support of this theory since in the examples where the number of successful

offspring are low and the dispersal function has a long tail there is a period at the

beginning of the simulation where the wave form of the migration front has yet to reach

its equilibrium shape. For example, in simulation B27 for generations 5 to 20, the

average migration rate measured at 10 trees ha- 1 is 0.22 km yr - 1. However, if the

migration rate is measured as the distance between the points where generations 5 and 20

meet the x axis then the migration rate for that period is 0.19 km yr - 1. So, for the period

up to generation 20, the rate of migration depends on the position of the threshold line

for detection. This phenomenon is only likely to occur when the initial distribution prior_
to migration has a shape different to that of the migrating front and when the number of

successful offspring is low so that it takes many generations for the equilibrium to be

122



achieved. Changes in dispersal distances and number of successful offspring during

migration will result in changes in the shape of the wave front. During this period of

change, the migration rates will again depend on the threshold level of detection.

4.5. Comparison Between the Intrinsic Rate of Population Increase
Determined from MIGRATE Simulations with that Predicted by the
Euler Equation

The intrinsic rate of population increase determined from the MIGRATE simualtions is in

good agreement with that predicted by the approximation formula for the Euler equation

(Van den Bosch et al., 1992). For example, for the simulation shown in B27 the Euler

equation predicts a rate of:

a _ ln(Ro )  [
1
	1 (12 I %

.1nRo)]
[I.	 2 u	 (4.10)

a = 0.019.

The rate determined from MIGRATE was 0.022.

Van den Bosch et al. (1992) have shown that for small values of Ro (s1.5) the rate

predicted by the Euler equation is approximately half that observed at a certain place

during an invasion. A simulation done with Ro = 1.43 had an intrinsic rate of increase of

0.0052 (simulation B32) and 0.0036 (from Euler equation). This is in agreement with

Van den Bosch et al. (1992).

-
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4.6. How May the Variation in the Observed Migration Rates of a
Taxon be Explained?

The simulations done so far have used parameter values with the aim of achieving a

migration rate of 0.2 km yr- 1 . However, the palaeoecological record has shown that taxa

migrated at different rates during their post-glacial migrational history. For example,

Huntley and Birks (1983) give the migration rate of Tilia as 0.3 to 0.5 km yr1 on the

European mainland. The three most likely ways through which such a large change in the

migration rate could be effected are:

• a change in the number of successful offspring produced per individual;

• a change in long-distance dispersal function (through its probability of occurrence

or its distance parameter);

• a change in the age of first reproduction.

For simulation B28 a small increase in the number of successful offspring (brought about

by increasing the probability of reaching the age of first reproduction from 2x10- 6 to

6x10-6) resulted in a large increase in the migration rate from 0.20 km yr- 1 to 0.50 km yr-1

(simulation B33). The intrinsic rate of population increase also indreased from

approximately 0.009 to approximately 0.02, however, this is still just within the range

given by Bennett (1983). Note that the rule regarding the relationship between fecundity

and migration rate described in section 4.1.1 now no longer applies since the introduction

of a second dispersal function and the use of two age classes has increased the

complexity of the model. A much larger increase in the probability of reaching the age of

first reproduction is needed for the migration rate simulated in B20 to reach 0.5 km yr1.

In this case the probability of reaching the age of first reproduction has to be increased

by a factor of 30 to 1.5x10- 3 (simulation B34). This has also resulted in a large increase

in the intrinsic rate of population increase from 0.07 to 0.20.

It is unlikely that there would have been any significant change in the long-distance

dispersal function during post-glacial migration. Large changes in dispersal frequencies

and distances would have to be accompanied by significant changes in the agents of

dispersal, for example wind speed, frequency of storms, activity of animal dispersal

agents etc. In order to increase further the migration rates simulated so far, the value of

the RMSD of dispersal would have to be made even larger. It seems very unlikely that
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this could occur as it is already difficult to adequately explain the occurrence of the very

long dispersal distances in the simulations carried out so far.

A decrease in the age of first reproduction could be a consequence of a faster growth

rate due to more favourable climatic conditions. However, there is a limit as to how

much this could be reduced. Table 4.1 shows that a decrease in the age of first

reproduction can have a significant effect on the migration rate. Simulations B20 and

B28 were repeated but with the age of first reproduction reduced to 10 years and the

fecundity and survival probabilities modified as described in section 4.1.1. (simulations

B35 and B36 respectively). In the case of simulation B35, there has been an increase in

the migration rate from 0.20 km yr- 1 to 0.34 km yr- 1 . However, in the case of simulation

B36 there has been virtually no increase in the rate of spread.

The results described in this section are to some extent surprising and could probably not

have been guessed from the sensitivity analyses carried out for the simple one dispersal

function one age class model described in section 4.1.1. In particular it is important to

note how sensitive the model was to small changes in very low fecundity values in

conjunction with a long-distance dispersal function with a large RMSD. The rates

predicted by the models of Van den Bosch et al. (equations 4.8 and 4.9) for simulations

B33 and B34 are in poor agreement with the rates simulated by MIGRATE (0.50 km yr-1

for B33 and 0.49 km yr- 1 for B34). For simulation B33, the migration rates predicted by

the models of Van den Bosch et al. were 0.095 km yr-1 (equation 4.8) and 4.2 km yr'
(equation 4.9). For simulation B34 the migration rates were 0.026 km yr- 1 (equation 4.8)

and 4.3 km yr- 1 (equation 4.9). The disagreement can be largely attributed to the very

large value of Ro for simulation B34 and the fact that the large value of the kurtosis of

dispersal (270 and 300) does not seem to accurately represent a dispersal function in

which a small number of individuals are dispersed over very long distances. The

sensitivity of equation 4.9 to the kurtosis of the marginal dispersal density was confirmed

by varying its value within the spreadsheet set up to calculate migration rates using Van

den Bosch et al.s' models. For example, simulation B33 predicts the same migration rate

as MIGRATE if the value of the kurtosis is set at 25.
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4.7. Two-Dimensional Simulations Showing the Migration of Tilia
cordata Through Northern Britain.

The main advantage the two-dimensional version of MIGRATE has over its one-

dimensional counterpart is that it can be used to investigate the spread of a species across

a heterogeneous environment : In order to assess the effect of environmental

heterogeneity it was first necessary to carry out simulations in a uniform environment.

The rate and pattern of spread in a homogeneous environment can then be compared

with one more representative of the modern landscape of the British Isles in which areas

of suitable habitat have both declined and become fragmented. These simulations were

then followed by an investigation into the effects of climate. The habitat and climate

maps were created as described in Chapter 2 using data from the Institute of Terrestrial

Ecology's land cover database and the Climatic Research Unit's climate databases.

Finally, some simulations were done in which the present day relative carrying capacity

values are modified by using probability of occurrence values. In these simulations, no

additional climatic restrictions are imposed as the three bioclimatic variables used in

generating the probability of occurrence values are already acting by reducing the relative

carrying capacity values. The simulations were all carried out for Tilia cordata since

much is known about its ecology and its response to climate is particularly well

understood.

