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Abstract

A spatially explicit model (MIGRATE) was developed to simulate the spread of a single
species at the landscape scale. Current models such as forest stand models operate at a
very small scale (typically less than one hectare) or at a very large scale as in the case of
biome models. The biome models predict the final outcome to environmental change but
give no indication as to how this state may be reached or how long it will take. The
forest stand models show how successional changes may occur at a small scale but can
not be used to predict -changes involving species migrations that occur over tens of
kilometres or more. MIGRATE is an attempt at bridging the gap between these two
scales of modelling. It incorporates biologically meaningful parameters that have been
identified as being the most important factors in determining migration rates and
patterns.

The two-dimensional version of MIGRATE was applied to the particular problem of the
response of trees to changes in both climate and land use. Data from the Institute of
Terrestrial Ecology were used in order to create a model landscape that could be
considered to represent a real landscape. The use of these data enabled both the effects
of habitat loss and fragmentation and the effects of climate change to be explored. The
simulation modelling work concentrated on the migration of Tilia cordata since its
ecology is particularly well documented and its response to climate well understood.
Results from these simulations showed that habitat loss and fragmentation could have a
significant effect on the ability of trees to respond to future climatic change.

A one-dimensional version of MIGRATE was also developed as a tool for investigating
the sensitivity of the model to the values given to its parameters. The palacoecological
record of the response of trees to past climatic change has indicated that they migrated at
the remarkably rapid rates of 100 - 2000 m yr! (Huntley and Birks, 1983). However, due
to difficulties in interpreting the fossil record there are areas of uncertainty regarding the
exact nature of their migration. MIGRATE was used to attempt to address the particular
question of whether migration occurred as a continuous front or by the establishment of
small isolated populations with gradual infilling.

Attention is given both in the literature review discussed in Chapter 1 and in the field
work described in Chapter 3 to the measurement of propagule dispersal distances since
dispersal is believed to have played an important role in facilitating the rapid migration of
trees in response to past climatic change.
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CHAPTER 1

INTRODUCTION

This chapter starts with a brief introduction to the subject area focussed on by the
research presented in this thesis. The remainder of the chapter then provides reviews of
the various topics relevant to the research.

1.1. General Introduction to the Area of Research

It is known from palacoecological evidence that species responded to post-glacial
climatic change through shifts in their distribution which enabled them to track the
climate to which they are adapted. This change in distribution has been referred to as
migration (Huntley and Webb, 1989). The research presented in this thesis has focussed
on the development of MIGRATE, a simulation model which produces graphical output
of the rates and patterns of the migration of a single species based on its reproductive
and dispersal ecology and its interaction with the environment. It was intended that
MIGRATE should be a spatially explicit model, operating at the landscape-scale. Current
models operate at a scale which is either very small (for example, forest stand models) or
very broad (for example, biome models). MIGRATE therefore represents an
intermediate between these two extremes. Existing models will be discussed in order to
put the MIGRATE model into context. It was the hoped to use MIGRATE to try to
provide answers to some of the questions that the palaeoecological record can not
satisfactorily answer alone, for example, did post-glacial migration occur by the
progression of a steep continuous population front or by the establishment of small
isolated populations with gradual infilling. In addition to using MIGRATE as a tool for
investigating the processes involved in migration it was hoped to carry out some
simulations which would enable investigation of the response of trees to both the effects
of habitat loss and fragmentation as seen in the modern day landscape and the effects of
anthropogenically induced global climatic change predicted for the next century. In
conjunction with the modelling work, it was hoped to obtain values for the dispersal
parameters required by MIGRATE through field studies. This area of research was given
particular attention since early work by Skellam (1951) showed the importance of
dispersal in facilitating the rapid rate of post-glacial migration of oaks.



1.2. Introduction to Ecological Modelling

The application of models to scientific problems is an area which has grown rapidly
during the last forty years. Its development has been enhanced by advancements both in
mathematical techniques and computer technology. A model may be defined as any
abstraction or simplification of a real system (Hall and Day, 1977). A mathematical
model is one in which the relationship between defined entities is described by a
mathematical expression. One of the earliest and best known biological models is the
Lotka-Volterra model which uses a pair of simultaneous differential equations to
describe the relationship between predator and prey. Since this early model, ecological
models have been developed to simulate a wide variety of ecological processes. The
journal "Ecological Modelling" is dedicated to the subject.

Models provide scientists with a means of conceptualising, organising and
communicating complex phenomena. This is particularly relevant to ecologists since
ecological processes are often very complex and involve the interactions between a wide
variety of organisms and their abiotic environment. Such interactions may be dynamic
(i.e. vary with time) and may exhibit feedback mechanisms. In developing and
experimenting with ecological models, ecologists may also increase their understanding
of ecological systems. Many ecological problems are too complex to be solved by
commonsense rules of thumb or by intuition. Models therefore provide a tool for
predicting the consequences of an action that would be expensive, difficult or destructive
to perform upon the real system. Ecological models have been used to predict the
environmental impact of proposed actions by man, for example, in assessing the effect of
electric power plants on aquatic environments. Hall and Day (1977) give case histories of
the development and use of various ecosystem models.

More recently, spatially explicit models have been used as a tool for studying population
dynamics in a heterogeneous landscape (Dunning et al., 1995). These models incorporate
the reproductive and dispersal characteristics of the species being modelled. The real
environment is represented as a grid-based map which is-created using a geographic
information system. Such models have been used for making qualitative predictions
regarding the response of one or more species to environmental change. In order to
obtain quantitative predictions more accurate estimates of the parameter values are
needed together with testing and further refinement of the models themselves. Some
spatially explicit models are currently being applied to species conservation problems, for
example, the effect of land management plans on the distribution of the northern spotted
owl (Strix occidentalis) in Oregon and the control of the exotic bush lupin (Lupinus



arborea) in California with the view to conserving the native dune plant, Menzies'

wallflower (Erysimus menziesii) with which it competes (Tumner et al., 1995).

The use of sensitivity analysis in which parameter values are varied in isolation and
combination enables identification of those parameters where accurate values are most
important (Conroy et al., 1995). Most ecological data, especially those on dispersal
distances, are of poor accuracy (Mollison, 1991) so sensitivity analysis is a useful tool for
determining where efforts in improving parameter estimates are best targeted. Model
validation involves comparing the output of the model with independent observations.
However, a good agreement does not necessarily imply that the model is correct, it could
be coincidental. It is also possible for more than one model to give the same outcome
(Conroy et al., 1995).

Theoretical modelling and experimental research should be considered to share many
similarities (Caswell, 1988). Models are constructed to improve our understanding of
theoretical problems in the same way that experiments are used to increase our
understanding of empirical problems. The same general principles which are used in

experimental research can be applied to modelling.

1.2.1. Modelling Terminology

Stochastic versus Deterministic Models

There are two main types of model, deterministic and stochastic. Deterministic models
always produce the same output for any given input. They do not therefore take into
account the inherent variability of natural systems. Stochastic models, however,
incorporate probabilities and random numbers with a statistical distribution. They are
usually executed several times in order to obtain an average or 'most likely outcome'. The
main advantage of stochastic models is that they can give an indication of the range and
frequency of possible outcomes. It may be very important to know what the rare
extremes might be. Stochastic models should only be used when chance plays an
important role in the problem being modelled (Starfield et al., 1990). Mollison (1986)
stresses the importance of incorporating the effects of chance, especially when
populations are small. The case for using a stochastic model needs to be carefully
considered. In some cases deterministic models can be regarded as approximating a more
detailed stochastic model. For example, if a population never becomes too small, then a
deterministic model may closely resemble its stochastic equivalent (Renshaw, 1991). In
order to test whether or not a deterministic model is an accurate predictor of what may



happen in reality it is necessary to check that a series of results from a stochastic version
of the model lie close to that predicted by the deterministic model (Renshaw, 1991).

Simulation versus Analytical Models

Models may also be classified as analytical or simulation models. Analytical models
attempt to describe the whole problem using a single mathematical equation. Simulation
models, however, break the problem down into smaller components, each of which is
then represented mathematically. Models may be subdivided further according to the
branch of mathematics they employ (Jeffers, 1982).

Variable Types

Models are composed of state variables, driving variables and output variables. The
measurable properties (for example, biomass, age, number of individuals etc.) are the
state variables. Their value varies with time in accordance with changes in other variables
which constitute the system. The complexity of a real-world system may be simplified by
aggregating processes and components that are similar into single state variables. Some
aggregation may be necessary as data may not be available to provide estimates for all
the required parameters. The degree of aggregation possible also depends on the output
required. Driving variables are those which act upon the system from outside, for
example, climatic factors. They may also be referred to as forcing functions or
exogenous variables. The output variables are the quantities that the model is required to

predict.

1.2.2. Outline of the Tasks Involved in Modelling

The process of developing a mathematical model may be broken down into a series of
logical steps (Jeffers, 1982).

1. The setting of goals and objectives and definition of boundaries.

2. The production of a written description ("word" model) which describes what is
known about the system to be modelled. This should include the components,
interactions and mechanisms that operate and may state any assumptions that are to
be made. It may be based on pure logic or experience/data already collected.

3. The production of a diagrammatic model which takes the form of a flow chart and
may use special symbols to indicate the relationship between variables.

4



4. The construction of mathematical formulae which describes the relationships
between the variables.

5. The implementation of a computer program which incorporates the mathematical
relationships.

6. The validation of the model. This may involve checking the results of the model
against existing data which have not been used in the determination of any of the
model's parameters or using the model to make predictions which may be compared
with the real system when such conditions occur or are made to occur in the future.

The Institute of Terrestrial Ecology has produced a checklist of points to consider when
modelling (Jeffers, 1982).

1.2.3. Simple versus Complex Models

Ecological models have been the subject of much criticism, often on the grounds that
they are not sufficiently realistic to be applied to real situations. Even some of the most
widely accepted models such as the Lotka-Volterra predator-prey model and the density
dependent stock recruitment model used in fisheries are only superficially supported by
data from the literature (Hall, 1988). The data used to support some of the historically
most influential models used in ecology are reviewed by Hall (1988). Abstract models
such as these are often so general that they omit the key factors of specific situations. In
order to make abstract models more realistic they need to explicitly consider the
individual processes which make up the system. A realistic model is one that accounts for
as much of the knowledge of a population or community structure and function as
possible. Therefore in order to be realistic, models are often complex (Onstad, 1988).
DeAngelis (1988) discusses an approach based on envirograms for breaking up the
problem to be modelled into its mechanistic components. An envirogram has been
described as "a dendrogram whose branches trace the pathways from distal causes in the
web to proximate causes..." (Andrewartha and Birch, 1984). Only when a model includes
all of the process known to be involved in the system being modelled can the model be
used as a tool for making predictions. However, before this is done, the model should be
tested as far as poséible using data from the field in order to verify that all the important
processes are being correctly modelled. In the absence of sufficient data and/or tested
ecological theories, it may be necessary to develop simple models and then let empirical
testing indicate the limits of applicability (Onstad, 1988). ’



Mollison (1986) emphasises the importance of keeping the structure of models as clear
and simple as possible. For example, the components of a model of population spread
should have straightforward ecological interpretations such as, net population growth
rate, dispersal distribution etc. It may be found that the results of a model with a large
number of parameters actually depends on a subset of parameters which dictate the
model's behaviour. It may also be more difficult to analyse the behaviour of a model with
a large number of parameters. In modelling the spread of rabies, Murray (1987) warns
that:

"a model which incorporated all the possible aspects of the epidemic would be impossible
to use, since nothing would be known about many of the parameters, nor would there be
much hope of estimating them with the data available."

Rastetter et al. (1992) discuss ways in which fine scale ecological knowledge can be
aggregated and used in coarser scale ecosystem models. They suggest that aggregation is
likely to result in some loss in model accuracy, however, this may be balanced by the loss
in precision which would have arisen through the accumulation of errors associated with

the estimation of the larger number of parameters in the more complex model.

More complex models are usually easier to relate to realistic situations and have
parameters which are easier to measure (Onstad, 1988). However, if the required
parameters are difficult to measure or have a high degree of vaﬁability then the predictive
value of the model will be reduced. Simple models are highly aggregated and can
therefore only be applied to the specific situations for which their parameters were
determined. They can, however, be useful in enabling one to understand the relative

importance of the components making up the system being modelled.

In conclusion, it seems that a sensible compromise needs to be made in deciding how
complex a model should be. This decision should be based upon the depth of
understanding of the system being modelled and the accuracy with which the required

parameter values can be determined.



1.3. Historical Record of Tree Response to Climatic change

There is a large amount of fossil evidence mostly in the form of pollen which can be used
to gain an insight into the post-glacial response of plants to climatic change. In particular
the pollen record provides data on the rates of geographic spread, population growth and
the competitive interactions of migrating plants (MacDonald, 1993). It has been
suggested that palaeoecological studies of the response of plants to post-glacial climatic
change may provide an understanding as to how plants may respond to future climatic
change. However, the interpretation of the pollen record is not easy as there are many
potential sources of uncertainties. The application of palaeoecology to the study of plant
invasions and the problems involved in interpreting the pollen record have been reviewed
recently by MacDonald (1993).

1.3.1. Past and Predicted Future Climatic change

According to the Milankovitch Theory, historical climatic changes have been induced by
changes in the orbital geometry of the Earth. These cycles produce glacial periods lasting
approximately 100,000 years and interglacial periods lasting approximately 15,000 years
(Gribbin, 1988). It is now generally believed that the anthropogenic increase in the
concentrations of greenhouse gases will cause a warming of the Earth in the next century
(Ratcliffe, 1995). The Intergovernmental Panel on Climate Change (IPCC) predict that
an effective doubling of carbon dioxide concentration will occur by between 2030 and
2050 if present trends continue. Predictions made using General Circulation Models
suggest that a doubling in the concentration of carbon dioxide will cause global mean
temperatures to rise by around 1.5-4.5°C. The IPCC best guess is a 2.5°C increase in
global mean temperature (Houghton et al. 1990, 1992). The variations in the GCM
predictions are largely a consequence of the uncertainties associated with the modelling
" of moisture, clouds and changes in albedo (Ratcliffe, 1995). The GCMs also predict that
the warming will be greatest near the poles and that there will be changes in precipitation
and prevailing winds. There may also be an increase in the number of storms. The rate of
predicted climatic change due to an increase in greenhouse gases is likely to be 10-100
times faster than the rate of post-glacial warming (Schneider, 1989).

1.3.2. Palaeoecological Evidence of Past Response to Climatic change

The palaeoecological record provides a valuable resource for studying the response of
plants to the climatic changes of the past. Much of the evidence comes from the



palynological record as pollen grains have been well preserved in the fossil record.
Various workers (for example, Huntley and Birks, 1983; Birks, 1989; Davis et al,
1991) have used pollen data to map the range extension of trees since the last glacial
maximum (18,000 yr. BP). The remains of fossil tree stumps have also been studied
(Gear and Huntley, 1991). The results of such studies have enabled ecologists to
understand how trees have responded to climatic change in the past and therefore predict
how they may respond in the future.

The palynological record has been used extensively to show the response of different
taxa to climatic change. Huntley and Birks (1983) have produced isopoll maps for
European taxa. These show the spatial distribution of a pollen taxon and its relative
abundance pattern. A similar technique adopted by Davis for North America uses
isochrone maps in which isolines are drawn to connect localities showing a first
consistent sharp ten fold increase in pollen values at the same time (for example, Davis
1981, 1983a). Birks (1989) has also used isochrone maps to show the migration of trees
in the British Isles.

1.3.3. Difficulties in Interpreting the Pollen Record

Very low pollen counts may be due to either the presence of small local source
populations or long-distance dispersal from a large population. It is often not possible to
decide which case applies. The use of different criteria for determining the presence of a
plant species near a fossil pollen site may result in markedly different reconstructions of
plant migration. For example, Davis (1983b) mapped the spread of Fagus grandifolia in
North America as occurring as a gradual northward migration, however, Bennett (1985)
produced a map for the same region and concluded that there had been an early rapid
spread of Fagus grandifolia through the establishment of small isolated populations.
These two different reconstructions are a result of the fact that Davis (1983b) used the
time at which there was a sharp increase in Fagus pollen whereas Bennett (1985) used
the first continuous deposition of pollen (MacDonald, 1993). Davis considers the eatly
deposition of small quantities of pollen to have been a consequence of dispersal from
large distant populations, whereas Bennett believes it to have been due to the local
presence of trees.

Davis et al. (1991) have investigated the problem of determining range boundaries from
the fossil record. They compared U.S. Public Land Survey maps of tree distribution prior
to clearance by man with pollen data from the same period. This enabled them to identify
an area 20 km wide which enclosed the range limit of Fagus and Tsuga. Pollen counts



were expressed as percentages of the total arboreal pollen grains present in the sample.
At least 300 arboreal pollen grains were counted. Intermediate pollen of 1-4% lying
within 20 km of the limit were bounded by high pollen counts of greater than 4% within
the species range and very low pollen counts of 0-1% 20 km beyond the range limit. It
was not possible to identify small outlying populations within 20 km of the main
population limit due to the blurring effects of pollen from the main population. Very low
pollen counts (0-1%) outside the main population limit may provide evidence for small
outlying populations or a very sparse distribution of the taxa. However, in order to
support the hypothesis of the existence of small outlying populations it is necessary to
use a dense sampling grid in order to show that the proposed outlying population is
surrounded by an area of consistently lower pollen count. This is not often possible due
to a lack of suitable sites (MacDonald, 1993).

Taxa also vary in the relative amounts of pollen they produce, how far their pollen may
be dispersed and how well it is preserved in the fossil record. All these factors need to be
taken into account when interpreting the fossil record (Sauer, 1988 pages 145-146). For
example, the pollen deposited in lakes comes from plants growing within a few metres to
tens of kilometres from the shore. It has been shown that the size of the pollen source
area for a lake is dependent on the settling velocity of the pollen taxon and the diametet
of the lake (for example, Prentice, 1988).

Plant population densities of less than 1 ha"! can not be relizlbly detected in the pollen
record. This means that a species could exist undetected outside the range boundary
determined from the pollen record (Bennett, 1986). Differences in population growth
rates might affect the time between when a species first invades and when it is detected in
the pollen record. This time lag is of the form:

t, =ao” (1.1)

lag
where t,,, is the lag between the establishment of the species and the time when the
population density reaches the required size for registration in the pollen record, a is a
constant related to the population density required for the detection of the species in the
pollen record and o is the intrinsic rate of population increase (MacDonald, 1993).
Regional differences in population growth rates may therefore produce spurious
estimates of migration rates.

Another area of uncertainty lies in the form of the relationship between pollen abundance
and plant population size (Huntley, 1992). Bennett (1983, 1986, 1988a), suggests that
the sigmoid curve of pollen accumulation rates is a result of local population ‘growth

whereas Davis and Sugita (submitted) suggest that it is a consequence of the linear



increase in the area occupied and that the actual shape of the sigmoid curve is determined
by the migration rate, the dispersability of the pollen and the size of the lake from where
the pollen sample was taken. However, in contrast to Bennett (1983, 1986, 1988a),
Davis and Sugita (submitted) consider migration to occur by the progression of a well-
defined steep population front. MacDonald (1993) suggests that the form of the
relationship between pollen abundance and population size could be highly dependent on
the spatial configuration of invading plants relative to the sampling site. If population
growth occurs by the establishment of many small populations then the pollen record
may provide a reasonable estimate of plant population growth rates. Under these
circumstances the potential bias introduced by the leptokurtic pollen depositional
gradients will be mitigated by the contemporaneous establishment of both nearby and
distant individuals (MacDonald, 1993).

Other areas of uncertainty include the reliability of the radiocarbon dates from lake
sediments and the effect of sediment mixing. Finally, some pollen grains can only be
identified down to the level of genera (for example, Pinus and Quercus) so any
reconstructions based on the pollen record may reflect the response of more than one
species and must therefore be interpreted with caution (MacDonald, 1993).

1.3.4. The Response of Trees to Climatic Change (Migration versus Evolution)

The palaeoecological record indicates that species respond to climatic change by
"migrating". Palaeoecologists have used migration in this context to describe the
movements of populations of forest trees in response to long-term environmental change
(Huntley and Webb, 1989). Migration enables species to track environmental change and
thus continue to occupy the environmental space to which they are adapted (Huntley,
1989). Some workers prefer to refer to "spread" or "range extension" to describe the
establishment and directional movement of a taxon into a new geographical area (for
example, Bennett, 1985; Birks, 1989). Diffusion has also been used to describe species
spread by Pielou (1977).

Huntley et al. (1989) have used pollen response surfaces for Fagus to show that climate
is the major determinant of its distribution and that it responded to past climatic change
by migration rather than evolution. Pollen abundance was plotted onto a graph with
mean July temperature and mean January temperature forming the axes. Response
surfaces produced for Fagus spp. using contemporary data have been used to
successfully predict the present pollen abundance pattern using current climatic data.
This implies that climate plays an important role in determining the present patterns of
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distribution and abundance. In addition, response surfaces for Fagus in North America
correctly predict the distribution of Fagus in Europe and vice versa, despite the two
species having been separated between 25 and 10 My ago. This therefore supports the

theory that trees respond to climatic change by migration and not evolution.

Present knowledge of dispersal, vegetation dynamics and population growth also
supports the hypothesis that trees respond to climatic change by migration and not
evolution. The long life span of trees probably acts as a major limitation on their ability
to evolve. The rates of evolutionary change are too slow to enable species to respond to
climatic change (even though the cycles of climatic change are in the order of 100,000
years). However, species have evolved over time to deal with climatic change by
developing mechanisms which facilitate migration (Huntley and Webb, 1989).

A comprehensive account of plant migration is given by Sauer (1988). The descriptions
of migration illustrate the importance of long-distance dispersal agents. Birds and
humans are thought to have often played a significant role. In the northern hemisphere,

north flowing rivers were also believed to have been important.

1.3.5. Rates and Patterns of Migration

From isopoll and isochrone maps it is possible to calculate the migration rates of trees as
being in the order of 100-2000 m yr! (Huntley and Birks, 1983). The consistency of
these realised rates between different geographical areas implies that these rates may be
the maximum achievable. Bennett (1986, 1988a) suggests that these rates may not be
equal to the rate of migration at the range margin because pollen levels there are too low
to be recorded in the fossil record. He therefore suggests that rates of spread determined
from the pollen record should be referred to as rates of spread of the taxon at a given
threshold density above which the taxon can be detected. It is quite possible that the
spread ofa species may have taken place at f)opulation densities too low to be visible in
the pollen record (Bennett, 1986, 1988a, b).

The maximum migration rates simulated by a model of tree migration in response to
climatic change should be comparable with those estimated for post-glacial migration
since these are thought to represent the maximum rates achievable. However, it is
unlikely that trees will be able to migrate as fast as they did during post-glacial warming
due to a reduction in natural dispersal agents and a decline in the availability of suitable
sites (Davis, 1989). Man-made features of the modern environment, such as areas of

intensive agriculture and urbanisation may pose significant barriers to species trying to
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migrate between fragmented habitats. Future changes in land use could be important in
governing the rates of migration, for example the creation of wildlife corridors and tree
planting schemes such as the creation of community forests.

Two models have been suggested for the pattern of tree migration. The outlier model
suggests that populations spread by the formation of small outlying populations with
gradual infilling. Supporters of this model (for example, Godwin, 1975; Watts, 1973;
Tsukada, 1982a, b; Bennett, 1983, 1986, 1988a, b) believe that the initial low pollen
abundance values are due to the presence of a small number of local trees and that the
subsequent sigmoid pollen abundance curve is a direct result of local population increase.
The continuous front model supported mainly by Davis (for example, Davis, 1976, 1981,
1983a, b; Davis and Sugita, submitted), predicts that migration occurs as a more or less
continuous front and that the initial low pollen abundance values are due to the long
distance dispersal of pollen. It is important to consider the pattern of migration in the
context of scale, since the discontinuous expansion of a range limit may appear to be

continuous at a broader scale.

Isopoll and isochrone maps imply that populations migrate as a continuous front,
however, if as Bennett (1983, 1986, 1988a, b) suggests, there is a sparse distribution of
trees beyond the range limit deduced from the pollen record, then migration may have
occurred by the expansion of small populations of trees beyond the range boundary of
the main population. If Bennett is correct then the rate of migration as detected by the
pollen record will be limited by the rate of population increase and not by dispersal. The
realised rate of spread may also be greater than the rate determined by the pollen record

if spread occurs by the establishment of small outlying populations with gradual infilling.

Mack (1985) has shown that many small isolated populations spread faster than a large
single population. This is because many small populations have a greater total
circumference than a single large population occupying the same total area, therefore a
greater proportion of their propagules fall into the adjacent unoccupied areas. Therefore
relatively rare long-distance dispersal events coupled with local population increase and
spread may help to explain how the fast post-glacial migration rates were achieved

1.3.6. Individualism

Isopoll and isochrone maps also show that species exhibit very individualistic responses
to climatic change (Davis, 1976; Huntley and Birks, 1983; Birks, 1989). The
individualistic nature of the response means that species have different time constants of
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response resulting in lags in range expansion in the order of years to decades (Davis,
1976). This results in communities being temporary assemblages of taxa (Huntley, 1989,
1991).

1.3.8. Lags in Migration

Migration rates may have lagged the rates of climatic change resulting in a disequilibrium
between the migrating species and climate. The extent and cause of such lags is still
under debate. One school of thought believes that lags may not have represented
disequilibrium but may have been due to the different regional patterns of temperature
and precipitation change i.e. climatic restrictions prevented migration into areas which
may superficially have seemed suitable. Another group believes that the lags were real
and caused by factors such as limitations in dispersal, rate of population increase, soil
development, disturbance and problems in establishing and competing with the present
occupier of space. Prentice et al. (1991) have used response surfaces which describe the
relationship between surface pollen percentages and climate to infer past climates from
palynological data. Their results lead them to conclude that at the continental-scale with
a time resolution of 3000 years, vegetation patterns responded to continuous changes in
the climate from the last glacial maximum to the present, with lags no greater than about
1500 years.

The role of dispersal and climate in the range expansion of Fagus has been investigated
in North America (Davis et al., 1986). Johnson and Webb (1989) have reviewed the role
of blue jays (Cyanocitta cristata L.) in the post-glacial dispersal of fagaceous trees. They
conclude that dispersal by blue jays should have allowed Castenea, Fagus and Quercus

to migrate in equilibrium with climate.

1.3.9. Comparison with Succession

Much of the subject matter on recent plant migrations is shared with ecological studies of
succession. However, succession is usually regarded as a change in a community as a

whole within fixed spatial borders (Sauer, 1988).
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1.4. Factors Controlling Rates and Patterns of Spread

Both biotic (for example, dispersal and competition) and abiotic (for example, climate
and soil) constraints may have played important roles in influencing the patterns of
spread at different spatial and temporal scales (Birks, 1989).

Work by Brubaker (1986) indicates that the following factors were probably important in
controlling the response of trees to climatic change:

« life spans and length of juvenile period;
o seed prbductivity;

» seed dispersability;

+ phenotypic plasticity;

+ genetic variability;

e competition;

» disturbance.

The ecological literature holds a wealth of data on the life history characteristics of many
tree species. There is also a great deal of data to be found in the silviculture literature, for
example, Savill (1991). Researchers at the University of Sheffield have constructed a
database on the field behaviour of most native plants which include some tree species
(Grime et al., 1988; Grime, 1992). ‘

1.4.1. Role of Climate in Controlling Species Distribution

The distribution of species is primarily governed by climate. Minimum winter
temperature, growing degree days and water balance have been shown to be the most
important factors in determining broad-scale vegetation patterns. Evidence supporting
this comes from the results of global vegetation prediction models based on the response
of major vegetation types to climatic variables (for example, Woodward and Williams,
1987; Woodward and Mckee, 1991; Prentice et al,, 1992) and from work on climate
response surfaces (for example, Huntley et al., 1989; Beerling et al., 1995).

Studies of physiology and growth response of species have shown the importance of:

» freezing tolerance;
e growing season length;
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« drought intolerance;

 critical conditions for the completion of particular stages in the life cycle.

1.4.2. Rate of Population Increase

If trees did exist as small isolated populations then the rate of population increase could
have been a major factor limiting spread. The major factors limiting the rate of
population increase are the time taken to reach reproductive maturity, reproductive
output and probability of survival to maturity (Brubaker, 1986).

Bennett (1988a, b) suggests that some species may have existed for some time at
population densities too low to be recorded in the pollen record. As the climate
improved, these populations would have increased in size. Their rate of migration as
determined from the pollen record would therefore have been limited by the intrinsic rate
of population increase.

Bennett believes that the early low levels of pollen recorded in the fossil record represent
the expansion of local tree populations and not long-distance dispersal from a large
distant population as is thought by other workers (for example, Woods and Davis, 1989).
He has plotted graphs of pollen accumulation rate against time and fitted exponential or
logarithmic curves to the data as appropriate. He has then used the data to determine
population doubling rates in the order of 20-500 years.

doubling time = ln2 (1.2)
a

where a = intrinsic rate of population increase.

These results agree with those from modem day observations (Bennett, 1986, 1988).
This approach has also been used by Tsukada (1982a, b), who obtained similar results.

1.4.3. Competition

Competition from existing vegetation may have been an important factor where trees
were migrating into forested areas. In particular, light limits the establishment of new
trees (Brubaker, 1986). Therefore the migration rate of late successional trees may have
been slowed down by competitive interactions with existing species. For example,
Kullman (1981) noted that the rate of expansion of Pinus sylvestris was faster in sparse
stands of Betula pubescens than in dense stands. In general, however, competition is not
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thought to have played an important role in controlling the response to climatic change
during the Holocene. For example, Davis (1976) suggests that the rapid rates of
migration and the apparent ease with which established communities were invaded are
indications that competition was not a major barrier to most invaders. Huntley et al.
(1989) have used climate response surfaces to show that the distribution of Fagus is
primarily determined by climate in both North America and Europe. The distribution is
insensitive to the presence or absence of Tsuga which has a close association with Fagus
in eastern North America.

Evidence of the occurrence of interspecific competition may also be obtained from the
pollen record. If the amrival of a new taxon comesponds with decreases in pollen
concentrations or accumulation rates of taxa already present then there is evidence that
competitive displacement has occurred. For example, Bennett and Lamb (1988) analysed
pollen sampled from sites in Fennoscandia and observed a decrease in the pollen
accumulation rate for Betula which was accompanied by an increase in the pollen
accumulation rate for Pinus. They suggested that this could be explained as the
competitive displacement of Betula by Pinus. Delcourt and Delcourt (1987) used a
population model to test for a competitive interaction between Fraxinus nigra and the
taxa Ostrya and Carpinus. Using values of the intrinsic rates of population increase and
equilibrium densities obtained from the pollen record they fitted values for the
interspecific competition coefficient by Ostrya/Carpinus on Fraxinus nigra and found
that it was nearly twice as high as the coefficient of intraspecific competition for
Fraxinus nigra. Macbonald (1993) warns that care should be taken in attributing such
observations to competition as other factors such as climate could be involved in the
apparent concurrent rise in one taxon and fall in another.

