
Durham E-Theses

A code division multiple spread spectrum local area

network.

Mattingley-Scott, Mark Alistair

How to cite:

Mattingley-Scott, Mark Alistair (1989) A code division multiple spread spectrum local area network.,
Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/1451/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/1451/
 http://etheses.dur.ac.uk/1451/ 
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


A CODE DIVISION MULTIPLE ACCESS SPREAD SPECTRUM LOCAL AREA

NETWORK

Mark Alastair Mattingley-Scott, B.Sc.

A thesis submitted in accordance with the regulation for the degree of Doctor of Philosophy

in the University of Durham, Department of Applied Physics and Electronics

1989

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

- 6 JU NI 1 91



A Code Division Multiple Access Spread Spectrum Local Area Network

Mark Alastair Mattingley-Scott

ABSTRACT

This thesis describes the application of Spread Spectrum techniques to Local Area

Networks. Spread Spectrum communications were developed to provide a secure means

of transmitting intelligence during times of hostility, and their applications have been

increasing since they were first discovered. One of the main applications for Spread

Spectrum techniques, and pseudo random binary sequences in particular, is in the optimum

use of communication channels. A number of Spread Spectrum code types have been

described in the open literature, such as Maximal Length codes, Gold Codes, Kasami

Codes and Bent codes. Until now, Spread Spectrum systems always used these

determinstic codes to spread and de-spread data. A new method based on an analogy

between equilibrium thermodynamics and the solution of combinatonal minimisation

problems of order 0(n!), known as simulated annealing, is used to generate code sets.

These code sets can then be used to modulate data in any Spread Spectrum system.
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CHAPTER 1

INTRODUCTION

The work described in this thesis is concerned with two aspects of communications: The

combination of Local Area Network (LAN) and Spread spectrum (SS) coding techniques.

In order to provide a background to the work contained, a brief history of the two subjects

is included.

1.1 Historical Background

The use of electrical signals to communicate information dates from before the start of

this century - In the 1830's the first telegraph system was invented by Morse, Wheatstone

and Cooke and four decades later the telephone was invented by Alexander Graham Bell.

Towards the end of the nineteenth century the first telex system was introduced and, with

it, a simple acknowledgement protocol which allowed operation of the equipment without

human supervision. During the second world war the importance of security meant that

much effort was devoted to Making communications secure, and this resulted in advances

in cryptography and information coding schemes. One such was Spread Spectrum, which

attempted to prevent unauthorised reception of radio signals by changing the frequency

of operation in a predetermined manner. If the receiver and transmitter knew the correct

frequencies and the order in which they were to be used, the chance that an eavesdropper

would correctly intercept a signal was low. Interestingley, one of the first patents on this

method is held by the actress Hedey Lamarr [1].

In 1949 Claude Shannon defined the capacity of a communication channel to transfer

information in terms of the Signal to Noise Ratio (SNR) of the channel. The effect of his
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work on the progress of communications was considerable since it showed that, by

choosing a suitable coding method, the maximum channel information capacity could be

approached [2]. The next few years saw a large effort to find suitable coding schemes that

would realise the theoretical limit determined by Shannon and this resulted in the work

of Viterbi, Bose, Chaudhuri, Hocquenghem, Reed, Solomon and others. The realisation

of a coding method that would allow information to flow at the maximum channel capacity

for a given noise level has never been reached, although some specialised codes have

come close [3]. Using the concept of channel capacity, Spread Spectrum provided a way

to utilise the channel efficiently, with the ability to adapt to changing conditions such as

noise, jamming, or the presence of other signalling.

At the same time as Shannon derived the channel capacity, work was being carried out

on the first electronic digital computers. These computers were used in government

agencies, large corporations and some universities. Facilities were centralised with a

maximum of two or three computers per installation. As the number of computers within

an organisation grew, the need for computer to computer communications became

important, allowing access to all the resources available with the consequent improvement

in system reliability through redundancy. In the late 1950's the United States Advanced

Research Projects Agency (ARPA) started work that led to the development of Wide Area

Networks (WAN), Local Area Networks (LAN) and Computer Communications as a

whole. This resulted in the construction of a communications network at the University

of Hawaii to allow contractors to the U.S. Department of Defence to share computing

resources.

The ARPA computer network thus formed was one of the first networks that connected

many remote, autonomous computers. It is from the ARPA network that we will derive
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our definition of a distributed computer system [4]. A distributed system is one in which

the computing functions are dispersed among several physical computing elements

[5].

The issue of costs has been paramount in the development of computer networks; when

the ARPA network was built, computers were very expensive compared to the

communications systems used. The relative cost of computing resources compared to

communications resources has dropped, and this has driven the development of computer

networks greatly. It is now feasible to place small, inexpensive computers at remote sites,

connected to one or more large central computers, to perform a variety of tasks, for example

industrial process monitoring. In more recent years we have seen a proliferation in types

of network, varying in physical size, usage and communications mechanism. Networks

now exist that span the earth, while others cover only a few centimetres. Applications vary

from inter-processor communication within multiprocessor machines to world-wide

remote security monitoring. Communications mechanisms range from low bandwidth

telephone circuits to very high bandwidth satellite links and fibre optic links.

The ARPA network transferred data by breaking it down into a set of constant sized lumps,

or packets. These were routed across the network using a number of methods or protocols.

In particular, at the University of Hawaii a method for the transmission of such packets

over a satellite link was developed called ALOHA [6].

The principle of operation of ALOHA, based on the assumption that a satellite has a large

bandwidth but a long fixed delay, was to allow any node to transmit at any time. Each

node had to acknowledge the successful delivery of packets by waiting for them to be

re-broadcast from the satellite on its downlink. If the sent message was not received within

a fixed maximum time, or the message received had been corrupted by another message,
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then the transmitter waited for a time determined by a Poisson distribution before

attempting re-transmission. Various improvements to the basic ALOHA protocol

followed, resulting in Slotted ALOHA, in which all transmissions had to fall within well

defined time slots. This latter method is the basis for many of current local area network

access mechanisms, including the Ethernet.

Other types of LAN were developed in the 1970's and early 1980's, and many of these

were based on the ring structure. The impetus for using a ring network came from the

manufacturing industry, where cheap cabling and relatively long distances occur.

In all examples of ring networks, data is sent serially around the ring, each node receiving

and re-transmitting in turn. A more detailed taxonomy of local area networks is included

in chapter 2. Current LAN's can be categorised according to one or more constraints, for

example speed of response, maximum message delay time, access mechanism, signalling

method and maximum or minimum throughput. Among the more useful categorisations

are ones which distinguish between the different methods for determining access to the

network. This includes Demand Assignment (DA) networks, where access to the network

is assigned based on a stated need by a controller, Polled and Poll-Response networks,

where access to the network is allocated according to some ordering of nodes; and

Contention networks, where access is not restricted.