4.7.1. Choice of Parameter Values

As described in seciion 2.2, some of the parameter values can be obtained or estimated

from the literature. The values which were obtained by this means for T. cordata were

given in section 4.1.1. Other parameters, however, have to be estimated by using the

one-dimensional model to determine the area of "parameter space" within which the

required migration rate is achieved. Two cohort classes were used as the reproductive

data available in the literature were not sufficiently accurate to make the use of additional

cohorts worthwhile. The most realistic approximation was therefore to use one cohort

class to represent the young trees yet to reach reproductive maturity and another for

trees older than the age of first reproduction. Two dispersal functions were used, since as

described in section 4.1.3 this appears to be the most realistic representation of what

happens in nature.

The simulations described in section 4.1 have enabled possible values for the parameters

involved in long-distance dispersal to be determined. There are three parameters which
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determine the distance and frequency of long-distance dispersal events. These are the

number of propagules reaching the age of first reproduction, the probability of long-

distance dispersal and the RMSD of the long-distance dispersal function. If fecundity and

the probability of dispersal by the long-distance function are low then the RMSD of the

long-distance dispersal function must be compensatingly large. Each two-dimensional

simulation was carried out twice using a different set of parameter values. In case I, the

parameter values used in simulation B20 were used but with the probability of reaching

reproductive maturity increased by x 5 to allow for a reduction in the relative carrying

capacity to 0.2 (see section 4.7.2). In case II, the parameter values used in simulation

B29 were used, again with the probability of reaching reproductive maturity increased by

x 5. The parameter values are summarised in Table 4.6. The one-dimensional simulations

using case I and case II parameter values are shown in Figs 4.5 and 4.6 respectively. In

both cases the rounding option was used since this is always applied in the two-

dimensional simulations (see section 2.1.5). The initial population was set as a strip of T.

cordata 10 km deep with 50 mature trees per square km. Both sets of parameter values

produced a simulated migration rate of approximately 0.18 km yr- 1 in a homogeneous

environment. However, they reflect two possible extremes, case I couples a high

reproductive success with a relatively short long-distance dispersal function whereas case

II couples a lower reproductive success with a much longer long-distance dispersal

function. The simulation with case I parameter values has a steep continuous migration

front as is thought to have occurred by Davis (for example, Davis 1983b; Davis and

Sugita, submitted). Case II parameter values, however, result in a more extensive

population front which is in agreement with Bennett's (1983, 1986, 1988a) view. The

intrinsic rate of population increase for case 11 (0.01) is in agreement with Bennett's

(1983) measurements which were determined from the pollen record. The low rate of

population increase results in a delay lasting as much as several millennia before the

equilibrium abundance levels are reached (Bennett, 1986). Case I parameter values result

in an intrinsic rate of population increase which is approximately eight times greater than

that resulting from case II parameter values.

The assumptions made throughout these simulations are that the reproductive and

dispersal parameters are the same as for post-glacial migration. In addition it is assumed

that the post-glacial migration rates were limited by dispersal since if, for example,

climate was limiting migration then it would not have been appropriate to use the post-

glacial migration rates as a means of estimating the RMSD of the long-distance dispersal

function as this would have resulted in its value being underestimated. Attempts have

been made to discover whether or not tree migration lagged climate change (Davis et al.,

1986). However, they were unable to draw any firm conclusions since as dispersal and
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climate are not mutually exclusive causes for colonisation delays it is impossible to

determine whether the migration rate was climate limited or dispersal limited. However,

the relative constancy of the maximum migration rates between geographical regions

despite differences in the rates of climate change suggests that the post-glacial migration

rates were limited by dispersal and colonisation and not by the rate of climate change

(Huntley, 1989).

The initial distribution of Tilia cordata (Fig. 4.7) was derived from Pigott's (1992)

presence absence map. This map had to be converted into the number of trees per square

km. As Pigott (1992) states that many of the existing populations are small it seemed

reasonable to assume that there were 50 reproductively mature trees in each 1 km square

cell where T. cordata was recorded as being present. Refinements to this distribution

were made by referring to Paice (1974) where sites with only one tree occurring were

recorded separately. The number of trees in the juvenile age class was set to zero since

although there had been some successful regeneration of T. cordata in the Lake District

during the hot summers of 1976, 1983 and 1984 all the seedlings were consumed by

wood mice and voles (Pigott, 1992). Simulations carried out with 50 seedlings as well as

50 mature trees in the initial distribution showed that the results were insensitive to this.

Table 4.6 Parameter values used in the two-dimensional simulations. Case I parameter values result in a

higher intrinsic rate of population increase (0.08) than case 11 (0.01).

Parameter	 Case I	 Case II 

Cell length	 1 Ian	 as case I

Area occupied by an individual 	 50 m2	as case I

Generation length	 25	 as case I

Probability of becoming reproductively mature tree 2.5x104	1x10-5

Probability of adult surviving a further generation 	 0.913	 as case I

Number of offspring produced per generation by	 83200	 as case I

. juvenile cohort

Number of offspring produced per generation by	 160000	 as case I

adult cohort

Probability of dispersal by long-distance dispersal 	 0.01	 0.1

function

RMSD of long-distance dispersal function 	 9.7 km	 45 lan
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4.7.2. Homogeneous Environment with no Climatic Restrictions

The relative carrying capacity was set at 0.2 i.e. up to 20 percent of the cell area may be

occupied. These environmental conditions may be considered to be similar to those

experienced by T. cordata during post-glacial migration if it is assumed that climate was

not limiting its migration. During those times, T. cordata would have been migrating

through land which was predominantly forested. Taxa such as Betula, Corylus, Ulmus,

Quercus and Pinus had already spread throughout most of the British Isles before T.
cordata arrived. T. cordata was probably a major constituent of forests during its

migration (Birks, 1989) so a relative carrying capacity of 0.2 seems quite reasonable.

The simulation with case I parameter values shows that spread occurs by the circular

expansion of populations which coalesce to form a continuous front (Fig. 4.8). The rate

of spread of this front is approximately 0.18 km yr- 1 which is in agreement with the rate

simulated by the one-dimensional version of MIGRATE with the rounding option (Fig.

4.5). The simulation done with case II parameter values (Fig. 4.9) produces an outcome

which is quite different to that produced with case I parameter values. Although T.

cordata has spread just as far north it has done so at a much lower density and a

continuous expansion front is not so obvious. The reason for the difference between the

two simulations becomes apparent when the results from the one-dimensional simulations

are examined (Figs 4.5 and 4.6). It can be seen that although both populations eventually

attain the same rate of spread it takes much longer for the equilibrium abundance level to

be reached with case II parameters. This is a consequence of the lower intrinsic rate of

population increase with case II parameters. These results indicate that where the

intrinsic rate of population increase is very low (less than about 0.02) it is important to

know both the current distribution of the species being studied and the density at which it

occurs. The simulation with case II parameters is in agreement with Bennett's view of the

pattern of migration in that spread occurs at very low densities. Some of the outlying

populations are sufficiently isolated so as to be possibly undetectable in the fossil record.

In order to gain some insight into the frequency of dispersal events occurring with case I

and case II parameter values the number of dispersal events falling into various distances

categories were counted using the dispersal logging option described in section 2.1.4.

The numbers were converted into logarithms of the proportion of the total number of

prospective individuals dispersed. The graphical display of these results is shown in Figs

4.10 and 4.11. These curves show that the majority of propagules are dispersed only a

short distance from their parent. The slight increase in dispersal probability observed

after the initial sharp fall off is a consequence of the relationship between the dispersal
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function itself and the fact that the area of each sampling annulus increases with

increasing distance from the source.