Prentice (1989) suggests that the broad-scale distribution of taxa is controlled by climate
and not by competition because within large areas of vegetation there are a range of
microhabitats which are suitable for the establishment and growth of different taxa.
However, at the smaller scale of the stand or vegetation patch the species composition
will be determined by several non-climatic factors such as interspecific competition,
succession and time since disturbance. Malanson (1993) suggests that competition will
probably play an important role in the future, since the predicted climatic changes are
likely to occur over a much shorter time scale than those of the Holocene. Competition is
thought to be more important than climate in determining the southern range limit of
species (in the northern hemisphere).
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1.4.4. Disturbance

Those trees which invaded later were forced to migrate across forested terrain. Huntley
(1989) refers to them as secondary migrants and proposes that their rates of migration
may have been limited by the rate of gap formation in the existing forest canopy.

Experiments with forest simulation models have shown that disturbance plays an
important role in faciiitating the change in community composition in response to
climatic change (Overpeck et al, 1990). Disturbance probably increases the response
time of ecosystems to climatic change by eliminating resident long-lived individuals and
allowing organisms which may be better adapted to the changed climate to invade
(Davis, 1989). It is probable that the future climate will show an increase in disturbance
events. In addition to an increase in the number of gales which create gaps caused by
windthrow, there may be an increase in fire due to a combination of summer drought and
thunderstorms.

1.4.5. Dispersal

The first species of trees to migrate had to become established in unforested terrain.
Huntley (1989) refers to these as primary migrants and suggests that their rate of
migration was limited by their dispersal capacity.

The definition of dispersal as given in the Oxford dictionary implies that something which
was concentrated is spread about more evenly. However, dispersal usually achieves a
strikingly uneven distribution (Harper, 1977). Seed dispersal may be classified into local
dispersal within the present habitat and long-distance dispersal outside the present
habitat. Local dispersal enables propagules to escape competition with parent plants and
reduces density dependent mortality. In contrast, long-distance dispersal may bring about
the colonisation of new habitats. The distinction between local and long-distance
dispersal may be quite arbitrary (Sauer, 1988). Some examples of observations of long-
distance dispersal are given in Table 1.1.

The modern existence of outlying populations of beech and the establishment in the past
of outliers beyond water barriers, implies that long-distance dispersal occurs at a non-
trivial frequency (Woods and Davis, 1989). Palaeoecological research by Davis et al.
(1986) suggested that Fagus (animal dispersed) and Tsuga (wind dispersed) were
dispersed distances of over 100 km. They argue that such long dispersal distances were
not unreasonable as colonies of Tsuga, apparently established within the last several
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thousand years, exist today in Minnesota, 50-150 km west of the main range limit in
Wisconsin. Kinloch et al. (1986) have also suggested that the establishment of a disjunct
population of Pinus sylvestris in Scotland 300 km from the main population in England
was most likely to have been due to rare long-distance dispersal. The alternative
hypothesis that the Scottish population expanded from a small indigenous source which
survived the last glacial period is considered to be very unlikely. Webb (1986) suggests
that tornadoes at the right time could transport seeds of all sizes 50 km or more.

In Europe, the rapid migration rates of Alnus (500-2000 m yrt) and Corylus
(1500 m yrt) may be explained by transport along rivers. Even a relatively slow flowing
river (1 m s) would carry fruit 3.6 km in 1 hour and over 80 km in a single day (Huntley
and Birks, 1983). This mechanism may also explain why such rapid rates of spread are
not observed in eastern North America since many of the major rivers flow eastwards or
southwards (Davis, 1976).

The recolonisation of the volcanic island of Krakatau also illustrates how effective long-
distance dispersal can be (Ernst, 1908). All the vegetation on Krakatau was destroyed by
the volcanic eruption which took place in 1883. Krakatau is separated by 19-25 km from
the neighbouring islands of Sebesi and Seboekoe (half-destroyed by the 1883 volcanic
eruption) and 35-45 km from the nearest points of the Java and Sumatra coasts.
However, despite this an expedition three years after the 1883 eruption found algae,
ferns, mosses and eight species of flowering plants, six of these (two grasses and four
compositae) were obviously transported by air currents since their seeds are light and
show special adaptations to wind dispersal.

Several classic studies on dispersal have been carried out. For example, Ridley (1930)
gives values for the furthest distance covered by a seed from its source for various
species. He notes that the height of a tree is important in determining its maximum
dispersal distance and that the size of a tree (not its age) will determine when it will first
fruit. Another classic account of dispersal is given by Van der Pijl (1972) who describes
in detail the various modes of dispersal. Mechanisms for dispersal include sea and rivers
(hydrochory), animals (zoochory), wind (anemochory) and humans.
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Table 1.1. Some observations of long-distance dispersal events for various wind and animal dispersed

trees.
Species Observed long-distance dispersal event
Acer pseudoplatanus Seeds carried 85 m in a 'tolerably' strong breeze
(Ridley, 1930).
Acer spp. Maple samaras found in the Alps which were 4 km

from their nearest source (Vogler, 1901).

Betula pendula and Betula Establishment at low densities at 500+ m from parent
pubescens trees (Miles, 1988).

Fagus grandifolia Jays observed to carry nuts up to 4 km from source
(Johnson and Webb, 1989 ).

Pinus edulis Clark's nutcracker observed caching seeds 22 km from
source area (Vander Wall and Balda, 1977).

Pinus sylvestris Saplings found over 3 km from the nearest seed source
(Welch et al, 1990).

Young trees found up to 810 m from the forest edge in
Tentsmuir in Fife (Smith,1900).

Establishment at low densities at S00+ m from parent
trees (Miles, 1988).

Pinus spp. Individuals frequently recorded at distances of up to 8
km from nearest source (Ledgard, 1988).

Individuals observed up to 25 km from source (W.G.
Lee pers. comm. in Richardson et al., 1994).

Quercus palustris Jays observed to carry nuts up to 1.9 km from source
(Johnson and Webb, 1989 ).

Quercus spp. An isolated tree on the island of Hoy in Scotland must
have dispersed at least 16 km (Jones, 1959).
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1.5. Field Studies of Seed Dispersal

Most dispersal studies on trees have involved either single isolated trees (for example,
Cremer, 1965; Augspurger, 1984) or dispersal from the edge of a forest clearing.
Isolated trees may be difficult to locate, especially in regions of low tree diversity and
they may not exhibit recruitment processes which are representative of the species being
investigated. The pattern of seed dispersal from forest margins may be different to that of
isolated trees (Harper, 1977). It is difficult to study a tree in a more or less continuous
stand because of the problem in distinguishing its seed from that of others of the same
species which are dispersing into the same area. This problem could be overcome by
using paints, dyes or isotopes to mark seeds before dispersal (Harper, 1977). Another
approach to this problem has been the application of maximum likelihood analysis to
match values in dispersal functions to observed field observations (Ribbens, 1994). Most
field studies have looked only at primary dispersal i.e. the movement of seeds from the
parent plant to their first site of repose (Chambers and MacMahon, 1994). The subject of
secondary dispersal is reviewed by Chambers and MacMahon (1994) who conclude that
this is an area where much more research is needed if the ultimate fate of seeds is to be
understood.

Various workers ( for example, Roe, 1967; Boyer, 1958; Hughes and Fahey, 1988) have
carried out seed trapping experiments which have shown that seeds are dispersed
according to a negative exponential distribution (i.e. seed dehsity decreases at a constant
percentage over equal units of distance) with half distances occurring in the range 8-68
m. Results from these studies have lead to the conclusion that most seeds fall within a
few hundred metres of the canopy (for example, Boyer,1958; Brown and Neustein,
1972; Mair, 1973; Miles, 1988; Pigott, 1991). Most of the studies on seed dispersal by
trees have been done on commercial forest species since foresters need information on
seed dispersal in order to be able to effectively use natural regeneration as a means for
restocking areas cleared of trees. Isaac (1930) claims to have done the first field study on
seed dispersal. He carefully details the procedures he used, including how to construct
the seed traps, so that they may be followed by subsequent workers. A large number of
studies have since been carried out in the United States, mainly by their Forestry Service.
Very few British studies have been done and most of these have focussed on sitka spruce
(Mair, 1973).

Isaac (1930) carried out experiments in which seeds were attificially released under

known conditions. He showed that a doubling of the height of release more than doubles
the distance of seed dissemination. This is largely due to the higher wind velocities at

20



greater elevations. He also collected data which showed that an increase in wind speed
had it greatest effect on the maximum dispersal distance. These results are given in Table
1.2

Table 1.2 Relationship between wind speed and dispersal distance for Douglas fir.

wind speed mode (m) maximum distance
(miles per hour) (m)
6.5 © 300 540
8.0 390 780
23.0 480 960

Mair (1973) used seed traps to investigate the dispersal of sitka spruce (Picea sitchensis)
seeds from the forest edge. A small artificial trial was carried out in which seeds were
released from a height of 15 m under three different, but known wind speeds. The results
from the artificial trial were similar to those obtained from the seed trapping studies of
the natural seed fall. Both studies showed that most of the seed is deposited within 20 m
of the source. During his field studies, Mair (1973) observed the effects of turbulence
which caused seeds to be lifted higher into the air thus increasing their dispersal
potential. Siggins (1933) observed the same phenomenon when carrying out experiments
on the dispersal of conifer seeds.

The dispersal distances measured by Isaac (1930) and Mair (1973) are considerably
shorter than those noted as examples of long-distance dispersal. This may be because the
occasional high winds that result in long dispersal distances occur too infrequently to be
observed during field studies. Turbulence is also thought to be responsible for the
occasional long-distance transport of seeds.

Johnson (1988) has studied the dispersal of Acer saccharum, Fraxinus pennsylvanica
and Tilia americana in abandoned agricultural fields in Wisconsin. The seed source was
either an isolated individual or a row of trees in a hedge row (linear source). Instead of
carrying out seed trap studies, Johnson counted the number of seedlings occurring in
quadrats along transects from the seed source into the abandoned fields. It was found
that the seedling density curves for one-year old and all aged seedlings approximated to
the negative exponential. However, if the survival of the seedlings was followed over a
longer time period then the shape of the recruitment curve could alter significantly due to
density and distant dependent mortality. Johnson (1988) also suggests that the slope of
the seed and seedling density curves should be similar if the micro-environmental
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conditions for germination and survival and the spatial distribution of seed predators are
both reasonably uniform along the distance axis. A similar study has been carried out by
Welch et al. (1990) on the invasion of Scots pine (Pinus sylvestris) into moorland in the
Cairngorms National Nature Reserve in Scotland. They found saplings at distances
greater than 3 km from the source. The major problem with this method of investigating
dispersal is therefore the selection of a suitable study site where these conditions apply.
This type of study could be used to give estimates for the dispersal parameters of trees.
However, the values estimated would depend on the environmental conditions affecting
germination and recruitment as well as the initial seed distribution. It would be better to
separate seed distribution from seedling recruitment since they are affected differently by
environmental conditions. If, however, the initial seed distribution were known then the
probabilities of seedling survival with respect to dispersal distance from the parent plant
could be quantified.

Some work has also been done on the dispersal of seeds by animals. This has either
involved direct observations of animals dispersing propagules or the use of radioactive
isotopes to label propagules. The former technique has been successful in recording long-
distance dispersal events (for example, Vander Wall and Balda, 1977) whereas the latter
has been used to look at more local dispersal distances (for example, Vander Wall,
1992). Johnson and Webb (1989) suggest that for bird dispersed species such as the
Fagaceae the observed dispersal distances will depend on the habitat structure of the
landscape. For example, maximum dispersal distances would be expected in a landscape
where large isolated nut sources are intervened with habitat suitable for nesting.
Propagules dispersed by animals are also often cached in places favourable for
regeneration.

1.6. Models of Seed Dispersal

It is generally accepted that the deposition of seeds dispersed by wind decreases
exponentially from the source. However, the pattern of seed dispersal by animals may be
different since seeds are more likely to be dispersed at centres of animal activity (Stiles,
1989). Despite this, dispersal models based on stochastic diffusion processes which may
seem more appropriate for wind-dispersed propagules may be a good approximation for
animal-dispersed propagules since, for sufficiently large distances enough "random"
effects would occur to make such models a good enough representation of reality
(Portnoy and Willson, 1993).
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Most anemochorous seeds and fruits are adapted for wind dispersal by having features
which reduce their rate of descent. This makes them sensitive to variations in wind
velocities which are of the same order of magnitude as their terminal velocities (Burrows,
1975). The pattern of propagule dispersal is therefore dependent on air flow and can be
expected to vary between sites depending on meteorological conditions, local
topography and the aerodynamic characteristics of the surface over which dispersal is
occurring.

1.6.1. Empirical Models

Empirical models attempt to fit mathematical formulae to experimentally measured
dispersal gradients. The main disadvantage of this type of model is that they provide no
way of extrapolating from one situation to another based on independently measured
parameters. Empirical models include the inverse power law (y = ax™) and the negative
exponential (y =ae™) both of which have been widely used in dispersal modelling.
These describe the asymptotic distribution of seeds, spores or pollen from a point source
(McCartney and Fitt, 1985, 1986; Okubo and Levin, 1989). Both these models predict
that seed density decreases by a constant percentage over equal units of distance. They
are also examples of the general exponential model:

y=ae™ (1.3)
where y = density associated with dispersal, x = distance from source, n = power

function which determines the shape of the curve and a and b are constants (McCartney
and Fitt, 1985).

In the case where n = 2, the corresponding model is a bivariate normal distribution:

a -x?
= 14
Y ZJI’S. 2 CXP( 2s° (14)

This assumes that there is a normal distribution around a point source with variance s2.

Although the inverse power law and the negative exponential have been more widely
used, the general exponential model may give a better fit to a given set of data since the
curve can take variable shapes. The inverse power law tends to over estimate deposition
near the source since as x — 0, y — 0. It may therefore be unsuitable for spread with
steep density gradients. In contrast, the exponential model tends to under estimate
deposition near the source, but does predict finite values for y at all distances
(McCartney and Fitt, 1985). ’
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McClanahan (1986) has developed a simple model of seed dispersal based on the
negative exponential model. This model simulates the dispersal of seeds to the
surrounding environment based on the size of the seed source(s) and their proximity to
the area under investigation. The density of seeds arriving at a location is given by:

0, - Zce"“"’ (1.5)

where Q, = density of seeds at distance d; from the seed source; k is a measure of the
species dispersal capacity and C = density of seeds at distance zero from the source.

k is equal to the gradient of the logarithmically transformed dispersal curve. It may also

be calculated from:

k= In2 (1.6)
dh

where d, is the half distance of dispersal or the distance where the seed fall is half that of

the source.

This model assumes & to be constant although in reality it varies not only between species
but also as a function of location and time. Therefore if the model is to be used under

different environmental conditions a new value for £ must be determined.

McClanahan (1986) used data from the literature on the longleaf pine (Pinus palustris,
Mill.) to assign values to the model's parameters. The results from the model compared
well with the field data although the model had a slower decay rate than is found for field
data. It was suggested that this may be due to the fact that k was estimated from seed
trap studies using a forest edge as the seed source and that the value used for & should be
that determined from a single source as this is likely to differ from that of a linear source.
McClanahan (1986) recommends the use of a curve-fitting procedure which varies the
individual values of & until there is a good agreement between the predicted dispersal
curve and the field observations.

Another technique which has more recently been used for looking at seed dispersal and
seedling recruitment patterns is that of maximum likelihood analysis (Ribbens et al,
1994). This involves identifying values for the parameters in a function describing
seedling distribution so that the model output most closely matches the observed
distribution This technique does not require the identification of the parent of each
recruit. Field data were collected by counting the number of seedlings in successive 1m?
quadrats along a transect running through mixed stands of adult trees. The location and
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size of every reproductively active tree within 20 m of the quadrat was mapped. The
basic equation for the distribution of seedlings used by Ribbens et al. is:

P =STR (ﬂ)‘s 1 (ow) (1.7)

30 ) n

where P = number of recruits; STR = number of recruits produced by a tree of
standardised dbh, in this case 30 cm; dbh = diameter at breast height; § = a number
which modifies the STR according to a power function of the actual dbh observed; n =
normaliser (ensures area under curve = 1); D = rate of decline in recruitment number
with increasing distance from parent; M = distance from parent; 8 = determinant of the

shape of the distribution.

The approach used by Ribbens et al. does not deal well with long-distance dispersal
events. They also stress that their results only apply to dispersal and recruitment within
forest stands since more open areas are subject to different weather and wind dynamics.
They found that values of 3 = 2 and 6 = 3 tended to produce models with the highest
likelihood. By simulating dispersal patterns around single trees, they were able to use the
model to estimate values for the mean dispersal distances of various trees in North

America.

Portnoy and Wilson (1993) have looked at the tail of the distribution curve for various
plant species. The tail was defined as the part of the dispersal curve beyond the modal
distance value. They developed a four parameter model which may have an algebraic or
exponential tail:

fo (F) = Broe™” (1.8)
where R, = horizontal distance; B, a, b and ¢ are constants and r is at least 2 or 3
standard deviations bigger than the mean of R;. Algebraic tails tend to be longer than
exponential tails and have greater reach. They suggest that since the ratio of algebraic to
exponential tail probability tends to infinity, the nature of the tail behaviour can have
important implications. They carried out statistical tests to see whether dispersal was
exponential, algebraic or both. For example, if the tail is algebraic then a is not equal to

0. Their results indicated that algebraic tails tend to be more common than exponential
tails, but more data were needed in order to confirm this.

Peart (1985) examines five hypothetical dispersal density functions and their associated
probability functions. The graphical illustrations of the dispersal curves show that the use
of seed density rather than seed number can change the overall shape of the curve,

including the proximity of the peak to the source.
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1.6.2. Mechanistic Models

Mechanistic models attempt to describe dispersal mathematically using theories based on
the laws of physics. They therefore must incorporate the effects of wind, turbulence and
gravity. The physical models include those based on ballistics and atmospheric diffusion.

The distances seeds are dispersed by wind depends on (Cremer, 1977):

* how fast seed falls through air (terminal velocity) - this depends on the
morphology and weight of the seed (V));

» height of release (H);

 speed and turbulence of wind between ground and point of release (w).

These variables are related by the simple ballistic equation:

xat (L9)
v

where x is the predicted horizontal distance from the seed source to the deposition site

(Pasquill and Smith, 1983). This model has been extended by Greene and Johnson (1989)

to give:

B__2 o _[m(xvf / Hﬁ‘)] | (1.10)

dx xo,42n

V2o,

where Q = total number of propagules to be dispersed; x = predicted horizontal distance
from point source; H = release height; V; = constant descent velocity (terminal velocity);

u, = geometric mean horizontal wind speed assuming the distribution of wind speeds to

be lognormal; ¢, = standard deviation of In(u).

Variation in the terminal velocity between seeds from the same source results in a
distribution of dispersal distances even under steady winds (Isaac, 1930). From equation
1.9, it would be expected that seeds with a low terminal velocity (V) would be dispersed
further than those with a higher terminal velocity. However, field studies by Johnson
(1988) found that Fraxinus disperses further than Acer despite Fraxinus having a higher
terminal velocity. Johnson sﬁggests that this is due to the samaras of Fraxinus having a
greater stability in gusty high speed winds. In addition to this, Fraxinus disperses its
seeds later in the season after leaf abscission and when the average wind velocities are
higher.
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Sharpe and Fields (1982) have used the simple ballistic model in SEDFAL to simulate
the dispersal pattern for a single isolated tree. They reasoned that not enough is known
about wind in forests to enable dispersal to be modelled in a forested environment. A
comparison between simulated results and published data for Douglas fir (Pseudotsuga
ménziesiz) revealed some disparities. It was suggested that these could have been due to
atmospheric turbulence affecting the length of time in the air, errors in measuring wind
speed during seed flight or not assigning the correct variability to the terminal velocity.
They suggest that a seed dispersal model should account for:

 variable terminal velocity;

« phenology of seed release;

+ effect of humidity, temperature and wind speed on seed release;

« coincidence of events leading to seed release with wind speeds and direction
leading to dispersal;

» average wind speeds between the height of release and the ground.

Atmospheric diffusion models have been used to describe the dispersal of light particles
such as fungal spores (McCartney and Fitt, 1986; McCartney, 1991a), pollen
(McCartney, 1991b) and air pollutants (for example, the UK-ADMS model developed by
Meteorological Office). They assume that the particles being dispersed are light enough
to follow air currents exactly and include gradient transfer theory models, Gaussian

plume models and random walk models.

Gradient transfer theory (K Theory) models are based on an analogy with molecular
diffusion as described by the classical diffusion-advection equation. In three dimensions
this equation is very complex, however, it can be simplified to consider particle
movement in the direction of the mean wind speed only. It has been applied to the
dispersal of plant pathogens. Gaussian plume models have been widely used for
predicting the concentrations of atmospheric pollutants, but can also be applied to the
dispersal of other light particles. They assume that the average distribution of particles
across the height and width of a plume downwind from a continuous point source can be
described by Gaussian curves. Both these models assume that the particle release rate is
independent of wind speed which may often be an invalid assumption. They are both
mechanistic models which consider the horizontal and vertical distribution of particles
under the influence of advection and diffusion. The horizontal advective force is mean
wind speed and the vertical advective force is gravity.
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The Gaussiah plume model has been modified to derive the tilted-plume model which
takes into account the gravitational settling of heavier particles such as seeds (Pasquill
and Smith, 1983):

00 - = exp{— S/t } (L.11)

where Q(x) = concentration of seeds at distance x downwind from point source; H =
source height above ground; V; = settling velocity of seeds; & = mean wind speed in the

direction x; n = effective source strength at distance x; o’ =243 where A is the
coefficient of diffusion in the vertical direction. A further refinement of this model which
incorporates vertical variation in wind velocities is given by Godson (1957).

Gaussian plume models have been used to predict the mode of the dispersal distances
(Okubo and Levin, 1989; Andersen, 1991). Unlike empirical models they relate dispersal
distance to measurable parameters such as wind speed and settling velocity. They are
both more appropriate to the dispersal of light particles since due to the effects of inertia,
large or heavy particles do not follow air currents exactly. They have been mainly used
for predicting dispersal over flat, uniform terrain.

Andersen (1991) has compared seed dispersal data with the predictions of the Gaussian
tilted-plume, Godson, Weibull and stochastic differential equation (SDE) models. Seed
shadows were generated analytically for the first three models and by the simulation of a
large number of trajectories for the SDE model. The Weibull model assumes that wind
speeds are Weibull-distributed and that seeds are too heavy to be buffeted about
significantly by wind turbulence. The SDE model incorporates the effects of turbulence
by using Brownian motion as a model for the vertical positions of seeds. Andersen
(1991) found that although none of the four models satisfactorily fitted the distribution of
artificially released seeds the SDE model performed the best. The discrepancies were
attributed to inaccuracies in the modelling of turbulence, variations in wind speed during
seed flights and imperfect transfer of momentum from moving air to suspended seeds.
Andersen (1991) considers that the SDE model could be refined to take into account
these factors as well as variations in settling velocities and release heights. A threshold
wind velocity for seed release could also be incorporated in the SDE model. Despite the
promising results obtained from the SDE model, Andersen (1991) concludes that
seconaary dispersal may be responsible for the final distribution of many seeds.

A mathematical model has also been developed for the dispersal of seeds by animals from
a single source of a given size (DeAngelis et al, 1977; Johnson et al., 1981). The
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model traces the movement of an animal assumed to be dispersing seeds through a grid
of cells. The movement of an animal to an adjacent cell is determined by a combination
of its preferencé for certain habitat types, its tendency to continue forward in the same
direction and the presence of 'attractors' and 'repellers’. At each cell there is a certain
probability that a seed will be deposited. In order to develop a realistic model,
quantitative information is needed on the behavioural interactions of the dispersing
animals with the environment. In the absence of such data, the values of various
probabilities which determine animal movement were estimated using what information
there was in the literature. Further field studies need to be done in order to test the model
and improve its paramaterisation.

Both the animal dispersal model developed by DeAngelis et al. (1977) and the wind
dispersal model developed by Sharpe and Fields (1982) have been considered to be too
unwieldy for use in simulating the dispersal of seeds from more than one tree.

As has already been noted by Andersen (1991), secondary dispersal may determine the
final resting place of seeds. Following initial settlement, seed may blown along the
ground by wind etc. Dispersal along the ground depends on the morphology of the seed
and the nature of the ground's surface. Animals may also play an important role in the
secondary dispersal of seeds, for example, Vander Wall (1992) found that between 95%
and 99% of artificially distributed Jeffrey pine (Pinus jeffreyt) seeds were removed within
two days by rodents. The dispersal models described in this section may predict the
general dispersal pattern, however, in reality this will vary between sites depending on
the speed and direction of local winds and the topography of the area.

1.7. Relationship Between Dispersal and Recruitment

The pattern of regeneration is likely to be highly variable depending on both the shape of
the dispersal curve and the availability of sites suitable for establishment. Bunce et al.
(1990) suggest that the distribution pattern of established plants is unlikely to reflect that
of the seed rain since many factors such as density dependent seed predation, caching by
seed-feeding animals and subsequent density dependent mortality of seedlings and
growing plants are involved in determining the fmaf pattern. The number of trees
regenerating depends also on the number of seeds dispersed, the quality of the seed bed
and the proportion of the seeds that will grow into trees (Cremer, 1977).
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Stiles (1989) has suggested that the probability of recruitment should reach a peak at
some distance from the parent. This peak is a consequence of the interaction between the
decreasing dispersal curve and the increase in the probability of escaping predation due

to density dependent mortality.

Howe and Smallwood (1982) discuss three hypotheses for the advantages of dispersal.
The escape hypothesis implies that there is a greater probability of survival for those
propagules that escape the vicinity of the parent. The colonisation hypothesis supposes
that dispersed propagules may arrive in habitats that have recently become suitable and
the directed dispersal hypothesis assumes that propagules possess special adaptations
which ensure they reach sites suitable for establishment. These three hypotheses are not
mutually exclusive. However, they suggest that as forest trees tend to recruit best in

disturbed areas the colonisation hypothesis offers the strongest explanation for dispersal.

Augspurger (1984) has looked at the relationship between initial seedling density and
seedling survival after two months and one year in nine species of wind dispersed tropical
trees. All but one species supported the escape hypothesis i.e. dispersal increases the
probability that offspring escape density dependent and/or distance dependent mortality
that may be higher near the parent.

The final recruitment pattern is therefore determined by the distribution of dispersed and
germinated seeds and the relative survival probabilities of seeds and seedlings at various
distances from the parent. In addition, recruitment may be enhanced for seedlings which
germinate in favourable conditions (colonisation hypothesis), for example, for a shade
intolerant species light gaps would be particularly favourable. In this case, the

recruitment pattern would be dependent upon the location of light gaps.
Ribbens et al. (1994) list the following sources of spatial variation in recruitment:

+ abundance and fecundity of parents;

+ primary dispersal patterns;

+ secondary dispersal agents;

+ seed predation;

 distribution and frequency of microsites favourable to establishment.

Harper (1977) suggests that it is quite possible that seed predators fail to affect plant

distributions because they rarely push the density below that at which competition

ultimately limits occupation of space. A recent review of seed dispersal and regeneration
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by Willson (1992) concludes that there is still much remaining to be discovered in the
field of dispersal ecology. In particular, very little is known about how the probability of
survivorship changes with increasing dispersal distance (Willson, 1993).

1.8. Models of Range Expansion/Invasion

Much work has been done on the spread of invading organisms (for example, the
SCOPE programme on ecology of biological invasions). Such studies could be applied to
tree migration in response to climatic change and are reviewed in this section. Hengeveld
(1989) provides a comprehensive review on the subject of biological invasions.

Mollison (1986, 1995) breaks down invasion into four phases:

e arrival;

« competitive ability to succeed initially;

rate and manner of spread,;

* competitiveness to persist.

The first three of these show similarities with the spread of disease. Studies in
e'pidemiology have helped improve the understanding of invasion and some of the most
sophisticated models have arisen in the context of epidemics (Mollison, 1986). The
application of contact models and diffusion models are reviewed by Mollison (1977).
Diffusion models have been extensively applied to population spread. They may be
considered to be an approximation of the contact models which have been used in
epidemiology studies (Mollison, 1977). Some examples of the application of diffusion
models to biological invasions will be given in the following section.

1.8.1. Application of Knowledge from Diffusion Studies

The simplest model of spread relates to the spreading out of a homogeneous population
into a homogeneous environment. If the size of the population is assumed to remain
constant and to be spreading in a homogenous environment then the following equations
can be applied (Levin, 1986 and Pielou, 1977 p 170). In one dimension:

aS 9%s
—=D
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This equation is often referred to as Fick's equation of diffusion. It can be extended to a
two dimensional system as follows:

2 2
Z—f - D(g 3 +3—f) (113)
X oy

where S = population density; ¢ = time; x and y are the spatial coordinates; D = dispersion
rate which is analogous to diffusivity or coefficient of diffusion and is sometimes also
referred to as the mean square dispersion per unit time.

When the spreading population is moving randomly (i.e. behaving in a Brownian fashion)
then a solution for equation 1.13 is a normal probability function with mean zero
(Okubo, 1980):

M -x?
S(x,t) = J4nDt exp{4Dt} (1.14)

where M = total number of individuals at time ¢ = 0 and variance = o = 2Dt

In two dimensions, the corresponding solution is:

M -r?
S(r,t) = 3D eXP{4Dt} (1.15)

where horizontal variance = of: 4Dt

These basic equations can be easily modified to take into account variations in the
coefficient of diffusion (for example, due to variation in habitat) and also population
growth, for example, see Levin (1986) and Okubo (1980). The latter gives a
comprehensive account of the application of mathematical models of diffusion to
ecology. Hengeveld (1989) also discusses the application of diffusion models to the topic
of biological invasions.

Two density distributions may be pooled together to form a compound distribution. This
may be particularly useful if a population has two or more diffusion coefficients. This
approach has been adopted by Allen (1991) in the modelling of active and passive
diffusion of Opuntia imbricata. The shape of the compound distribution has been shown
to be leptokurtic (Okubo, 1980). A compound distribution could be used to model local
dispersal events coupled with rare long-distance dispersal events.

These diffusion equations predict that the population (at a given threshold density for
detection) will spread forwards as a continuous front with a velocity of:
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C =2JaD (1.16)
where C = rate of spread; a = intrinsic rate of population increase and D = coefficient of
diffusion. This simple equation illustrates the importance of both population growth and
dispersal in range expansion.

The diffusion equation was first studied by Kendall (1948) and then independently by
Skellam (1951) and is a simplification of the earlier genetic equations used by Fisher
(1937) and Kolmogoroff et al (1937). Skellam was able to use the diffusion model to
show that animals must have played an important role in the dispersal of oak during its

post-glacial migration.