1.2 Objectives

The background for the work contained in this thesis is the requirement for a high reliability

local area network for use on ships. In 1976 the Ministry of Defence started work on a

Combat Systems Highway (CSH) for use as a command and control system in modern

frigates. This work proved to be highly successful and resulted in the specification of a

defence standard defining the operation of all future naval networks [7]. As a result of the
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success of the first CSH, a series of documents [8] was prepared which studied the impact

of future requirements and operational scenarios on computing and communication

requirements in ships. The reports compared various conventional computer architectures

and provided estimates of the likely communications bandwidth needed.

It was felt to be unrealistic to predict the future needs of the Navy with accuracy. In

particular, bandwidth requirements were felt to be subject to two opposing trends. First,

the need for increased bandwidth to accommodate teleconferencing type facilities and

high speed raw data for gun-aiming etc. and second, the trend towards intelligent peripheral

devices connected to networks. An example of the latter is the GKS [9] graphics standard,

which communicates graphics information as high level graphics primitives such as

squares, circles, lines, points etc., rather than as the raw video data. The future requirements

lie in the middle of these two extremes, with the bandwidth requirements being largely

determined by the technology.

The Combat Systems Highway is a Time Division Multiple Access (TDMA) LAN and

has fixed capabilities which cannot easily be extended. Addition of further nodes to the

polling list, or sudden demands for increased bandwidth from specific nodes will adversely

affect the system performance, and this was highlighted as an important fault of present

approaches. The only workable solution was to try and predict the requirements, and add

further capabilities, where necessary, to allow for changes. TDMA LANs operate such

that the network medium is quiet for a large part of the time, with short bursts of high

bandwidth data appearing occasionally, unless the network is heavily loaded. This mode

of operation places constraints on the network interface hardware in each node, because

it has to be capable of operating at the full system data rate. In Ethernet for example, the

system data rate is 10MBps but on a heavily loaded system the point to point data rate

may only be 10's of KBps. This represents a poor utilisation of the available bandwidth.
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The ideal system would adapt the performance of the network to the instantaneous network

loading, providing a high throughput on demand, with a low throughput for highly loaded

networks. In addition, the possibility of having a prioritised data rate at each node is a

logical extension to this concept.

1.3 The Application of Spread Spectrum Techniques to Local Area

Networks

The use of Spread Spectrum techniques to provide a multiple access mechanism had been

known for some time [10] and other workers in the area were using Code Division Multiple

Access techniques in Fibre-Optic networks. The use of direct modulated data, with a

coaxial cable based network is a more evolutionary approach to the use of Spread Spectrum

techniques. The use of fibre optic signalling has become feasible at very high data rates

and it has been suggested that the only way to exploit the full benefits of the very large

bandwidth of monomode coherent fibre systems is with some form of Spread Spectrum.

Modulation of coherent light at 10's of Gigabits per second is feasible, but on a 10 THz

fibre still represents a thousandfold waste in channel capacity. With the incorporation of

direct optical modulators and correlators, Spread Spectrum would provide a method for

using the full capacity.

1.4 Thesis Structure

In CHAPTER 2, the subject of Local Area Networks is covered in detail. The ISO OSI

seven layer protocol standard is discussed. A short taxonomy of Local Area Networks is

included for completeness.

CHAPTER 3 Introduces the requirements for spread spectrum systems and LAN's in

particular. The chapter contains an overview of spread spectrum concepts such as process
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gain (PG), channel capacity (C), chip rate and finite field algebra. The large variety of

deterministic spread spectrum sequences are discussed which can be used in CMDA

applications, with derivations of relevant properties. Non-deterministic sequences are

introduced and the technique of Simulated Annealing (SA) described with its application

to code set design. Appendices are included which cover the specific problems of

correlation bounds and the theory of Galois Fields.

CHAPTER 4 describes the work done on the simulation of correlation values for a sequence

set of maximal-length sequences, and shows the results of these simulations. A listing of

the simulator program is included in APPENDIX F, and a glossary of the functions in

APPENDIX G.

CHAPTER 5 descibes the theory of simulated annealing, and explains how it is used to

construct arbitrary length and size code sets for CDMA applications such as LAN's. A

listing of the software is included in APPENDIX H

In CHAPTER 6 the Spread Spectrum Local Area Network is described, along with the

construction of a prototype to demonstrate its viability. A listing of the Prototype network

controller software is included in APPENDIX L, and a set of circuit diagrams for the

Prototype in APPENDIX M

CHAPTER 7 completes the work on Spread Spectrum LAN's, with a description of the

possible mechanisms for managing the network, and for coping with the problems inherent

in this design. Security of code sequence distribution is described, using one of several

possible encryption methods. APPENDIX E descibes three popular encryption methods.

CHAPTER 8 includes the results of the code set design program. Several code sets have

been designed and they are illustrated graphically in this chapter.

CHAPTER 9 Concludes the main body of the thesis.
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APPENDIX J and APPENDIX K are concerned with the Durham University Text

Compressor. They describe the operation of the Text Compressor.
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CHAPTER 2

LOCAL AREA NETWORKS

In this chapter we will produce a definition of the term Local Area Network and describe

in detail the operation of certain types of Local Area Network. Particular attention will be

drawn to the requirements of a LAN that supports the functions of command and control

in a demanding environment. The intended application for the work described in this thesis

is as the communications system for a ship-borne command and control system.

2.1 Types of Local Area Network

Local Area Networks can be classified in many ways, but it is convenient to consider the

topology of the network as its classification feature. There are several possible topologies:

Rings, Buses, Stars, Mesh, etc [11]. Star networks are not considered here because of their

reliance on a single vulnerable central controller. Mesh networks have potentially the best

reliability and resistance to damage because of the inherent redundancy of the

communications paths. The problem of routing messages around a mesh network has not

been solved except in a few special cases and it is because of this that they are little used

in local area networks. The technique described in this thesis is applicable to mesh

networks, but because of multiple signal pathway interactions (multipath) the efficiency

of the network suffers, so they will not be described in detail here.

Of the remaining types of network topology (rings and buses), there are six main types of

access mechanism:
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2.1.1 Slotted Rings

This access mechanism was developed by Pierce [12] and work still continues at

Cambridge University. A fixed number of slots circulate around the ring continuously.

The first data bit of each slot marks that slot as either full or empty. If a node wishes to

transmit data, it waits for an empty slot, marks the slot as full and sets the destination

address, data bytes and status bits in the slot. Once the slot has returned to the originating

node, it is marked as empty and can then be used by other nodes. The main advantage of

the slotted ring is that it guarantees a maximum waiting time before a node can send data.