4.7.3. Heterogeneous Environment with no Climatic Restrictions

In today's modem environment it is not appropriate to consider the habitat to be

homogeneous. Habitat loss and fragmentation have resulted in a landscape which is very

heterogeneous. In order to look at how this may affect the possible future migration of T.

cordata a relative carrying capacity map was constructed as described in section 2.3.2

using the Institute of Terrestrial Ecology's land cover database. The values were the

fraction of deciduous woodland in each 1 km square cell multiplied by 0.2 i.e. Tilia was

able to occupy up to 20% of the deciduous woodland in each cell. None of the other

habitat types were considered to be suitable for invasion. As T. cordata is a shade

tolerant mid-successional tree species this land cover class seemed to be the most

appropriate choice. In addition, it probably represents the only land cover category which

could be invaded by T. cordata. As T. cordata will grow on a wide variety of soils

(Paice, 1974) it was not thought necessary to include soils data in the creation of the

habitat map shown in Fig. 4.12. Simulations were carried out using case I (Fig. 4.13) and

case II (Fig. 4.14) parameter values and the current distribution of T. cordata.

It is clear that in the heterogeneous environment which is typical of the modem

landscape the migration rate of T. cordata will be much reduced. The simulation with

case II parameter values shows the greatest reduction in range expansion with very little

spread being observed beyond the initial distribution sites. The rate of spread with a

heterogeneous habitat is about three times less than that with a homogeneous habitat

suggesting that the habitat loss and fragmentation typical of the modem landscape will

significantly reduce the ability of a species to migrate.

In order to look at how the patchy nature of modern day habitat availability may affect

the future spread of T. cordata, a simulation (Fig. 4.15) was carried out in which the

relative carrying capacity of each cell was smoothed by assigning it the average relative

carrying capacity of all land cells within a 3 km radius. The parameters used were the

same as those used with case I parameter values and a heterogeneous environment with

no climatic restrictions (Fig. 4.13). The resulting extent of spread is very similar in both

simulations which indicates that the distribution of available habitat is not important at

the scale of tree migration.
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MIGRATE can also be used to investigate the effect of changes in both habitat

availability (i.e. number of cells available for colonisation) and relative carrying capacity

(i.e. proportion of each cell available for colonisation) in the same manner as has been

done by Schwartz (1992). Such investigations enable the magnitude of the changes in the

migration rate due to changes in habitat availability and suitability to be assessed. For

example, using case I parameter values with a homogeneous environment and a relative

carrying capacity of 0.2 the simulated migration rate was 0.18 km yr- 1. However, when

the proportion of available cells was reduced from 1.0 to 0.1, the migration rate was

reduced by a third to 0.12 km yr-1 . Although the magnitude of this response is less than

that predicted by Schwartz (1992) who predicted that migration rates would decrease by

a factor of ten as a consequence of a reduction in habitat availability from 80% to less

than 30%, the reduction in the rate of spread is still great enough to indicate that habitat

loss may contribute significantly to tree species failing to migrate fast enough to keep

pace with future climate change. The quantitative differences between the results

predicted by MIGRATE and Schwartz's model could be due to differences in the

parameter values used in the simulations or differences in the formulation of the two

models. However, simulations with MIGRATE using parameter values matching as far

as possible those used by Schwartz predicted a two thirds reduction rather than a 10 fold

decrease in the migration rate when habitat availability decreased from 80% to 10%.

Schwartz observed that the migration rate predicted by his model depended upon the

threshold level of detection. However, the one-dimensional simulations with MIGRATE

show quite clearly that the migration rate is not dependent upon the level of detection

once the population front has reached its equilibrium shape. If the population front was

adapting to its equilibrium shape during the time period that Schwartz measured the

migration rate then this may explain the discrepency between the results of the two

models.

4.7.4. Effect of Climate

Under current climatic conditions, nowhere in northern Britain is hot enough during the

summer for T. cordata to reproduce. Pigott and Huntley (1981) found that the frequent

production of fertile seed is now almost bounded by the 20°C isotherm for the mean

daily maximum temperature in August.

The climate map for a hypothetical year under current climatic conditions (Fig. 4.16) was

constructed as described in section 2.3.3. In reality there are no 1 km squares which have

a mean August daily maximum temperature greater than or equal to 20°C. However,

these values are average values based on a thirty year period (1960 to 1990). The
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standard deviations of these data for Durham and Morecambe were 1.57°C and 1.47°C

respectively. It therefore seemed reasonable to use a standard deviation of 1.6°C for the

whole of the study area as a means of varying the current day values. When the

temperature was varied according to a normal distribution with a standard deviation of

1.6°C then some of the grid squares have temperatures great enough for the successful

reproduction of T. cordata. This is to be expected as Piggott (1992) has observed

seedlings of T. cordata following the hot summers of 1976, 1983 and 1984.

The effect of 'modern day climate alone was examined by using a homogeneous

environment but with the modern day climatic restrictions as described above. From

these simulations, it can be seen that with case I parameters (Fig. 4.17) T. cordata could

potentially extend its range much further north in the next 500 years. However, with case

II parameters (Fig. 4.18) only a very limited amount of spread is predicted to occur.

When both the effects of modern day climate and land cover are investigated then the

simulation with case I parameters (Fig. 4.19) shows a very much reduced pattern of

spread, however, there is still a noticeable increase in tree density after 500 years. With

case II parameters (Fig. 4.20), the density and distribution of 7'. cordata after 500 years

is almost exactly the same as its initial distribution. This is more in tune with what is

expected from current day observations.

These simulations showing the possible response of 7'. cordata to climate change assume

that the mean August maximum daily temperature will continue to be the variable which

determines its northern limit. However, this may be a false assumption since as climate

changes other climatic variables, for example precipitation may become limiting. In order

to obtain a better picture of how T. cordata may spread in the future a climate response

surface was used to modify the present day carrying capacity values. The climate

response surface consisted of probability of occurrence values for each 10 km square and

was created as described in section 2.3.2. It was found that a threshold probability value

of 0.5 was needed in order for the response surface to correctly predict the current

distribution of T. cordata in Europe (Huntley et al., 1995). Therefore, where this value

was exceeded the relative carrying capacity was modified by multiplying by the

probability of occurrence value for that square. If the threshold was not exceeded then

the relative carrying capacity was set to zero.

Figs 4.21 and 4.22 show the potential range expansion of T. cordata with case I

parameter values based on its current probability of occurrence at the modal altitude of

each 10 km square under homogeneous and heterogeneous environmental conditions
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respectively. In both simulations the pattern of spread is similar although slightly greater

than that predicted by the simulations in which the mean August maximum daily

temperature was used as the limiting climatic factor (Figs 4.16 and 4.17). Possible

reasons for the discrepancies between the simulations using probability of occurrence

values and the simulations using the mean August maximum temperatures only are:

1. In Figs 4.21 and 4.22 the threshold for occurrence was set slightly too low therefore

allowing T. cordata to spread more freely than in Figs 4.16 and 4.17.

2. The abrupt cut off threshold of 20°C for reproduction used in Figs 4.16 and 4.17 did

not allow for some successful regeneration at slightly lower temperatures. When

these simulations were repeated but with a cut off threshold of 19.5°C then the extent

of spread was much more similar to the simulations using probability of occurrence

values.