A graph of the square root of the area occupied against time is linear, the gradient being

equal to:
d——“‘;‘trea - 2 JnaD (1.17)

(Okubo, 1980 p108). This equation assumes that the population is increasing as a series
of continually expanding circles. An incorrect formula for the gradient (vaD) has been
used by several workers including Williamson and Brown (1986) and Birks (1989).
Equation 1.17 can be confirmed as correct as follows:

JArea = rﬁ
Putting r/t = C into equation 1.17 then:

r=2tJaD

s JArea = 2t,/mD

-d———“;‘trea =2, [maD

The assumption of random movement may be a valid simplification when looking at
population spread. Although the individual patterns of movement may not be random
(for example, an animal may use information from its surroundings when moving around
the environment), the overall pattern produced by the population may approximate to
randomness. This simplification offered by the diffusion model does seem to offer a good

33



approximation to population spread (for example, Lubina and Levin, 1988; Andow et
al., 1990)

The range expansion of the sea otter has been investigated by Lubina and Levin (1988).
One of the reasons for choosing this species was that its spread can be considered to be
one-dimensional (i.e. along the coast). This therefore avoids the complications that occur
with two-dimensional spread such as physical barriers obstructing the diffusion process
and causing a distortion in the spread of the population. They predicted rates of spread
by substituting estimates for a (rate of population increase) and D (movement in north
and south of range) in equation 1.16. The predicted rates compared well with those
observed. The model correctly predicted the faster rate of expansion in the south. The
faster expansion rate in the south can probably be accounted for by the difference in the
diffusion constants which arise because the otters move around more in the less suitable
habitat in the south of their range. Other explanations could include habitat differences in
mortality and ocean currents (advective force) tending to promote southward movement.
More studies need to be carried out to provide the independent parameters necessary to

resolve this issue.

Diffusion models have also been successfully applied to the spread of invading organisms
in two-dimensions. For example, Andow et al. (1990) have examined the match between
the observed rate of spread of the muskrat, the cereal leaf beetle and the cabbage white
butterfly and that estimated using equation 1.16. They used microscale observations to
estimate o and D. For the muskrat and the cabbage white butterfly the predicted rates
compared well with the observed rates. However, for the cereal leaf beetle the theory
was wrong by two orders of magnitude, this was thought to be due to processes not
observable at the microscale level (for example, long range movements on air currents

and hitch hiking on human transport).

Reeves and Usher (1989) have used a diffusion model for the spatial spread of an
invasive species through the cells of a grid. They parameterised the model for coypu
using data from the literature to estimate values for &, D and K

ax (MaXimum carrying
capacity per 10 km square). The environment of East Anglia was represented by
assigning values for diffusivity and carrying capacity to each cell according to the extent
of the distribution of suitable coypu habitat. Values for these parameters were estimated
from 1:50,000 O.S. maps. They considered their model to be successful since it was able
to predict the coypus' range reasonably well. Their model predicted a distribution with a
continuous front, whereas the actual distribution of coypu shows the presence of some

outlying populations. They suggest that a stochastic element should be added in order to
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more realistically model the process of dispersal. In addition to carrying out simulation
runs, sensitivity tests were made in which the values of parameters were varied in relation
to each other (other parameters were held at their default values). The resulting
expansion rates were then analysed by analysis of variance. Significant results were
obtained for the principle dispersal and reproductive parameters, a, D, and K.

The models discussed so far have all been single species models. However, Okubo et al.
(1989) have used a competition-diffusion model to examine the spread of the grey
squirrel (Sciurus carolinensis) in Britain through habitat already occupied by the red
squirrel (Sciurus vulgaris). In addition to the usual parameters of the diffusion model,
their model included competition coefficients. They were able to show that the spread of
the grey squirrel was slowed down by the presence of the red squirrel. From this they
concluded that simple diffusion, logistic population growth and some form of
competition were sufficient to account for the progressive replacement of the red squirrel

by the grey in England and Wales.

Van den Bosch et al. (1990,1992) have developed models for range expansion based on
the population growth/diffusion model. They reformulated equation 1.16 to give:

o

C==42InR, (1.18)
m .

where R, = net reproductive rate; & = mean age at child bearing; o* = variance of

marginal dispersal density.

They claim that this equation gives a good approximation for C when R,<1.5. For

populations with larger net reproductive rates the following formula was developed:

C=§ 21nR0{1+[(f)2—B+ﬁy]lnRo} (1.19)

where v? = variance of age at child bearing; y = kurtosis of marginal dispersal density; 3

= measure of the interaction between dispersal and reproduction.

These models can be applied to any organism which disperses once only during its life
history. They both use reproductive parameters which can be estimated from data in life
tables and allow for variations in fecundity and survival throughout the species' life
history. Values for the dispersal parameters can be derived from observations on

dispersal distances. The model given by equation 1.19 no longer assumes that dispersal
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distances are normally distributed so strictly speaking this model should not be referred
to as a diffusion model, but rather a spatial spread model (Hengeveld, 1989). The
predicted value of C from these equations showed a good approximation to the observed
values for the five animal species Van den Bosch et al. (1992) investigated. Both
equations tended to predict lower rates than those observed. This was believed to be due
to an underestimate of the dispersal distances. In most cases equation (1.19) gave a
better prediction than equation (1.18). This was thought to be due to the incorporation
of the kurtosis of dispersal density. This supports the earlier work of Van den Bosch et
al. (1990) which concluded that the parameters of dispersal density are more critical than
the demographic parameters in determining the rate of spread. With a slight modification,
equation 1.19 can be adapted for use with species which disperse throughout their life
(Marinissen and Van den Bosch, 1992).

Diffusion and spatial spread models that incorporate population growth can therefore
provide a useful first approximation to rates of spread. In some instances it may be
relevant to construct models that incorporate variations in o and D. Where movement
occurs on two different scales it may be appropriate to use two-phase models which
couple models for long-distance jumps forward with diffusion models representing the
short range spread from a point of introduction (Andow et al., 1990). Most of the work
done with diffusion models and similar mathematical models of spread has assumed the
environment to be homogeneous. However, some recent work has used these models to
look at spread in a heterogeneous environment (for example, Reeves and Usher, 1989;
Holmes et al., 1994; Van den Bosch and Hengeveld, submitted). Most of these models
(with the exception of that by Reeves and Usher, 1989) are not spatially explicit, i.e. they
allow predictions to be made about the rate of spread but do not incorporate any

graphical display showing the actual pattern of spread.

Auld and Coote (1980) have produced computer generated simulations for population
spread in a homogeneous environment. They looked at the effects of varying the
population growth rate, the fraction of population dispersing (s) and the distance over
which the dispersing fraction is distributed (d). Results from their simulations showed
that the rate of spread and total population growth depended on both mobility
(determined by values of s and d) and population growth rate. The distribution patterns
were also more complex when growth rates and mobility were high. Comparisons of
spread in central and scattered initial populations showed that the scattered populations
had a greater rate of spread. The inverse cube law for seed dispersal predicts that spread
occurs as an advancing front (Harper, 1977). However, the curve describing the

distribution of daughter plants could be less steep and therefore imply that spread may
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occur as a ragged edge. Empirical data on the distribution of daughter plants would
enable the model to be refined. This model could also be developed to simulate spread in
a heterogeneous environment.

The rates of spread of trees in the British Isles during the Holocene are high compared
with theoretical predictions based on diffusion models (Skellam, 1951; Birks, 1989). This
implies that chance, long-distance dispersal events by birds, small mammals, rivers, ocean
currents and possibly man were important. By plotting the square root of the area
occupied against time, Birks (1989) has estimated the velocity of expansion of various
forest trees in the British Isles during the Holocene. Using estimates of o derived by
Bennett (1983), Birks also derived estimates for the diffusion constants of the different
taxa (using equation 1.17). The results obtained assume that the population was
expanding into an area unpopulated by that taxon. However, if trees were distributed
sparsely beyond the range determined using the pollen record than the model would be
inappropriate and the estimates derived too large. Unfortunately Birks used the formula
gradient = V(aD) in his calculations rather than the correct formula as given by equation
(1.17). However, his approach is still valid and the same conclusions would have been

reached with the correct formula.

The diffusion model has also been used in conjunction with other models to investigate
the relative importance of adaptation and dispersal as mechanisms for responding to
environmental change (Pease and Lande, 1989).

1.8.2. Possible Alternatives to Diffusion Models

Particle Dispersion Models

Woodward and McKee (1991) have adapted the particle dispersion model used by
Solomon (1975) to produce a simple dispersal model which predicts the rate of spread of

trees:
uH ’

C=~——InF 1.20
TVf ( )

where C = migration rate; & = mean wind velocity; T = source longevity; H = release
height; V; = terminal velocity; F = proportion of deposited seeds necessary to cause an
individual tree to regenerate. They used parameter values for spruce to obtain a
migration rate of 115 m yr! which is at the low end of the range estimated by Huntley
and Birks (1983). It was suggested that this was because the model ignores the effects of
turbulence which is believed to be important in rare long-distance dispersal events.
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Gap Dynamics Models in Conjunction with Dispersal Models

Dispersal models have been used in conjunction with gap models (see section 1.9) which
simulate the dynamics of small plot (typically 1/12th of a hectare) in order to look at
vegetation change at a large spatial scale. The gap models are arranged in a grid with
dispersal occurring between them (for example, Coffin and Lauenroth, 1989). By
modelling dispersal between a large number of gap models it would be possible to
investigate tree migration. However, due to the fine resolution of the forest gap models it
would be virtually impossible to simulate landscape dynamics at the broad-scale due to
both computational and data limitations (Smith et al., 1992).

More Explicit Mathematical Models

Smith (1975) has developed a model which explicitly models the process of invasion. He
gives the following mathematical models for the input (/), germination and first year

survival (G) and survival to maturity for a plant species (M):

Input to each site:

I = N (S.F) (1.21)
PACH
j=1
where I = input of viable seeds per site j of species x; S! = number of viable seeds of

species x per source ; P} = probability of dispersal of species x from source i to site j.

Germination per site:

6= L] (122)
=1 ,

where G/ = number of seedlings produced per site; I/ = seed input per site; P* =

probabilities per seed of each factor determining G, includes ability to germinate (P,),

ability to escape predation ( £,) and location of safe sites (P). .

Adults per site:

M =G;'HP,,’ (1.23)

=1
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where M/ = number of plants maturing per site per cohort; G/ = number of seedlings
produced per site; P' = probabilities for yearly survival including first year of

reproduction.

These models are intuitive and simplistic, however, the major problem with them will be
that of estimating the values for the various probabilities. Smith has made an attempt at
doing this for a selection of bird dispersed woody plants by carrying out a series of field
observations and experiments. Although he was able to estimate I, G, P, and P, it was
not possible to estimate probabilities for yearly survival beyond the first year since this
requires studies of a longer duration (Smith, 1975). Another limitation of this model is
that the values for the probabilities are site specific and therefore the model can not be
used in other situations since the environmental variables which determine the

probabilities will be operating at different intensities.

More recently, Schwartz (1992) has used a similar but less detailed spatially explicit
model in which dispersal occurs by either a negative exponential function or an inverse
power function. Population growth occurs by assuming that newly colonised sites have
an initial density of 6% of the maximum. The density is then doubled in each of the four
following generations to reach the maximum value. Schwartz was able to use this model
to show that tree migration rates fall well below historically observed migration rates at
low levels of habitat availability, regardless of the dispersal function that was used.

1.9. Models used to Predict the Effect of Climatic Change on Plant
Distribution

These have recently been reviewed by Malanson (1993) who recognises three general
types of model:

» transfer functions;
+ gap dynamics models;
* physiological models.

None of these models project spatially, temporally and biologically detailed responses to
climatic change at the continental-scale. One of the main reasons for this is the need for
more computational resources. The direct effects of an increase in carbon dioxide
concentration is incorporated into very few models. These effects are reviewed by Eamus
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and Jarvis (1989) who conclude that the effects of the rise in carbon dioxide
concentration may be relatively small in relation to impending changes in land use and

management practices.

Transfer Functions

These predict the future distribution of vegetation based on the present day relationship
between vegetation and climate. These models are known as static or equilibrium models
since they predict the final vegetation pattern produced as a result of climatic change.
They give no indication as to how this change may occur or how long it may take. They
are, however, useful in predicting the magnitude of potential changes. Examples of these
models include climate response surfaces which predict the future distribution of a
species or taxon based on its current distribution with respect to selected climatic
variables known to be important in determining its present day range (for example,
Beerling et al., 1995; Huntley et al., 1995; Carey et al., 1995).

Physiological Models

Models based on plant physiology and dominance, soil properties and climate have been
developed to predict global vegetation patterns (Prentice et al., 1992; Woodward and
Williams, 1987; Woodward and Rochefort, 1991; Woodward and McKee, 1991). Such
models are often mechanistic using rules which are derived from experimental
information and not from correlations. They include parameters such as cold tolerance,
chilling requirement, heat requirement, moisture requirement and dominance hierarchy.
They may be considered to be a more complex and sophisticated form of transfer
function model. As for transfer functions, physiological models at the global-scale are
static models. Some physiological models have also been developed at smaller scales.

Gap Dynamics Models

Another approach has been to use gap dynamics models to predict the effect of climatic
change on the forest ecosystem. Most of the research in this area has focussed on forest
ecosystems and in this context gap dynamics models are often referred to as forest stand
models. Models such as JABOWA and FORSKA have been used to simulate the forest
dynamics in a gap (usually less than 1 hectare) by considering the birth, growth and death
of individual trees. A major limitation of most of these models is that they assume that
the seed bank consists of all species of trees that could grow in the changed climate
(Pacala et al., 1993). This assumption is clearly not valid as some species would have to
migrate great distances before they could start establishing themselves in the simulated
forest.
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A few stand models do however, consider limitations in the seed supply. For example,
FORET (Shugart and West, 1977) allows seed source limitations to be specified for 6
old-field successional species. The FOREST stand development model (Ek and
Monserud, 1974; Monserud, 1975) explicitly models local seed production and dispersal.
Seed production can either be held constant or allowed to vary stochastically based on
the frequency of good and bad seed years. Johnson et al. (1981) have further developed
FOREST to enable it to handle exogenous seed dispersal into the sample plot. They
simulated the invasion of Acer saccharum into a pure stand of Prunus serotina under
three levels of exogenous A. saccharum seed supply. The results supported the
hypothesis that seed source proximity can significantly affect the vegetation dynamics of
forest islands. Johnson ef al. (1981) suggest that the use of seed dispersal models in
conjunction with forest gap models may provide a basis for simulating forest dynamics in

patchy landscapes.

A more recent forest stand model (SORTIE) developed by Pacala et al. (1993) includes
the spatial position of all trees and explicitly models recruitment by simulating the
seedling recruitment pattern for each individual tree. They are trying to use field data to
estimate values for parameters used in forest dynamic models which can not be
determined from the published literature and which have been insufficiently dealt with in
earlier stand models. By doing this they are hoping to develop a more realistic model of

forest stand dynamics.

Hanson et al. (1990) have used FORFLO, a forest gap model derived from FORET in
conjunction with a dispersal model to look at the effects of habitat fragmentation on
forest composition. They used a 3 x 40 array of 30 m x 30 m simulation plots to model
an area of 90 m x 1200 m. In the modern landscape where forests often occur as
fragmented islands separated by large areas of unsuitable habitat, the dynamics of the
individual islands may be significantly affected by the degree of isolation from
neighbouring islands. They chose not to use the models of wind dispersal and animal
dispersal developed by DeAngelis et al. (1981) since these were considered too complex
to be applied to the situation they wished to investigate. They also rejected the negative
exponential model used by McClanahan (1986) on the basis that the values for the
dispersal capacity and seed production were too variable under the conditions of their
model. Instead they used a simple model based on a set of rules for different modes of
dispersal. Their results supported the theory that an increase in fragmentation will result
in a decrease in species diversity due to a reduction in the immigration rate of species
into patches. -
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Some forest stand models have also attempted to include the direct effect of carbon
dioxide on vegetation by modifying the growth equation (for example, Kienast, 1991).
Another effect which is associated with an increase in greenhouse gases is the depletion
of the ozone layer, this may have an effect on plant productivity.

Stand models predict forest dynamics on a very small scale and would become
computationally complex if applied directly to larger scales such as the landscape. For
example, a personal computer operating at 0.2 Mflops takes 1 hour for SORTIE to
simulate one year's forest dynamics in a 1 km square.

Markov Models

Another type of model which is frequently applied to succession are Markov models. In
these models each tree is given a probability of being replaced by another tree of a
different species. Most of these models assume that the replacement probabilities do not
change over time (Hom,1975, 1981). The replacement probabilities for each species of
canopy tree is determined from the percentage of saplings of each species found growing
beneath it. It is assumed that every sapling has an equal chance of replacing the canopy
tree.

1.10. Outline of the Structure of this Thesis

Chapter 1 reviews the literature relevant to the research presented in this thesis. Topics
covered include the palaeoecological record of post-glacial tree migration, existing
models of species' spread and the dispersal of propagules.

Chapter 2 describes the implementation of the model of species migration developed as
part of this research project. The model (MIGRATE) exists in the form of a one-
dimensional and a two-dimensional model. The two-dimensional version is a spatially
explicit model designed to simulate the spread of a species across a heterogeneous
landscape. The use of environmental data such as land cover, climate and probability of

occurrence values for simulating migration across a realistic landscape is described.
Chapter 3 describes the field work which was carried out in order to obtain seed

dispersal curves for sycamore (Acer pseudoplatanus), Scots pine (Pinus sylvestris) and
larch (Larix decidua Mill.). Computer simulations are described in which an attempt is
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made at investigating the relationship between the seed dispersal curve produced by a
forest edge and the seed dispersal curve produced by an individual tree. Most field
studies, including those carried out for this research, have looked at dispersal from a
forest edge. However, the dispersal function required by MIGRATE is that for an

individual tree.

In Chapter 4 the results from MIGRATE are examined. The initial simulations were
carried out with a single cohort, single dispersal function system, as this represents the
most simplistic casé. Further simulations were then carried out using multiple cohorts
and two dispersal functions as this is more representative of reality. An attempt was
made at investigating some of the issues raised in Chapter 1 regarding the post-glacial
migration of trees. Finally, two-dimensional simulations were carried out in which the
spread of the small-leaved lime (7ilia cordata) was investigated under various

environmental conditions.

Chapter 5 draws together the major conclusions that have arisen from this research and

suggests areas where further work is needed.

43



CHAPTER 2

Model Development and Parameter Estimation

This chapter describes the design and implementation of the MIGRATE model and the
assumptions which are made. The one-dimensional and two-dimensional versions of the
model are compared and the estimation of the reproduction and dispersal parameters
discussed with particular reference to trees. The problem of scaling with respect to
dealing with local and long-distance dispersal is addressed. For the two-dimensional
model details regarding the creation of habitat suitability maps are given. Two
approaches for the investigation of the response to climate are discussed. These include
the use of climate response surfaces to modify the relative carrying capacity values and
the creation of climate suitability maps to determine whether or not reproduction can
occur.

2.1. The MIGRATE Model

MIGRATE is a simple deterministic model which can be used to simulate the migration
of any sessile organism. For the purposes of the MIGRATE model, a sessile organism is
defined as one which disperses once during its life history and then settles down.
Therefore MIGRATE may be applied to many animal species as well as all plant species.
For example, many bird species disperse once during their life cycle- and then settle down
in a relatively confined area to breed. In section 4.3 the migration rates predicted by the
one-dimensional version of MIGRATE for the collared dove, house sparrow and
muskrat are compared with the rates predicted by the analytical models of migration
developed by Van den Bosch et al. (1992). MIGRATE currently allows the investigation
of the migration of a single species across either a homogeneous or a heterogeneous
environment. It does not take into account interspecific competition, this is assumed to
be incorporated into the relative carrying capacity values. Intraspecific competition does,
however, occur in the form of competition for available space. MIGRATE has been
implemented in the C programming language. Routines from the Uniras subroutine
library are called from within the program to produce a graphical display of the
simulation results. ’
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Two forms of MIGRATE have been implemented, one for simulating migration in one-
dimension and the other for simulating migration in two-dimensions. If the environment
is assumed to be homogeneous then the one-dimensional version of MIGRATE is the
most appropriate model to use since this is less computationally demanding. In this case
the environment is represented by a single row of cells which are labelled cell; (where i =
1, ..., m). However, for a heterogeneous environment it is necessary to use the two-
dimensional version, in which the environment is represented by a grid of cells made up
of m rows and n columns. These are labelled cell; (where i =1, ..., m; j = 1, ..., n).
Although the formulation of both models is the same, it should be noted that one-
dimensional dispersal functions do not always give rise to the same migration rate in two-
dimensions. This phenomenon will be explained in section 2.1.4.

The two-dimensional version of MIGRATE also has the facility to explore the effects of
climate on migration. This may be done either by the use of a climate map which assigns
cells as either suitable or unsuitable for reproduction or by the use of a probability of
occurrence map whose values act directly on the relative carrying capacity values of the
cells.

The output from the one-dimensional version of MIGRATE takes the form of two
graphs. The upper graph shows the wave-like progression of the population front over
successive generations. The lower graph shows the change in population density with
time at various distances from the origin. Unless otherwise stated the lines represent the
population increase at distances of 100 km, 110 km, 120 km 130 km and 140 km from
the origin. The population densities are plotted as natural logarithms so that the gradient
of the line is an estimate of the intrinsic rate of population increase. A threshold value of
-5 was set so as to avoid the plotting of large negative values. In most cases the lines will
appear as five evenly spaced parallel lines. However, in cases where the chance long-
distance dispersal events play an important role the spacing between the lines becomes
erratic. Various analytical models have been developed which use mathematical

equations to calculate migration rates. The main advantage that the one-dimensional

version of MIGRATE has over these analytical models is that the graphical output it
produces enables the shape of the wave front to be readily visualised. In particular, the
extent of the wave front can easily be measured. It is possible to derive so called -
"travelling plane wave solutions" which describe the shape of the migration front in
mathematical terms (for example, Van den Bosch et al. 1990, 1992 and references
therein). However, the mathematics involved are quite complex and probably only

accessible to those in the field of mathematical biology. -
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The parameter values used in the simulation are printed above the upper graph. The
notation is as follows:

Line 1: L = cell length; a = area occupied by an individual; T = generation length.

Line 2: An ordered list of the survival probabilities for each cohort class starting with the
probability of a propagule recruiting to the first cohort class.

Line 3: A list of the number of propagules (S) produced by an individual in each cohort

class during a generation length starting with the first cohort class.

Line 4: A dispersal parameter (for example, RMSD if a normal distribution is being used)
followed by the probability of dispersal by that dispersal function. Parameter values are
given for each dispersal function. Any number used as a suffix to the parameter name
refers to the dispersal function number. In most cases it is necessary to use only one or

two dispersal functions.

Line 5: A list of the dispersal sums for each dispersal function. These should be the same
as their corresponding dispersal probabilities. The sum of all the dispersal probabilities
(this should add up to 1.0). The furthest cell from the parent cell for which a dispersal
probability is calculated. Cells beyond this value do not receive any propagule input.

Line 6: K = relative carrying capacity (i.e. the fraction of each cell which is available for
colonisation). If the number of individuals was rounded to a whole number then the
random number used in this process is given, Details of any climatic restraints which
were operating during the simulation are given.

Line 7: The interval in generations between each successive migration front. The number
of generations over which the simulation occurred.

A typical output of the upper graph from the one-dimensional version MIGRATE is
shown in Fig. 2.1. Each line represents the population density at the end of a generation.
The number of generations which are output and the time interval (in terms of
generations) separating them are specified by the user at the start of the simulation. The
extent of the population front is the distance between the leading edge of the front and
the point where the population stabilises at its maximum value. The migration rate is
determined by dividing the distance between migration fronts (d) by the time interval
which separates them. Fig. 2.2 was taken from Van den Bosch et al. (1992) and shows
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how an observer at position x will observe local exponential population growth. In the
lower graph of the one-dimensional version of MIGRATE, the population density is
expressed as a natural logarithm so that the gradient can be used as an estimate of the

intrinsic rate of population increase.
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Fig. 2.1 A typical output of the upper graph of the one-dimensional version of MIGRATE. Each
successive migration wave shows the density of individuals at increasing times from the start of the

simulation.
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Fig. 2.2 The mechanism by which a‘ population front having an exponential shape in space and
travelling at a constant velocity induces apparent local exponential population growth (from Van den
Bosch et al. 1992).

a: population density as a function of position in space at different times.

b: Population density as a function of time at position x.

2.1.1. Parameters used in MIGRATE

One of the first tasks in developing the MIGRATE model was to identify the biological
and environmental components which have been shown to be important in species
migration. Once these elements and their interactions were identified then it became
possible to begin to formulate the model. There is an extensive amount of literature on
biological invasions and species migration some of which was reviewed in Chapter 1.
Hengeveld (1994) suggests that invasions can be conceived to consist of two processes,
that of spatial spread followed by local population increase. The earliest models of spread
were the reaction-diffusion models such as the classic model of Skellam (1951) and
Fisher (1937). These combined local population growth with Brownian random
dispersal. Since then, models of spread have become more advanced in that they allow
for more complicated life histories and dispersal functions. The analytical models
developed by Van den Bosch et al. (1990, 1992) and Mollison (1990) consist of a
reproduction kernel and a dispersal distribution. The reproduction kernel describes the
production of offspring throughout a species' life time. This incorporates parameters
which can be obtained from life table data i.e. the number of offspring produced by each
age class and the probabilities of survival between successive age classes. These
parameters are the average values for the species and are assumed to be constant,
therefore density dependent factors which may affect survival are not taken into account.
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The dispersal function describes the distribution of propagules about their parent and
incorporates the variance and kurtosis of dispersal. In some models, a carrying capacity
has been included so as to set an upper limit on the population density. For models which
predict migration rates only, this parameter is not essential as by the time the population
has increased above what may be considered to be a realistic density it is so far away
from the migration front as to have no effect on the migration rate. Most models have
concentrated on the migration of a single species, however, some models have been
developed which use competition coefficients to model the interaction between two
species, for example Okubo et al. (1989). Despite the poor accuracy of most ecological
data (Mollison, 1991) the models of spread using the parameters described so far have
been used successfully to predict the spread of a wide variety of species. (for examples
see Van den Bosch et al., 1992; Okubo et al.,, 1989; Andow et al. 1990; Reeves and
Usher, 1989; Marinissen and Van den Bosch, 1992).

In view of the recent success in the modelling of biological invasions and the desire to
keep the model as simple as possible, it was decided to restrict the model to the
parameters listed in Table 2.1. They have been categorised into reproductive, dispersal

and landscape parameters. From these parameters, the following secondary values are

derived:

A Cell areai.e. L?; .

F Potential number of offspring produced by an individual during one
generation i.e. S.5;

a Intrinsic rate of population increase i.e. approximately In(F)/T.

MIGRATE calculates the number of propagules M,-j(t) arriving in each cell;; at time t (i=
‘1, ...,m;j =1, ..., n) and from this updates the number of individuals N,.j(t) in each cell,.l-

In order to take into account variations in fecundity and survival throughout a species'

life history the facility to use more than one age class has been implemented. Each age

class is given its own value for survival (Pepon no) and propagule output (Seopor no.)-

49



Table 2.1 The parameters required by the MIGRATE model.

Parameter Type

Parameter Description

Parameter Name

Reproductive
Characteristics

Dispersal
Characteristics

Landscape
Characteristics

Time in years to reach the age of first
reproduction i.e. generation length.

Number of propagules produced per
individual during one generation length.

Probability of propagules establishing and

surviving to the age of first reproduction in

the absence of self thinning.

Probability of mature individuals surviving a

further interval of one generation length.

Number of dispersal functions.

Dispersal parameters which define the
distribution of propagules from their parent
(e.g. root mean square displacement for a
normal distribution, half distance for a

negative exponential distribution or shape and

scale parameters for a Weibull distributibn).

Probability of dispersal for each dispersal
function (must sum to 1.0).

Maximum distance (in terms of number of

cells) over which dispersal is calculated.

Area occupied by a mature individual.

Cell length.

Number of cells in the north-south direction.

Number of cells in the east-west direction.

Relative carrying capacity for each cell (i.e.
the area available for occupation by the
species or taxon being simulated expressed as

a proportion of the total cell area).

T

?,

N_DISP

RMSD (for
normal
distribution) or
Dy, (for negative
exponential
distribution)

P(RMSD), P(Dy,)

FURTHEST_CELL

J_max

i_max
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2.1.2. Word Description of MIGRATE

MIGRATE is a cell-based model with the real environment being represented by a grid
of square cells. Each cell has a relative carrying capacity associated with it which
determines the fraction of that cell which is available for occupancy. The number of
individuals in each age class and the number of propagules arriving are MIGRATE's state
variables. The values of these variables for each cell are calculated at intervals of one
generation length.

MIGRATE takes each cell in turn and calculates the total number of offspring which will
reach the age of first reproduction produced by that cell i.e. the number of potential new
recruits. If the number of potential recruits is greater than zero then the recruits are
dispersed into the neighbouring cells according to the dispersal distribution specified by
the user. The area over which dispersal can occur is controlled by the value given to
'furthest_cell'. Some of the individuals in each age class are then removed according to
the probability of survival value assigned to that age class. As there is a difference in the
recruitment process of the model when only a single age class is used compared with
multiple age classes the two cases will be described separately.

In single cohort simulations, MIGRATE keeps a tally of the number of individuals who
are older than the age of first reproduction. Following removal of some individuals due
to death, the arriving offspring are recruited according to the amount of space available.
This means that the offspring are able to reproduce themselves in the next cycle of the
model i.e. it has been implicitly assumed that all the offspring were produced at the
beginning of the time siep.

In multiple cohort simulations, MIGRATE starts with the oldest age class and works
through to the second age class and recruits all the surviving individuals from the
immediately younger age class i.e. the third age class receives all the surviving individuals
from the second age class and the second age class receives all surviving individuals from
the first age class. During this stage there is no competition for space since it is assumed
that all individuals occupy the area of an adult. Therefore competition needs to occur
only during recruitment into the first age class. The number of individuals recruiting to
the first age class depends on the amount of space available in the same way as it does
for single cohort simulations. The advantage of using multiple cohorts compared with
just a single cohort is that the assumption that all the offspring were produced at the
beginning of a time step and can therefore reproduce in the next cycle of the simulation
can be relaxed. By assigning a non-zero fecundity value to the first age class the fact that
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individuals were born continuously throughout the previous time step can be taken into
account i.e. the propagule output of the first cohort class can be estimated as:

2.1)

The value of S.,4,. 5 is approximately half of the value of Sicopor 2)-

If at the end of the time step that particular generation is to be output then the density
values expressed as the total number of individuals per hectare in all age classes is
plotted.

A flow chart illustratingwthe processes which occur during a simulation is given in Fig.
2.3. The incorporation of changes in the relative carrying capacity and climate will be
discussed in sections 2.3.2 and 2.3.3.
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Is the current
generation no. <= no. of
generations over which
model is to be run?

no

For each cell caiculate the propagule input
from all cohorts and from all cells within given
radius during 1 generation length.

|

Remove some individuals from each
cohort due to death

'

For each cohort, recruit individuals from
the next youngest cohort

y

Calculate proportion of cell available for
recruitment of individuals into first cohort

v ,

Recruit individuals into the first cohort from propagule
input assuming propagules are randomly distributed
within the cell

'

Output total number of individuals in
eachcellattime t+ T

Fig. 2.3 Flow chart showing the sequence of events occurring in the MIGRATE model.
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2.1.3. Mathematical Description of MIGRATE

In this description, in order to keep the equations as easy to understand as possible, it is
assumed that there is only one cohort consisting of the number of reproductively mature
individuals. The dispersal function f(r) can be any function which gives the probability of
arrival with respect to distance (r) from the parent. The sum of the dispersal probabilities
should be 1.0. The notation below refers to the two-dimensional version of MIGRATE.
The one-dimension version of MIGRATE functions in the same way as the two-
dimensional version, but summation occurs over cell; only.