The main disadvantages of the slotted ring are that it has low utilisation and the slot size

is fundamentally related to the ring length. In the Cambridge Ring, of the thirty seven bits

in a slot, sixteen are data, eight are source address, eight are destination address and there

are five control bits; and it requires a centralised monitor service to handle initialisation

of slots and removal of corrupted slots, see Figure 1 below.
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Figure 1 : Slotted Ring Network Topology

2.1.2 Register Insertion Rings

This type of ring was developed originally at Ohio State University [13]. Operation of the

access mechanism is explained with reference to Figure 2 below.

First, consider the case in which the node has no data to send, but is passing packets on.

When the ring is idle, the input pointer points to the rightmost position of the shift register,

and as a packet is received it is inserted bit by bit into the shift register, with the input

pointer shifting left, once for each bit. Packets begin with an address field, and as soon as

the address is shifted in, the node decodes the address. If the address is valid (i.e. the

message is destined for this node) the remainder of the packet is shifted into the shift

register and copied into the node. The packet can then be removed, or passed on to further

11



INPUT POINTER

INPUT FROM RING

11111111111111111111I
UTPUT TO RING

1111111111111111111111

OUTPUT TO STATION

INPUT FROM STATION

Figure 2 : Register Insertion Ring Topology

nodes if it is intended for broadcasting. If the packet was not destined for this node, then

bits are shifted in at the input pointer and shifted out at the right hand side of the shift

register, until no more bits are present or another packet arrives for decoding.

Second, consider the case when the node has data to send. A packet to be transmitted is

placed in the output buffer. If the ring is idle, the packet can be shifted onto the ring. If

the ring is not idle, then the node waits until a portion of the shift register equal to the

length of the packet to be transmitted becomes free. The output buffer is then copied into

the shift register and the input pointer adjusted to allow for the extra data to be sent. The

main advantage of this access mechanism is that it achieves the maximum ring utilisation

12



SEM ID EFL

FREE -TOKEN

SENDER
-TRANSI4 fl

RECEIVER

RECEIVER

possible; the ring is never idle unless there is nothing to transmit. The main disadvantage

is that address fields can become corm. pted and never leave the ring. This problem is often

overcome by the use of error correcting codes.

2.1.3 Token Rings

This is probably the oldest ring access mechanism, originally developed in 1969 and called

the Newhall loop after its designer [14]. See Figure 3 below.

WAIT

FINISH
SENDER	 RECEIVER

FREE -rc)KaN

Figure 3 : Token Ring Topology
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In the wait state, the Sender (marked S) waits for a free token. In the Transmit state, the

sender changes the token status to busy and appends data to it. The Receiver (marked R)

copies the data and passes the token on, setting status bits in the token on the fly. In the

Finish state, the sender generates a free token once it has received the transmission header

back from the receiver.

There are two error conditions that would stop the ring working: loss of the token and

persistent busy token. To overcome this, one node is designated as acting master. This

node handles recovery of missing tokens and removal of busy tokens after two consecutive

circuits around the loop. The main advantage of the token ring is that traffic can be regulated

by use of priorities and variable length packets. Its main disadvantages have already been

mentioned.

2.1.4 Carrier Sense and Collision Detect Bus Networks

The most commonly used access mechanism for bus/tree topologies is Carrier Sense

Multiple Access with Collision Detection (C.S.M.A./C.D.). To transmit data, a node listens

to the medium until there is no activity. Transmission then begins until either the data is

transferred successfully or a collision occurs. If another node accesses the medium during

the end to end propagation delay of the medium this causes a collision. This normally

catastrophic event is countered by jamming the network for a short period of time to let

all the other nodes know that there has been a collision, and then waiting for a short random

time before attempting transmission again. Packets must be at least twice as long as the

propagation time of the network, in order that the collision detection works properly. See

Figure 4 below.
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A BEGINS TRANSMISSION

B BEGINS TRANSMISSION

COLLISION

B DETECTS COLLISION

111111111E	

A DETECTS COLLISION

Figure 4: Carrier Sense Multiple Access Topology

2.1.5 Token Bus Networks

With this access mechanism, the nodes on the bus form a logical ring so that bus access

for a given node is assigned either on a round-robin basis, or prioritised. See Figure 5

below.

A control packet (token) is passed to each node in turn and this allows the node to transmit

data. When it has finished, or run out of time, it passes the token to the next node in

sequence. The problem with this mechanism is that it requires a sophisticated management

function, for the following reasons: To add a node to the polling order, new nodes must

be given the opportunity at regular intervals to make themselves known; To remove a
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/
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SUCCESSOR = C

PREDECESSOR = A

NODE C	 NODE D

Figure 5 : Token Bus Topology

node from the polling order, the node has to inform its predecessor of the address of its

successor to splice the poll; A cooperative decentralised mechanism for initialising the

ring is necessary. Solutions to these problems are included in the IEEE 802 network

standard on token buses [15].

2.1.6 Poll Response Bus Networks

In this type of network, a Bus Master provides overall control of the nodes and allocates

permission to transmit to them, normally in some agreed order: round robin or priority

based for instance. If the bus master fails, then one of the other nodes automatically

becomes the new bus master after a suitable period of time.
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2.2 The ARE Serial Highway

The current operational command and control system local area network used by the British

Royal Navy is the Admiralty Research Establishment (A.R.E.) Serial highway (A.S.H.)

[16]. This network is a poll response bus network. Although poll response buses have

disadvantages in terms of delay, at the time that the ASH specification was drawn up, a

poll response bus offered considerable advantages compared to the available networks.

These are listed below:

Guaranteed maximum message delay time. Given that there are a fixed number of nodes

on the network at any one time, and that each message is limited in length, then the

maximum access delay time is equal to the product of the number of nodes and the

maximum message length in seconds.

Redundancy of access medium. In the ASH, the physical medium is replicated up to three

times for survivability. The routing of the three separate cables depends on the type of

ship to which the network is to be fitted..

Redundancy of the Medium • Access Controller (MAC). By duplicating the function of

MAC in more than one place, the effects of damage to the active MAC or damage to the

physical medium resulting in breakage can be minimised. Ideally each node would have

the capability of being the MAC. If the active MAC was damaged in the course of

hostilities, then the remaining nodes would decide which was to assume the responsibility

of being the new MAC and continue after a short delay.

2.3 Standards

One of the problems that the great diversity of LAN's and WAN's created was that of

compatibility between different types of network. As potential for confusion was high
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various standards bodies started work on suitable standards for communication between

equipments (protocols) early in the evolution of LAN's and WAN's. This work lead to

the ISO Open Systems Interconnection (ISO-OSI) seven layer protocol reference model [17]

and the CCITT V- and X- protocol specifications. The ISO-OSI seven layer model defined

protocol layers for data transmission based on the following principles [18].

A Layer should be created where a different level of abstraction is required.

Each layer should perform a well defined function.

The function of each layer should be easily achievable.

The interface between layers should be chosen to minimise the information flow across

the interface.

The number of layers should be large enough to allow distinct functions to be in separate

layers and small enough to prevent the whole being too unwieldy.