3. The response surface data are available only at a 10 km resolution and that by using

the probability of occurrence at the modal altitude some of the 1 km cells will have

been given probability of occurrence values which are too high or too low because

their mean altitude differs from the modal altitude upon which the probability of

occurrence was based.

These results indicate that if case I parameters are a reasonably accurate approximation

to the actual parameter values for T. cordata then its current distribution is determined

by a combination of the mean August daily maximum temperature and the availability of

woodland in which it can potentially regenerate. If the area of woodland for T. cordata

to spread into was more extensive, then its predicted current distribution with case I

parameters would be further north than presently observed.

With case II parameter values and a uniform environment with a relative carrying

capacity of 0.2 the restrictions imposed by the climate response surface resulted in spread

occurring at very low densities. However, when a heterogeneous environment was used

there was no detectable spread.

All the parallel simulations carried out with case I and case II parameter values have

shown that simulations with case II parameter values are less able to respond to

environmental change. The most likely reason for this is the lower intrinsic rate of

population increase associated with case II parameter values.
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A simulation was carried out using case I parameter values under uniform habitat

conditions with a 2 degree increase in the mean August maximum temperature (Fig.

4.23). This simulation was done with the intention of comparing the difference between

simulations in which the future distribution of T. cordata is simulated by the use of an

increase in the mean August maximum temperature alone versus the use of probability of

occurrence values generated from a climate response surface. It was decided to use case

I parameter values with a uniform habitat since previous simulations have shown that

these conditions resulted in the most extensive range expansion and highest population

density, therefore any differences between the two means of effecting future climate

change should be more marked. Unfortunately the required probability of occurrence

values for a future climate scenario could not be generated in time for inclusion in this

thesis. However, by examining the predicted European distribution of 7'. cordata based

on its climate response surface it is possible to see that its distribution will shift northeast

(Huntley et al., 1995). Using the OSU scenario for a doubling in carbon dioxide

concentration, the distribution of T. cordata in the British Isles is predicted to become

restricted to a few localities in central Scotland. However, with the UKMO scenario T.

cordata is not predicted to occur anywhere in the British Isles. These distributions are

equilibrium distributions, therefore they do not take into account the dynamics of species'

response to climatic change. Given the relatively short time scale over which climatic

change is predicted to occur (the Intergovernmental Panel on Climate Change predict an

increase of approximately 3°C by the end of the next century (Houghton et al., 1990)) it

is likely that the future distribution of T. cordata will be determined more by its ability to

track suitable climate than by climate change itself.

4.8. Model Validation

The longevity of trees has meant that it has not been possible to use them as means of

validating MIGRATE. In order to perform a validation exercise, it is necessary to have

data on the distribution of a migrating species for at least two points in time. The time

interval separating the two distributions should be long enough for there to be a

significant difference between them. The minimum separation time will be determined by

the rate at which the species is migrating and the spatial resolution at which the research

is being carried out. For example, at the 1 km resolution used for modelling the two-

dimensional spread of T. corclata a minimum distance of 25 km would probably suffice.

Therefore, if a species is migrating at 250 m yr- 1 , which is a typical migration rate

observed during post-glacial migration then a time interval 10 years would be needed for

a species which is capable of reproducing at 10 years, for example, birch and Scots pine
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(Miles, 1988). For species such as oak which do not reproduce until they are much older,

a proportionately longer time would be needed.

MIGRATE can, however, be used for other organisms which for modelling purposes can

be considered to be sessile (i.e. they disperse as non-reproductive individuals and then

settle down to breed within a relatively restricted range). Therefore it may be possible to

attempt to validate the model formulation using another species. This has already be

done for the one-dimensional version of MIGRATE in section 4.3 where the rates

predicted by MIGRATE were compared with those predicted by Skellam's (1951)

diffusion model, Van den Bosch et al.'s (1992) analytical model and the observed

migration rates.

MIGRATE has been used to study the spread of rhododendron in Glen Etive (Griffin,

1994). Although the model was able to reproduce the present day distribution of

rhododendron from an initial distribution consisting of the points of probable

introduction in 1910 this work can not be considered to be a true validation since in

order to obtain a value for the long-distance dispersal parameter the model was 'tuned'

until the value used for this parameter gave a distribution which closely approximated to

that observed for the present day. The model did, however, prove useful in looking at

ways in which the spread of rhododendron in Glen Etive could be controlled. In order for

a true validation to be carried out an independent measure of the long-distance dispersal .

parameter is required.

It had also been hoped to validate the model using data from another study carried out

on the spread of rhododendron by Thomson et al. (1993). This study examined the

spread of rhododendron from 1968 to 1986 using aerial photographs. However, it was

decided that the change in the distribution of rhododendron observed during this study

was unlikely to be sufficient for validating MIGRATE. In addition, the environmental

data which would have been used to create the habitat map only covered three relatively

small areas within the study area, the largest of which was approximately 6 km2.

In the absence of any firm validation of the formulation of MIGRATE and the values

used for some of its parameters it should not be used for making quantitative predictions.

Despite this, it can still serve a useful purpose as both a management tools and for

making qualitative predictions.
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Fig. 4.12 The relative carrying capacity values used in simulations where the environment was assumed
to be heterogeneous. These values were set using the assumption that Tilia cordata could come to occupy
a maximum of 20% of the deciduous woodland cover. The land cover data were obtained from the
Institute of Terrestrial Ecology's land cover database at a 1 km resolution.
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Fig. 4.16 A typical modem day climate suitability map for Tilia cordata based on the mean August daily
maximum temperature for the period 1960 to 1990. Climate data obtained from the Institute of
Terrestrial Ecology at the 10 km resolution was used in conjunction with Bartholomew's 1 km altitude
data to produce a climate suitability map at the 1 km resolution (see section 2.3.3). It was assumed that
reproduction could not occur if the temperature fell below a threshold value of 20°C. If the threshold was
exceeded then reproduction could occur. During simulations, the climate data are made to vary about
their actual values with a standard deviation of 1.6.
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CHAPTER 5

Concluding Remarks and Suggested Areas for
Further Research

5.1. Conclusions

MIGRATE has shown itself to be a useful exploratory tool for investigating the effects

of different parameter values on the rates and patterns of migration. Although it is a

simple model it captures all the essential processes regarding reproduction and dispersal

which have been used in similar models of migration. Simulations carried out in section

4.3 showed that the migration rates predicted by MIGRATE are in good agreement with

both the observed rates and the rates predicted by the models of Van den Bosch et al.

(1992) for the collared dove, house sparrow and muskrat. If attempts were to be made at

incorporating more detail into MIGRATE it would become increasingly difficult to

analyse its behaviour. In view of the success in predicting the observed rates of migration

for the collared dove, house sparrow and muskrat it would seem that there is no extra

value to be gained by trying to incorporate more detail into the model. It would be far

better to concentrate efforts on gaining more accurate data for assigning values to the

existing parameters which are known to be important in determining the migration rates

and patterns.

The simple nature of MIGRATE enables sensitivity analyses to be carried out to

determine where more accurate parameter values are needed. Such analyses carried out

with the one-dimensional version of MIGRATE were described in Chapter 4. The results

indicated that the following parameters play an important role in determining the

migration rate:

• the number of propagules which survive to maturity;

• the age of first reproduction;

• the frequency and distance of long-distance dispersal events.
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The number of propagules which survive to maturity is a product of two parameters in

the MIGRATE model, the number of propagules produced per individual per generation

(S) and the probability of a propagule reaching the age of first reproduction (F1). S may

be estimated fairly easily from data in the literature, however, data on the probability of

survival to the age of first reproduction is very scarce. All that is known about P1 is that

it is very small. For long-lived species such as trees, long-term studies are needed in

order to determine more accurate values for this parameter and how it is affected by

variations in the environment.