The number of propagules arriving in each cell is calculated from the following
summation over all cells:

My(t)= >, > f(1)-AN,;(1).5 (2.2)

where r is the distance between propagule source and cell receiving dispersed
propagules, calculated by Pythagoras's formula (r2 = L((i-i')2+(j-j’)). For a bivariate
normal distribution it can be shown that only 1.8 x 10-13 offspring are dispersed beyond a
distance of SXRMSD. In practice, summation can often be restricted to a distance of less
than SxRMSD.

If all the propagules grew to maturity, they would occupy an area a.Mjj(t). In the
absence of self-thinning, only a proportion P, will grow to maturity. Thus at the next
generation, in the absence of self-thinning, a proportion

aPM(t)

0 =— 2.3)

of the area should be covered by mature individuals. It is assumed that the propagules fall

randomly so that in practice, a proportion
0, =1-exp(-Q,) (2.4)

of the cell will be covered (Hill, 1992). From equation 2.4 it can be seen that even when
the potential area occupied by all the propagules is greater than the area of the cell in

which they arrive some of the cell will remain unoccupied. The total proportion of the
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cell available for colonisation by propagules, @3, is its relative carrying capacity less the
area occupied by surviving mature individuals i.e.

a.P,.N; (t)
0,=K; - (2.5)
A
Hence at time (¢ + T) the number of individuals in the cell is:
N;(t+T)=F.N; (t)+ (2.6)

2.1.4. Modelling Dispersal

The number of dispersal functions is specified by the user so it is possible to have as
many dispersal functions as required. Multiple dispersal functions may be particularly
appropriate in cases where ditferent dispersal mechanisms are operating. For most
purposes two dispersal functions are probably sufficient. One can be used to represent
local dispersal and the other long-distance dispersal. This results in a compound
distribution. For the purposes of dispersal all the individuals are notionally located at the
centre of their square. ‘

At the start of each simulation, MIGRATE creates a "look-up" table. This stores the
probability values for the dispersal function(s) in a way that can be accessed when
calculating the number of propagules arriving in cells within a given distance of a
propagule source. This increases computational efficiency since it is quicker to access the
stored values than to have to continually recalculate the probability values. The dispersal
functions which are used in MIGRATE have tails which extend out to infinity. However,
beyond a certain distance the probability values become so low as to be negligible. The
area over which dispersal is allowed to occur is determined by the value given to the
parameter "furthest_cell" which is specified by the user at the beginning of the
simulation. A "window" is then effectively placed over each cell in the habitat grid and
the cell at the centre of the window disperses its offspring to all the cells within the
window according to the dispersal function. As a check that the values assigned to the
dispersal parameters, the cell length and the furthest_cell have been set appropriately,
MIGRATE calculates the sum of the dispersal probabilities over the area specified by the
value of furthest_cell. The dispersal sum should be equal to the dispersal probability
value associated with each dispersal functions. The total of the dispersal probability
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values should be equal to 1. Values which are less that 1 indicate that the value of
furthest_cell may have been too small, whereas values which are greater than 1 indicate
that the cell length was too large in relation to the length of the realistically achievable
part of the dispersal curve.

Deterministic versus stochastic modelling

MIGRATE is essentially a deterministic model. Although some of the processes involve
the use of random numbers (see section 2.1.5) this is done merely to ensure that whole
numbers are being dealt with. In order to make MIGRATE stochastic it would be
necessary to use the Poisson distribution in conjunction with the long-distance dispersal
probability values to determine the actual number of propagules which arrive in a cell.
The Poisson distribution is a simpler form of the Binomial distribution and can be used to
calculate the number of successes (i.e. arriving propagules) when the number of trials
(dispersing propagules) is very large but the probability of success on each trial is very
small. The probability of k successes is given by:
e Puk
k'k
where n is the number of trials, p is the probability of success and p=pn. The

P(k) = 2.7)

incorporation of this extra equation into MIGRATE would, however, result in
simulations taking much longer to run. In addition to this, simulations may have to be run
several times over in order to get a picture of the average -outcome. The area where
chance plays its most important role in migration is in the dispersal and establishment of
offspring. However, since our knowledge of long-distance dispersal is so poor there is no
advantage in trying to improve MIGRATE by modelling this process stochastically. The
analytical models of van den Bosch et al. (1992) and Marinissen and van den Bosch
(1992) are deterministic but have been shown to be good predictors of observed
migration rates. In modelling the metapopulation dynamics of butterflies, Hanski and
Thomas (1994) found that a stochastic version of their spatially explicit model produced
results which were qualitatively the same as their deterministic model. Hengeveld (1989)
states that although processes such as diffusion are stochastic when viewed at a small
scale, the overall process of particle flow can be described in deterministic terms.
Therefore the assumption is made in MIGRATE that the essentially stochastic processes

of dispersal and establishment can be successfully modelled in a deterministic way.

Choice of dispersal function

Various dispersal functions have been implemented in both the one-dimensional and two-
dimensional versions of MIGRATE. These include the normal distribution, the negative
exponential distribution and the Weibull distribution. The formulae for these dispersal
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functions are given in Appendix A. The one-dimensional dispersal functions take the
form f{x) where x is the distance between offspring and parent. The two-dimensional

dispersal functions are of the form f{r) where r is \’xz +y? and x and y are the distances

in the east-west and north-south directions respectively. Dispersal is assumed to be a
rotationally symmetrical process occurring equally in all directions from each cell.

One of the unique features of the normal distribution which made it a particularly
attractive distribution to include in MIGRATE is that its two-dimensional form can be
integrated with respect to y to give the one-dimensional form. As a consequence of this,
the migration rate produced by normal dispersal functions is the same in both one and
two-dimensions. The integral of a two-dimensional function with respect to y gives the
marginal distribution of dispersal distances i.e. the relationship between the density of
individuals and the distance between the origin and the projection of the place of arrival
onto the x axis of the Cartesian grid. It is the marginal distribution of a two-dimensional
dispersal function which should be used in order to derive the same migration rate in
one-dimension as in two (Van den Bosch et al., 1992).

For the negative exponential and Weibull distributions, it is riot possible to obtain a two-
dimensional equation which can be integrated with respect to y to produce the one-
dimensional equations given in Appendix A. It can be shown by plotting the numerical
solution of the two-dimensional integral with respect to y (i.e. the marginal distribution)
and the corresponding one-dimensional function given in Appendix A that the two
distributions are not quite the same. For example, for the negative exponential
distribution, the marginal distribution has a slightly higher tail than the one-dimensional
formula given by equation A3. This explains why the negative exponential distribution
produces a slightly slower migration rate in one-dimension compared with two-
dimensions.

The negative exponential distribution has been included as a possible dispersal function
since this is a distribution which has been commonly observed in the field. The Weibull
distribution was added at a later date since this was found to give a good fit for the
dispersal of Senecio vulgaris (Bergelson et al, 1993). This is a two parameter
distribution which may take on a variety of shapes including the negative exponential and
is therefore a potentially good dispersal function to use if the dispersal densities can be
determined quite accurately. As a consequence of this, the Weibull distribution is
probably more suitable for modelling the dispersal of seeds which are dispersed over only
a few metres and can be successfully trapped over this distance. This was the case for
Senecio vulgaris where sticky traps were used to catch the wind dispersed plumed seeds.

57



The one-dimensional version of MIGRATE also has the facility for the empirically
measured dispersal. densities to be entered directly, thus avoiding the need to fit any
dispersal curve. As most data in the literature are on distances only and lack any
directional information it was inappropriate to develop this for the two-dimensional
version of MIGRATE. In order for the empirical observations of dispersal densities to be
used, the distance values must first be converted into marginal dispersal distances. This
was done using a computer program which converted observed dispersal distances into
marginal dispersal distances. For the purposes of this calculation, it was assumed that
dispersal occurred symmetrically in all directions. For each dispersal observation, 20
marginal dispersal distance values were calculated and 1/20th of the propagule density at
the observed distance assigned to the distance category within which the marginal
dispersal distance occurred. The distance categories are user-defined, but should be equal
to the cell length to be used in the MIGRATE simulations. The marginal dispersal

distances were calculated using the formula:

Marginal dispersal distance = xcos6,
where 8; = 2.1 (i-0.5) + (2.8)

where i is all integers = 1 and < 20 i.e. the marginal dispersal distances were calculated
by taking a 90° (x/2 radians) sector and dividing it into 20 equal sectors. The marginal
dispersal distance was then calculated as the cosine of the angle made between the x axis
and the line bisecting each sector.

In addition to these dispersal functions, the two-dimensional version of MIGRATE also
has the option of placing most of the offspring into the parent's cell. This allows for the
possibility of population increase without dispersal. This option is appropriate where the
local dispersal function is very short in relation to the length of the cell. At the start of
the simulation, MIGRATE creates a grid composed of one cell divided into 400 equal
squares. Dispersal is calculated from the centre of the grid according to a local bivariate
normal dispersal function and the proportion of propagules which escape the grid i.e. are
capable of escaping from the parents cell is determined. Since these individuals would be
placed in the centre of one of the adjacent cells, the dispersal probability values
associated with the adjacent and corner cells have to be reduced in small equal
proportions until the RMSD of the original local dispersal function is obtained. In the
one-dimensional version of MIGRATE a less accurate version of this option was
implemented whereby all the locally dispersed offspring were placed in the parent's cell.
Sensitivity analyses using the one-dimensional model have shown that this is a good
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approximation when the tail of the long-distance dispersal function is long (section
4.1.3). As the number of computations is much less in the one-dimensional model, it is
easy to test this approximation by repeating the simulation with a small cell length

appropriate to the length of the local dispersal function.

The problem of scale

In order to allow for a dispersal function where successful dispersal occurs over
distances of much more than ten times the cell length a system of amalgamating cells has
been developed in the two-dimensional version of MIGRATE in order to increase
computational efficiency. This facility was not needed in the one-dimensional version of
MIGRATE because the number of computations involved here is so much less. The
degree of amalgamation is-specified by the user at the beginning of the simulation. The
way in which the process of amalgamation works is best illustrated by an example. With
a cell length of 1 km and a long-distance bivariate normal dispersal function with an
RMSD of 10 km an amalgamation of S cells could be set without any significant loss in
accuracy. Dispersal probability values at a 5 km resolution are calculated i.e. for the
purposes of long-distance dispersal the cell length has been effectively increased to half
the value of the RMSD. As there are 25 1 km squares within each 5 km square, the
probability of arrival in each 1 km square is simply approximated as being 1/25th of the
probability of arriving in the 5 km square within which the 1 km square falls. This
approximation is a simple extension of what is already happening in the modelling of

dispersal, since a continuous process is being modelled as a discrete process.

Logging of dispersal distances

From the values given to the dispersal parameters and the product of S and P, it is
possible to predict the furthest distance over which successful establishment may occur.
However, in order to gain a better idea of what is happening, a procedure has been
implemented in the two-dimensional version of MIGRATE to count the number of
potential recruits dispersing into various distance categories. The recruits are referred to
as potential recruits because whether or not they actually establish depends upon the
availability of suitable habitat within the cell where they arrive. The sampling interval for
the distance categories is equal to the cell length. As the logging of dispersal distances
significantly reduces the run-time of MIGRATE the procedure was implemented as an
option which could be compiled and therefore included as part of the simulation if
required. The one-dimensional version of MIGRATE simply outputs the value of the
furthest distance over which a prospective recruit is dispersed. It should be noted
however, that the value of the longest dispersal distance is partly determined by the
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number of generations which are simulated. This is because for simulations of a longer
time span there is more opportunity for long-distance dispersal events to occur.

2.1.5. The "rounding" Option and Stochastic Events

MIGRATE has been created as a deterministic model for purposes of clarity and
simplicity , however, both the one-dimensional and the two-dimensional versions of
MIGRATE include the facility to round the number of individuals to a whole number
according to a random number between 0 and 1. This introduces a small area of
stochasticity, but serves mainly to prevent the occurrence of fractions of individuals.
Fractions of individuals are generated as a direct consequence of the survival and
dispersal probabilities and the random nature in which individuals fall in a cell (equation
2.4). Sensitivity analyses using the one-dimensional version of MIGRATE have shown
that rounding does not have a significant effect on the migration rate although in some
cases it may lead to a slight reduction in the rate. Its main effect is to cause the shape of
the migration front to become less smooth. This effect is usually only observed in cases
where there are a small number of individuals being dispersed over a long distance. In the
case of the two-dimensional version of MIGRATE, rounding is always carried out. If this
were not done, then the very small fractions of individuals at the migration front would
appear as yellow shaded areas on the output plots making the extent of spread appear
larger than it would be in reality. In the one-dimensional plots, the low values at the front

of the distribution are so small as to be indistinguishable from zero.

The random number generator "ranl" from the C programming library (Press et al,
1992) was used to generate random numbers between 0 and 1. The fractional part of
each real number is compared with a random number generated by ranl. If the random
number is less than the fractional part of the real number against which it is being
compared then the real number is rounded up to the nearest whole number. If the random
number is greater than the fractional part of the real number then the real number is

rounded down.

2.1.6. Summary of Assumptions Made in MIGRATE

1. All individuals in a cohort are identical with respect to fecundity and survival etc. The

parameter values used are the average values for the cohort.

2. The fecundity and survival parameter values are dependent on the age of an

individual and not its size.
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3. For the purposes of dispersal, all individuals are considered to be at the centre of the
1 km square which they occupy.

4. Dispersal occurs in a radially symmetrical fashion.
5. The organism settles down for life after dispersing from its place of origin.

6. All individuals occupy the same area therefore intraspecific competition for space

occurs once only i.e. during recruitment to the first cohort.

7. The stochastic processes of dispersal and establishment can be effectively simulated
in a deterministic way...

8. The probability of a propagule reaching the age of first reproduction is random and
does not depend on the distance from its parent.

2.1.7. Miscellaneous Technical Details Regarding MIGRATE

The number of cells which can be used in a simulation is limited by the amount of
memory available on the computer. MIGRATE has been successfully used to model the
dispersal of rhododendron over an area 10 km by 12 km at a 10 m resolution i.e. 1000 x
1200 cells were used to represent the habitat (Griffin, 1994). As eight cohorts were used,
a further 8 x 1000 x 1200 cells were used to hold the number of individuals in each age
class in each cell of the habitat map. This research represented the limits of what is
possible on the Sun SPARC station IPX used to carry out the simulations.

Execution times depend on the number of generations over which a simulation is run, the
number of cells used to represent the environment and how extensive the spread of the
species being modelled is. They vary from less than a minute for simple one-dimensional

simulations to up to a few hours for more complex two-dimensional simulations.

Double precision arithmetic was used where appropriate, for example in calculating the
dispersal probabilities and the number of propagules arriving in each cell. Double
precision was used here because it was considered that the small values which may arise
should be calculated accurately. In order to conserve memory space, single precision
variables were used to store the number of individuals in each cohort, the relative
carrying capacity values and the climate suitability map. The larger values of these
variables meant that precision here was not so important.
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2.2. Estimating Parameter Values for Tree Species

One of the reasons that much of the modelling work on migration has been concentrated
on short-lived species is because quantitative data on their ecology can be more readily
obtained, either through field work or from the literature. The great longevity of trees
has meant that there is very little direct evidence on their population dynamics (Crawley,
1990).

The following parameter values may usually be obtained from the literature:

1. age to reproductive maturity (7);

2. number of propagules produced per year;
3. frequency of mast years where appropriate;
4. typical age of death.

From 2 and 3 it is possible to estimate the number of propagules (S) produced per
generation. There are very limited amounts of quantitative data on the probability of
survival for long-lived species such as trees. One possible means of deriving survivorship
and fecundity data is to carry out long-term studies of the kind carried out by Pinero et
al. (1984) where the fate of individual seedlings was followed over time. Survivorship
curves also could be obtained by analysing the current age structure of a population
(Crawley, 1983). The assumption made with such a study is that if recruitment is
constant and age-specific mortality is neither time dependent nor density dependent, then
the fraction of individuals in an age class is a good estimate of survivorship to that age.
However, in most cases, the age structure of a forest will have been determined by past
disturbance events such as storms, fires and pest outbreaks and will not therefore reflect
progressive age-specific mortality. If it is assumed that following initial establishment
survivorship is constant, then the probability of adult survival (P,) may be estimated from
the equation:

B = exp(— T I_WT) (2.9)

Whittaker (1975) suggests that the death rate of Quercus alba is roughly constant over
its 300 year life span, so constant survivorship may not be such an unrealistic assumption
to make. In the absence of more accurate data, equation 2.9 probably represents the most
satisfactory means of estimating the probability of adult survival.
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It is known that the probability of a tree seed reaching the age of first reproduction is
very low, for example, Crawley (1983) assumes a probability of survival to the age of
first reproduction of 5x10-° when estimating the range within which the intrinsic rate of
population increase for a tree which first reproduces at 40 years lies. Clarke (1992) lists
the many reasons why sitka spruce seedlings fail to establish. From the mortality data
which Clarke has gathered from various sources it is possible to deduce that the
probability of a seed surviving until its second winter is 1.4x104. Watt (1919) discusses
why so few acorns become mature trees.

The field studies that have been done on dispersal distances were discussed in section
1.5. These studies have generally measured only local dispersal due to the difficulties in
obtaining quantitative data on long-distance dispersal events. Results from these studies
have lead to the conclusion that most seeds fall with a few hundred metres of the canopy
The data on long-distance dispersal events are mostly anecdotal. However, it is possible
to use the one-dimensional version of MIGRATE to obtain values for the probability of
survival to reproductive maturity and the long-distance dispersal parameters. This may be
done by varying the values of these parameters in order to determine the area of
parameter space in which the required migration rate (as determined from

palaeoecological studies) occurs.

2.3, Setting up the Environmental Conditions

2.3.1. Initial Distribution of Individuals

MIGRATE has been developed so that there are various ways in which the initial
distribution of the species being modelled may be entered. For the two-dimensional
version of MIGRATE these include:

1. Asan ASCII file consisting of a grid reference followed by the number of trees in
the square defined by the grid reference. The number of figures in the grid reference
should correspond with the cell size used in the model simulations. For example, a
six figure grid reference is require for a simulation with a 1 km square resolution.
Missing grid references are interpreted as meaning that there are no individuals
present at that location. The grid references are checked to ensure that they fall
within the boundary of the area being modelled.
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2. Asan ordered list of tree numbers starting with the south west corner and finishing
with the north east corner.

Distribution data files are read in for all cohort classes and the total number of individuals
present in each cell checked to ensure that it does not exceed the maximum value
determined by the relative carrying capacity. If the maximum value has been exceeded
then the number of individuals in each cohort class is reduced in equal proportions so
that the total number of individuals is equal to the maximum value.

For the one-dimensional version of MIGRATE, the initial distribution is read in as an
ordered list of either actual numbers or the fraction of the cell which is occupied. The
initial distribution is checked against the relative carrying capacity values in the same way
as for the two-dimensional model.

2.3.2. Creation of Habitat Suitability Maps

For the one-dimensional version of MIGRATE the value of the relative carrying capacity
which is constant for all cells is specified by the user. It would not be appropriate to use
heterogeneous relative carrying capacity values in the one-dimensional version of
MIGRATE since the one-dimensional migration process can not allow for a species to
spread around areas of unsuitable habitat. For the two-dimensional version of
MIGRATE, the area covered by the habitat map and its resolution is determined by the
array size (number of cells in the habitat map) and the cell length. The array size is
defined by the constants i_max and j_max which are defined at the beginning of the
program. For technical reasons, these values have to be explicitly set to the exact number
of cells required to represent the study area. The cell length should be set to correspond
with the resolution of the habitat data.

Format of the input file

The data can be entered in the following formats:

1. nrows 140
xllcorner 250000
yllcorner 460000
cell size 1000
NO DATA value -9999
6.560.68 0.438.21..........
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Line 1 is the number of rows i.e. number of cells in the northerly direction. Lines 2 and 3
give the 6 figure grid reference for the southwest corner of the habitat grid. Line 4 gives
the cell length in metres and line 5 the data value which indicates the presence of the sea.
The actual data values expressed as percentages follow in order starting with the
northwest corner and finishing with the southeast corner.

2. 276.0 544.0 348.0 654.0

56132116.1

56132283
The first line lists the lower northerly, lower easterly, upper northerly and upper easterly
grid references expressed as real numbers. The data then follow in any order as an

easting, northing and % value. Missing data values indicate the presence of the sea.

3. 0A31400025
TIN1AA6

This is an ordered list starting with the southwest corner and finishing with the northeast

corner. The relative carrying capacities are converted into numbers according to the rule
0=0.0,1=0.1, ....... A=1.0.

In order to create a habitat suitability map which can be considered to be representative
of the modern day landscape, data from the 1 km resolution Institute of Terrestrial
Ecology land cover of Great Britain database can be used to create files of either of the
first two formats. These data consist of percentage coverage values for twenty five
different land cover types. MIGRATE currently allows the percentage cover of one land
cover type to be read in and used to assign the relative carrying capacity value. However,
it would be very easy to use more than one land cover type and generate the relative
carrying capacity values based on these. The third format was used by Griffin (1994)
where a conversion program was used which took input from several GIS coverage maps
(holding data on for example, the presence/absence of roads, rivers, forests and grazing
regime) and produced output in the required format. By using this approach a more

versatile relative carrying capacity map can be created.

Once the data have been read in and expressed as a fraction of the cell available for
occupancy (in the range 0.0 to 1.0) then they may be modified further if required by
multiplying by some fraction which determines the final relative carrying capacity value.

This option is most useful where the relative carrying capacity values have been set using
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the percentage cover of one of the land cover types as it effectively determines how
much of that land cover type the migrating species can come to occupy.

With the third option the facility for allowing the relative carrying capacity values to
change during the simulation, for example in response to changes in land management
practices, has been implemented. This option was used by Griffin (1994) to investigate
the potential spread of rhododendron in Glen Etive and possible control strategies. It
would be straight forward to include this facility with the other options if the need were
to arise.

A final option for setting up the relative carrying capacity map is to set up a random
habitat map. In this case the relative carrying capacity is either 0 or some constant
specified by the user. The fraction of cells which are non-zero is specified by the user.
This option allows simple investigations to be made into the effects of habitat availability

on migration rates in the same way as has been done by Schwartz (1992).

In order to set up a homogeneous environment, the option to set all land cells to a

constant value has been implemented.

The use of probability of occurrence values for investigating the response to climate

The relative carrying capacities may be modified by using a probability of occurrence file.
This file is read into MIGRATE in the form of an easting and a northing value followed
by a probability of occurrence value. The probability values were calculated by fitting the
current presence/absence data for a species in Europe (obtained from the Atlas Florae
Europea) to three bioclimatic variables at a 50 km resolution (Huntley et al., 1995). The
resulting response surface consisted of probability of occurrence values at a 10 km scale
with respect to the mean temperature of the coldest month, the temperature sum above a
5°C threshold and the ratio of the actual to the potential evapotranspiration rate. In order
to use the response surface to generate a current distribution of a species which
resembles its observed distribution, it was found that a probability threshold had to be
set. If this threshold probability is exceeded then the species is predicted to occur
otherwise it is predicted to be absent. The response surface can be used to generate
probability of occurrence values for each 10 km square in the British Isles using climate
data obtained from the Climatic Research Unit (Huntley, unpublished results). These data
can then be read into the MIGRATE model and used to modify the values of the relative
carrying capacities. Where the probability of occurrence threshold is exceeded, the
relative carrying capacity values are modified by multiplying by the probab;ility of

occurrence value for that square. However, if the threshold is not exceeded then the

66



relative carrying capacity is set to zero. By using a climate scenario for a doubling in the
concentration of carbon dioxide, it would be possible to derive probability of occurrence
values for the species being modelled under future climatic conditions. A climate
response surface for the invasive weed Fallopia japonica (Japanese knotweed) derived
from European climate and distribution data has been successfully used to predict its
native distribution in Southeast Asia (Beerling et al, 1995). The close agreement
between the simulated distribution and the observed distribution indicates the robustness

of this static correlative modelling approach.

Smoothing the relative carrying capacity values

In order to investigate the effect of the distribution of habitat availability, the option to
smooth the relative carrying capacity values has been implemented. Each cell is taken in
turn and a new relative carrying capacity value assigned by taking the average relative
carrying capacity value of all non-sea cells within a specified distance. The new carrying
capacity values are stored separately until all the cells have been assigned a new value.
The old values are then replaced by the new smoothed values.

2.3.3. Climate Suitability Map

The facility to read in a temperature dataset as a means of determining whether or not
reproduction can occur in a particular grid square has been implemented. Temperature
was chosen as a means of deciding whether or not reproduction can occur because much
of this research project has concentrated on the response of Tilia cordata to future
climatic change since the factors which determine its range limit in northern England are
well understood (Pigott, 1992 and references therein). From this research, it has been
established that the northern limit of 7. cordata in the British Isles is correlated with the
mean August daily maximum temperature. The MIGRATE model could be refined to
take into account any variable which correlates with or is known to influence the
distribution of the species being modelled (for example, precipitation). In the absence of
detailed data on the relationship between temperature and propagule output it was
decided to simply use a threshold temperature below which no reproduction can occur.

The climate data relating to temperature were obtained from the Climatic Research Unit
(University of East Anglia) and are in the form of nine ASCII files which hold the
minimum, mean and ‘maximum temperatures for each month at the lowest, modal and
highest elevations for each 10 km square of the British I[sles. A separate program was

written to extract the relevant temperature values and output them as an ordered list. The
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input required for this data extraction program are the grid references of the south west
and north east corner of the area being modelled, the number of the month for which the
temperature data are required and the name of the chosen temperature data file.

In order to produce a 1 km resolution climate map from the 10 km resolution data,
altitude data from the Bartholomew's 1993 contour data were used. As the relationship
between climate and altitude is linear, a computer program was written which read in the
data from the three climate files corresponding with the three elevation categories. Linear
regression was then performed on the relationship between temperature and altitude for
each 10 km square. The temperature value for each 1 km square was output by inserting
its elevation as given by the Bartholomew's contour data into the linear solution.

As temperature is not constant from year to year, a final refinement to the model was to
include a mechanism for allowing the climate to fluctuate. Statistical analysis of the mean
August daily maximum temperatures for Durham for the period 1960 to 1990 revealed
that this variable had a good fit to a normal distribution (correlation coefficient 0.8) with
a standard deviation of 1.57°C. The same dataset for Morecambe yielded a standard
deviation of 1.47°C. In order to use these data to determine an estimate of temperature
variability it was assumed that there was no trend during this period and that temperature
variability remained constant. During a simulation in which climate is acting as a limiting
factor, MIGRATE reads in the climate data as described above and then uses random
numbers to vary the temperatures about their mean values. This is done by multiplying
the standard deviation (which is specified by the user) by a random number from a
standard normal distribution and then adding this value to the actual temperature value.
The routine "gasdev" in conjunction with ranl from the C programming library (Press,
1992) was used to generate the normally distributed random numbers. So that climate
may vary on an annual time scale, a temperature value is generated for each year, i.e. if
the generation time is 25 years then 25 temperature values are generated for each square
during each time step of the simulation. The fecundity of the species is then modified by
multiplying it by the number of times the temperature threshold has been exceeded

expressed as a fraction of the number of years in a generation.
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CHAPTER 3

Field Work: An Investigation into Seed Dispersal

Much of the data required for MIGRATE can be obtained or estimated from the
literature. However, there are very few data on seed dispersal distances. The data which
do exist are mostly anecdotal observations of long-distance dispersal. There are also a
few detailed studies on local dispersal done mainly by commercial foresters. This chapter
describes the field work which was carried out in order to obtain a seed dispersal curve
i.e. the change in seed density with respect to the distance from the seed source. The
results are compared with those obtained in other studies. As for most other studies,
dispersal was measured from a forest edge rather than from an isolated tree. Computer
simulations were done in order to look at how the dispersal curve at a forest edge relates
to the dispersal curve from an individual tree since it is this which is used in the
MIGRATE model.

3.1. Choice of Species

The choice of species was restricted by the availability of a suitable site for that species.
Wind dispersed seeds are more easy to study since seed traps can be used, although these
may also be appropriate for some bird dispersed propagules (for example, Smith, 1975).
Where animals are the main agent of dispersal it is usually more appropriate to examine
seedling recruitment.

3.2. Choice of Site

The following conditions were needed in order for a site to be considered suitable:

« anisolated tree or block of trees acting as a good seed source;

69



« alarge area adjacent to the seed source over which dispersal and preferably also
establishment is occurring;

« no reproductively mature trees of the same species as that being studied in the
area where dispersal is being measured.

Although other published work on seed dispersal does not explicitly state the criteria
used in the selection of a study site, the above criteria are generally met. The reasons for
the first two criteria are fairly obvious. It is necessary to have a good seed source so as
to increase the number of seeds which will be trapped and therefore increase the
reliability of the fit of the field data to a dispersal curve. A large seed source effectively
allows dispersal to be measured over a longer distance. Most studies have been from
forest edges (Willson, 1993) because these are more often to be found with large
expanses of land adjacént to them into which dispersal can occur. A solitary tree,
however, is much more difficult to find. The size of the area into which dispersal is
occurring should be as large as possible. Ideally, the study site should be large enough to
permit the recording of the longest dispersal event which is likely to occur. This distance
may be estimated by multiplying the post-glacial maximum migration rate by the
minimum age to seed production. For example, if the maximum migration rate of Pinus
in England is taken as 700 m yr! (Birks, 1989) with 15 years as the minimum age to first
reproduction (Miles, 1988), then the required dispersal distance per generation is 10.5
km. This long-distance dispersal event needs to occur only once every 15 years in order
for the post-glacial migration rate of 700 m yr-lto be achieved. As it is so rare it is very
unlikely to be detected by field studies.

The maximum distance over which dispersal has been measured by other workers varies
considerably, from about 100 m (for example, Boyer, 1958; Hughes and Fahey, 1988) to
up to 4 km (for example, Welch et al., 1990). The tail of the dispersal distribution is
notoriously difficult to measure because of the low frequency at which the long-distance
dispersal events occur Willson (1993). However, by extrapolating the proximal part of
the dispersal curve it may be possible to make predictions about the frequency at which
the long-distance dispersal events may occur.