A description of the function of each of the seven layers is given below:

2.3.1 Physical Layer . ..

This is concerned with the transmission of raw bits over the communication channel.

Typical parameters are signalling speed, line voltages/currents, optical levels and interface

specifications to computer equipment.

2.3.2 The Data Link Layer

This layer provides error free transmission to the next layer, the Network Layer. It does

this by assembling input data into data frames and handling acknowledgement (ack) and

negative acknowledgements (nack).
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2.3.3 The Network Layer

This layer controls how packets are routed within a network. The routing information

could be fixed within a given network, or dynamically varying because of external stimuli.

The Network Layer is there to make this transparent to the next layer up.

2.3.4 The Transport Layer

The function of the Transport layer is to accept data from the Session layer and split it

into packets for transmission by the Network Layer. It also determines what type of

communication is to be carried out; normally this is an error free point to point connection

that delivers packets in the order in which they are sent.

2.3.5 The Session Layer

This is the users' interface to the network. Initiation of connections between hosts is

handled by this layer and once a connection is established it handles the dialogue between

hosts.

2.3.6 The Presentation Layer

This layer performs functions that are sufficiently common to warrant finding a general

solution for them, often available as operating system or library functions; such as text

compression of large documents and encryption of sensitive data.

2.3.7 The Application Layer

The purpose of the Application layer is up to the individual user, but a good example is

the problem of automatic partitioning of problems among computers on the network. This

would be handled by the Application layer.
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Examples of the CCITT V- and X- protocols are V24 which defines the interface between

computers and terminals, X25 which defines the access protocol for packet switched

networks( X25 corresponds to the lowest three layers of the OSI mod4 and X29 which

defines the computer to Packet Assembler/Disassembler (P.A.D.) Interface.

2.4 The Future

In time, it is likely that only a few of the currently available networks will remain. The

Ethernet, standardised as IEEE 802.3 is already firmly established as a commercial and

academic network throughout the world. The Token Ring, or IEEE 802.5 has IBM as its

main sponsor and is also well established. Other standards, such as Token Bus (802.4)

and metropolitan area network (802.6) have yet to make their mark. As was mentioned in

chapter 1, for ultra high speed networks using Terahertz bandwidth coherent optical fibre,

the network delay completely dominates the performance. Characteristics are like the early

ALOHA satellite links, but over a contained network. In this case CDMA and Spread

Spectrum has much to offer with good capacity utilisation using relatively simple

transmitters and receivers.

2.5 Spreadnet Operation

Each node on the network uses a binary code sequence to modulate the data to be

transmitted, effectively spreading the bandwidth of the signal, and may transmit

independently without first sensing the media. Interference between simultaneous

transmissions is avoided by careful selection of the codes used, thus eliminating the

problems of contention present in such systems as Ethernet. Nodes may select which

messages they wish to receive by use of the appropriate locally generated code sequences

to demodulate the data. A transmitter may broadcast to more than one node by transmitting

on communal codes, or to a single node by choice of that nodes private code.
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Conventional LAN systems all use TDMA in one way or another. Any node in a system

that wishes to gain access to the medwrimust wait until such time as no other node is using

the network. The node must then pass data into the network at a rate that utilises the full

bandwidth of the network. This implies the use of high speed logic circuits in a system

where the average data rate for each point to point link may be much lower. It is in this

area that high speed networks are limited, so any scheme that provides maximum network

throughput for a given bandwidth will be of benefit. For instance, in a 100 node system,

with each node transmitting at 1 Mbit / second, a TDMA system would require at least

200 MHz bandwidth, which is clearly not realisable using present day technology. In

Spreadnet a node may transmit continuously at a rate that closely resembles its average

data rate, since simultaneous transmission by many nodes is allowed. This lowers the peak

processing load on each node. At the receiver a phase shifted version of the code is

generated and compared to the received signal to determine the phase of the incoming

signal.

From the point of view of asingle node, the signals from all the other network users appear

as noise. As more users joidthe network, the noise power will increase and the channel

capacity available to each link will be reduced.
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CHAPTER 3

SPREAD SPECTRUM

3.1 Introduction

In this chapter we shall review the properties of spread spectrum communications

techniques that are relevant to the work contained in the rest of this thesis.

Pickholtz defines Spread Spectrum as :

A means of transmission in which the signal occupies a bandwidth in excess of the

minimum necessary to send the information; the band spread is accomplished by

means of a code which is independent of the data, and a synchronised reception with

the code at the receiver is used for de-spreading and subsequent data recovery.

The technique involves increasing the bandwidth of a signal or data stream by the use of

coding techniques, in order to gain one or more of the advantages listed below:

Reduce the energy density of the data, i.e. disguise the information contained in the spread

signal as noise to prevent detection by an unauthorised listener.

Allow reception of the embedded signal in the presence of noise, e.g. intentional jamming

noise, electrical interference, or other signals using the same bandwidth during the same

time interval.

The second condition includes three types of interference.

The ability of spread spectrum to decode information in the presence of jamming is

especially useful in the military communications field.
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Electrical interference from radio transmitters and high current switching is of a burst

nature, and is a problem in a wire based communications system.

Large machinery starting and stopping and impulse interference caused by coupling

between wires causes short bursts of noise across a large bandwidth. Spread spectrum

techniques are able to cope with this type of problem.

In practice the total interference may be a combination of these three.

The applications described in this thesis require that more than one dialogue can be held

at the same time and in the same bandwidth. Suitable codes can be chosen in order to make

this possible.

3.2 Principles

A Spread Spectrum signal is one in which a signal is spread over a frequency band

larger than the minimum bandwidth necessary to transmit the information being

sent. The reference to the minimum bandwidth in the above refers to pioneering work

done by Claude Shannon in the late 1940's at Bell Laboratories on information theory.

As a result of studies of the entropy of a communications channel, Shannon demonstrated

that the minimum bandwidth required to transmit a signal without any errors was given

by the equation

C = W log2(1 +)
N

where

C = Error free information rate in bits per second

W = Bandwidth in hertz

S = Signal power
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N = Noise power

This equation relates the ability of a channel to transfer information without error within

the signal to noise ratio of the channel to the bandwidth used to transmit the signal. It is

clear from the above that an increase in W will result in an increase in C and it is this

increase in capacity which lies at the heart of spread spectrum.

The amount of spreading is usually measured by the Processing Gain Gp and this is defined

as:

G =
W 

-	
1 

P D	 Jamming Margin
where D is the data rate

Where W>>D and the channel bandwidth 147,=-W.