The age of first reproduction is also affected by variations in the environment, It is

known that trees in the open can start producing propagules up to ten or more years

before trees growing in a forest environment. For example, Pigott (1991) notes that in

the open, Tilia cordata begins to produce small quantities of seed when it is 12-20 years

old, however, in a woodland seed production may not begin until it is 25-30 years old

and may even be delayed until 30-40 years. If more accurate data could be obtained on

the age to first reproduction with respect to environmental conditions then this a

refinement which may be worth incorporating into the model. The results from the

sensitivity analyses indicate that if the migration rate is primarily determined by those

trees at the leading edge of the migration front then a decrease in the age of first

reproduction from 25 to 10 years may lead to an almost doubling of the migration rate.

The review of the literature on seed dispersal given in Chapter 1 and the attempts at

measuring it in the field as described in Chapter 3 suggest that it is not possible to

quantify the frequency of dispersal distances much greater than a few hundred metres by

carrying out field studies. The low value of the dispersal half distance as determined by

field studies in conjunction with knowledge on the rates of migration and population

increase suggests that dispersal operates at two scales with a few seeds going a long way

and not therefore being detected. The palaeoecological record can be used to derive

estimates for the long-distance dispersal parameters as described in section 2.2.

However, this then means that the palaeoecological record can not be used in validating

the results produced by MIGRATE. Ideally some independent means for measuring the

long-distance dispersal of propagules is required. One possibility would be to use

dispersal models capable of simulating the dispersal pattern of propagules under realistic

meteorological conditions. Such models should include both the effects of turbulence and

the aerodynamic properties of propagules. Currently such models are not detailed

enough to do this sufficiently accurately for particles such as seeds. However, as already

noted in Chapter 1, secondary dispersal may play a very important role in determining the

final resting place of dispersed propagules. There is a very limited amount of quantitative
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data on secondary dispersal so this represents another area where further research is

needed, although its very nature will make it a difficult subject to tackle.

Another area of interest which is closely related to the form of the long-distance dispersal

function is how the probability of propagule survival changes with increasing distance

from the parent tree. Results from sensitivity analyses have suggested that if the

propagules that are dispersed over a long distance have a greater chance of survival

because they escape density dependent mortality factors then the migration rate may be

significantly increased. There is various evidence both for and against the escape

hypothesis, some of which was discussed in Chapter 1. Again, this is another area where

further research is needed.

Most of the models of migration that have been developed to date have assumed the

environment to be homogeneous. This restriction is relaxed, however, in the two-

dimensional version of MIGRATE where a spatially explicit heterogeneous landscape

can be used to represent reality. Some recent models have been developed which can

make predictions about migration rates in a heterogeneous environment, but, as they are

not spatially explicit they can not show the pattern of spread. The formulation of the

two-dimensional version of MIGRATE allows features of the real environment to be

captured. For example, some of the simulations carried out in Chapter 4 used land cover

and climate data. MIGRATE could easily be refined to incorporate any spatially

referenced data set as required.

There are two different schools of thought regarding the pattern of post-glacial tree

migration. These were reviewed in Chapter 1 and can be briefly summarised as Davis'

model in which spread is assumed to occur as a more or less continuous front and

Bennett's model in which spread occurs by the establishment of small scattered

populations with gradual infilling. The results obtained from MIGRATE can be used to

support either of these models of spread.

In the case of Bennett's model, MIGRATE confirms that for low intrinsic rates of

population increase (i.e. < 0.01) spread will occur as a shallow front with population

densities taking approximately 200 km to rise from very low values at the range limit to

the equilibrium density value (for example, see Fig. 4.6). In two-dimensions it is clear

that under these conditions, spread occurs by the formation of many small populations

which slowly increase in size and merge together. These results are not unexpected as in

order for migration to occur fast enough the rare long-distance dispersal events must be

very large in order to compensate for the very low value of the intrinsic rate of
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population increase. There is very little direct evidence for dispersal distances in excess

of 100 km although the palaeoecological record suggests that dispersal did occur over

such distances in the past (see section 1.4.5). With Bennett's model, MIGRATE predicts

that in order for the necessary migration rates to have been achieved dispersal distances

in excess of 100 km may have occurred.

With regard to Davis' model, it can be seen that when the intrinsic rate of population

increase is greater than about 0.08 the population front will appear very steep when

viewed at the scale of several hundreds of kilometres. Measurements of the extent of the

population front suggest that it could actually take up to 20 km for the equilibrium

density value to be reached. Intuitively this may sound more realistic than the value of

several hundreds of kilometres simulated by MIGRATE under conditions of lower

intrinsic rate of population increase. Although a value of the intrinsic rate of population

increase of 0.08 falls outside the range 0.01-0.0039 predicted for Tilia cordata by

Bennett (1983) it does not imply that this value is too high. Bennett (1986) quotes some

values for the intrinsic rate of population increase of trees determined from modem day

studies on increasing tree populations. These values range from 0.087 to 0.002. It is clear

that a few cases have values which are in excess of 0.02 which is the approximate

maximum determined by Bennett from the pollen record. This discrepancy could be due

to one or more of the following factors.

• The rates of population increase determined from the pollen record do not reflect

the true rates of population increase.

Some modern tree populations are actually increasing faster than tree populations

increased during their post-glacial migration history due to more favourable

conditions today than in the past.

• The intrinsic rates of population increase for the tree species determined from

modern day studies are different to the rates of those species investigated by

Bennett due to differences in their natural history.

Crawley (1990, page 29) has deduced formulae for estimating the range within which the

intrinsic rate of population increase lies. However, as these formulae require values for

the number of propagules produced as a result of the first seed set and the probability of

a propagule reaching the age of first reproduction they are not very helpful. The range

within which the intrinsic rate of population increase (a) lies is given by:
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1. 1n r &pi) < a < SPI.

TT)L  	 T

So, if T=25, SIT = 6400 and P1 = 5x10-5 (default parameter values for Tilia cordata

used in the sensitivity analysis) then -0.045 < ot < 0.32. Crawley suggests that the true

value of a is normally much closer to the lower bound than the upper bound and the

approximation works well when the first seed set at age T is relatively large. This result

does not therefore give firm support for either of the two models of spread. To conclude,

the value of 0.08 for the intrinsic rate of population increase resulting from a simulation

which gave a pattern of spread fitting Davis' continuous front model may not have been

too large.

In order to clarify which model of spread is the most likely, more information is needed

on (1) the relationship between the pollen accumulation rate and tree density and (2) the

frequency and distance of long-distance dispersal events. Davis and Sugita (submitted)

have made an attempt at investigating the first by using a model that simulates the

deposition of pollen from an advancing population that has a continuous front. From

their results, they conclude that the shape of the population front depends on:

• the dispersal properties of pollen;

• the rate of migration;

• the size of the lake from which the pollen sample was taken.