The last criterion is necessary so that one can be certain of the origin of the seeds.
Statistical techniques such as maximum likelihood analysis could have been used to
determine which tree a seed was most likely to have originated from. However, this
would require the mapping of all the conspecific trees in the study area. This would be a
very substantial task in a large study area with a large number of seed producing
conspecifics spread throughout. In addition, the amount of computation required in the
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use of maximum likelihood analysis would become unmanageably large where dispersal
occurs over a large area. Ribbens et al. (1994) used maximum likelihood analysis to fit
parameter values to a dispersal model. These values were then successfully used in their
stand model SORTIE. However, they were effectively concerning themselves only with
local dispersal as they found that mapping all adult trees within a 20 m radius was more
than adequate for all species except those with a mean dispersal distance greater than 15
m. The wider confidence interval found for those species with a mean dispersal distance
greater than 15 m was thought to be due to the uncertain effects of recruits derived from
trees located outside the mapped area. This would be a major problem where long-
distance dispersal events are the main area of interest. It is therefore possible to conclude
from their work that maximum likelihood analysis is suitable for fitting a curve to the
locally dispersed seeds, but not for the more widely dispersed seeds. For forest stand
models such as SORTIE which operate at a small spatial scale, it is the local dispersal
distribution which is most important in determining recruitment patterns and so the use
of maximum likelihood analysis is appropriate. However, at a larger scale when the
subject of interest is migration, the long-distance dispersal events play a more important

role than the local dispersal events so maximum likelihood analysis is less appropriate.

There are several ways in which dispersal could be investigated. Those approaches which
involve looking at established seedlings require that the area under study is as
homogeneous as possible so that establishment is not complicated by factors other than
distance from the seed source (for example, soil type, altitude, aspect, existing vegetation
cover etc.). These conditions are particulary well met where dispersal is occuring into
abandoned agricultural fields (for example, Johnson, 1988; Myster, 1993). The
alternative approach which involves the trapping of seeds does not demand such

stringent criteria.

If a site has a series of aerial photographs available spanning a period of several decades
then these may be useful in obtaining a measure of the rate of spread. From this, together
with a knowledge of the generation time of the species, it is possible to estimate the

maximum successful dispersal distance but not the shape of-the whole dispersal curve.
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3.3, Sites Visited

A considerable amount of time was spent looking for a suitable study site. Various

people were contacted for suggestions and visits were carried out where appropriate.

North Yorkshire Moors

Various sites were visited within Cropton and Dalby forests in the North Yorkshire
Moors National Park with the help of the forest district manager. A site in Givendale
(Grid Reference 879845) was considered to be suitable for investigating sycamore (Acer
pseodoplatanus) dispersal. The site had recently been clear felled to leave 15 metre wide
strips of sycamore trees separated by about 120 metres of newly planted spruce (see Fig.
3.1). Another site near- Keldy Castle in Cropton Forest (Grid Reference 778921) was
chosen for studying Scots pine (Pinus sylvestris) and larch (Larix decidua Mill.)
dispersal. This site consisted of recently replanted clear felled land which was enclosed
on four sides by plantation. Scots pine was restricted to the northerly and southerly
plantations (see Fig. 3.2).

Hamsterley Forest (County Durham)

As for the sites in the North Yorkshire Moors there were various possible sites within
Hamsterley Forest (Grid Reference 040290) for looking at the dispersal of seeds into
clear felled land adjacent to plantations of Scots pine, Norway spruce and larch etc.

Farmland adjacent to Houghall Woods (County Durham)

The fields adjacent to Houghall Woods (Grid Reference 280278) were examined for
recruitment in spring 1993. However, due to grazing by sheep and cattle very few tree
seedlings were found.

Hartside Nursery near Alston (Cumbria

This site (Grid Reference 708468) consisted of mixed deciduous woodland alongside a
stream. Adjacent to the woodland was some rough grassland which was ungrazed
although mown in early summer. No seedlings were found where the grass was growing
densely, however, plenty of sycamore seedlings were found on a steep bank where the
vegetation cover was less dense. Unfortunately, this area of recruitment was too small
for a meaningful survey to be carried out. There also was evidence that grazing rabbits
were stunting the growth of the seedlings.
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Cockle Park (Northumberiand)

This site (Grid Reference 201913) consisted of some mature sycamore trees adjacent to
currently ungrazed pasture. Sycamore seedlings were very obvious in the disturbed area
by the field gate. However, in the less disturbed area where the grass was over 6 inches
high no seedlings could be found.

Castle Eden Dene National Nature Reserve (Cleveland)

The woodland at Castle Eden Dene (Grid Reference 425390) occurs in fairly discrete
blocks of different National Vegetation Classification types. However, the small size of
the blocks coupled with the fact that many otherwise suitable sites occurred on rather
steeply sloping ground meant that no really suitable site was found. The only site which
may have been suitable for seed trapping studies was considered to be liable to vandalism
due to its close proximity to the town of Peterlee.

Carrbridge Fire Site (Speyside)

A large area of Scots pine forest (Grid Reference 890230) was destroyed by fire in 1978
so it was thought that this may offer an opportunity to study invasion. An aerial
photograph exists of the site ten years after the fire. However, as for many of the
potential sites in Scotland the land has been subject to grazing by deer thus inhibiting re-
establishment. Since the aerial photograph was taken the land has been ploughed up and
planted with Scots pine. '

Muir of Dinnet National Nature Reserve (Deeside)

There is an area within the Dinnet National Nature Reserve where birch and pine are re-
invading due to a reduction in grazing pressure. From the 1976 1:50,000 Ordnance
Survey map, it is possible to see that the original plantation was restricted to a small area
at Lochhead to the west of the A97 (Grid Reference 435006). However, there is now
substantial re-colonisation of pine and birch all the way up to the summit of Culblean Hill
(approximately 500 metres in altitude and 2 kilometres from the original plantation
edge). Some of these trees are now reproductively mature, as a result the site is no
longer suitable for carrying out seed trap studies or seedling surveys.

Tulloch Moor (Speyside)

A series of aerial photographs for the years 1948, 1966, 1978 and 1988 are available for
Tulloch Moor (Grid Reference 960170). From these it is possible to see the spread of
trees into the moor from the woodland to the north. Between 1966 and 1978 when re-

invasion occurred most rapidly the rate of spread can be measured as approximately 16
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m yr-i, This is an order of magnitude slower than that determined by palaeoecologists for
post-glacial migration. This slow migration rate is most likely to be a result of grazing by
sheep and deer. Within more recent years, regeneration has been removed from parts of
the moor so as to ensure it retains its moorland character which is an important habitat
for birds. The moor itself is not more than two kilometres wide and so would not be
suitable for looking at dispersal distances greater than one kilometre.

Northern Corries, Cairngorms National Nature Reserve (Speyside)

The moorland area to the north of Cairn Gorm and the south of The Queens Forest (Grid
Reference 970050) is developing into subalpine scrub. The re-invasion of pine has
already been studied by the Institute of Terrestrial Ecology who did a detailed survey of
the area in September 1985 (Welch et al. 1990). It was considered inappropriate to
attempt to repeat their work especially as it took 72 man days of field work to collect the
data from which the Scots pine dispersal curve was produced.

3.4. Method

Two of the approaches for investigating dispersal which were reviewed in section 1.4
were tried. The first involves counting the number of saplings along transects running
from the seed source (for example, Smith, 1900; Van Wilgen and Siegfried, 1986;
Johnson, 1988). The other approach was one which has been used by Hughes and Fahey
(1988) and commercial foresters (for example, Isaac, 1930; MacKinney and Korstian,
1938; Boyer, 1958; Roe, 1967) and involves the use of seed traps to catch seeds. For this
method it was preferable to choose species which produced good seed crops most years.
Trees with mast years separated by several years of very low seed production were
avoided, as only two seasons were available for studying dispersal. This problem is not
likely to occur when it is the distribution of seedlings which is being recorded.

3.4.1. Sampling Seedlings

At the Givendale site in the summer of 1993 sycamore seedlings were counted along
transects running perpendicular to the seed source (Fig. 3.1). Contiguous 2 metre square
quadrats were marked out along the line of the transect and the number of 1, 2 and 3

year old sycamore seedlings counted. A brief note was also made of the vegetation cover
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in each quadrat so that it would be possible to see if this was affecting recruitment in any
way.

3.4.2. Seed Trapping

This method was used for sycamore seeds at the Givendale site in autumn 1993 and for
Scots pine and larch seeds at the Keldy Castle site in the springs of 1994 and 1995. The
seed traps had a catchment area of 0.25 m? and were constructed as shown in Fig 3.3.
The collecting bag was made out of nylon net curtain fabric which was stapled to a wire
frame. The frame was attached to the cane legs with electrical insulation tape. A large
stone was placed in the bottom of the bag and some string tied above it and across to a
pair of diagonally opposite legs. This was to prevent the trap from blowing inside out.
Hughes ez al. (1987) used a similar design for their seed traps. They did not consider the
predation of seeds to be a problem because the seeds were funnelled down into the
bottom of the trap where they were not clearly visible. There was also no evidence of
rodents gnawing at the collecting bags. It seems reasonable therefore to assume that the
seeds within the traps were not exposed to predation. There was no evidence to suggest
that this was not a valid assumption. The traps themselves took only a few minutes each
to erect in the field. The collecting bags had to be replaced after about one year in the
field since exposure to weather and sun light caused the material to rot.

The traps were set out in a 10 m square grid arrangement. At Givendale there were 10
traps running along 9 transect lines (A to I) perpendicular to the seed source (Fig. 3.4).
The first trap was within a few metres of the canopy of the sycamore trees. At Keldy
Castle there were 7 transect lines with 11 traps in each (Fig. 3.2). The first trap was
positioned 5 m from the canopy of pine and larch. The sites were visited at intervals of

approximately six weeks in order for the seeds to be collected and any necessary repairs
carried out to the traps.

Plate 1 shows a photograph of a seed trap in position at the Givendale site. Plate 2 shows
photographs of the seed traps in position at Givendale (top) and Keldy Castle (bottom).
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Plate 1 A seed trap in position at the Givendale site.
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3.5. Results

3.5.1. Givendale Seedling Survey - Summer 1993

The results from the two transects are given in Tables 3.1 and 3.2. For transect 1, further
quadrats seemed pointless beyond 20 m. A brief examination was made along the
remainder of the transect and although no sycamore seedlings were found the remains of
seeds were seen. Transect 2 started further away due to the dense vegetation which was
immediately adjacent the seed source.

The results from these two transects are obviously insufficient for obtaining a dispersal
curve. The very patchy distribution of seedlings probably reflects the heterogeneous
nature of the ground cover.

The dense vegetation cover also seems to inhibit the establishment of seedlings. In the
woodland adjacent to the northern strip of sycamore, the bracken and ‘brambies were
much reduced. The density of sycamore seedlings here was much greater than found
along the transects. Approximately 10 to 15 seedlings were counted in a 2 m square
quadrat.

3.5.2. Givendale Seed Trap Results - Autumn 1993

An attempt was made at estimating the size of the seed source by using binoculars to
make rough counts of the seed stalks remaining on the parent trees. The largest trees
probably produced around 1,000 seeds whilst the smaller trees probably produced only a
few hundred seeds. This very low seed output is most likely to be due to the spindly
growth form of the trees. This is a consequence of them growing close together and until
recently amongst a stand of mature coniferous plantation.

The seed trap data are given in Table 3.3. Only 17 seeds were trapped in total which was
very disappointing. This could have been a result of the low seed output or damage to
the seed traps rendering them ineffective. At this site, the traps seemed to be quite
vulnerable to damage, probably by wind and deer.
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3.5.3. Keldy Castle Seed Trap Results - Spring 1994

The traps were emptied three times during the dispersal season. In addition to Scots pine
seeds, birch and larch seeds were frequently found. However, counts were only made for
Scots pine and larch.

The larch seed counts for 3rd March, 25th April and 9th June are given in Tables 3.4, 3.5
and 3.6 respectively. The data are then amalgamated in Table 3.7 to show the average
number of seeds found at each sampling distance from the edge of the seed source. A

total of 390 larch seeds were collected.

The computer program "Curvefit" was used to fit both a normal and a negative
exponential distribution to the mean number of seeds trapped (expressed as a proportion
of the total) at each distance interval. The normal distribution had a correlation

coefficient of 0.92 with the fitted equation having the formula:

P = 1.62 exp{:(x_-'-i3)4 }

11887

where x is the distance from the seed source. The RMSD for this distribution is 109 m (V

11887) with the peak occurring at a distance of 143 m into the forest.

The negative exponential distribution had a correlation coefficient of 0.91 with the fitted

equation having the formula:

¢ = 0.3403exp(-0.0334x)

The half distance of dispersal (i.e. the distance over which the seed density falls by a half)
is given by:

.- In(2) __In(2) —21m
k 0.0334

This corresponds with an RMSD of 73 m (see Appendix A) which is of the same order

of magnitude as that obtained for the normal distribution. These curves together with the

dispersal data from which they were derived are shown graphically in Fig. 3.5.
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The total seed trap data for Scots pine are given in Table 3.8. Unfortunately only 59
Scots pine seeds were collected during this period. The apparent increase in seed density
beyond 75 m resulted in Curvefit fitting a "normal distribution" with a positive exponent
which is obviously wrong. However, the fit for the negative exponential distribution was
more realistic with a correlation coefficient of 0.64 and the formula:

@ = 0.2068 exp(-0.0216x)
The half distance of dispersal in this case is 32 m. These results are displayed in Fig 3.6.

The apparent increase in seed density beyond 75 m could have been due to an input of
seeds from the northerly plantation of Scots pine. Alternatively it could simply be an
artefact resulting from chance effects due to the low numbers of seeds trapped.

In many cases the seed had become detached from the wing and it was often only the
wing which was recovered. The seed itself was sometimes found amongst the litter in the
seed trap. However, where only a wing was recovered, it was not clear what had
happened to the seed. It could have been eaten by a bird or mammal, or have become
detached from the wing before landing in the trap, or have become hidden in one of the
folds in the bottom of the seed trap and been missed when the trap was emptied. Where
only a wing was found, it was assumed that the seed had become detached after landing
in the trap but for some reason had not been recovered. ‘

3.5.4. Keldy Castle Seed Trap Results - Spring 1995

As the net collecting bags needed replacing following a year in the field, the number of
seed trap transects was reduced to five during this period since this was considered to be
sufficient for catching enough seeds to obtain a dispersal curve. Seed counts were made
for larch and Scots pine on 19th April and 8th June 1995.

The larch seed counts are given in Tables 3.9 and 3.10 tespectively with Table 3.11
showing the combined results. The line of best fit for the negative exponential had a
correlation coefficient of 0.58 and the formula:

¢ = 0.646 exp(-0.075x)

This corresponds with a half distance of 9 m. For the normal distribution the correlation
coefficient was 0.61 with the formula:
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(x-117)2
= 0.0006 exp{ ~———-
i exP{ 1664

However, this formula predicts an increase in seed density beyond 117 m and so is not a
good model for seed dispersal.

The seed counts for Scots pine were again disappointingly low with over 90% of the
seeds being collected on 8th June. The combined counts for Scots pine are displayed in
Table 3.12. The line of best fit for the negative exponential had the formula:

¢ = 0.230exp(-0.023x)

with a correlation coefficient of 0.97 and a half distance of 30 m. The fitted normal

distribution had the formula:

_ 2
@ = 99.05 exp =(x+388)
28492

with a correlation coefficient of 0.35. This corresponds with an RMSD of 169 m and a
peak which occurs 388 m into the forest.

85



Table 3.1 The number of 1, 2 and 3 year old sycamore seedlings observed in contiguous 2m square
quadrats along transect 1 at the Givendale site in June 1993.

Quadrat | Distance | 1year | 2 year | 3 year | Existing Vegetation
No. from seed
source
1 36 1 0 0 Thick - grass, bracken and willow herb.
2 56 2 0 0 Not as thick as quadrat number 1.
7.6 0 0 0 Very thick - rowan, spruce, grass, bracken and
bramble.
9.6 0 0 0 "
11.6 0 0 0 "
13.6 0 0 0 Thick grass, some bracken, brambles, one oak
sapling. Remains of sycamore seeds.
7 15.6 0 0 0 Fallen tree, brambles, bracken, grass, one oak
sapling. Sycamore seed remains.
8 176 0 0 0 Thick grass, one coppiced sycamore. Sycamore
seed remains.
9 19.6 0 0 0 Thick grass, tree stump, bracken. Sycamore seed
remains.
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Table 3.2 The number of 1, 2 and 3 year old sycamore seedlings observed in contiguous 2m square

quadrats along transect 2 at the Givendale site in June 1993.

Quadrat | Distance 1 2 3 Existing Vegetation
No. year | year | year
1 8 0 0 0 Willow herb, bracken and grass. One sycamore
seedling observed just outside quadrat.
2 10 1 0 0 Thick vegetation. The seedling was growing at the
| base of bracken.
12 0 0 0 Heather and grass.
14 0 0 0 Thick vegetation.
16 1 0 0 Thick vegetation with seedling growing amongst
grass.
6 18 0 0 0 Very thick vegetation - bracken, willow herb and
brambles.
7 20 0 0 3 Grass. One seedling observed just outside the
quadrat.
8 22 0 0 1 Mostly grass.
9 24 1 0 0 Grass and heather.
10 26 0 0 0 Dense vegetation - bracken and brambles.
11 28 1 0 0 Grass very tall and thick.
12 30 0 0 0 Very dense vegetation.
13 32 0 0 1 Very thick and tall vegetation.
14 34 0 1 0 Bracken and grass (sparse in places). Seedling
found growing in grass.
15 36 0 1 1 Mostly fairly thick grass.
16 38 0 0 0 Thick vegetation - long grass.
17 40 0 0 0 Thick vegetation - brambles and gorse.
18 42 0 0 0 Thick vegetation - bracken, brambles and willow
herb.
19 44 0 0 0 Thick vegetation.
20 46 0 0 0 Long grass, bracken and spruce.
21 48 0 0 0 Spruce, bramble, grass.
22 50 0 2 2 Gorse, birch, grass and bracken. Seedlings
growing in grass.
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Table 3.3 The total number of sycémore seeds collected from the seed traps at Givendale in autumn
1993. The traps were placed at 10 m intervals from the seed source starting with trap number 1 which

was positioned just beneath the canopy.

Transect

Trap Average
No. A B C D E F G H 1

1 0 0 0 0 0 0 1 0 0 0.11
2 0 1 0 0 0 0 0 0 0 0.11
3 1 0 0 0 0 0 0 0 0 0.1
4 0 0 0 0 0 0 0 0 0 0.00
S 0 0 0 1 0 0 0 0 2 0.33
6 0 0 0 0 0 0 0 0 0 0.00
7 1 0 0 0 0 0 0 1 0 0.22
8 0 0 0 0 0 0 0 0 2 0.22
9 0 0 0 1 1 0 0 0 0 0.22
10 0 2 0 0 0 0 0 3 0 0.55
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Table 3.4 The number of larch seeds collected from the seed traps at Keldy Castle on 3rd March 1994.
The traps were placed at 10 m intervals from the seed source starting with trap number 1 which was

positioned 5 m from the edge of the canopy.

Transect

Trap
No. A B C D E F G Total
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Table 3.5 The number of larch seeds collected from the seed traps at Keldy Castle on 25th April 1994,
The traps were placed at 10 m intervals from the seed source starting with trap number 1 which was

positioned 5 m from the edge of the canopy.

Transect

Trap
No. A B C D E F G Total
1 1 13 13 9 7 9 - 52
2 5 7 3 8 9 7 14 53
3 3 7 7 3 - 4 8 32
4 1 2 1 4 - 4 - 12
5 2 1 1 4 1 3 4 16
6 1 3 4 3 1 2 2 16
7 1 1 4 - 2 2 11
8 1 1 0 1 - 3 0 5
9 0 2 1 2 1 0 0
10 0 3 0 1 0 2 2 8
11 0 0 1 0 0 1 0 2

Grand Total 213
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Table 3.6 The number of larch seeds collected from the seed traps at Keldy Castle on 9th June 1994.

The traps were placed at 10 m intervals from the seed source starting with trap number 1 which was

positioned 5 m from the edge of the canopy.

Transect
Trap

No. A C D E F G Total
1 4 3 15 3 16 10 7 58
2 1] 0 3 2 3 6 4 19
3 3 1 2 2 3 6 5 22
4 0 2 2 0 0 0 4 8
5 2 0 2 3 5 2 5 19
6 1 0 0 2 0 2 0 5
7 0 0 1 1 1 4 1 8
8 0 1 1 2 0 0 1 5
9 1 1 0 2 1 1 0 6
10 0 0 0 0 0 0 1 1
11 0 0 0 0 0 0 0 0
Grand Total 151

Table 3.7 Total number of larch seeds recovered from seed traps at the Keldy Castle site during spring

1994. The traps were placed at 10 m intervals from the seed source starting with trap number 1 which

was positioned 5 m from the edge of the canopy.

Trap 3/3/94 | 24/4/94 9/6/94 Total no. Total no. Average Average as
No. No. of seeds of traps no. of a proportion
No. No.
seeds seeds sampled seeds per
seeds
trap
1 12 52 58 122 20 6.10 0.318
2 7 53 19 79 21 3.76 0.196
3 3 32 22 57 20 2.85 0.149
4 4 12 8 24 19 1.26 0.066
5 0 16 19 35 21 1.67 0.087
6 0 16 5 21 21 1.00 0.052
7 0 11 8 19 20 0.95 0.050
8 0 ] 5 10 20 0.50 0.026
9 0 6 12 21 0.57 0.030
10 0 8 1 9 21 0.43 0.022
11 0 2 0 2 21 0.10 0.005
Total 26 213 151 390 225 19.19 1.001
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Table 3.8 Total number of Scots pine seed remains recovered from the seed traps at the Keldy Castle site
during spring 1994. The traps were placed at 10 m intervals from the seed source starting with trap
number 1 which was positioned S m from the edge of the canopy. These figures include cases where only
a wing was found and no seed i.e. it was assumed that the seed had become detached from the wing after

it had landed in the seed trap but was not recovered.

Transect
Trap Total No. of Average Average as a
No. A|B.|C|ID |E |F |G traps no. of proportion
sampled seeds per
trap
1 11 1| 3| 2| o 4] 1 12 20 0.600 0.207
2 21 0O 21 1| 4] 1] 4 14 21 0.667 0.230
3 21 1} 3} 1| 2] 1} 2 12 20 0.600 0.207
4 1y 0} Of 1}y 1| 21 O 5 19 0.263 0.091
5 1y 0} 0] O0f 1] o] o 2 21 0.095 0.033
6 1] 0y 2] 0} o} 1] O 4 21 0.190 0.066
7 0l 1] 0f o of 1| O 2 20 0.100 0.035
8 1] 0 0] 6] of o] o 1 20 0.050 0.017
9 0|l o] 11 of 1] o] O 2 21 0.095 0.033
10 0| 1] 0y o 1| o O 2 21 0.095 0.033
11 0| 0] 11 Of 1] O] 1 3 21 0.143 0.049
Grand Total 59 225 2.898 1.001
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Table 3.9 The number of larch seeds collected from the seed traps at Keldy Castle on 19th April 1995.
The traps were placed at 10 m intervals from the seed source starting with trap number 1 which was

positioned 5 m from the edge of the canopy.

Transect

Trap
No A B C D E Total
1 0 0 1 1 4 6
2 21 0 0 5 2 9
3 0 0 2 2 4 8
4 0 1 3 2 3 9
5 0 0 0 0 3 3
6 1 0 - 0 0 1
7 0 0 0 0 0 0
8 1 0 0 - - 1
9 0 0 0 0 0 0
10 0 0 0 0 0 0
11 0 0 0 0 0 0

Grand Total 37

Table 3.10 The number of larch seeds collected from the seed traps at Keldy Castle on 8th June 1995.
The traps were placed at 10 m intervals from the seed source starting with trap number 1 which was

positioned 5 m from the edge of the canopy.

Transect

Trap
No. A B C D E Tatal
1 2 3 3 5 9 22
2 3 4 0 3 1 11
3 1 6 4 1 1 13
4 1 2 1 1 1 6
5 0 0 1 0 1 2
6 0 0 0 - 1 0
7 0 0 0 0 - 0
8 0 0 0 0 0 0
9 0 0 0 0 0 0
10 0 0 0 0 0 0
11 0 0 0 1 0 1

Grand Total 55

92



Table 3.11 Total number of larch seeds recovered from seed traps at the Keldy Castle site during spring

1995. The traps were placed at 10 m intervals from the seed source starting with trap number 1 which

was positioned 5 m from the edge of the canopy.

Trap | 19/4/95 | 8/6/95 Totalno. | Totalno. | Average | Averageas

No. No. No. of seeds of traps no. of a proportion
seeds seeds sampled seeds per
trap

1 6 22 28 22 1.273 0.304
2 9 11 20 22 0.909 0.217
3 8 13 21 22 0.955 0.228
4 9 6 15 22 0.682 0.163
5 3 2 S 22 0.227 0.054
6 1 0 1 20 0.050 0.012
7 0 0 0 21 0.000 0.000
8 1 0 1 20 0.050 0.012
9 0 0 0 22 0.000 0.000
10 0 0 0 22 0.000 0.000
11 0 1 1 22 0.045 0.011
Total 37 55 92 237 4.191 1.001
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Table 3.12 Total number of Scots pine seed remains recovered from the seed traps at the Keldy Castle
site during spring 1995. The traps were placed at 10 m intervals from the seed source starting with trap
number 1 which was positioned 5 m from the edge of the canopy. These figures include cases where only
a wing was found and no seed i.e. it was assumed that the seed had become detached from the wing after

it bad landed in the seed trap but was not been recovered.

Transect
Trap Total No. of Average Average as a
No. A |B |C |D |E traps no. of proportion
sampled seeds per
trap

1 4| 3| 8| 4| 2 21 22 0.955 0.251
2 1| 4| 4] 2| 2 13 22 0.591 0.155
3 1] 4] 6] 4] O 15 22 0.682 0.179
4 1] 4| 2] 1] 1 9 22 0.409 0.107
5 1] 1) 2] 1} 2 7 22 0.318 0.084
6 0] 21 11 0] O 3 20 0.150 0.039
7 1] 1 1} 2| O 5 21 0.238 0.063
8 1] 1] o] O] ©O 2 20 0.100 0.026
9 0] 0 0] O] 1 1 22 0.045 0.012
10 1] 0f 1} 1} o 3 22 0.136 0.036
11 1] 1] 1] 1 4 22 0.182 0.048

Grand Total 83 237 3.806 1.000
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Fig. 3.5 The observed distribution of larch seeds at Keldy Castle in spring 1994. Lines of best fit for the

negative exponential (r2 = 0.91) and normal distribution (r> = 0.92) are shown.
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Fig. 3.6 The observed distribution of Scots pine seeds at Keldy Castle in spring 1994. Lines of best fit for

the negative exponential (> = 0.64) and normal distribution (> = 0.81) are shown.
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3.6. Discussion

3.6.1. Comparison with Results from Other Studies

Johnson (1988) fitted negative exponential curves to the distribution of seedlings of
American lime (Tilia americana), sugar maple (Acer saccharum) and red ash (Fraxinus
pennsylvanica) and obtained half distances of 8 m, 27 m and 68 m respectively. A seed
trap study done on the longleaf pine (Pinus palustris) produced a dispersal curve which
had a negative exponential distribution with a half distance of 23 m (Boyer, 1958). A
similar study done on the Engelmann spruce (Picea engelmannii) by Roe (1967) also
obtained a negative exponential distribution with a half distance of between 30 m and 50
m depending on the study site. Although Hughes and Fahey (1988) do not quote the half
distances they obtained for sugar maple and yellow birch (Betula lutea), it is possible to
deduce from their seed dispersal graphs that these were of the same order of magnitude
as the half distance values obtained in this study. They also found that the seed densities
began to increase beyond about 100 m from the forest edge due to an input of seeds
from the opposite side of the forest clearing. Bjorkbom (1971) obtained half distance
values of between 15 m and 20 m for the paper birch (Betula papyrifera). It would
therefore seem that the half distance values of 9 m and 21 m obtained for larch and 22 m

and 32 m for Scots pine are in good agreement with other studies.

However, Welch et al. (1990) obtained a much larger value for the half distance of
dispersal of Scots pine. Their value of approximately 700 m is an order of magnitude
larger than those values given above. The reason for this is not clear, although it is likely
that their study site in the Caimgorm mountains is more exposed to strong winds
resulting in longer dispersal distances. It would be interesting to carry out seed trapping
experiments in the Cairngorms using a similar trap layout to that at Keldy Castle to see if
there is any evidence to support this. Alternatively it may be that the longer dispersal
distances are more readily detected by seedling surveys than seed trap studies resulting in

the latter method determining shorter dispersal curves.

3.6.2. Local versus Long-Distance Dispersal

The dispersal distances measured in this study were very small. Distances of up to 100 m
from the seed source were measured but only with a low frequency (5x10-3 for larch).
Ideally, it should be possible to measure dispersal at distances up to 10 km from the seed
source. Palaeoecological studies of past migrations indicate that dispersal distances of
this order of magnitude must have occurred. However, even if a suitable study site could
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be found the number of seed traps required in order to detect seeds at such distances
would be so large as to make the study impracticable. However, surveys of seedling

distribution can potentially cover a much larger area because seedlings are more easy to
detect.

Both this study and those of other workers (For example, Johnson,1988; Boyer, 1958
and Roe, 1967 etc.) have concentrated on local dispersal. The only study which could be
considered to have looked at long-distance dispersal is that of Welch et al. (1990),
however, even they only studied distances of up to 4 km. In order for the post-glacial
migration rates of 100 to 1000 m yr? to have been achieved successful dispersal must
have occurred over distances of at least 2 km (assuming a short generation time of 20
years and a slow migration rate of 100 m yr!). Such dispersal events would be virtually
impossible to detect through the use of seed traps. A more appropriate method would be
to do a survey of seedlings in the manner undertaken by Welch et al. (1990) However,
this requires finding a large homogeneous site where invasion is occurring. In today's
landscape which is heavily influenced by man it is extremely doubtful that such a site
exists.

It can therefore be concluded that although it is possible to measure local dispersal in the
field it is not feasible to measure long-distance dispersal. An alternative approach must be
sought if one is to obtain probability values for dispersal distances above a few
kilometres. One possibility would be to use a separate model to simulate seed dispersal.
Such models were reviewed in Chapter 1, however, they are not currently detailed
enough to model dispersal sufficiently accurately. A realistic seed dispersal model would
need to incorporate detailed meteorological data, including the effects of turbulent air
flow and the morphological adaptations of seeds for wind dispersal.

3.6.3. Relationship between the Dispersal Curve Observed from a Forest Edge and
the Dispersal Curve Produced by an Individual Tree

The studies reported here have looked at dispersal from forest edges. However,
MIGRATE simulates the dispersal of propagules according to a dispersal function for an
individual tree. As there is a good deal of uncertainty in the fitting of a dispersal curve to
the field observations there is little value in trying to make any accurate prediction as to
the shape of the dispersal curve produced by an individual tree. The dispersal curve
produced at the forest edge has therefore been used as an approximation to the actual
dispersal curve produced by an individual.
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In order to check that this approximation is reasonable, computer simulations have been
carried out to see how the dispersal curve at the forest edge relates to the dispersal curve
of the individual. A hypothetical environment was set up in which a block of trees
released seeds according to either a bivariate normal distribution or a two-dimensional
negative exponential distribution (see Appendix A). The environment consisted of a grid
of 80 x 100 square cells with the first 35 columns being occupied by a single tree each
producing 10 propagules for dispersal. The actual numbers used here are irrelevant as
they affect only the height of the dispersal curve and not its shape. The number of seeds
arriving in each column of cells was summed. The seed sums for each column beyond the
forest edge were converted into proportions by dividing by the total number of seeds
dispersed beyond the forest edge. Normal and negative exponential curves were then
fitted to these values using the computer program "Curvefit".