Data spreading and de-spreading can be considered as two successive multiplications by

an identical spreading signal. Any jamming or interference is multiplied by the spreading

signal only at the receiver and so its bandwidth will be spread to a minimum of W. As a
pj

result, the received energy density of the interfering signal or noise will be E„ = %-i-, and the
P,

received energy density of the data will be Ed= IT, where P, is the signal power and Pi is

the jamming or interference power. Since the bit error rate or BER is proportional to the

ratio r, this ratio is important in defining the error rate of the system. Rewriting:

Ed Ps W
--E-n=i7ix-r--)

and so the jamming power to signal power ratio is

Ed

P D Ed
--.—x—.—
Pi W E„ Gp
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Thus relating the jamming margin to the minimum bit energy to noise density ratio.

3.3 Types of Spread Spectrum

There are four main types of spread spectrum modulation; direct sequence, frequency

hopped, time hopped and chirped. Hybrid forms exist, and are basically combinations of

the above four simple types of spread spectrum. The best known example is the backup

communications link for the Space Shuttle, which uses a combination of direct sequence

and frequency hopping [19]. An explanation of each of the simple types is given in the

next section with, in the case of frequency hopping, details of two important variations.

3.3.1 Direct Sequence

This type of modulation usually employs a code sequence to phase modulate a carrier

signal, or involves directly modulating the channel with the sequence itself. There are two

main groups:

Binary Phase Shift Keying (PSK) and Quadrature Phase Shift Keying (QPSK).

M-ary modulation in which data is grouped into blocks, which are used to produce a code

sequence for transmission.

Spectrum spreading is achieved by multiplying each digit of a stream of data digits d, by

a pseudo-random spreading sequence, x. The bandwidth of the data stream is less than the

bandwidth of the spreading sequence. Multiplication of two independent signals produces

a signal whose spectrum is the convolution of the spectra of the two original signals and

so the product signal will have approximately the bandwidth of the larger bandwidth

spreading signal.
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Spectrum de-spreading is achieved by multiplying the spread signal x.d by the spreading

sequence x. The result is the signal x(x.d) = d. The choice of the sequence x that satisfies

the above condition is crucial to the operation of a spread spectrum system, but to operate

well it must have good auto correlation properties and cross correlation properties. These

will be dealt with later in the chapter, and treated qualitatively.

The processing gain of the Direct Sequence Spread Spectrum (DSSS) system is

independent of the frequency of the carrier signal and so the processing gain can be written

as:

G p = pulse width ofsequence x data rate

3.3.2 Frequency Hopping (FH)

The basic principle is to change the carrier frequency of a signal in a pseudo random way.

The receiver knows the carrier frequencies and the sequence in which they will be visited

and so can pick up data and re-assemble it. There are two basic types of frequency hopping

systems: Fast FH transmits one or more data bits per frequency; slow FH transmits less

than one data bit per frequency. Data is normally demodulated non coherently, i.e. with

possible loss of phase coherence between the transmitter and the receiver, in contrast to

DSSS, but there are techniques for retaining phase information at the expense of further

bandwidth.

3.3.3 M-ARY or Multitone FH

There are two variations on this type of multi-bit FH. The first transmits data as blocks of

length k mapped into sequences of length 2k, drawn from a set of 2k orthogonal sequences.

The sequence specifies a series of frequencies which are multiplied by the previously
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transmitted sequence and sent over the channel. On reception the signal is again multiplied

by the previous sequence and a maximum likelihood detector used to extract the original

sequence. This is then used to decode the block of data bits.

The second type of M-ARY FH is multitone frequency shift keying PH used mainly in

satellite and mobile radio communications. The transmitted data from each user is formed

into blocks of bits and these subsequently generate a discrete time varying level Q. This

is multiplied by the unique address of the receiver to produce a series of frequencies which

are transmitted over the channel. On reception the received signal is multiplied by the

address of the receiver to yield the original data block. This is illustrated in Figure 6 below.

ft
t[SEC]
LT

t SEC] t [SEC]

RECEIVE
ADDRESS X = {0,1.2,3,4}

DETECTION
SPECTRUM	 ADDRESS MATRIX

Ym

( 0 = INTERFERENCE SIGNAL)

Figure 6 : Multitone Frequency Hopping

The processing gain of a frequency hopped system is given by
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hopped bandwidth 
L/P- data bandwidth

3.3.4 Time Hopping

In a time hopped system, the transmitter replaces each data bit to be transmitted by a short

duration pulse whose time position in the data bit is determined by a pseudo random

sequence. This type of modulation is very often used in OR-channel multiple access

systems, i.e. ones in which the channel behaves like an or-gate (e.g. fibre optic systems).

3.3.5 Pulsed Frequency Modulation or Chirp

This technique is used mainly in radar systems where the requirements are for long range,

or high peak power. If the change in frequency over time is discrete or it changes in a

pseudo random manner, the modulation is spread spectrum.

3.4 Spectrum Measures

In a spread spectrum system, the whole bandwidth Bto, is used to transmit all the data

sources. This is done by taking the data from each source and modulating it with a noise

or noise like signal and transmitting this instead. To facilitate multiple access

communications, all that is necessary is that the noise signal used by a given data source

be chosen from a set of orthogonal noise signals, i.e. a set with suitable auto-correlation

and cross-correlation properties.

3.4.1 Auto and Cross Correlation

The operation of correlation involves comparing two signals. In mathematical notation:

1.-

Cv =	 x(t)y(t)dt
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i.e. the correlation of two signals x(t) and y(t) is the time-sum of their product. If x(t) and

y(t) are different, then the operation is cross-correlation. If they represent the same signal,

but with a time shift then the operation is auto-correlation. In this case the formula can be

re-written:

T=...
Cx, = i x(t)x(t -T)dt

T=0

Where t is the relative shift between the signal and its replica. If the time period is restricted

to a finite one, the auto-correlation of a single pulse for a time shift of t =0 is shown below

and as a function of time shift in Figure 7.
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Figure 7: Autocorrelation Function
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As can be seen, the correlation value CM is a measure of how much agreement there is

between the signal and its replica. The peak value is attained when the signal and its replica

have zero phase difference, or t =0.

3.4.2 Criteria of Randomness

First, we shall see how the criteria of randomness can be extended to discrete sequences

as well as continuous signals.

For a discrete random variable n(a,b), where p(a)=p(b)=1/2 the following conditions apply:

number oftimes aoccurs p (a ) ,
Lt — = i

. -)- number °fames b occurs p (b )

and:

v(i) 
nId_t-v(i + 1) 

-[p(a)i p(b)][p(a)i+lp(b)] = p(a)-I =2

Where v(i) is the number of runs of i a's flanked by b, e.g.: baaaaa....aaaaab.

Suppose 1 is assigned to a and -1 to b, so any pair of tuples (1,1), (1,-1), (-1,1), (-1,-1)

may occur with equal likelihood. If the product of two terms in this sequence [y]; y r x y„.h

is formed, where h is a fixed integer, the auto-correlation is given by:

1 r'll	 Oifh � 0
C(h)= Lt 	  I Yrr+h-4-(2j -1),—; Y = lifh =0

The function C(h) has a two level auto-correlation.