Therefore, because of these factors they conclude that it is inappropriate to use the

gradient of the natural logarithm of the pollen accumulation rate versus time to determine

the intrinsic rate of population increase. However, despite this, it would be very

interesting to determine the values of these gradients to see if they are in agreement with

those determined by Bennett. If the gradients are in agreement then this would be strong

evidence in support of Davis' continuous front model of tree migration. If, however, the

gradients do not agree then it may be that the shape of population front used by Davis

and Sugita needs to be modified. For example, it may be more appropriate to use a

model of migration such as MIGRATE that can simulate population fronts with a variety

of shapes, depending on the values given to the reproductive and dispersal parameters, in

conjunction with the pollen dispersal model POLLSCAPE used by Davis and Sugita in

their model of pollen deposition by migrating populations of trees.

Results from the two-dimensional simulations have illustrated how the pattern of spread

can be affected by the values assigned to the reproductive and dispersal - patterns.
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However, as discussed above it is not possible without further data to say whether Davis'

model or Bennett's model is the best model of how post-glacial migration occurred.

The two-dimensional simulations have, however, enabled the effects of habitat and

climate suitability to be investigated. Simulations have shown that habitat loss and

fragmentation will significantly reduce the ability of trees to respond to the predicted

future climate change. It can be shown through the use of probability of occurrence

values generated from climate response surfaces (Huntley et al., 1995) that the factors

which currently limit the distribution of a species may no longer limit its distribution in

the future. The use of probability of occurrence values in conjunction with other spatially

explicit data relevant to the successful establishment of species therefore offers a good

opportunity to investigate how species may respond to future changes in climate and land

use.

The factors which control the rates and patterns of the migration of a particular species

are very complex. Even MIGRATE which is a fairly simple model has been able to show

that the simulated migration rates and patterns can depend upon the interactions of

several parameter values. In particular the sensitivity of MIGRATE to a particular

parameter value can be affected by the values assigned to the other parameters. For

example, it was shown in section 4.6 that parameter values which simulated migration

according to Davis' model of spread were less sensitive to changes in the probability of

reaching the age of first reproduction than the set of parameter values which simulated

migration according to Bennett's model. In contrast, the Davis parameter values were

more sensitive to a decrease in the age of first reproduction than the Bennett parameter

values.

5.2. Future work

As has already been discussed above, there are several areas wheredata are insufficiently

accurate. This problem is particularly acute with respect to trees due to their longevity. It

would therefore be worthwhile trying to validate the model with a shorter-lived plant

species such as an annual or a biennial in Order to confirm that MIGRATE is able to

accurately simulate observed patterns of spread. In order to do this, independent

measurements will be required for the dispersal and reproductive parameters. It is quite

probable, however, that the problem of assigning values to the long-distance dispersal

parameters will be encountered again. It would be possible to use MIGRATE to
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determine values for these parameters so that the observed migration rate is achieved.

However, MIGRATE would then have to be validated at another site where it would

have to be assumed that the dispersal parameters from the first site still apply.

The simulations done with future climate scenarios do not include the direct effects of an

increase in carbon dioxide. An increase in the growth rate resulting from carbon dioxide

fertilisation may be modelled simply by reducing the age of first reproduction. Plants will

also be more water efficient due to a decrease in water loss through their stomata. This

may enable them to survive in areas which are currently too dry. In order to make

MIGRATE's predictions more accurate, these effects should be taken into account.

Research into the basic natural history of species including their reproductive and

dispersal ecology and their current distribution needs to continue so that the quality of

the data on which models such as MIGRATE depend can be improved. Further

refinements to MIGRATE will be futile unless the quality of the data gathered for

estimating the existing parameters can be improved.
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APPENDIX A

Dispersal Equations and Related Definitions

Abbreviations

RMSD	 Square root of the mean square of displacement

DH	 Half distance of dispersal i.e. distance over which the seed density falls

by a half

Cell length

Distance in the x direction

Distance in the y direction

x + y

Gradient of the straight line when an exponential curve is plotted on a

logarithmic axis

f(x)
	

Dispersal density with respect to distance x from the seed source (one-

dimensional formula)

f(r)
	

Dispersal density with respect to distance r from the seed source (two-

dimensional formula)

The following equations have been normalised so that for the one-dimensional formulae

the area under the curve from x to x = +0o sums to 1.0 and for the two-dimensional

formulae the area under the curve from r = 0 to r = +03 sums to 1.0. It is assumed that

dispersal occurs equally in all directions. The formulae were obtained from statistical text

books unless otherwise stated.

Al Normal distribution

—(x) 2  1
f (x) 	 . exp

-4n.RMSD	 {RMSD 2 j

In the above one-dimensional distribution the RMSD equals cri2 where a is the standard

deviation.
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A2 Bivariate normal distribution

L2	
f(r).	 .expi  

-(r)2  1
7t. RMSD	 t RMSD 2 j

In the above two-dimensional distribution the RMSD equals the standard deviation.

A3 One-dimensional negative exponential distribution

f(x). +Lk. exp(-Icrx1)

The RMSD of a one-dimensional negative exponential distribution is given by:

RMSD = $
This formula allows the value of k to be set so that the RMSD of the negative

exponential distribution is the same as a given normal distribution (M. Hill, pers. comm.).

k is related to the half distance of dispersal by the equation:

k=
H

A4 Two-dimensional negative exponential distribution

This formula was derived from the one-dimensional negative exponential distribution by

M. Hill (pers. comm.).

, L2K2
f(r )- —.exp(-kr)

2 71

AS One-dimensional Weibull distribution

f(x). _1 L.(1)( x)(`-')
2 biT;;) exP[-Nclb

where b is the scale parameter and c the shape parameter. When c = 1 this distribution is

the same as the one-dimensional negative exponential distribution.

A6 Two-dimensional Weibull distribution

This formula is an extension of the one-dimensional Weibull distribution as derived by

Bergelson et al. ( 1993).

f(r) - L 2 .V-Irj-gr Y-1) exp[-(Tr)c]
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APPENDIX B

Results from One-Dimensional Simulations

The simulations presented here were carried out in order to look at the sensitivity of

MIGRATE to variations in its parameter values and to investigate some of the issues

raised in Chapter 1 regarding the post-glacial migration of trees. An explanation of the

graphical output and parameters used in the model is given in section 2.1. Unless

otherwise stated, the lower graph displays the rate of population increase at distances

100 km, 110 km, 120 km, 130 km and 140 km from the origin. The initial distribution of

trees was set as being full occupation of the first 10 km of cells. The simulation results

are discussed in Chapter 4.
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L m1.00 km; a = 50.00 rn2; Tm 25.00 years;
Survival probabilities a 0.0000500, 0.9130
Sm 1.800e+05;
RMSD1 = 3.47 km; P(RMSD1) • 1.000000;
Dispersal sums = 1.0000; Total m 1.0000q Furthest Cell = 18;
Km 1.00; No rounding in this simulation; No eilmatle restraints;
Output Interval = 5 generations; Last generation =50
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L 10.00 km; a 50.00 m'; T e 25.00 years;
SUIViVal peobsibilities e 0.0000500, 0.9130;
S 1.600e+05;
RMSD1 • 3.47 km; P(RMSD1) • 1.000000;
Dispersal sums 1.6267; Total .1.6267; Furthest Cell ei 3;
K 1.00; No rounding in this simulation; No climatic restraints;
Output Interval 5 generations; Last generation 50
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Survival probabilities • 0.0000500,0.9130;