In the first simulation, dispersal occurred according to a bivariate normal distribution
with a RMSD of 0.1 km. The cell length was set at 0.01 km and the furthest cell to
which dispersal was calculated was set at 50 (i.e. 0.5 km). Density values up to 0.5 km
from the forest edge were used to fit the dispersal curves. The normal distribution

2
¢ = 0.121 expl (£ +0-02)
0.0096

has a near perfect fit (correlation coefficient = 0.995) to the edge distribution. It has an
RMSD of 0.098 km which is in very close agreement with that of the individual tree.

The negative exponential distribution
@ =8.2exp(-56.2x)
also has a very good fit (correlation coefficient = 0.938) to the edge dispersal curve.

However, the fit is poor near the seed source where it severely over estimates the actual
distribution. The RMSD of this distribution is given by

RMSD = Y6 - 6__ 0,044 km
k 56.2

which is a poor approximation to the RMSD of the individual dispersal function.

A comparable simulation was done in which individual trees disperse seeds according to
a two-dimensional negative exponential dispersal function. The half distance was set at
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In(2).RMSD
=
so that the RMSD was the same as for the bivariate normal distribution in the previous
simulation. The cell length was kept at 0.01 km but the furthest cell was increased to 100
to allow for the longer tail of the negative exponential distribution. As for the normal

D, =0.0283 km

distribution, seed density values up to a distance of 0.5 km from the forest edge were
used to fit the dispersal curves.

The negative exponential distribution

@ = 0.23 exp(-22.7x)

had a correlation coefficient of 1.0 and a half distance of 0.031 km which is a 91%
agreement with the half distance of the individual dispersal curve.

For the normal distribution there was a correlation coefficient of 1.0 with the formula

~(x +2.95)°
- 4.6 x10% expd “FF2:95)
¢ p{ 0.28

Although this is an excellent fit, it is not a realistic model since it predicts that the
dispersal peak occurs at a distance of 2.95 km into the forest.

The results of these simulations are shown in Fig 3.9 and Fig. 3.10. The edge dispersal
curves are similar although that produced by trees dispersing according to a negative
exponential distribution has a longer tail than that produced when the trees disperse
according to a bivariate normal distribution. These results will hold for all normal and
negative exponential dispersal functions providing the cell length is not made too large in
relation to the RMSD and dispersal distances of at least SXRMSD are allowed.
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Fig. 3.9 Simulated seed dispersal from a forest edge. Seeds were dispersed from individual trees
according to a bivariate normal distribution with an RMSD of 0.1 km. The computer program curvefit

was used to fit a negative exponential distribution and a normal distribution.
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Fig. 3.10 Simulated seed dispersal from a forest edge. Seeds were dispersed from individual trees
according to a negaive exponetial distribution with a half distance of 0.0283 km. The computer-program

curvefit was used to fit a negative exponential distribution and a normal distribution.
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3.7. Conclusions

Seed trapping has been shown to be an effective means of sampling the seed shadow at
distances of up to 100 m from the seed source.

In the cases where sufficient seeds were trapped, the dispersal curve showed a good fit
to both the negative exponential distribution and the normal distribution (with the mean
occurring at some distance within the stand). It would therefore seem that either one of
these distributions could be used to simulate the local dispersal of seeds.

In order to measure dispersal distances greater than 100 m, seedling surveys are
potentially more appropriate. However, it was not possible to find a site that was large
and homogeneous enough to use seedling establishment as a means of obtaining a seed

dispersal curve.

The seed trap results obtained in this study suggest that most seeds are dispersed only
over relatively short distances by wind. However, it would be useful to conduct a similar
experiment at a more exposed site to see if the dispersal distances there are significantly

greater.

Computer simulations have shown that if trees disperse their seeds according to a
bivariate normal distribution then the RMSD of a normal distribution fitted to the
dispersal curve at the forest edge will be a good approximation to the RMSD of the
dispersal curve produced by an individual tree. Similarly, if trees disperse their seeds
according to a negative exponential distribution then the half distance of a negative
exponential distribution fitted to the edge dispersal curve will be a good approximation
to the half distance of the dispersal curve produced by an individual tree. Although a
negative exponential distribution has a good fit (as indicated by the correlation
coefficient) to the edge dispersal curve produced by normally dispersed seeds and vice
versa, a closer examination of these fitted curves reveals that they do not make reaiistic

sense.
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CHAPTER 4

Model Behaviour and Simulation Results

The first part of this chapter describes the sensitivity of MIGRATE to the values used for
its parameters. This is important firstly because it enables one to understand how the
model behaves and secondly because it allows one to identify those parameters to which
the model is most sensitive and therefore where it is important to have accurate
parameter values. For the one-dimensional version of MIGRATE, it is sometimes
possible to predict the migration rate using the analytical equations first developed by
Skellam (1951) and later refined by Van den Bosch et al. (1990, 1992). The migration
rates simulated by MIGRATE are compared with those predicted by Skellam's model
and that of Van den Bosch et al. Next, the two-dimensional version of MIGRATE is
used as this is able to simulate the spread of an organism through a heterogeneous
environment. It is in this context that the MIGRATE model has a real advantage over the
analytical models since these assume the environment to be homogeneous. Van den
Bosch and Hengeveld (submitted) have made further refinements to their model to take
into account habitat heterogeneity. However, unlike MIGRATE their model is not
spatially explicit and therefore can not show the pattern of spread through a
heterogeneous environment. The two-dimensional version of MIGRATE is used to
investigate the spread of Tilia cordata (small-leaved lime) through northern Britain. In
particular, the effects of habitat availability and climate are investigated.

4.1. Sensitivity Analysis

Sensitivity analysis been defined by Conroy et al. (1995) as "...the controlled variation in
parameter values in isolation and in combination, and the observed response of model
output". The simulations described in this section are not intended to be exhaustive but
have been chosen in order to give a good picture of the sensitivity of MIGRATE to its
parameter values. The one-dimensional version of MIGRATE was used to investigate
the sensitivity of the model to the values assigned to the reproductive and dispersal
parameters since the environment can be assumed to be homogeneous.
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The graphical results of the sensitivity analysis simulations are grouped together in
Appendix B.

4.1.1. Single Dispersal Function and Single Cohort Case

The initial simulations were done with just one cohort and one dispersal function since
this is the most simple case and can therefore be investigated most easily. It is assumed
that all individuals are produced at the beginning of a cohort period so that they are
reproductively mature at the start of the next generation. The results are summarised in
Table 4.1 at the end of this section.

The reproductive parameters given in Table 4.2 were set using values from the literature
(for example, Pigott, 1991) which seemed reasonable for a tree such as Tilia cordata. As
the exact nature of dispersal is so poorly understood it was decided that a normal
distribution would be an acceptable choice for modelling this process (see Appendix A).
There were no reasons for preferring any other dispersal function and as the normal
distribution results in the same migration rate in both one and two-dimensions (see
section 2.1.4) this seemed to be a sensible choice. The dispersal RMSD was chosen so as
to achieve a migration rate of 0.2 km yr. This is at the slow end of the range 0.05-0.5
km yr! recorded for Tilia during its post-glacial migration through the British Isles
(Birks, 1989). The value of the RMSD can be determined from the following equation
which is a reformulation of Skellam's (1951) model (equation 1.16):

RMS
C=MD

JIOR, (4.1)

where C is the migration rate, T the generation time and R, the net reproductive rate.

R,=b-d (4.2)

where b is the number of successful offspring produced per individual per generation and
d the death rate per generation (Odum, 1971). In terms of the parameters used in the
MIGRATE model, this equation may be expressed as:

R,~S.B-F
-F-P

104



It will be shown later in this section that when F is greater than 1.7 the effect of P, is
negligible, i.e. R, may be considered to be equal to F.

The initial distribution was that the cells corresponding with the first 10 km were fully
occupied. The estimation of the probability of a seed becoming a mature tree is based
upon what is known in the ecological literature about the establishment and early survival
of trees. It is known that most seed fail to become reproductively mature trees because
of unfavourable germination conditions, predation and disease etc. (for example, Watt,
1919; Crawley, 1983 p29; Pifiero et al., 1984; Brubaker, 1986 and references therein;
Clarke, 1992; Pigott, 1992; Crawley and Long, 1995).

Table 4.2 Default parameter values uscd in the sensitivity analysis

Parameter Default value
Cell length 1 km

Area occupied by an individual 50 m2
Generation length 25 years
Probability of a seed becoming a 5x 10

reproductively mature tree
Probability of an adult surviving a further 0.913
interval of one generation length

Number of offspring produced each generation 160000

RMSD 3.47
Carrying capacity 1.0 for all cell
Cell Length

Simulations B1, B2 and B3 show the effect of using a cell length of 1.0 km, 10 km and
0.1 km respectively. These simulations show quite clearly that if the cell length is made
too large in relation to the length of a dispersal function then the model loses accuracy. It
is easy to tell if the cell length is too large because this results’in the dispersal sums being
too large (i.e. greater than their associated probability value). The general effect of using
a cell length that is too large is an underestimation of the migration rate and an
overestimation of the intrinsic rate of population increase. In all of these simulations, the
furthest cell was set at a value that corresponded with a distance of at least SXRMSD.
Beyond this distance, the probability of a propagule arriving is so small as to be
negligible. For the purposes of computational efficiency it is best to choose a cell léngth
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which is as large as possible without any significant loss in accuracy. As a rule of thumb,
the cell length should not exceed the RMSD.

Martin (1993) suggests the following 'migration criterion’ for ensuring that the cell length
is small enough to capture the migratory processes:

L<sT.m

where L is the cell length, T the generation time and m the speed of the slowest
vegetation movement of ecological significance. This implies that when m = 0.2 km yr1
and T = 25 years the cell length should not exceed 5 km.

Area Occupied by an Individual

Simulations B4 and B5 show the effect of using a small area (5 m?) and a large area
(1000000 m?) on the migration rate. It is clear from these simulations that the area
occupied by an individual has no effect on the rnigraiion rate. It simply affects the density
of established individuals.

If the rounding option is used (see section 2.1.5) and the maximum number of trees in a
cell is less than 100, then the migration rate is less than the rate simulated without the
rounding option. Simulation B6 shows that rounding is just beginning to have an effect
when the maximum number of individuals in a cell is 100. In simulation B7 the rounding
option was used together with the same parameter values as in simulation BS where the
maximum number of individuals per cell was 1. Rounding reduces the migration rate by
eliminating the small 'fractions' of propagules which arrive at the front of the migrating
wave. When the maximum density of individuals in a cell is less than 100 then these small
fractions play a more significant role in determining the migration rate. This is a
consequence of the reduced propagule input to the migration front due to the lower
maximum density of individuals behind the advancing front. This same phenomenon is
observed when a joint dispersal function is used and the long-distance component has a

long tail.

Generation Time

In changing the generation time, it is also necessary to modify fecundity so that the
annual reproductive output remains constant. The adult survival probability also has to
be modified in accordance with equation 2.9. The migration rates from the simulations
given in Table 4.3 confirm that species with a short generation time have a faster
migration rate than those which take longer to reach maturity.
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Table 4.3 The relationship between the generation time (age to first reproduction) and migration rate as

determined with the MIGRATE model.

Generation Time Migration Rate Simulation
(Years) (km yrl) Number
10 0.38 B8

25 0.20 B1

50 0.12 B9

The results from these simulations agree with the rates predicted by Skellam's model
(equation 4.1). The graph shown in Fig. 4.1 shows the relationship between the
generation time and the migration rate (the migration rates were calculated using
equation 4.1). The curve shows a good fit to a negative exponential distribution

(correlation coefficient = 0.96).
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Fig. 4.1 The relationship between migration rate and generation time.

Fecundity

Fecundity (F) is defined as the number of successful offspring (i.e. number of propagules
produced per generation x probability of a propagule reaching reproductive maturity).
With the exception of very low fecundity values (<1.7) the migration rates simulated by
MIGRATE are in exact agreement with equation 4.1. For fecundity values less than 1.7
the migration rate predicted by MIGRATE is higher than that predicted by equation 4.1.
This is because in the MIGRATE model, individuals are able to breed in successive
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generations whereas equation 4.1 assumes that all the offspring are produced when an
individual becomes mature and none are produced in the following generations. If the
probability of adult survival is set to 0.0 then MIGRATE simulates the same migration
rate as equation 4.1.

From this result it can be concluded that if the number of successful offspring produced
per generation exceeds 1.7 and is constant for each cohort class then the adult survival
probability has no effect on the migration rate i.e. individuals can die after having
reproduced once without the migration rate being affected. The migration rate is simply
determined by the number of offspring produced in the first generation interval.

From equation 4.1 it can be shown that in order to double the migration rate, the net rate
of reproduction must be increased to the power 4:

JnR, =2 /nR,
o InRy=4InR,

R, =R}
where Rj is the net reproductive rate required to double the migration rate.

Adult Survival

As described above, the adult survival probability has a negligible effect on the migration
rate except when the number of successful offspring is very low (<1.7).

RMSD

When MIGRATE is used with a single normal distribution it behaves as is expected from
equation 4.1 i.e. in order to double the migration rate the RMSD must also be doubled.
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The Joint Role of Fecundity and the RMSD in Determining the Extent of the Population

Front

From the previous simulations it can be deduced that both the RMSD and fecundity
determine the shape of the population front. A series of simulations were done in which
the number of successful offspring and the RMSD were varied whilst maintaining a
constant migration rate of 0.2 km yrl. The effect of the fecundity and RMSD parameter
values on the extent of the population front is is shown in Figs 4.2 amd 4.3 respectively.
These results show that for a population migrating at 0.2 km yr! very steep population
fronts (<3.5 km) are produced when the number of successful offspring exceeds 1000
and the RMSD is less than 1.9 km. Fig. 4.4 shows that the extent of the population front
is directly proportional to ‘nym. The data points were calculated from the same

simulations described above. These results imply that in order to get a migration front
which extends over at least 5 km the ratio of the RMSD to sqrt(In(F)) must exceed 1.0.
A doubling of the RMSD results in both a doubling of the migration rate and an
approximate doubling of the extent of the migration front. Similarly if F is increased to
the power of 4 then the migration rate is doubled and the extent of the population front

approximately halved
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Fig. 4.2 The relationship between the number of successful offspring (F) and the extent of the

population front.
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Normal Dispersal versus Negative Exponential Dispersal

The half distance of a negative exponential dispersal function can be set so that it has the
same RMSD as a normal distribution (see Appendix A):

_ In(2).RMSD
V6 (4.3)
-0.982km

Dy

Simulation B10 shows a simulation using a negative exponential distribution with a half
distance of 0.982 km. The resulting migration rate of 0.21 km yr! is slightly faster than
the rate obtained for a normal distribution (0.20 km yr?). This is due to the slightly
higher tail of the negative exponential distribution.

When using a cell length of 1.0 km the dispersal sum for the negative exponential
distribution comes out at 1.04. In order to reduce it to a value which is closer to 1 it is
necessary to make the cell length shorter and the value of the furthest cell larger.
Simulation B11 shows a simulation where a cell length of 0.1 km was used with
propagules being dispersed up to a possible maximum of 18 km from the parent tree. It
can be seen that although the dispersal sum is now much closer to 1 there has been no
significant effect on the migration rate.

Carrying Capacity

Mathematically, the effect of changing the carrying capacity is the same as making the
same change to fecundity i.e. if the carrying capacity is reduced by a factor of 5 then
fecundity must be increased by a factor of S to maintain the same migration rate
(Simulation B12).

111



“indjno [eorqdeid aqy woxy pauruiraap a19m asearout uorje[ndod jo sjer pue gpim Juoy ‘ajer voneiSnu oy, WY Lb'€ = ASNY ‘[euLiou = uonouny [essadsiq ‘000091 =

‘€160 =" 501X =073z = W OS=? ‘unj [ = T Q' =y ‘9n[ea j[nejap = , ‘aseasoui vorjejndod jo djel = 0 1y ‘T1J ul UMOYS SB ST IPIM Juol] $3)el toneIBIu =

D (v xipuady ass) uonoun;y [estadsip aq; 0} ajeudordde se souelsip Jieq Jo QS 941 JO an{eA ag) si 191wered fesiadsip ‘wonnquystp [enuauodxa JAnEeSau e 10 UoNNqUISIp

feutsou e 3919 st wonouny [esradsip ‘aan armpeur Ajaanonpordas e Aq paonpoid sarnBedord jo Jaquinu = g ‘uor)eIauaT Ju0 Jo [EAISINY 1YNINY € SIANAINS 9913 1eq) Ajiqeqord

= g ‘Auunjewr aanonpordar saqoear pass e jeqy Aijiqeqord = Oy ‘qSusp uonesousd = [ ‘[enpiatpur ue Aq pardnooo eaze = o ‘;Busy (90 = 7 ‘Knoedes Suikises 2ANE[23

= Y “(x-Z uooas 23s 2Aned) sig) jo uondudsap pI[re)op 10w € 10j) JIGUINU I[OFM B O} PIPUNOI SEA [[30 ORI UJ S[BAPIAIPUI JO JIQUINK 37} JOU JO JAYIIGM O} SI3Ja1 uondo

Buipunor oy, “vorjoun] [esiadsip suo pue SSE[O ROYOO U0 YIM FLVADIA JO UOISIIA [BUOISUIUIP-IUO ) JO sisA[eue AJAnIsuas a

.

) Jo sinsas 3y Jo Kzewwing Yy Iqe],

ST'0 St 020 * * * + +0IXSC * * * 0 ou cid
10 114 (4A) 7860 "dxs-Fou * * * * x 10 . ou 1id
10 (114 120 786'0  "dxd3au * * . * * * * ou ord
10 (A" ANV * + sOIXZ'¢ 6180 * 0S * * * ou 6d

YA ST 8¢°0 * + 0IX¥'9 9960 * )8 * * * ou 84

- 0 €10 * * * * * * 01 * * sok Ld
10 ST 610 . * * * * * * 01 * * sok od

100 Sl 020 * * * * * * 90T * * ou cd

ST'0 ST 020 * * * * * * S * * ou vd

S1°0 St 0c0 * * * * * * * 10 * ou td
1°0 081 91°0 * * * * * * * o1 * ou vas|

ST0 St 0z0 * " ¥ * . . . . . ou 1d

@) GRw) @ G G @ Ty
wpim Io)puwiRIEy  UONOUN uondo ‘ON
0 U0IY 5  [esiedsiq  [esiedsiq S 1% o I D T y Suipunoy uonemuNS




4.1.2. Single Dispersal Function and Multiple Cohort Case

The simulations described in section 4.1.1 used only one age class which consisted of the
number of reproductively mature individuals. It was assumed that all offspring were
produced at the beginning of a cohort period and therefore reproduced in the next
generation cycle of the simulation. The use of additional cohorts makes the model more
realistic since each cohort class can have different fecundity and survival values. In
particular, the first cohort class may be used for juveniles which are not reproductively

mature.

It can be seen that if the fecundity and survival probabilities are the same for each cohort
in a multiple cohort simulation (Simulation B13) then the result is the same as that for a
single cohort simulation (Simulation B1).

By repeating the previous simulation but with a zero fecundity value assigned to all
cohort classes except the first it can be shown that it was the propagule input from the
first cohort class that determined the migration rate (Simulation B14). Propagules
produced by the older cohort classes therefore have a negligible effect on the migration
rate. This phenomenom will be true for all simulations where the number of successful
offspring per generation is both constant for each cohort class and greater than 1.7.

It is interesting to note that behind the population front the population density now
fluctuates in a wave-like manner. The troughs are due to an insufficient input of
propagules due to the presence of non-reproductive individuals in the immediate area.

If it is assumed that reproductively mature individuals produce offspring at a constant
rate throughout a generation period then the average number of offspring produced by an
individual in the first cohort class can be calculated as follows:

1+243+......... +T S(cohort2)

S(cohortl) =
( ) T T

(4.4)

Simulation B15 shows the migration rate obtained for a 10 cohort simulation where the
first cohort class is given a fecundity value of 83200 (based on an adult fecundity of 1.6 x
10 per generation and a generation length of 25 years). The migration rate has been
reduced from 0.20 km yr! (Simulation B12) to 0.17 km yrl. The slower migration rate
predicted by simulation B15 is more realistic than that predicted by simulation B13 since
it allows for a limited amount of reproduction to occur in the first cohort class as a
consequence of only a fraction of them reaching maturity during a simulated time step. In
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Simulation B16, an older cohort class produces significantly more offspring than the
other reproductively mature cohort classes, however, the migration rate has been
increased only very slightly.

In simulation B17 the probability of becoming a mature tree has been reduced by a factor
of 10 and the RMSD increased to 11 km so as to maintain the migration rate at
approximately 0.2 km yrt. The wave-like fluctuations behind the population front are a
result of the low propagule output of the first cohort class. These fluctuations disappear
if the number of propagules is increased to 1.6 x 107.

4.1.3. Joint Dispersal Function and Multiple Cohort Case

The RMSD for dispersal used in the above simulations is very large when compared with
field observations. These indicate that most propagules fall very close to the parent tree
with very few going beyond a few hundred metres. It therefore seems that there must be
at least two dispersal processes operating. In the following simulations, two dispersal
functions were used, one for local dispersal and one for the rare long-distance dispersal
events.

Simulation B18 is the result of a simulation in which 90% of the propagules were
dispersed according to a normal dispersal function with RMSD = 0.2 km. The RMSD of
the normal dispersal function for the remaining 10% of propagules was varied until a
migration rate of approximately 0.2 km yr! was obtained. The cell length was reduced to
0.1 km so as to operate at the scale of the shortest dispersal function. This meant that the
furthest cell had to be increased to 350 so as to accommodate the long-distance dispersal
function. This increase in computation resulted in the simulation taking considerably
longer to run. Although this is not a problem in the one-dimensional version of
MIGRATE it would become a problem in two-dimensional simulations. In simulation
B19 the previous simulation is repeated but with a cell length of 3 km and all the locally
dispersed propagules simply being placed in the parent's cell. It is clear that this
approximation has had no effect on the migration rate.

Simulations B20 and B21 are similar simulations but with the proportion of propagules
being dispersed according to the distant dispersal function set at 0.99 and 0.999
respectively. In both cases, the RMSD of the distant dispersal function was increased so
as to maintain the migration rate at approximately 0.2 km yr!. These results are
summarised in Table 4.4. ‘
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Table 4.4 The relationship between the probability of dispersal by the long-distance dispersal function
and the RMSD of the long-distance dispersal function. The RMSD of the long-distance dispersal
function was varied so as to maintain a constant migration rate of 0.2 km yr'l. All other parameter

values were held constant.

Probability of distant RMSD of distant Simulation

dispersal dispersal (km) number
0.1 6.7 B19
0.01 . 9.7 B20
0.001 12.3 B21

When simulation B21 is repeated with a cell length of 0.1 km then the migration rate is 8
m yr! slower. The slightly faster migration rate obtained with a cell length of 3 km is due
to the fact that there can be more individuals in a cell and therefore the chance of long
distant dispersal is increased.

Simulations B23 and B24 are the same as simulations B19 and B21 respectively, but with
the use of the rounding option. It is clear from these simulations that the rounding option
causes a loss in the smoothness of the migration front. It has the greatest effect when the
probability of long-distance dispersal is small. There is also a small reduction of
approximately 10 m yr!in the migration rate due to the 'loss' of the very small fractions
of individuals at the migration front.

4.2. Comparison with Skellam's Model

Simulation B25 shows the migration of oak obtained when using the parameter values
used by Skellam (1951). The simulated rate of 0.05 km yr! is in exact agreement with
that predicted by equation 4.1. This simulation shows quite clearly that the population
front is unrealistically steep, a consequence of the high fecundity.
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4.3. Comparison with Van den Bosch ef al.s' Models

The following describes a comparison between a simulation done using MIGRATE and
the analytical approximation formulae developed by Van den Bosch et al. (1990, 1992).
The number of successful offspring as used in the previous simulations was reduced so
that the net number of successful offspring (R,) did not exceed 7.0, the limit for an
accurate prediction by equation 4.9 (Van den Bosch et al.,1992).

Following the notation of Van den Bosch et al. (1992) the hypothetical life table shown
in Table 4.5 was constructed. In contrast to Van den Bosch et al. (1992) and in
accordance with the MIGRATE model, [ is taken to be the number of individuals alive at

the beginning of the cohort period (Odum, 1971 page 175).

Table 4.5 A hypothetical life table for a long-lived species with 10 cohort classes.

Cohort Age Average Number of Survivorship
No. interval age successful
(years) offspring
l a; m; L; [.m, a.l.m; a2l.m;
1 0-25 12.5 0.416 1.0000 0.416  5.2000 65.00
2 25-50 37.5 0.8 0.9130 0.7304 27.3900 1027.13
3 50-75 62.5 0.8 0.8336 0.6669 41.6785 2604.90
4 75-100 87.5 0.8 0.7610 0.6088 53.2734 4661.42
5 100-125 112.5 0.8 0.6948 0.5559 62.5354 7035.23
6 125-150 137.5 0.8 0.6344 0.5075 69.7825 9595.09
7 150-175 162.5 0.8 0.5792 0.4634 75.2953 12235.49
8 175-200 187.5 0.8 0.5288 0.4230 79.3207 14872.64
9 200-225 2125 0.8 0.4828 0.3862 82.0758 17441.11
10 225-250 2375 0.8 0.4408 0.3526 83.7511 19890.89
above 250 - - 0.0000 0.0000  0.0000 0.00
Total '5.1107 580.3027 89428.90




The net reproductive rate was estimated as

Ry = Elim; =5.11 (4.5)

The mean age at child bearing (&) was estimated as

1
Us— > alm. =113.55 4.6
o R (46)

The variance of the age at child bearing (V%) was estimated as

2 1 2 2
iy Za,. Lm; —u? = 4605.7 (4.7)

The following equations developed by Van den Bosch et al. (1990, 1992) were used to
estimate the migrate rate:

C, =% 2.nR, (4.8)

c, =cl.{1+[(£)2 +1i2.y]1n30} (4.9)

Where o2 is the variance of the marginal dispersal density and y the kurtosis of the
marginal dispersal density. If the distribution is normal then the variance is equal to
14.RMSD? and the kurtosis is equal to zero. The above calculations were performed on a
spreadsheet which was set up to allow the data to be entered in the form of a life table.
The migration rates were then calculated automatically using cells which had been
programmed accordingly.

A value of 11 km was used for the RMSD which together with the reproductive
characteristics estimated from the data in Table 4.5 using equations 4.5 to 4.7 gave
migration rates of 0.124 km yr! (equation 4.8) and 0.196 km yr! (equation 4.9). These
migration rates are approximations to the migration rates obtained using the
reproduction and dispersal kernel formulae from which they were derived. C, is said to
be accurate when R, < 1.5, whereas the more complicated formula for C, is reported to
be accurate when v/u £ 0.6 and R < 7.0. It can therefore be assumed that in this example
C, should be the better predictor of the migration rate. Equation 4.8 is the same as
Skellam's (1951) model if it is assumed that all the offspring are produced when the
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individuals become reproductively mature i.e. « = T. However, it is also a refinement of
Skellam's model in that it allows for multiple cohorts with variations in survivorship and
fecundity. C, is a refinement of C, since by incorporating the kurtosis of the marginal
dispersal density it does not assume that the dispersal function is normal.

Since the analytical models given by equations 4.8 and 4.9 assume the environment to be
homogeneous it was appropriate to use the one-dimensional version of MIGRATE when
comparing the migration rate simulated by MIGRATE with that predicted by the
analytical models. 10 cohort classes were used corresponding with the 10 cohort classes
in Table 4.5. The initial number of individuals in each cohort class is unimportant since
the migration rate eventually stabilises to a constant rate. The product of the number of
propagules (S) and the probability of surviving to maturity (P) for each cohort was set
so as to equal the value of m in Table 4.5. The probability of surviving from cohort i to
cohort i+1 was calculated as *){ . A normal dispersal function was used with an RMSD
of 11 km. With these parameter values the simulated migration rate was 0.19 km yr!
(simulation B16). This is a 65% agreement with C, and a 95% agreement with C,.

The close agreement between the predictions of the analytical models of van den Bosch
et al. and the MIGRATE simulations indicates that the models have a very similar
formulation. However, this does not imply that the formulation is correct. Only by testing
the models against observed migrations can the formulation be validated. Further
refinements can then be carried out to the models as necessary. Van den Bosch et al.
(1992) have attempted to validate their models using observed migration rates for the
collared dove, muskrat, house sparrow, starling and cattle egret. They found that given
the accuracy of the type of field data used the model predictions were in reasonable
agreement with the observed rates of spread (Van den Bosch et al., 1992; Hengeveld,
1994). The migration rates simulated by MIGRATE for the muskrat, house sparrow and
collared dove are compared with those predicted by the models of Van den Bosch et al.
(1992) in Table 4.6. Van den Bosch et al. (1992) do not give sufficient data for
MIGRATE to be used to simulate the migration of the starling and cattle egret. An
example showing how the MIGRATE simulations were carried out is given by simulation
B26 which shows the migration of the collared dove according to a normal dispersal
function. Some of the discrepancy between the rates predicted by MIGRATE and those
predicted by the formulae developed by Van den Bosch et al. is probably due to the fact
that Van den Bosch et al. assume that survivorship (/) is the number of individuals alive
at the end of the time interval and not at the beginning.
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Table 4.5. Comparison between the observed migration rate (km/yr) as given by Van den Bosch et al.

(1992) and the rates obtained from MIGRATE and the analytical models of Van den Bosch et al. (1992).

Migration rate (km yr?)

Species Observed MIGRATE! Van den Bosch et al.