If we regard the sequence of l's and -1's as a waveform y(t), the auto-correlation of y(t)

is
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43(t) = Lt —
2 I y (t)y (t + T)dt

T-4...T

If the clock period is 5, then (1)(t) is as shown below in Figure 8

-6

Figure 8: Correlation Function

For the period 0 < it < 5:

y (t)y (t + n) is +1 in the intervals A1A2, A3A4 and is equally likely to be +1 as -1 in the

intervals A2A3, A4A5. Therefore the function OW which is an average of the above

8-rz	 x
product, equals —r = 1 mi.

For the period —5 < ir < 0:
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40 = 1 +, so OW = 1 — To for I it l< 5. For I TC 1>8 there are no intervals oft over which

the product is always +1. It is as likely to be +1 as -1 for alit, so OW = 0 for I it I> 5. Since

OW is an average, its value does not depend on the position of the time axis and the

autocorrelation function C is shown below in Figure 9.
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Figure 9 : Autocorrelation Function

If we consider pure white noise, i.e. a signal with all frequencies present and of the same

mean amplitude, the instantaneous amplitude of the noise can change suddenly at any

time, so the autocorrelation function will be zero for all phase shifts, except when the

phase shift is zero, when it will be equal to the mean square value of the noise amplitude.

This leads to one of the necessary conditions for a signal or sequence to be classed as

noise-like: its auto-correlation must have a large value for zero phase shift, and a constant

S
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small value elsewhere.

The sequences used in spread spectrum communications are all based on a single type of

ideal sequence called the m-sequence. A characteristic of this type of sequence is that it

can be generated by a shift register using feedback taps, with the input to the shift register

derived from a linear combination of the feedback taps. This type of sequence is not truly

random, since the state of the register can be predicted given the starting value of the

register, the feedback taps and the number of clock periods.

One of the properties of an m sequence generated by a shift register of length n is that as

the generator cycles through its states, all the numbers between 1 and 2n-1 occur exactly

once as n-tuples in the shift register. This leads to a further property: the number of ones

in the m sequence is 2 1 and the number of zeros is 2 1 - 1, i.e. the difference between

the number of ones and zeros is always 1 for an m sequence.

Except for the run of n ones and n-1 zeros the m sequence is identical to a truly random

sequence n(a,b). To find out what effect this has on the noise properties of m sequences,

consider a further property of an m sequence:

For any m sequence, a number m can be found so that

Yr+m :"-- YrE131Yr+k

where (131 is the linear addition operator

for all values of k except multiples of n.

For a periodic sequence of period r:

1 E Yry
' hr r. 1 
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For h # 0 (mod n):

1r=4	 -1C(h)=— E YrY,-+I="—nn r.1

For 11=0 (mod v):

1 E 1 = 1
12 r=1

Thus the m sequence has an auto-correlation value of 1 when in phase, and —n -1 when out

of phase. As n increases, the effect of the sequence length becomes less and the auto

correlation approaches that of pure noise.

Periodic sequences having a two-level auto-correlation are called perfect sequences. If,

in addition to this the number of ones and zeros differs by at most 1, then they are termed

pseudo-random sequences, m sequences being an example. The m sequence is also the

only type of sequence for which the number of runs of length i is twice the number of runs

of length i+1 (c.f.).

3.4.3 Cross-Correlation of noise sequences

For two sequences of relatively prime lengths r and y, the cross correlation value must be

constant since all possible relative phase shifts occur. They are statistically independent,

i.e.

P(x,=a,Y,=b)=P(xr=a)xp(yr=b)

and the cross correlation value is v-1 where v is the product of the lengths of the two

sequences. For m sequences of equal period, the cross correlation value is given below:

34



1r=n
C (h)----.— E xry„h

V	 n r=1

The cross correlation takes on different values depending on the value of h. There is no

formula for calculating the number of different cross correlations for a pair of sequences,

but this number cannot exceed the number of m sequences of period n. Cv(h) depends on

the coset to which h belongs, and so cannot have more values than cosets, i.e. m sequences.

3.5 Types of binary sequence

The subject of sequence generation is linked to that of number theory in mathematics with

many of the theorems and results of the latter being applicable to the former. In considering

the generation of maximal length linear sequences the theorems of Mobius and Euler are

essential tools (see APPENDIX D).

3.5.1 Gold Codes

A set of Gold sequences of period 2n — 1 contains N +2 sequences with O n. = 1+ 2"2/2.

Given a preferred pair of m-sequences of length r - 1 with peak periodic crosscorrelation

M, it is possible to construct a set of N + 2 sequences with peak out of phase autocorrelation

and peak crosscorrelation equal to M. This is done by taking the exclusive-or of the outputs

of the two m-sequence generators. Different relative phase shifts between the two

m-sequences will produce different Gold codes from the same set. Gold codes are optimal

codes, because they satisfy the lower limit on correlation when the sequence length is

related to an even power of 2 proved by Sideln'ikov [20] which states that for any set of

N sequences, Om. = max{0,, e a} >21“----2,
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3.5.2 Small and Large Kasami Set

If a sequence and a cyclic shift of itself are combined when the exponent of the length is

a power of 4, then the sequence set is called a small Kasami set, denoted K3(u) where the

original sequence is denoted by u. Gold code sets and small Kasami sets are complimentary.

Gold codes only exist when their length is related to an odd power of 2, small Kasami sets

only exist when their length is related to a fourth power of 2.

When a preferred triple of codes is combined to generate a sequence, the set is denoted a

large Kasami set KL (u). The set of large Kasami sequences contains as a subset the Gold

code set of the same length and also the small Kasami set of the same length. The number

of codes in the set is equal to 2" r2(2n + 1)

3.5.3 Two Level Sequences

If [{Y,}] is a binary sequence of period v with a +1's and b -1's, then a+b = v. In this case

the auto correlation is given by

r=v

VC (h) Y v v— .. rd r +h
r=1

For h = 0,

V
vC(0)— I 2

—	 Yr =-- V
r=1

C (0) -,Y. , 1
V
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v
If we form the sum E vC(h) in two ways: First:

h=1

V	 v v

I vC(h)= E E yrYr+hh=1	 h=lr=1

V v

= E I YrYr+h
r=1 h=1

V	 v

= E Yr I Yr+hr=1 h=1

Since y,. is periodic, both these sums are equal to a-b, so

i vC(h)= (a —b)2
h=1

Second:

i vC(h)=v xC(1)+...+C(v —1)+vC(v)
h=1

-	 =v xC(1)+ ...+C(v —1)+v

since c(v)=c(0). If the sequence is two level, the auto correlation for h # 0 is constant.

So

i vC(h)=1cx(v —1)+v
h=1

Since a+b=v, a-b=2a-v, so for (2a - v) 2 = w(v-1) + v to be satisfied by integers is a

necessary condition for a sequence to be two level, i.e.
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(2a — v)2 — v 
w=

V — 1

If the difference between the number of l's and -1's is one then w = -1 and the sequence

is pseudo random.