1.1303e+05;
FtMSD1 3.47 km; P(RMSD1) • 1.000000;
Dispersal sums = 1.0030; Total Loom Furthest Cell = 180;
Km 1.00; No rounding In this simulation; No climatic restraints;
Output Interval 5 generations; Last generation • 50
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L 1.00kng a: 5.03 ne; Ta 25.00 years;
Survival probabilities = 0.000050, 0.030Cq
S = 160000.0;
RMSD1 = 147 Ian; P(RMS01) = 1.000000;
Dispersal sums 1.0; Total • 1.0000; Furthest Cell = 18;
K =1.00; No rounding in this simulation; No climatic restraints;
Output interval = 5 generations; Last generation = SO
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L= 1.00 km a = 10000.00m I'm 25.00 years;
Survival probabilities = 0.000050. 0.00ak
S = 160000.0;
FtMSD1 = 3.47 krn; R(RMSD1) • 1.000000;
Dispersal sums = 1.0000; Total = 1.000O Furthest Cell • 18;
K=1.00; Random number seed • 31; No climatic restraints;
Output interval -5 generations; Last generation = 50
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L • 1.00 kin; a: 1000003.00 rri'; T. 25.00 years;
Survival probabilities • 0.0000500, 0.9130,
S. 1.6000+05;
RMSD1 • 3.47 km; P(RMSD1) • 1.000000;
Dispersal sums 1.0000; Total 1.0000; Furthest Dee 113;
K. 1.00; Random number seed • 31; No climatic restraints;
Output interval • 5 generations; Last generation • 50
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L=1.00 Ian; a= 50.00 rre; T. 10.00 years;
Survhral probabilities • 0.000050,0.9660;
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RMSD1 = 3.47 Ian; P(RMS131) = 1.000000;
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K: 1.00; No rounding In this simulation; No climatic restraints;
Output interval = 5 generations; Last generation = 50
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L • 1.00 km; a = 50.00 m'; T. 25.00 years;
Sun/al probabilities = 0.000050, 0.9130;

S . 16C000.0;
H1 • 0.98 km; P(H1) • 1.000000;
Dispersal sums- 1.0412; Total • 1.0412; Furthest Cell = 18;
K., l.co; No rounding in this simulation; No climatic restraints;
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L. 0.10 knr, a = 50.00 m**, T. 25.00 years;
Survival probabilities = 0.000050,0.9130;
S = 160000.0;
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Dispersal sums. 1.0004; Total = 1.0004; Furthest Cell = 1110
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L= 1.00 km; a 50.00 mi; T. 25.00 years;
Survival probabilities: 0,0092500, 0.9130;
S 1.6006+05;
RMSD1 • a47 km; P(RMSD1) 1.030000;
Dispersal sums: 1.0000; Total 1.0000; Furthest Cell • 16;
K= 0.20; No rounding In this simulation; No climatic restraints;
Output interval 5 generations; Last generation -50
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K- 1.00; No rounding in this simulation; No climatic restraints;
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Km 1.00; No rounding in this simulation; No climatic restraints;
Output interval = 5 generations; Last generation = 50



Lm 1.00 km; a = 50.00 m'; Tm 25.00 yews;
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K. 1.00; No rounding in this simulation; No climatic restraints;
Output interval .5 generations; Last generation • 50
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L. 0.10 km; a = 50.00 rn 2; T. 25.00 years;
Survival probabilities • 0.000050,0.01300;
S -83200.0,180000.0
RMSD1 = 0.20 km; P(RMSD1) = 0.9001:00; RMSD2 = 6.70 km; P(RMSD2) = 0.100000;
Dispersal sums = 0.9000, 0.1000; Total • 1.0000; Furthest Cell = 350;
K = 1.03; No rounding in this simulation; No climatic restraints;
Output Interval = 5 generations; Last generation = 50
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B18. Migration rate ... 0.20 km yr-1, a .. 0.09.



i- . ,	 .

L • 3.00 km; a .. 50.00 m'; T. 25.00 years;
Survival probabilities = 0.000050,0.91300;
S- 83200.0,160000.0;
All offspring placed In parent cell; P(1) ii 0.900000; RIAS02 • 9.70 km; P(RMSD2) = 0.100000;
Dispersal sums • 0.9000, 0.1000; Total = 1.0000; Furthest Cell • 12;
IC = 1.00; No rounding in this simulation; No climatic restraints;
Output Interval • 5 generations; Last generation = 50
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B19. Migration rate . 0.20 km yrl, a . 0.09.



L 3.00 Ian; a. 50.00 ma; T. 25.00 years;
Survival probabilities = 0.000050,0.91300;
S = 63200.0, 160000.0;
All offspring paced In parent cell; P(1) • 0.990000; RMSID2 • 9.7o Ian; P(RMSD2) • 0.010000;
Dispersal sums • 0.9900, 0.0100; Total • 1.0000; Furthest Cell • 18;
K 1.00; No rounding In this simulation; No climatic restraints;
Output interval • 5 generations; Last generation =i 50
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B20. Migration rate 0.20 km yr-1, a, as 0.08.



L= 3.00 km; a. 50.00 re; T., 25.00 years;
Survival probabilities = 0.000050,0.91300;

63200.0, 1 sc000.cr,
All offspring placed in parent cell; P(1) = 0.899000; RMSD2 = 12.30 km; P(RMSD2) 0.001000;
Dispersal sums = 0.9990, 0.0010; Total = 1.0030; Furthest Cell = 22;
K.1.03; No rounding in this simulation; No climatic restraints;
Output interval = 5 generations; Last generation = 50
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B21. Migration rate 0.20 km yr- 1, a 0.08.



La 0.10 km a = 50.00 rn'; Tx 25.00 years;
Survival probabilities a 0.000050,0.91300;
S 83200.0, 160000.0;
At offspring placed in parent cell; P(1) 0.899000; RMSD2 a 12.30 krrp P(RMSD2)= 0.001000;
Dispersal sums = 0.9990, 0.0010; Total =1.0000; Furthest Cell 350;

• 1.00; No rounding in this simulation; No climatic restraints;
Output interval -S5 generations; Last generation a 50
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B22. Migration rate 0.19 km yr- 1, a 0.08.
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L=3.03 MN a = 50.00 rn2; T. 25.00 years;
Survival probabilities • 0.0000500,0.91300;
S • 8.3205+04, 1.8000+05;
Al offspring placed in parent cell; P(1) = 0.959000; RMSD2 • 8.70 km; P(RMSD2) = 0.100000;
Dispersal sums = 0.9990, 0.1000; Total = 1.0994:k Furthest Cell = 12;
Ks 1.00; Random number seed = 1037; No climatic restraints;
Output interval =5 generations; Last generation = 50
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B23. Migration rate . 0.19 km yr- 1, a s. 0.09.
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L = aoo km; e= 50.00 rn2; I'm 25.00 years;
Survival probabiAties = 0.000050,0.91300;
5. 83200.o, 160003.0;
AA offspring placed in parent cell; P(1) 0.999000; RMS02 • 12.30 km; P(RMSD2) 0.00103CC
Dispersal sums = 0.9990,0.0010; Total • 1.0000; Furthest Cell • 22;
K= 1.00; Random number seed • 1037; No climatic restraints;
Output interval .5 generations; Last generation 50
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B24. Migration rate 0.19 km yr- 1, a 0.07.
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L= 0.25 km; a 50.00 rie; T. 88.70 years;
Survival probabilities = 1.0000000, 0.764A
S. e.ocos+ar,
RMSD1 = 0.83 km; P(RMSD1) -1.000000;
Dispersal sums. 1.0000; Total • 1.0000; Furthest Ced • 20*,
K. 1.00; No rounding in this simulation; No climatic restraints;
Output Interval. 5 generations; Last generation • SO
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B25. Migration rate 0.20 km yr-1.