Gaussian ~ Empirical C, G,

, Dispersal ~ Dispersal

Muskrat 10.9 54 4.8 7.0
1900-1930
Muskrat 5.1 4.9 33 39
1930-1960
House 16.8 8.9 12.0 6.0 10.2
sparrow
(US.A)
House 27.9 9.5 13.9 8.2 23.0
sparrow
(Europe)
Collared 43.72 81.0 80.0 56.3 65.6
dove

1 Approximate migration rate as determined from the graphical output of the MIGRATE simulation (see

section 2.1)

2]t is interesting to note that the observed migration rate determined by Hengeveld and Van den Bosch

(1991) is much less than the rates predicted by any of the models. In all the other cases the observed

migration rate is greater than the predicted migration rates. Hengeveld and Van den Bosch (1991)

determined the rate of spread of the collared dove from a graph of the square root of the area occupied

against time. However, the rate determined by this process is only half of that recorded in the

omithological literature (for example, Fisher, 1953; Welty, 1962; Sharrock, 1976) where the migration

rate was simply calculated as the distance travelled divided by the time taken. Without access to the

original calculations carried out by Hengeveld and Van den Bosch (1991) it is not possible to establish

the reason for this discrepancy.
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4.4. Comparison with Bennett's Model

Following the suggestion of Watts (1973), Bennett (1983, 1986, 1988a) has used pollen
accumulation rates to estimate the intrinsic rate of population increase. This is based
upon observations that graphs of the natural logarithm of the pollen accumulation rate
with respect to time are linear. This linear relationship is believed to be the direct result
of the exponential rate of population increase. However, Davis and Sugita (submitted)
argue that the shape of front has more to do with the dispersal properties of pollen and
the migration rate of the taxon. Bennett (1988a) also suggests that Fagus grandifolia did
not spread as a continuous front but as a series of outlying populations which gradually
increased in density before merging with the main population. As the very low densities
at the front of the expanding range are below the threshold required for detection by
pollen analysis, Bennett (1986) suggests that the real rates of migration may be greater
or lesser than those determined from pollen analysis. The following sections examine
how simulations from the one-dimensional version of MIGRATE fit in with Bennett's
model of migration.

4.4.1. Intrinsic Rate of Population Increase

The rates of population increase for the simulations done so far using MIGRATE (as
determined from the gradient of the lower graphs) are much larger than those determined
by Bennett (1983) for the post-glacial migration of trees in Norfolk. Simulation B17 has
the lowest rate of population increase (0.03). In order to achieve values which fall within
the range 0.022 to 0.002 given by Bennett (1983) and achieve a migration rate of 0.2 km
yrl, not only does fecundity have to be low, but there must be a small number of
individuals dispersing over a long-distance. Simulation B27 is the same as simulation B17
but with two dispersal functions rather than one. A small fraction of the propagules are
dispersed according to a long-distance dispersal function with the remainder simply being
placed in the parent's cell. The intrinsic rate of population increase has now been reduced
to 0.022. This is still rather high for a tree such as Tilia cordata where Bennett (1983)
gives the intrinsic rate of population increase as 0.0100-0.6039.

In order to further reduce the intrinsic rate of population increase the probability of seed
survival was reduced to 2x10%. The RMSD of the long-distance dispersal function was
increased from 35 km to 75 km in order to compensate for the reduction in seed survival
and maintain the migration rate at 0.2 km yr! (simulation B28). The intrinsic rate of
population increase is now 0.009. An alternative way to maintain a migration rate of 0.2

120



km yr! is to increase the probability of long-distance dispersal by a factor of 10 to 0.1.
The required RMSD of the long-distance dispersal function is now only 45 km which
intuitively seems more feasible (simulation B29). The consequence of this more
concentrated dispersal function was a small increase in the intrinsic rate of population
increase from 0.009 to 0.01. There was virtually no change in the extent of the

population front.

These results imply that if the rates of population increase as determined by Bennett
(1983) from fossil pollen analysis are realistic approximations of the intrinsic rate of
population increase then the number of successful offspring must have been very low.
Therefore in order for the post-glaciaf migration rates to have been achived dispersal
must have occurred at low frequencies over very long-distances (exceeding 100 km).

4.4.2. The Role of Long-Distance Dispersal Events

In order to obtain a value for the intrinsic rate of population increase which is in
agreement with Bennett (1983) it was necessary to couple a low reproductive success
rate with a high RMSD for the long-distance dispersal function. With the same parameter
values as used in simulation B28 and the number of individuals rounded to a whole
number according to a random number generator (see section 2.1.4), a maximum
dispersal event of around 240 km was recorded (average of 5 simulations) as occurring
during the 100 generations over which the simulation was run. For simulation B29 the
maximum recorded dispersal distance over the same time period was 170 km. It is likely
that such very long-distance dispersal events would have originated from the area where
the tree density was already high so they may not have had a significant effect on

migration.

MIGRATE currently assumes that the probability of a propagule becoming a
reproductively mature individual is constant. However, it is possible that those
propagules which are dispersed further will have a greater chance of survival. This
hypothesis is known as the escape hypothesis (Howe and Smallwood, 1982). They will
escape density dependent factors such as herbivory and intraspecific competition.
MIGRATE accounts for intraspecific competition through a self-thinning mechanism
(see section 2.2 equation 2.3) but does not take into account herbivory which is likely to
be greatest where the seed/seedling density is highest.

In order to assess the implication of a different survival probability associated with each
dispersal function simulation B28 was repeated but with the probability of a propagule
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which is dispersed according to the long-distance dispersal function surviving to the age
of first reproduction increased by a factor of 6 (simulation B30). This was done by
assigning a probability value of 0.06 instead of 0.01 to the long-distance dispersal
function rather than by making explicit changes to MIGRATE, therefore the dispersal
sum does not equal zero. The simulated migration rate is now 90 m yr! faster than that
simulated in B28. However, the rate of population increase shows only a small increase
from 0.009 to 0.01. In order to bring the migration rate back down to 0.2 km yr! the
RMSD of the long-distance dispersal function can be reduced to almost 50 km yr!
(simulation B31). The extent of the migration front is very similar to that observed in
simulation B28 with the rounding option. The maximum recorded dispersal distance
during the 100 generation simulation is now 185 km (average of S simulations).

These simulations show that the model is very sensitive to the number of successful long-
distance dispersal events. Given the very long-distances involved and their rarity it is
unlikely that such events could ever be measured in the field. However, it is known that
dispersal is capable of occurring over very long-distances (see Chapter 1). These
simulations show that a value for the intrinsic rate of population increase as observed at a
specific location over which the migrating species passes may help to determine the
correct parameter values for the long-distance dispersal function, but only if it can be
very accurately measured.

4.4.3. The Shape of the Migration Front

Bennett (1986) suggests that as pollen analysis can not detect tree population densities of
much less than one per hectare it is not possible to determine whether spread is actually
occurring at lower densities. Below the threshold for detection, the rate of migration may
be slower or faster than that detected by pollen analysis. MIGRATE offers some
evidence in support of this theory since in the examples where the number of successful
offspring are low and the dispersal function has a long tail there is a period at the
beginning of the simulation where the wave form of the migration front has yet to reach
its equilibrium shape. For example, in simulation B27 for generations 5 to 20, the
average migration rate measured at 10 trees ha'l is 0.22 km yr -1. However, if the
migration rate is measured as the distance between the points where generations 5 and 20
meet the x axis then the migration rate for that period is 0.19 km yr-1. So, for the period
up to generation 20, the rate of migration depends on the position of the threshold line
for detection. This phenomenon is only likely to occur when the initial distribution prior
to migration has a shape different to that of the migrating front and when the number of
successful offspring is low so that it takes many generations for the equilibrium to be
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achieved. Changes in dispersal distances and number of successful offspring during
migration will result in changes in the shape of the wave front. During this period of
change, the migration rates will again depend on the threshold level of detection.

4.5. Comparison Between the Intrinsic Rate of Population Increase
Determined from MIGRATE Simulations with that Predicted by the
Euler Equation

The intrinsic rate of population increase determined from the MIGRATE simualtions is in
good agreement with that predicted by the approximation formula for the Euler equation
(Van den Bosch et al., 1992). For example, for the simulation shown in B27 the Euler

equation predicts a rate of:

(B[, L (v’
o= [1+2.(u).1n(1e0)] (410

o =0.019.
The rate determined from MIGRATE was 0.022.

Van den Bosch et al. (1992) have shown that for small values of R, (=1.5) the rate
predicted by the Euler equation is approximately half that observed at a certain place
during an invasion. A simulation done with Ry = 1.43 had an intrinsic rate of increase of
0.0052 (simulation B32) and 0.0036 (from Euler equation). This is in agreement with
Van den Bosch et al. (1992).
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4.6. How May the Variation in the Observed Migration Rates of a
Taxon be Explained?

The simulations done so far have used parameter values with the aim of achieving a
migration rate of 0.2 km yr-!. However, the palaeoecological record has shown that taxa
migrated at different rates during their post-glacial migrational history. For example,
Huntley and Birks (1983) give the migration rate of Tilia as 0.3 to 0.5 km yr! on the
European mainland. The three most likely ways through which such a large change in the
migration rate could be effected are:

 achange in the number of successful offspring produced per individual;

+ achange in long-distance dispersal tunction (through its probability of occurrence

or its distance parameter);
+ achange in the age of first reproduction.

For simulation B28 a small increase in the number of successful offspring (brought about
by increasing the probability of reaching the age of first reproduction from 2x10-6 to
6x10-) resulted in a large increase in the migration rate from 0.20 km yr! to 0.50 km yr!
(simulation B33). The intrinsic rate of population increase also increased from
approximately 0.009 to approximately 0.02, however, this is still just within the range
given by Bennett (1983). Note that the rule regarding the relationship between fecundity
and migration rate described in section 4.1.1 now no longer applies since the introduction
of a second dispersal function and the use of two age classes has increased the
complexity of the model. A much larger increase in the probability of reaching the age of
first reproduction is needed for the migration rate simulated in B20 to reach 0.5 km yrl.
In this case the probability of reaching the age of first reproduction has to be increased
by a factor of 30 to 1.5x10- (simulation B34). This has also resulted in a large increase
in the intrinsic rate of population increase from 0.07 to 0.20.

It is unlikely that there would have been any significant change in the long-distance
dispersal function during post-glacial migration. Large changes in dispersal frequencies
and distances would have to be accompanied by significant changes in the agents of
dispersal, for example wind speed, frequency of storms, activity of animal dispersal
agents etc. In order to increase further the migration rates simulated so far, the value of

the RMSD of dispersal would have to be made even larger. It seems very unlikely that
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this could occur as it is already difficult to adequately explain the occurrence of the very

long dispersal distances in the simulations carried out so far.

A decrease in the age of first reproduction could be a consequence of a faster growth
rate due to more favourable climatic conditions. However, there is a limit as to how
much this could be reduced. Table 4.1 shows that a decrease in the age of first
reproduction can have a significant effect on the migration rate. Simulations B20 and
B28 were repeated but with the age of first reproduction reduced to 10 years and the
fecundity and survival probabilities modified as described in section 4.1.1. (simulations
B35 and B36 respectively). In the case of simulation B35, there has been an increase in
the migration rate from 0.20 km yr'! to 0.34 km yr-l. However, in the case of simulation
B36 there has been virtually no increase in the rate of spread.

The results described in this section are to some extent surprising and could probably not
have been guessed from the sensitivity analyses carried out for the simple one dispersal
function one age class model described in section 4.1.1. In particular it is important to
note how sensitive the model was to small changes in very low fecundity values in
conjunction with a long-distance dispersal function with a large RMSD. The rates
predicted by the models of Van den Bosch et al. (equations 4.8 and 4.9) for simulations
B33 and B34 are in poor agreement with the rates simulated by MIGRATE (0.50 km yr-1
for B33 and 0.49 km yr! for B34). For simulation B33, the migration rates predicted by
the models of Van den Bosch et al. were 0.095 km yr! (equation 4.8) and 4.2 km yr!
(equation 4.9). For simulation B34 the migration rates were 0.026 km yr! (equation 4.8)
and 4.3 km yr! (equation 4.9). The disagreement can be largely attributed to the very
large value of R, for simulation B34 and the fact that the large value of the kurtosis of
dispersal (270 and 300) does not seem to accurately represent a dispersal function in
which a small number of individuals are dispersed over very long distances. The
sensitivity of equation 4.9 to the kurtosis of the marginal dispersal density was confirmed .
by varying its value within the spreadsheet set up to calculate migration rates using Van
den Bosch ef al.s' models. For example, simulation B33 predicts the same migration rate
as MIGRATE if the value of the kurtosis is set at 25.



4.7. Two-Dimensional Simulations Showing the Migration of Tilia
cordata Through Northern Britain.

The main advantage the two-dimensional version of MIGRATE has over its one-
dimensional counterpart is that it can be used to investigate the spread of a species across
a heterogeneous environment. In order to assess the effect of environmental
heterogeneity it was first neces'sary to carry out simulations in a uniform environment.
The rate and pattern of spread in a homogeneous environment can then be compared
with one more representative of the modern landscape of the British Isles in which areas
of suitable habitat have both declined and become fragmented. These simulations were
then followed by an investigation into the effects of climate. The habitat and climate
maps were created as described in Chapter 2 using data from the Institute of Terrestrial
Ecology's land cover database and the Climatic Research Unit's climate databases.
Finally, some simulations were done in which the present day relative carrying capacity
values are modified by using probability of occurrence values. In these simulations, no
additional climatic restrictions are imposed as the three bioclimatic variables used in
generating the probability of occurrence values are already acting by reducing the relative
carrying capacity values. The simulations were all carried out for Tilia cordata since
much is known about its ecology and its response to climate is particularly well

understood.

4.7.1. Choice of Parameter Values

As described in section 2..2, some of the parameter values can be obtained or estimated
from the literature. The values which were obtained by this means for T. cordata were
given in section 4.1.1. Other parameters, however, have to be estimated by using the
one-dimensional model to determine the area of "parameter space" within which the
required migration rate is achieved. Two cohort classes were used as the reproductive
data available in the literature were not sufficiently accurate to make the use of additional
cohorts worthwhile. The most realistic approximation was therefore to use one cohort
class to represent the young trees yet to reach reproductive maturity and another for
trees older than the age of first reproduction. Two dispersal functions were used, since as
described in section 4.1.3 this appears to be the most realistic representation of what
happens in nature.

The simulations described in section 4.1 have enabled possible values for the parameters

involved in long-distance dispersal to be determined. There are three parameters which
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determine the distance and frequency of long-distance dispersal events. These are the
number of propagules reaching the age of first reproduction, the probability of long-
distance dispersal and the RMSD of the long-distance dispersal function. If fecundity and
the probability of dispersal by the long-distance function are low then the RMSD of the
long-distance dispersal function must be compensatingly large. Each two-dimensional
simulation was carried out twice using a different set of parameter values. In case I, the
parameter values used in simulation B20 were used but with the probability of reaching
reproductive maturity increased by x 5 to allow for a reduction in the relative carrying
capacity to 0.2 (see section 4.7.2). In case II, the parameter values used in simulation
B29 were used, again with the probability of reaching reproductive maturity increased by
x 5. The parameter values are summarised in Table 4.6. The one-dimensional simulations
using case I and case II parameter values are shown in Figs 4.5 and 4.6 respectively. In
both cases the rounding option was used since this is always applied in the two-
dimensional simulations (see section 2.1.5). The initial population was set as a strip of T.
cordata 10 km deep with 50 mature trees per square km. Both sets of parameter values
produced a simulated migration rate of approximately 0.18 km yr! in a homogeneous
environment. However, they reflect two possible extremes, case I couples a high
reproductive success with a relatively short long-distance dispersal function whereas case
I couples a lower reproductive success with a much longer long-distance dispersal
function. The simulation with case I parameter values has a steep continuous migration
front as is thought to have occurred by Davis (for example, Davis 1983b; Davis and
Sugita, submitted). Case II parameter values, however, result in a more extensive
population front which is in agreement with Bennett's (1983, 1986, 1988a) view. The
intrinsic rate of population increase for case II (0.01) is in agreement with Bennett's
(1983) measurements which were determined from the pollen record. The low rate of
population increase results in a delay lasting as much as several millennia before the
equilibrium abundance levels are reached (Bennett, 1986). Case I parameter values result
in an intrinsic rate of population increase which is approximately eight times greater than
that resulting from case II parameter values.

The assumptions made throughout these simulations are that the reproductive and
dispersal parameters are the same as for post-glacial migrz;tion. In addition it is assumed
that the post-glacial migration rates were limited by dispersal since if, for example,
climate was limiting migration then it would not have been appropriate to use the post-
glacial migration rates as a means of estimating the RMSD of the long-distance dispersal
function as this would have resulted in its value being underestimated. Attempts have
been made to discover whether or not tree migration lagged climate change (Davis et al.,
1986). However, they were unable to draw any firm conclusions since as dispersal and
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climate are not mutually exclusive causes for colonisation delays it is impossible to
determine whether the migration rate was climate limited or dispersal limited. However,
the relative constancy of the maximum migration rates between geographical regions
despite differences in the rates of climate change suggests that the post-glacial migration
rates were limited by dispersal and colonisation and not by the rate of climate change
(Huntley, 1989).

The initial distribution of Tilia cordata (Fig. 4.7) was derived from Pigott's (1992)
presence absence map. This map had to be converted into the number of trees per square
km. As Pigott (1992) states that many of the existing populations are small it seemed
reasonable to assume that there were 50 reproductively mature trees in each 1 km square
cell where T. cordata was recorded as being present. Refinements to this distribution
were made by referring to Paice (1974) where sites with only one tree occurring were
recorded separately. The number of trees in the juvenile age class was set to zero since
although there had been some successful regeneration of T. cordata in the Lake District
during the hot summers of 1976, 1983 and 1984 all the seedlings were consumed by
wood mice and voles (Pigott, 1992). Simulations carried out with 50 seedlings as well as
50 mature trees in the initial distribution showed that the results were insensitive to this.

Table 4.6 Parameter values used in the two-dimensional simulations. Case I parameter values resultin a

higher intrinsic rate of population increase (0.08) than case II (0.01).

Parameter Case | Case I1

Cell length 1km as case |

Area occupied by an individual 50 m? as case [

Generation length 25 as case [

Probability of becoming reproductively mature tree  2.5x10-4 1x10-5

Probability of adult surviving a further generation  0.913 as case |

Number of offspring produced per generation by 83200 as case |
. juvenile cohort

Number of offspring produced per generation by 160000 as case |

adult cohort

Probability of dispersal by long-distance dispersal ~ 0.01 0.1

function

RMSD of long-distance dispersal function 9.7 km 45 km
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4.7.2. Homogeneous Environment with no Climatic Restrictions

The relative carrying capacity was set at 0.2 i.e. up to 20 percent of the cell area may be
occupied. These environmental conditions may be considered to be similar to those
experienced by T. cordata during post-glacial migration if it is assumed that climate was
not limiting its migration. During those times, T. cordata would have been migrating
through land which was predominantly forested. Taxa such as Betula, Corylus, Ulmus,
Quercus and Pinus had already spread throughout most of the British Isles before T.
cordata artived. T. cordata was probably a major constituent of forests during its
migration (Birks, 1989) so a relative carrying capacity of 0.2 seems quite reasonable.

The simulation with case I parameter values shows that spread occurs by the circular
expansion of populations which coalesce to form a continuous front (Fig. 4.8). The rate
of spread of this front is approximately 0.18 km yr-! which is in agreement with the rate
simulated by the one-dimensional version of MIGRATE with the rounding option (Fig.
4.5). The simulation done with case 1l parameter values (Fig. 4.9) produces an outcome
which is quite different to that produced with case I parameter values. Although T.
cordata has spread just as far north it has done so at a much lower density and a
continuous expansion front is not so obvious. The reason for the difference between the
two simulations becomes apparent when the results from the one-dimensional simulations
are examined (Figs 4.5 and 4.6). It can be seen that although both populations eventually
attain the same rate of spread it takes much longer for the equilibrium abundance level to
be reached with case II parameters. This is a consequence of the lower intrinsic rate of
population increase with case Il parameters. These results indicate that where the
intrinsic rate of population increase is very low (less than about 0.02) it is important to
know both the current distribution of the species being studied and the density at which it
occurs. The simulation with case [I parameters is in agreement wnth Bennett's view of the
pattern of migration in that spread occurs at very low densities. Some of the outlying
populations are sufficiently isolated so as to be possibly undetectable in the fossil record.

In order to gain some insight into the frequency of dispersal events occurring with case I
and case II parameter values the number of dispersal events falling into various distances
categories were counted using the dispersal logging option described in section 2.1.4.
The numbers were converted into logarithms of the proportion of the total number of
prospective individuals dispersed. The graphical display of these results is shown in Figs
4.10 and 4.11. These curves show that the majority of propagules are dispersed only a
short distance from their parent. The slight increase in dispersal probability observed
after the initial sharp fall off is a consequence of the relationship between the dispersal
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function itself and the fact that the area of each sampling annulus increases with
increasing distance from the source.

4.7.3. Heterogeneous Environment with no Climatic Restrictions

In today's modem environment it is not appropriate to consider the habitat to be
homogeneous. Habitat loss and fragmentation have resulted in a landscape which is very
heterogeneous. In order to look at how this may affect the possible future migration of T.
cordata a relative carrying capacity map was constructed as described in section 2.3.2
using the Institute of Terrestrial Ecology's land cover database. The values were the
fraction of deciduous woodland in each 1 km square cell multiplied by 0.2 i.e. Tilia was
able to occupy up to 20% of the deciduous woodland in each cell. None of the other
habitat types were considered to be suitable for invasion. As T. cordata is a shade
tolerant mid-successional tree species this land cover class seemed to be the most
appropriate choice. In addition, it probably represents the only land cover category which
could be invaded by T. cordata. As T. cordata will grow on a wide variety of soils
(Paice, 1974) it was not thought necessary to include soils data in the creation of the
habitat map shown in Fig. 4.12. Simulations were carried out using case I (Fig. 4.13) and
case II (Fig. 4.14) parameter values and the current distribution of T. cordata.

It is clear that in the heterogeneous environment which is typical of the modem
landscape the migration rate of T. cordata will be much reduced. The simulation with
case II parameter values shows the greatest reduction in range expansion with very little
spread being observed beyond the initial distribution sites. The rate of spread with a
heterogeneous habitat is about three times less than that with a homogeneous habitat
suggesting that the habitat loss and fragmentation typical of the modern landscape will
significantly reduce the ability of a species to migrate.

In order to look at how the patchy nature of modern day habitat availability may affect
the future spread of T. cordata, a simulation (Fig. 4.15) was carried out in which the
relative carrying capacity of each cell was smoothed by assigning it the average relative
carrying capacity of all land cells within a 3 km radius. The parameters used were the
same as those used with case I parameter values and a heterogeneous environment with
no climatic restrictions (Fig. 4.13). The resulting extent of spread is very similar in both
simulations which indicates that the distribution of available habitat is not important at

the scale of tree migration.
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MIGRATE can also be used to investigate the effect of changes in both habitat
availability (i.e. number of cells available for colonisation) and relative carrying capacity
(i.e. proportion of each cell available for colonisation) in the same manner as has been
done by Schwartz (1992). Such investigations enable the magnitude of the changes in the
migration rate due to changes in habitat availability and suitability to be assessed. For
example, using case I parameter values with a homogeneous environment and a relative
carrying capacity of 0.2 the simulated migration rate was 0.18 km yrl. However, when
the proportion of available cells was reduced from 1.0 to 0.1, the migration rate was
reduced by a third to 0.12 km yr!. Although the magnitude of this response is less than
that predicted by Schwartz (1992) who predicted that migration rates would decrease by
a factor of ten as a consequence of a reduction in habitat availability from 80% to less
than 30%, the reduction in the rate of spread is still great enough to indicate that habitat
loss may contribute significantly to tree species failing to migrate fast enough to keep
pace with future climate change. The quantitative differences between the results
predicted by MIGRATE and Schwartz's model could be due to differences in the
parameter values used in the simulations or differences in the formulation of the two
models. However, simulations with MIGRATE using parameter values matching as far
as possible those used by Schwartz predicted a two thirds reduction rather than a 10 fold
decrease in the migration rate when habitat availability decreased from 80% to 10%.
Schwartz observed that the migration rate predicted by his model depended upon the
threshold level of detection. However, the one-dimensional simulations with MIGRATE
show quite clearly that the migration rate is not dependent' upon the level of detection
once the population front has reached its equilibrium shape. If the population front was
adapting to its equilibrium shape during the time period that Schwartz measured the
migration rate then this may explain the discrepency between the results of the two
models.

4.7.4. Effect of Climate

Under current climatic conditions, nowhere in northern Britain is hot enough during the
summer for T. cordata to reproduce. Pigott and Huntley (1981) found that the frequent
production of fertile seed is now almost bounded by the 20°C isotherm for the mean

daily maximum temperature in August.

The climate map for a hypothetical year under current climatic conditions (Fig. 4.16) was
constructed as described in section 2.3.3. In reality there are no 1 km squares which have
a mean August daily maximum temperature greater than or equal to 20°C. However,

these values are average values based on a thirty year period (1960 to 1990). The
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standard deviations of these data for Durham and Morecambe were 1.57°C and 1.47°C
respectively. It therefore seemed reasonable to use a standard deviation of 1.6°C for the
whole of the study area as a means of varying the current day values. When the
temperature was varied according to a normal distribution with a standard deviation of
1.6°C then some of the grid squares have temperatures great enough for the successful
reproduction of T. cordata. This is to be expected as Piggott (1992) has observed
seedlings of T. cordata following the hot summers of 1976, 1983 and 1984.

The effect of 'modern day climate alone was examined by using a homogeneous
environment but with the modem day climatic restrictions as described above. From
these simulations, it can be seen that with case I parameters (Fig. 4.17) T. cordata could
potentially extend its range much further north in the next 500 years. However, with case
II parameters (Fig. 4.18) only a very limited amount of spread is predicted to occur.

When both the effects of modern day climate and land cover are investigated then the
simulation with case I parameters (Fig. 4.19) shows a very much reduced pattern of
spread, however, there is still a noticeable increase in tree density after 500 years. With
case II parameters (Fig. 4.20), the density and distribution of 7. cordata after 500 years
is almost exactly the same as its initial distribution. This is more in tune with what is

expected from current day observations.

These simulations showing the possible response of 7. cordata to climate change assume
that the mean August maximum daily temperature will continue to be the variable which
determines its northern limit. However, this may be a false assumption since as climate
changes other climatic variables, for example precipitation may become limiting. In order
to obtain a better picture of how 7. cordata may spread in the future a climate response
surface was used to modify the present day carrying capacity values. The climate
response surface consisted of probability of occurrence values for each 10 km square and
was created as described in section 2.3.2. It was found that a threshold probability value
of 0.5 was needed in order for the response surface to correctly predict the current
distribution of T. cordata in Europe (Huntley et al., 1995). Therefore, where this value
was exceeded the relative carrying capacity was modified by multiplying by the
probability of occurrence value for that square. If the threshold was not exceeded then

the relative carrying capacity was set to zero.
Figs 4.21 and 4.22 show the potential range expansion of T. cordata with case I

parameter values based on its current probability of occurrence at the modal altitude of
each 10 km square under homogeneous and heterogeneous environmental conditions
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respectively. In both simulations the pattern of spread is similar although slightly greater
than that predicted by the simulations in which the mean August maximum daily
temperature was used as the limiting climatic factor (Figs 4.16 and 4.17). Possible
reasons for the discrepancies between the simulations using probability of occurrence
values and the simulations using the mean August maximum temperatures only are:

1. In Figs 4.21 and 4.22 the threshold for occurrence was set slightly too low therefore
allowing 7. cordata to spread more freely than in Figs 4.16 and 4.17.

2. The abrupt cut off threshold of 20°C for reproduction used in Figs 4.16 and 4.17 did

not allow for some successful regeneration at slightly lower temperatures. When
these simulations were repeated but with a cut off threshold of 19.5°C then the extent

of spread was much more similar to the simulations using probability of occurrence

values.

3. The response surface data are available only at a 10 km resolution and that by using
the probability of occurrence at the modal altitude some of the 1 km cells will have
been given probability of occurrence values which are too high or too low because
their mean altitude differs from the modal altitude upon which the probability of

occurrence was based.

These results indicate that if case I parameters are a reasonably accurate approximation
to the actual parameter values for 7. cordata then its current distribution is determined
by a combination of the mean August daily maximum temperature and the availability of
woodland in which it can potentially regenerate. If the area of woodland for T. cordata
to spread into was more extensive, then its predicted current distribution with case I

parameters would be further north than presently observed.

With case II parameter values and a uniform environment with a relative carrying
capacity of 0.2 the restrictions imposed by the climate response surface resulted in spread
occurring at very low densities. However, when a heterogeneous environment was used

there was no detectable spread.

All the parallel simulations carried out with case I and case II parameter values have
shown that simulations with case II parameter values are less able to respond to
environmental change. The most likely reason for this is the lower intrinsic rate of

population increase associated with case II parameter values.
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A simulation was carried out using case I parameter values under uniform habitat
conditions with a 2 degree increase in the mean August maximum temperature (Fig.
4.23). This simulation was done with the intention of comparing the difference between
simulations in which the future distribution of 7. cordata is simulated by the use of an
increase in the mean August maximum temperature alone versus the use of probability of
occurrence values generated from a climate response surface. It was decided to use case
I parameter values with a uniform habitat since previous simulations have shown that
these conditions resulted in the most extensive range expansion and highest population
density, therefore any differences between the two means of effecting future climate
change should be more marked. Unfortunately the required probability of occurrence
values for a future climate scenario could not be generated in time for inclusion in this
thesis. However, by examining the predicted European distribution of 7. cordata based
on its climate response surface it is possible to see that its distribution will shift northeast
(Huntley et al.,, 1995). Using the OSU scenario for a doubling in carbon dioxide
concentration, the distribution of 7. cordata in the British Isles is predicted to become
restricted to a few localities in central Scotland. However, with the UKMO scenario T.
cordata is not predicted to occur anywhere in the British Isles. These distributions are
equilibrium distributions, therefore they do not take into account the dynamics of species'
response to climatic change. Given the relatively short time scale over which climatic
change is predicted to occur (the Intergovernmental Panel on Climate Change predict an
increase of approximately 3°C by the end of the next century (Houghton et al., 1990)) it
is likely that the future distribution of 7. cordata will be determined more by its ability to

track suitable climate than by climate change itself.

4.8. Model Validation

The longevity of trees has meant that it has not been possible to use them as means of
validating MIGRATE. In order to perform a validation exercise, it is necessary to have
data on the distribution of a migrating species for at least two points in time. The time
interval separating the two distributions should be long énough for there to be a
significant difference between them. The minimum separation time will be determined by
the rate at which the species is migrating and the spatial resolution at which the research
is being carried out. For example, at the 1 km resolution used for modelling the two-
dimensional spread of 7. cordata a minimum distance of 25 km would probably suffice.
Therefore, if a species is migrating at 250 m yr!, which is a typical migration rate
observed during post-glacial migration then a time interval 10 years would be needed for
a species which is capable of reproducing at 10 years, for example, birch and Scots pine
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(Miles, 1988). For species such as oak which do not reproduce until they are much older,
a proportionately longer time would be needed.

MIGRATE can, however, be used for other organisms which for modelling purposes can
be considered to be sessile (i.e. they disperse as non-reproductive individuals and then
settle down to breed within a relatively restricted range). Therefore it may be possible to
attempt to validate the model formulation using another species. This has already be
done for the one-dimensional version of MIGRATE in section 4.3 where the rates
predicted by MIGRATE were compared with those predicted by Skellam's (1951)
diffusion model, Van den Bosch et al's (1992) analytical model and the observed
migration rates.