3.5.4 Linear Feedback Shift Registers

The general linear feedback shift register consists of a number of registers in cascade. The

input to the first store is the modulo-two sum of the output of each of the other stores, the

last stores/ output being known as the generator output.

A recurrence relation describing the operation of a linear feedback shift register will be

designated by the position of the feedback taps. For instance, the recurrence relation

y r x (c iy r -1 (c2y r -2 ( 	
 . cn_ar-n+1(yr-n))))=0

1 (c 1D (c2D2(.....cn_ 1D n - 1 (D n))))Y r = 0

will be referred to as the equation

(0, c l , 2c2, ..., (n — 1)c n _ 1 , n)

Recently, much attention has been paid to sequences generated by shift registers with non

linear feedback, because of advantages non linear sequences have from the point of view

of cross and auto correlation. Non linear sequences can be classified by means of their

effective linear span (ELS).

Any sequence (linear or non linear) of length n can be considered as part of a (possibly)

longer linear m sequence, the length of the shortest such m sequence being the effective

linear span of the original sequence.
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For a linear m sequence generated by a shift register of length r, all numbers from 1 to r

occur as tuples of the shift register in the course of one cycle of the m sequence. Because

of this, there will be an m sequence of length 2 1 which will include in it the original

sequence. In the extreme, if the non-linear sequence consists of all l's then the minimum

value of r for the condition above to be satisfied will be n and the effective linear span

will be 2n - ', because this particular sequence is identical to the all l's tuple of an m

sequence of length 2' 1 . This classification gives a measure of the performance of the non

linear code, based on the analysis of the performance of linear m sequences.

The investigation of sequences that have good correlation parameters (as discussed in

APPENDIX A) has been given much attention in recent years, as shown by the number

of papers published. The detailed discussion of the many type of sequences is not included

here, but a brief overview of the types is included. The first category is composite

sequences, typified by the well known Gold Codes [21] [22] which are linear combinations

of m-sequences. One of their most important properties is that there is a much larger

number of Gold codes of a given length than there are m-sequences. The autocorrelation

and cross-correlation figures are also well defined in terms of their minimum and maximum

values. The number of usable sequences of a given length is greater than for m-sequences,

and their behaviour under non-ideal conditions is better known. The difference in phase

between the two m-sequences define the Gold code to be generated, with different phases

producing different codes.

In general, as a logical extension to the principle of Gold codes more than two m-sequences

(or any other linear sequence) could be combined to give a set of sequences with any one

of a number of parameters maximised for that set. All these types of code can be grouped

under the heading combinational sequences.
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The second group of non-maximal length codes is the set of non-linear codes, typified by

the Bent [23] [24] code set. Many of the types of non-linear code have been designed with

a particular performance requirement in mind, for instance a long linear span for good

security, or a low cross correlation for good interference rejection.

3.6 Correlation Measurements

When considering the transmission of binary data modulated by a spread spectrum signal

the autocorrelation and crosscorrelation of each sequence from the set is measured and

used to provide a figure of merit or threshold for successful reception of data. Assuming

that the sequence length is fixed at some value, and that each bit of data is modulated by

a fixed integer number of spread spectrum sequences then two additional occurrences

have to be considered. These are referred to as the aperiodic and odd cross and auto

correlation [25] measures. Without loss of generality, assume that a data bit is modulated

by a single period of the spreading sequence. Then eight possible combinations of

spreading sequence are possible for the case of first order correlation. These are illustrated

below in Figure 10.

In all cases, a 1 refers to the spreading sequence and a 0 refers to the spreading sequence

inverted. Two different cases have to be explained, first when the received sequence and

transmitted sequence are the same, i.e. the receiver is expected to correctly interpret the

value of the data bit; second when the received and transmitted spreading sequence are

different and the receiver is expected to decode the data as being not valid. Each of the

four combinations are explained below:

Combination 1, same sequence.
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Figure 10 : Bit Combinations

The first case shows what happens when two consecutive 1 data bits are sent. The receiver

is required to correctly discriminate the existence of two consecutive l's by producing

two correlation peaks at its output. This is interpreted as a correlation value near zero for

all phase shifts except in-phase when the correlation should be high.

Combination 1, different sequences.

The receiver has to produce an output which indicates that no valid data is available on

the network. This is normally interpreted as a correlation value near zero for all phase

shifts.

Combination 2.
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In this case, the in-phase autocorrelation peaks will be large and negative, but the

autocorrelation for other phase shifts will be near zero. The cross correlation will be near

zero.

Combination 3

In this case, the autocorrelation will be large and positive for zero phase shift, large and

negative for 0+1 phase shift and near zero for all other phase shifts. The crosscorrelation

will again be close to zero.

Combination 4

This is similar to combination 3, except that the position of the positive and negative peaks

is reversed.

All these combinations can be incorporated in a simple nomenclature. For the case of data

bits 1 followed by 1, and 0 followed by 0, the correlation is designated by <1,11>. The

goal of good code set design is to maximise the zero phase shift autocorrelation to either

a large negative or positive value while minimising the non-zero phase shift autocorrelation

and all values of the crosscormlation. For the case of data bits 1 followed by 0 or 0 followed

by 1 the correlation is designated <1,10> and similar goals apply. The goal for good code

set design is very simple: to maximise the probability of detecting a valid spreading

sequence. This is achieved by maximising the in phase autocorrelation and minimising

all other correlations.

This has important implications for the design of code sets, because the two correlations

<1,11> and <1,10> can be measured by cyclic convolutions using the fast fourier transform.

If the codes are of length 1, the <1,11> requires a length 1 convolution and <1,10> requires
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a length 21 convolution. Finding the index of discrimination, or correlation threshold is

done by looking for the largest correlation value for all combinations, while ignoring the

zero phase autocorrelation which will always be equal to +-1.

3.7 Higher Order Correlations

In all the open literature the performance of spread spectrum codes is measured by the

auto and cross correlation of code pairs [26]. These measures are inherently incapable of

measuring the performance of a multiple access system however, because in a real system

multiple code interactions take place. A receiver rarely if ever has to decode a data bit in

isolation. There are normally other exchanges of data between independent nodes in the

network. This shortcoming of existing code design has not been addressed specifically,

except in the measurement of average bit error rates for systems which show the effect of

these multiple interactions. It is possible to include their effects in the measurement of the

code set performance as described above by correlating a sequence with combinations of

sequences from the code set.

The method of combination depends on the signalling method used. A non-coherent optical

fibre network acts as an or-channel, while a differential voltage coaxial cable system acts

as an adder and a coherent optical fibre system acts as an exclusive-or channel. Each of

these networks will have different optimum code sets given a set code length and code

set size.