0.02
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L • 80.00 km; a = 500.00 m T= 0.50 years;
Survival ixobablUdes 0.8830000, 0.60500, 0.59830, 0.74200, 0.56500, 0.53800, 0.57100, 0.50000, 0.50000;
S 0.000e+04 1.600e-01, 1.5480e+00, 1.560e+00, 1.5e3e403, 1.560e+00, 1.5433e403 .5806+00, 1.5606+00;
RMSD1 180.00 km; P(RMSD1) • 1.000004
Dispersal sums = 1.0000; Total • 1.0000; Furthest Cell • 13;
K 1.04 Random number seed •3; No dirnatic restraints;
Output Interval • 5 generations; Last generation • 80
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B26. Simulation of the migration of the collared dove using parameter values as given in Van den Bosch
eta!. (1992). Migration rate 81 km yr-1.



L • 5.00 km a 50.00 m1", T. 25.00 years;
Survival probabilities • 0.0000050, 0.91300;
5 • 13.320e+04. 1.800e+05;
All offspring placed in parent cell; P(1) • 0.990000; RMSD2 • 35.00 km; P(RMSD2) • 0.010000;
Dispersal sums. 0.9900,0.0100; Total • 1.0000; Furthest Cell • 35;
IC. 1.00: No rounding in this simulation; No climatic restraints;
Output interval • 5 generations; Last generation = 50
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B27. Migration rate = 0.20 km yr- 1, a = 0.02.
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SurvNal probabilities = 0.0000020, 0.91300;
S. 8.320e+04, 1.600e405;
MI offspring placed in parent cell; P(1) • 0.990000; RMSD2 75.00 km; F(RMSD2) • 0.01000Q
Dispersal sums = 0.9900,O.0100; Total • 1.0000; Furthest Cell. 40;
K 1.00; No rounding In this simulation; No climatic restraints;
Output interval • 10 generations; Last generation • 100
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B28. Migration rate 0.20 km yr- 1, cc s. 0.009. Population increase was observed at 300, 310, 320, 330
and 340 km.
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AN offspring placed In parent cell; P(1) • 0.900000; FtMSD2 • 45.00 km; P(RMSD2) • 0.100000k
Dispersal sums. 0.9000, 0.1000; Total LOCO% Furthest CaN • 40;
K. 1.03; No rounding in this simulation; No dimatic restraints;
Output Interval .10 generations; Last generation • 100
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B29. Migration rate 0.19 km yr- 1, a 0.01. Population increase was observed at 300, 310, 320, 330
and 340 km.
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L. 10.00 km; a a 50.00 rn'; T. 25.00 years;
Survival probabilities a 0.0000020,0.91300;
S 8.320e+04, 1.800e+05;
All offspring placed in parent cell; P(1) a 0.990000; RMS02 a 75.00 km; P(RMSD2) = 0.080000;
Dispersal sums a 0.9900, 0.0800; Total a 1.0500; Furthest Can = 40;
IC. 1.00; No rounding in this simulation; No climatic restraints;
Output interval a 10 generations; Last generation a 100
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B30. Migration rate 0.28 km yr- 1, a 0.01. Population increase was observed at 300, 310, 320, 330
and 340 km.
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L 10.00 lcm; a 50.00 rn 2; T. 25.00 years;
Survival probabilities . 0.0000020. 0.913130;

'	 111.320e+04, 1.1900e+C6;
All offspring placed In parent cell; P(1) . 0.990000; RMS02 50.00 km; P(RMSD2) 0.060000;
Dispersal sums • 0.9900.0.0600; Total .1.050Ct Furthest Cell • 25;
K. 1.00; No rounding In this simulation; No climatic restraints;
Output interval • 10 generations; Last generation • 100
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B31. Migration rate 0.19 km yr- 1, a 0.01. Population increase was observed at 300, 310, 320, 330
and 340 km.



Lm 5.00 kri% a = 50.00 rilL, T.. 25.00 yews:
Survival probabilities = 0.0000015,0.91300;
Smameamooecoomo-,
All offspring placed in parent cell; 91). 0.999000; RMSD2 • 75.00 km; P(RMSD2) = 0.001000;
Dispersal sums = (mem 0.0010; Total = 1.0000t Furthest Cell • 75;
Km 1.00; No rounding In this simulation; No climatic restraints;
Output interval • 10 generations; Last generation = 150
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B32. Migration rate .. 0.10 km yr-1, a ., 0.005. Population increase was observed at 300, 310, 320, 330
and 340 km.



L. 10.00 lcm; a = 50.00 m2; T= 25.00 years;
Survival probabilities • 0.0000080,0.91300;

8.320e+04, 1.600e+05;
All offspring placed in parent cell; P(1) = 0.990000; RMSD2 = 75.00 km; P(RMSD2) • 0.010000;
Dispersal sums 0.9900, 0.0100; Total = 1.0000; Furthest Cell • 30;
K. 1.00; No rounding in this simulation; No climatic restraints;
Output interval • 10 generations; Last generation .70
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B33. Migration rate 0.50 km yr- 1, a 0.02.
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Lm 3.00 icm a 50.00 m'; T- 25.00 years;
Survival probabilities • 0.0015000,0.91300;
5 = 8.3200+04, 1.600e+05;
All offspring placed In parent cell; P(1) • 0.990000; RMSD2 • 9.70 km; P(RMSD2) • 0.01000%
Dispersal sums = 0.9900, 0.0100; Total • 1.0000; Furthest Cell • 16;
K • 1.00; No rounding In this simulation; No climatic restraints;
Output interval • 10 generations; Last generation • 70
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B34. Migration rate 0.49 km yr- 1, cc .7. 0.20.
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L.3.00 kmz a. 50.00 m'; T. 10.00 years;
Survival probabilities = 0.0000500,0.91300;
S • 3.5206+04, 8.400e+04;
At offspring placed In parent call; P(1) • 0.990300; RMS02 • 9.70 lan; F(RMS02) • 0.010000;
Dispersal sums = 0.9900,0.0100; Total • 1.0000; Furthest Cell • 30;
K • 1.00; No rounding in this simulation; No climatic restraints;
Output interval = 10 generations; Last generation • 70
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B35. Migration rate 0.34 km yri, a 0.12.



L. 10.00 km; a 50.00 	 r. 10.00 years;
Survival probabilkies • 0.0020, 0.96930;
S. 3.520e+04, 8.400e+04;
RMSD1 • 75.00 km; P(RMSD1) • 0.010000; All offspring placed in parent calk P(2) • 0.990003;
Dispersal sums 0.0100,0.9000; Total • tocaz Furthest Cell • 30;

K. 1.00; No rounding in this simulation; No climatic restraints;
Output interval • 10 generations; Last generation • 150
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B36. Migration rate 0.21 kin yr- 1, a 0.01.Population increase was observed at 300, 310, 320, 330
and 340 km.