MIGRATE has been used to study the spread of rhododendron in Glen Etive (Griffin,
1994). Although the model was able to reproduce the present day distribution of
rhododendron from an initial distribution consisting of the points of probable
introduction in 1910 this work can not be considered to be a true validation since in
order to obtain a value for the long-distance dispersal parameter the model was 'tuned'
until the value used for this parameter gave a distribution which closely approximated to
that observed for the present day. The model did, however, prove useful in looking at
ways in which the spread of rhododendron in Glen Etive could be controlled. In order for
a true validation to be carried out an independent measure of the long-distance dispersal

parameter is required.

It had also been hoped to validate the model using data from another study carried out
on the spread of rhododendron by Thomson et al. (1993). This study examined the
spread of rhododendron from 1968 to 1986 using aerial photographs. However, it was
decided that the change in the distribution of rhododendron observed during this study
was unlikely to be sufficient for validating MIGRATE. In addition, the environmental
data which would have been used to create the habitat map only covered three relatively
small areas within the study area, the largest of which was approximately 6 km?.

In the absence of any firm validation of the formulation of MIGRATE and the values
used for some of its parameters it should not be used for making quantitative predictions.
Despite this, it can still serve a useful purpose as both a management tools and for
making qualitative predictions.
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L = 3.00 kiy; a = 50.00 m%, T's 25,00 years;
Survival probabiities = 0.0002500, 0.91300;

F = 8.3200+04, 1.6008+0S;
All offspring placed in parent cell; P(1) = 0.990000; RMSD2 = 8,70 km; P(RMSD?2) = 0.010000;

Dispersal sums = 0.9900, 0.0100; Total = 1.0000; Furthest Cell = 16;
K = 0.20; Random number seed = 67; No climatic restramts;
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Fig. 4.5 The results of a simulation with case I parameter values (see Table 4.6). Migration rate ~ 0.18
km yrl, oc = 0.08.
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Fig. 4.6 The results of a simulation with case II parameter values (see Table 4.6). Migration rate = 0.18
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Initial distribution of Tilia cordata
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Fig. 4.7 The distribution of Tilia cordata as given by Pigott (1992) with refinements made by reference to
Paice (1974).
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Fig. 4.10 Dispersal distances achieved during a simulation with case I parameter values and a

homogeneous environment.
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Fig. 4.11 Dispersal distances achieved during a simulation with case II parameter values ‘and a

homogeneous environment.

141



Carrying Capacities used in MIGRATE Simulations
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Fig. 4.12 The relative carrying capacity values used in simulations where the environment was assumed
to be heterogeneous. These values were set using the assumption that Tilia cordata could come to occupy
a maximum of 20% of the deciduous woodland cover. The land cover data were obtained from the
Institute of Terrestrial Ecology's land cover database at a 1 km resolution.
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1 km square climate suitablility map
Bl Climate suitable - mean August maximum temperature >= 20.0°C

[F1  Climate unsuitable - mean August maximum temperature < 20.0°C
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Fig. 4.16 A typical modern day climate suitability map for ZTilia cordata based on the mean August daily
maximum temperature for the period 1960 to 1990. Climate data obtained from the Institute of
Terrestrial Ecology at the 10 km resolution was used in conjunction with Bartholomew's 1 km altitude
data to produce a climate suitability map at the 1 km resolution (see section 2.3.3). It was assumed that
reproduction could not occur if the temperature fell below a threshold value of 20°C. If the threshold was
exceeded then reproduction could occur. During simulations, the climate data are made to vary about
their actual values with a standard deviation of 1.6.
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CHAPTER 5

Concluding Remarks and Suggested Areas for
Further Research

5.1. Conclusions

MIGRATE has shown itself to be a useful exploratory tool for investigating the effects
of different parameter values on the rates and patterns of migration. Although it is a
simple model it captures all the essential processes regarding reproduction and dispersal
which have been used in similar models of migration. Simulations carried out in section
4.3 showed that the migration rates predicted by MIGRATE are in good agreement with
both the observed rates and the rates predicted by the models of Van den Bosch et al.
(1992) for the collared dove, house sparrow and muskrat. If attempts were to be made at
incorporating more detail into MIGRATE it would become increasingly difficult to
analyse its behaviour. In view of the success in predicting the observed rates of migration
for the collared dove, house sparrow and muskrat it would seem that there is no extra
value to be gained by trying to incorporate more detail into the model. It would be far
better to concentrate efforts on gaining more accurate data for assigning values to the
existing parameters which are known to be important in determining the migration rates

and patterns.

The simple nature of MIGRATE enables sensitivity analyses to be carried out to
determine where more accurate parameter values are needed. Such analyses carried out
with the one-dimensional version of MIGRATE were described in Chapter 4. The results
indicated that the following parameters play an important role in determining the

migration rate:
+ the number of propagules which survive to maturity;

» the age of first reproduction;
« the frequency and distance of long-distance dispersal events.
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The number of propagules which survive to maturity is a product of two parameters in
the MIGRATE model, the number of propagules produced per individual per generation
(S) and the probability of a propagule reaching the age of first reproduction (P,). S may
be estimated fairly easily from data in the literature, however, data on the probability of
survival to the age of first reproduction is very scarce. All that is known about P, is that
it is very small. For long-lived species such as trees, long-term studies are needed in
order to determine more accurate values for this parameter and how it is affected by
variations in the environment.

The age of first reproduction is also affected by variations in the environment, It is
known that trees in the open can start producing propagules up to ten or more years
before trees growing in a forest environment. For example, Pigott (1991) notes that in
the open, Tilia cordata begins to produce small quantities of seed when it is 12-20 years
old, however, in a woodland seed production may not begin until it is 25-30 years old
and may even be delayed until 30-40 years. If more accurate data could be obtained on
the age to first reproduction with respect to environmental conditions then this a
refinement which may be worth incorporating into the model. The results from the
sensitivity analyses indicate that if the migration rate is primarily determined by those
trees at the leading edge of the migration front then a decrease in the age of first

reproduction from 25 to 10 years may lead to an almost doubling of the migration rate.

The review of the literature on seed dispersal given in Chapter 1 and the attempts at
measuring it in the field as described in Chapter 3 suggest that it is not possible to
quantify the frequency of dispersal distances much greater than a few hundred metres by
carrying out field studies. The low value of the dispersal half distance as determined by
field studies in conjunction with knowledge on the rates of migration and population
increase suggests that dispersal operates at two scales with a few seeds going a long way
and not therefore being detected. The palaeoecological record can be used to derive
estimates for the long-distance dispersal parameters as described in section 2.2.
However, this then means that the palaeoecological record can not be used in validating
the results produced by MIGRATE. Ideally some independent means for measuring the
long-distance dispersal of propagules is required. One possibility would be to use
dispersal models capable of simulating the dispersal pattern of propagules under realistic
meteorological conditions. Such models should include both the effects of turbulence and
the aerodynamic properties of propagules. Currently such models are not detailed
enough to do this sufficiently accurately for particles such as seeds. However, as already
noted in Chapter 1, secondary dispersal may play a very important role in determining the
final resting place of dispersed propagules. There is a very limited amount of quantitative
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data on secondary dispersal so this represents another area where further research is
needed, although its very nature will make it a difficult subject to tackle.

Another area of interest which is closely related to the form of the long-distance dispersal
function is how the probability of propagule survival changes with increasing distance
from the parent tree. Results from sensitivity analyses have suggested that if the
propagules that are dispersed over a long distance have a greater chance of survival
because they escape density dependent mortality factors then the migration rate may be
significantly increased. There is various evidence both for and against the escape
hypothesis, some of which was discussed in Chapter 1. Again, this is another area where

further research is needed.

Most of the models of migration that have been developed to date have assumed the
environment to be homogeneous. This restriction is relaxed, however, in the two-
dimensional version of MIGRATE where a spatially explicit heterogeneous landscape
can be used to represent reality. Some recent models have been developed which can
make predictions about migration rates in a heterogeneous environment, but, as they are
not spatially explicit they can not show the pattern of spread. The formulation of the
two-dimensional version of MIGRATE allows features of the real environment to be
captured. For example, some of the simulations carried out in Chapter 4 used land cover
and climate data. MIGRATE could easily be refined to incorporate any spatially

referenced data set as required.

There are two different schools of thought regarding the pattern of post-glacial tree
migration. These were reviewed in Chapter 1 and can be briefly summarised as Davis'
model in which spread is assumed to occur as a more or less continuous front and
Bennett's model in which spread occurs by the establishment of small scattered
populations with gradual infilling. The results obtained from MIGRATE can be used to

support either of these models of spread.

In the case of Bennett's model, MIGRATE confirms that for low intrinsic rates of
population increase (i.e. < 0.01) spread will occur as a shallow front with population
densities taking approximately 200 km to rise from very low values at the range limit to
the equilibrium density value (for example, see Fig. 4.6). In two-dimensions it is clear
that under these conditions, spread occurs by the formation of many small populations
which slowly increase in size and merge together. These results are not unexpected as in
order for migration to occur fast enough the rare long-distance dispersal events must be

very large in order to compensate for the very low value of the intrinsic rate of
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population increase. There is very little direct evidence for dispersal distances in excess
of 100 km although the palaeoecological record suggests that dispersal did occur over
such distances in the past (see section 1.4.5). With Bennett's model, MIGRATE predicts
that in order for the necessary migration rates to have been achieved dispersal distances

in excess of 100 km may have occurred .

With regard to Davis' model, it can be seen that when the intrinsic rate of population
increase is greater than about 0.08 the population front will appear very steep when
viewed at the scale of several hundreds of kilometres. Measurements of the extent of the
population front suggest that it could actually take up to 20 km for the equilibrium
density value to be reached. Intuitively this may sound more realistic than the value of
several hundreds of kilometres simulated by MIGRATE under conditions of lower
intrinsic rate of population increase. Although a value of the intrinsic rate of population
increase of 0.08 falls outside the range 0.01-0.0039 predicted for Tilia cordata by
Bennett (1983) it does not imply that this value is too high. Bennett (1986) quotes some
values for the intrinsic rate of population increase of trees determined from modem day
studies on increasing tree populations. These values range from 0.087 to 0.002. It is clear
that a few cases have values which are in excess of 0.02 which is the approximate
maximum determined by Bennett from the pollen record. This discrepancy could be due

to one or more of the following factors.

» The rates of population increase determined from the pollen record do not reflect

the true rates of population increase.

« Some modern tree populations are actually increasing faster than tree populations
increased during their post-glacial migration history due to more favourable

conditions today than in the past.

+ The intrinsic rates of population increase for the tree species determined from
modern day studies are different to the rates of those species investigated by

Bennett due to differences in their natural history.

Crawley (1990, page 29) has deduced formulae for estimating the range within which the
intrinsic rate of population increase lies. However, as these formulae require values for
the number of propagules produced as a result of the first seed set and the probability of
a propagule reaching the age of first reproduction they are not very helpful. The range
within which the intrinsic rate of population increase (o) lies is given by:
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Ln($E) <o
T T T

So, if =25, S/T = 6400 and P, = 5x10-% (default parameter values for Tilia cordata
used in the sensitivity analysis) then -0.045 < o < 0.32. Crawley suggests that the true
value of a is normally much closer to the lower bound than the upper bound and the
approximation works well when the first seed set at age T is relatively large. This result
does not therefore give firm support for either of the two models of spread. To conclude,
the value of 0.08 for the intrinsic rate of population increase resulting from a simulation
which gave a pattern of spread fitting Davis' continuous front model may not have been
too large.

In order to clarify which model of spread is the most likely, more information is needed
on (1) the relationship between the pollen accumulation rate and tree density and (2) the
frequency and distance of long-distance dispersal events. Davis and Sugita (submitted)
have made an attempt at investigating the first by using a model that simulates the
deposition of pollen from an advancing population that has a continuous front. From

their results, they conclude that the shape of the population front depends on:

+ the dispersal properties of pollen;
» the rate of migration;
+ the size of the lake from which the pollen sample was taken.

Therefore, because of these factors they conclude that it is inappropriate to use the
gradient of the natural logarithm of the pollen accumulation rate versus time to determine
the intrinsic rate of population increase. However, despite this, it would be very
interesting to determine the values of these gradients to see if they are in agreement with
those determined by Bennett. If the gradients are in agreement then this would be strong
evidence in support of Davis' continuous front model of tree migration. If, however, the
gradients do not agree then it may be that the shape of population front used by Davis
and Sugita needs to be modified. For example, it may be more appropriate to use a
model of migration such as MIGRATE that can simulate population fronts with a variety
of shapes, depending on the values given to the reproductive and dispersal parameters, in
conjunction with the pollen dispersal model POLLSCAPE used by Davis and Sugita in
their model of pollen deposition by migrating populations of trees.

Results from the two-dimensional simulations have illustrated how the pattern of spread
can be affected by the values assigned to the reproductive and dispersal - patterns.
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However, as discussed above it is not possible without further data to say whether Davis'
model or Bennett's model is the best model of how post-glacial migration occurred.

The two-dimensional simulations have, however, enabled the effects of habitat and
climate suitability to be investigated. Simulations have shown that habitat loss and
fragmentation will significantly reduce the ability of trees to respond to the predicted
future climate change. It can be shown through the use of probability of occurrence
values generated from climate response surfaces (Huntley et al., 1995) that the factors
which currently limit the distribution of a species may no longer limit its distribution in
the future. The use of probability of occurrence values in conjunction with other spatially
explicit data relevant to the successful establishment of species therefore offers a good
opportunity to investigate how species may respond to future changes in climate and land

use.

The factors which control the rates and patterns of the migration of a particular species
are very complex. Even MIGRATE which is a fairly simple model has been able to show
that the simulated migration rates and patterns can depend upon the interactions of
several parameter values. In particular the sensitivity of MIGRATE to a particular
parameter value can be affected by the values assigned to the other parameters. For
example, it was shown in section 4.6 that parameter values which simulated migration
according to Davis' model of spread were less sensitive to changes in the probability of
reaching the age of first reproduction than the set of parameter values which simulated
migration according to Bennett's model. In contrast, the Davis parameter values were
more sensitive to a decrease in the age of first reproduction than the Bennett parameter

values.

5.2. Future work

As has already been discussed above, there are several areas where data are insufficiently
accurate. This problem is particularly acute with respect to trees due to their longevity. It
would therefore be worthwhile trying to validate the model with a shorter-lived plant
species such as an annual or a biennial in order to confirm that MIGRATE is able to
accurately simulate observed patterns of spread. In order to do this, independent
measurements will be required for the dispersal and reproductive parameters. It is quite
probable, however, that the problem of assigning values to the long-distance di_spersal
parameters will be encountered again. It would be possible to use MIGRATE to
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determine values for these parameters so that the observed migration rate is achieved.
However, MIGRATE would then have to be validated at another site where it would
have to be assumed that the dispersal parameters from the first site still apply.

The simulations done with future climate scenarios do not include the direct effects of an
increase in carbon dioxide. An increase in the growth rate resulting from carbon dioxide
fertilisation may be modelled simply by reducing the age of first reproduction. Plants will
also be more water efficient due to a decrease in water loss through their stomata. This
may enable them to survive in areas which are currently too dry. In order to make
MIGRATE's predictions more accurate, these effects should be taken into account.

Research into the basic natural history of species including their reproductive and
dispersal ecology and their current distribution needs to continue so that the quality of
the data on which models such as MIGRATE depend can be improved. Further
refinements to MIGRATE will be futile unless the quality of the data gathered for

estimating the existing parameters can be improved.
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APPENDIX A

Dispersal Equations and Related Definitions

Abbreviations

RMSD Square root of the mean square of displacement

Dy Half distance of dispersal i.e. distance over which the seed density falls
by a half

L Cell length

x Distance in the x direction

y Distance in the y direction

k Gradient of the straight line when an exponential curve is plotted on a
logarithmic axis

fx Dispersal density with respect to distance x from the seed source (one-
dimensional formula)

fr) Dispersal density with respect to distance r from the seed source (two-

The following equations have been normalised so that for the one-dimensional formulae
the area under the curve from x = -o0 to x = +eo sums to 1.0 and for the two-dimensional

formulae the area under the curve from r = 0 to r = +e0 sums to 1.0. It is assumed that

dispersal occurs equally in all directions. The formulae were obtained from statistical text

dimensional formula)

books unless otherwise stated.

Al Normal distribution

L ~(x)?
&)= 7= reisp 'CXP{RMSDZ}

In the above one-dimensional distribution the RMSD equals oV2 where o is the standard

deviation.
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A2 Bivariate normal distribution

r ~(r)’
)= RMsD 'CXP{RMSDZ}

In the above two-dimensional distribution the RMSD equals the standard deviation.

A3 One-dimensional negative exponential distribution
f(x) = $L.k.exp(~k|x])

The RMSD of a one-dimensional negative exponential distribution is given by:

RMSD = £
This formula allows the value of k£ to be set so that the RMSD of the negative
exponential distribution is the same as a given normal distribution (M. Hill, pers. comm.).

k is related to the half distance of dispersal by the equation:

-t

A4 Two-dimensional negative exponential distribution
This formula was derived from the one-dimensional negative exponential distribution by

M. Hill (pers. comm.).
L’K?
2n

f(n)= exp(-kr)

AS One-dimensional Weibull distribution

flx) = %L.(%)(%)(H) p[ (%) ]

where b is the scale parameter and c the shape parameter. When ¢ = 1 this distribution is

the same as the one-dimensional negative exponential distribution.
A6 Two-dimensional Weibull distribution

This formula is an extension of the one-dimensional Weibull distribution as derived by
Bergelson et al. ( 1993).

o2 G5 " 5] |
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APPENDIX B

Results from One-Dimensional Simulations

The simulations presented here were carried out in order to look at the sensitivity of
MIGRATE to variations in its parameter values and to investigate some of the issues
raised in Chapter 1 regarding the post-glacial migration of trees. An explanation of the
graphical output and parameters used in the model is given in section 2.1. Unless
otherwise stated, the lower graph displays the rate of population increase at distances
100 km, 110 km, 120 km, 130 km and 140 km from the origin. The initial distribution of
trees was set as being full occupation of the first 10 km of cells. The simulation results

are discussed in Chapter 4.
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Number of individuals per hectare
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L = 1.00 km; g = 50.00 m% T'= 25.00 years;
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Dispersal sums = 1.0000; Total = 1.0000; Furthest Cell = 18;

K= 1.00; No g in this simulation; No climatk

Outputinterval = 5 ¢ ions; Last g ion = 50
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B16. Migration rate = 0.17 km yr-l, o0 = 0.13.
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L = 1.00 km; a = 50.00 m"; T'= 25.00 years;

Survival probabilities = 0,000005, 0.91300, 0.91300, 0.81300, 0.91300, 0.91300, 0.91300, 0.91300, 0.91300, 0.00000;
£ = 83200.0, 160000.0, 160000.0, 160000.0, 160000.0, 160000.0, 180000.0, 160000.0, 160000.0, 180000.0;

RMSD1 = 11.00 km; P(RMSD1) = 1.000000;

Dispersal sums = 1.0000; Total = 1.0000; Furthest Cell = 5S5;

K = 1.00; No rounding in this simul s No

Output interval = S g ions; Last g ion = 50
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B17. Migration rate = 0.20 km yr, o = 0.03.
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In (Number of individuals per hectare)

L = 0.10 km; a = 50.00 m% T'= 25.00 years;

Survival probabilities = 0.000050, 0.91300;

S = 83200.0, 160000.0;

RAMSD1 = 0.20 km; P(RMSD1) = 0,.900000; RMSD2 = 8.70 km; P(RMSD2) = 0,100000;
Dispersal sums = 0.8000, 0.1000; Total = 1.0000; Furthest Cell = 350;

K =1.00; No ding in this sir lon; No restraints;

Outputinterval = 5 gt Last g =50
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B18. Migration rate = 0.20 km yr!, o = 0.09.
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In (Number of individuals per hectare)

L = 3.00 km; a = 50.00 m%, T'= 25.00 years;

Survival probabilities = 0.000050, 0.91300;

S = 83200.0, 160000.0;

Al offspring placed in parent celi; P(1) = 0.900000; RMSD2 = 8.70 km; P(RMSD2) = 0.100000;
Dispersal sums = 0.9000, 0.1000; Total = 1.0000C; Furthest Ceil = 12;

X = 1.00; No rounding in this simulation; No

Output interval = 5 g g9 ion = 50
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B19. Migration rate = 0.20 km yrl, a = 0.09.
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In (Number of individuals per hectare)

L =300 km; a = 50.00 m* T'= 25.00 years;

Survival probabilities = 0.000050, 0.91300;

S = 83200.0, 160000.0;

Al offspring placed in parent cell; P(1) = 0.980000; RMSD2 = 9.70 km; P(RMSD2) = 0.010000;
Dispersal sums = 0.9900, 0.0100; Total = 1.0000; Furthest Cell = 18;

K =1.00; No ding in this simulation; No climati

Output interval = S ger i Last ger ion = 50
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B20. Migration rate = 0.20 km yr-l, o = 0.08.
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L = 3.00 km; a= 50.00 m% T'= 25.00 years;

Survival probabilities = 0.000050, 0.91300;

S = 83200.0, 160000.0;

All offspring placed In parent ceil; P(1) = 0.998000; RMSO2 = 12.30 km; P(RMSD2) = 0.001000;
Dispersal sums = 0.9990, 0.0010; Total = 1.0000; Furthest Cell = 22;

K = 1.00; No rounding in this simulatien; No climatic restraints;

Output intervai = 5 generations; Last g ion = S0
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B21. Migration rate = 0.20 km yr-l, ot = 0.08.
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In (Number of individuals per hectare)

L =0.10 kam; a = 50.00 m*, T'= 25.00 years;

Survival probabilities = 0.000050, 0.91300;

S = 83200.0, 160000.0;

All offspring placed in parent cell; P(1) = 0.988000; RMSD2 = 12.30 km; P(RMSDZ2) = 0.001000;
Dispersal sums = 0.9960, 0.0010; Total = 1,0000; Furthest Cell = 350;

K = 1.00; No rounding in this simulation; No climatic restraints;

Output interval = S generations; Last generation = 50
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B22. Migration rate = 0.19 km yr, o = 0.08.
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20.04

In (Number of individuals per hectare)

L = 3.00 kny; a = 50.00 m*, T = 25.00 years;
Survival probabilities = 0.0000500, 0.91300;
S = 8.320e+04, 1.600e+0S;

All offspring placed in parent cell; P(1) = 0.999000; RMSD2 = 8.70 km; P(RMSD2) = 0.100000;

Dispersal sums = 0.9990, 0.1000; Total = 1.0980; Furthest Cell = 12;
K = 1.00; Random number seed = 1037; No climatic restraints;
Output interval = S g ions; Last ger ion = SO
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B23. Migration rate = 0.19 km yr'l, o = 0.09.
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Survival probabilities = 0.000050, 0.91300;

S = 83200.0, 160000.0;

All offspring placed in parent celi; P(1) = 0.999000; RMSD2 = 12.30 km; P(RMSD2) = 0.001000;
Dispersal sums = 0.9890, 0,0010; Total = 1.0000; Furthest Cell = 22;

K = 1.00; Random number seed = 1037; No climatic restraints;

Outputinterval = S g jons; Last i
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B24. Migration rate = 0.19 km yr'l, o = 0.07.



L = 0.25 km; a= 50.00 m T = 68.70 years;

Survival probabilities = 1,0000000, 0.7600;

S = 9.0008+08;

RMSD1 = 0.83 km; P(RMSD?1) = 1.000000;

Dispersal sums = 1.0000; Total = 1.0000; Furthest Cell = 20;
K= 1.00; No g in this simulation; No restraints;
Outputinterval = 5 g fons; Last g ion = SO

200.0

180.04

160.04

140.04

120.04

100.04

80.01

60.01

40.0

Number of individuals per hectare

20.04

0.0 +——+—r—r

0 25 50 75 100 125
Distance in km

@
o
1

4

n
o
Il

-
o
s

In (Number of individuals per hectare)

5 10 15 20 25 30
Generation number

B25. Migration rate = 0.20 km yrL,

A S S S mens S e S S S e e e e



L = 80,00 km; a = S00000.00 m? T'= 0.50 years;
Survival probabilities = 08600000, 0.60500, 0.58800, 0.74200, 0.58500, 0.53800, 0.57100, 0.50000, 0.50000;

S = 0,0008+00, 1.6008-01, 1.5800+00, 1.5608+00, 1.5606+00, 1.5808+00, 1.5808+00, 1.5808+00, 1.5608+00;
RMSD1 = 180.00 km; P(RMSD1) = 1.000000;

Dispersal sums = 1,0000; Total = 1.0000; Furthest Cell = 13;
K = 1,00; Random number seed = 3; No climatic restraints;

Outputinterval= S g 's; Last g ion = 80
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B26. Simulation of the migration of the collared dove using parameter values as given in Van den Bosch
et al. (1992). Migration rate = 81 km yr-1.
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L = 5.00 km; a = 50.00 m%; T'= 25.00 years;

Survival probabilities = 0.0000050, 0.91300;

S = 8.320e+04, 1.6008+05;

All offspring placed in parent cell; P(1) = 0.990000; RMSD2 = 35.00 km; P(RMSD2) = 0.010000;
Dispersal sums = 0.9900, 0.0100; Total = 1.0000; Furthest Cell = 35;

K = 1.00; No rounding in this simulation; No cllmati j

Outputinterval = 5 g ions; Last g ion = S0
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B27. Migration rate = 0.20 km yr', o = 0.02.
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L = 10.00 km; a = S0.00 m% T'= 25.00 years;

Survival probabilities = 0.0000020, 0.91300;

S = 8.320e+04, 1.600e+08S;

All offspring placed in parent cell; P(1) = 0.980000; AMSD2 = 75.00 km; P(RMSD2) = 0.010000;
Dispersal sums = 0.9900, 0.0100; Total = 1.0000; Furthest Celi = 40;

K= 1.00; No ing in this simulation; No climatk

Outputinterval = 10 g ions; Last g ion = 100
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B28. Migration rate = 0.20 km yr-l, o = 0.009. Population increase was observed at 300,’310, 320, 330
and 340 km.



Number of individuals per hectare

L = 10.00 km; a = 50.00 m%, T2 25.00 years;

Survival probabilities = 0.0000020, 0.9130C;

S = 8.3208+04, 1.6008+0S;

Al offspring placed in parent cell; P(1) = 0.900000; RMSD2 = 45.00 km; P(RMSD2) = 0.100000;
Dispersal sums = 0.8000, 0.1000; Total = 1.0004; Furthest Cell = 40;

X = 1.00; No rounding in this simulation; No ciimatic restraints;

Output interval = 10 ge! Last g =100
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B29. Migration rate = 0.19 km yr}, o = 0.01. Population increase was observed at 300, 310, 320, 330
and 340 km.



L = 10,00 km; a = 50.00 m*; T = 25.00 years;
Survival probabilities = 0.0000020, 0.91300;
S = 8.320e+04, 1.800e+05;
All offspring placed in parent cell; P(1) = 0.990000; RMSD2 = 75.00 km; P(RMSD2) = 0.060000;
Dispersal sums = 0.9900, 0.0600; Total = 1.0500; Furthest Cell = 40;

K = 1,00; No rounding in this simulation; No ctimatic restraints;

Output interval = 10 ger
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B30. Migration rate = 0.28 km yr-1, o = 0.01. Population increase was observed at 3

and 340 km.

10

20

LE S m e mumn

30

L wan T TTT——r——r—T T T

40 50 60 70 80 90 100
Generation number

00, 310, 320, 330



L = 10.00 km; a = $0.00 m’; T = 25.00 years;
Survival probabilities = 0.0000C20, 0.9130C;
© S= 8.3208+04, 1.600e+05;
Al offspring placed in parent celi; P(1) = 0.990000; RMSD2 = 50.00 km; P(RMSD2) = 0.060000;
Dispersal sums = 0.9900, 0.0600; Total = 1.0500; Furthest Cell = 25;
K = 1.00; No rounding in this simulation; No cfimatic restraints;
Output interval = 10 g ions; Last generation = 100
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B31. Migration rate = 0.19 km yr'!, o = 0.01. Population increase was observed at 300, 310, 320, 330
and 340 km.



L = 5.00 krm; a = 50.00 m%, T'= 25.00 years;

Survival probabilities = 0.0000015, 0.91300;

S = 83200.0, 180000.0;

Al offspring placed in parent cell; P(1) = 0.996000; RMSD2 = 75.00 km; P(RMSD2) = 0.001000;
Dispersal sums = 0.86€0, 0.0010; Total = 1.0000; Furthest Cefl = 75;

K = 1.00; No rounding in (hh simulation; No climatic restraints;

Output interval = 10 g ; Last ge ion = 150
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B32. Migration rate = 0.10 km yr}, & = 0.005. Population increase was observed at 300, 310, 320, 330
and 340 km.
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L = 10.00 km; g = 50.00 m"; T'= 25.00 years;

Survival probabilities = 0.0000080, 0.91300;

S = 8.3208+04, 1.8000+03S;

All offspring piaced in parent cell; P(1) = 0.990000; RMSD2 = 75.00 km; P(RMSD2) = 0.010000;
Dispersal sums = 0.9900, 0.0100; Total = 1.0000; Furthest Ceil = 30;

K = 1.00; No rounding in this simulation; No climatic restraints;

Output interval = 10 generations; Last g jon = 70
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B33. Migration rate = 0.50 km yr'l, o = 0.02.



Number of individuals per hectare

L = 3,00 km; a = 50.00 m% T= 25.00 years;
Survival probabilties = 0.0015000, 0.91300;
S = 8.3208404, 1.6008+05;

Al offspring piaced In parent cell; P(1) = 0.990000; RMSD2 = 8.70 km; P(RMSD2) = 0.010000;
Dispersal sums = 0.9800, 0.0100; Total = 1.0000; Furthest Cefi = 16;

K =1.00; No Ing in this sl No cfi
Output interval = 10 g ions; Last g ion = 70
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B34. Migration rate = 0.49 km yr-l, o = 0.20.



L = 3.00 km; a = 50.00 m% T'= 10.00 years;

Survival probabiiities = 0.0000500, 0.91300;

S = 35208404, 8.4000+04;

All offspring placed in parent cell; P(1) = 0.990000; RMSO2 = 8.70 km; P(RMSD2) = 0.010000;
Dispersal sums = 0.9900, 0.0100; Total = 1.0000; Furthest Cell = 30;

K = 1.00; No rounding in this simulation; No climatic restraints;

Output interval = 10 g ions; Last g ion = 70
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B35. Migration rate = 0.34 km yr-l, o = 0.12. -



L = 10.00 km; @ = 50.00 m”; T'= 10.00 years;

Survival probabilities = 0.0000020, 0.96600;

S = 3.520e+04, 8.4008+04;

RMSD1 = 75.00 km; P(RMSD1) = 0.010000; All offspring placed in parent call; P(2) = 0.880000;
Dispersal sums = 0.0100, 0.9800; Total = 1.0000; Furthest Cell = 30;

X = 1.00; No rounding in this simulation; No climatic restraints;

Output interval = 10 generations; Last g ion = 150
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B36. Migration rate = 0.21 km yr'}, o = 0.01.Population increase was observed at 300, 310, 320, 330

and 340 km.
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