The important parameters in determining a code set for a network are therefore:

Its code length, equal to the signalling rate divided by the data rate

The code set size, equal to the signalling rate divided by the data rate

The physical nature of the network medium
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A program for designing code sets for use in spread spectrum systems (not just local area

network ones) should use these and only these parameters. Traditional design methods

assume that good first order correlation values will yield good higher order correlation

values, and that the network designer is free to choose the physical characteristics of the

network.

Traditional design methods also nearly always assume that codes are not of arbitrary

length, and typically are of length 2n — 1 where n is some integer. This is because the

analysis of these sequences in terms of their correlation performance is a tractable problem

for linear fields, and for certain well defined non-linear operations. There are numerous

review papers giving examples of performance measures for such sequences [27].

As was pointed out above, the sequence length should be a set by the requirements of the

application, and not by the mathematical tractability of the correlation bounds. Similarly,

the code set size should be determined by the network throughput and desired bit error

rate.
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CHAPTER 4

SIMULATOR

4.1 Introduction

Simulation covers a large number of methods for measuring the behaviour of systems

within an environment. The important distinction between simulation of a system and its

real world counterpart is the fact that the simulation relies on artificially provided

boundaries which define where the system ends and where its environment starts. The

environment normally represents aspects of the simulation that are not considered, or are

assumed to be known quantities in their effect upon the system. One of the most important

parameters in writing a simulator is therefore the desired accuracy of the programme. It

is possible to develop a good model of a system without the programme knowing about

the limitations of the description it uses. In the light of this fact, a definition of simulation

could be: The process of taking a set of descriptions of low level objects which are

assumed to obey the rules provided for them and through manipulation of a number

of these objects produce a model of what effects will be observed of the system as a

whole.

There are, within this definition, a whole range of types of simulation techniques available.

Many of these relate to the statistical interpretation of the results, others to the manner in

which the dependent variable (normally time) is progressed. In the latter case, two main

types of simulation technique have evolved in response to the different needs of two types

of problem:

The need to simulate the functional behaviour of a system, in terms of functional

descriptions of its constituent parts.
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Simulation of the parametric behaviour of a system in terms of parametric description of

its constituent parts.

The former need has given rise to the so-called event driven simulators, while the latter

has spawned the discrete time family of simulators. Both techniques are powerful, and it

is only recently that simulators which provide a functional description in terms of

parametric behaviour of components have appeared. They are referred to as mixed-mode

simulators and have mainly been used in the VLSI design field.

The work contained in this thesis relates to the functional properties of a new type of local

area network, and it was for this reason that an event driven simulator was chosen to

examine the properties of codes used to communicate across the network. The computer

used for the task was a machine running the Unix operating system. One of the most

powerful features of the unix system is its support for a programming language called C.

This is a very flexible language developed for writing large pieces of software to run

quickly, and the simulator was therefore written in C.

4.2 Operation of the Network

The operation of the simulator is intended to reflect the operation of the demonstrator

network in all important ways. This is reinforced by the point made earlier in the chapter;

that one of the keys to successful simulation is knowing what to include and what to leave

out of the simulation. In the case of the spread spectrum network the physical hardware

operates on direct modulation of the network cabling by a polarised voltage. This is unlike

other methods mentioned in CHAPTER 3, for instance phase shift keying and frequency

shift keying. The reason for this choice of modulation method was that it allowed a very

simple transmitter and receiver circuit to be used. This was felt to be of great importance

considering the intended application.
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Another point that was made in CHAPTER 3 was that possible use of fibre optic techniques

was investigated. The reason for this is the noise immunity and electromagnetic

interference rejection capabilities of fibre optics. A study of the particular coding and

communications problems likely to be encountered was not undertaken however, because

there is much groundwork still to be done in this area. The work of Davies et al. [28], [29],

[30], at Kent University is of great interest in this area though.

4.3 Simulator design strategy

One of the objectives of simulating the prototype spread spectrum local area network was

to provide a detailed view of the correlation parameters, as discussed in appendix A, in a

real network. The problem with the calculations outlined in appendix A is that they are

not easily applied to real situations, and do not even produce particularly accurate results,

even for the simplest and most well known type of sequence - the m sequence.

The choice of an event driven simulator to model the system, and the use of the

programming language C to write the code was driven by the tools available at the time.

The choice of an event driven simulator meant that a very large amount of data would be

generated and for this reason the simulator was coded so that no long term storage of

results within the environment of the programme was necessary. All results are disposed

of immediately to the output file, with only intermediate results of individual correlations

being kept within variables in the programme.

4.4 Program Structure

The basic data type in the simulator is called an event. It has attributes of time and

amplitude. The time attribute denotes the time at which the event is to occur and the

amplitude attribute its amplitude. Events are stored in an ordered linked list (see Figure
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11 below). As more events are generated during the course of the simulation they are

inserted at the appropriate point on the linked list. Each event points to another data type

called a gen denoting a generator. For each transmitted sequence in the simulation there

is an instance of gen. The linked list of events contain references to the generators that

caused them.

event

Figure 11 : Linked List of Events

The operation of the simulator, once initialised, is as follows. The list of events is searched

for the event with the lowest time. This event is evaluated, causing the instantaneous

voltage on the network to change. The generator which caused the event is evaluated,

causing another event one clock period later. The linked list of events is then searched for

the correct place to put this new event, and it is inserted there. The original event is then

removed from the list and its storage space freed.
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The whole exercise of generating events is only performed on demand by the part of the

program which models the receiver. This is explained with reference to Figure 12 below.

event	 event

21

T = receiver clock period

Figure 12: Event Generation

The receiver looks ahead for one receiver clock period for any events which will change

the network during that time. If it finds any they are evaluated as described above. Because

evaluating an event always causes its successor to be created, the simulation will never

stop. For this reason the receiver always checks to see if it has exceeded the maximum

simulation time. The method used to calculate whether the received bit is positive or

negative can be varied. In this version of the simulator there are two options, either to

integrate or to sample. See Figure 13 below.
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Figure 13 : Integration and Sampling in the Receiver

In integration mode the chip energy is measured by integrating the voltage over one period

of the receivers clock. This corresponds to a perfect receiver. Alternatively the receiver

can sample the voltage at a pre-determined number of points in its clock cycle, and use

majority voting on the result. If one simulates with a single sample then the receiver is

hard limited.

4.5 Results

Two facts emerged from the work done with the simulator. Both of these are of particular

importance to a local area network where the number of information exchanges must be

maximised and the use of a system wide clock synchronisation is not allowed. By using
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spread spectrum sequences to directly modulate data it was found that the number of

simultaneous exchanges of data within a given bandwidth is much less than that predicted

by theory, especially if the sequences are not synchronous. The second important result

is that the effects of non-synchronous clocks at receiver and transmitter can be beneficial

or a hindrance. Clock frequency difference can be compared with a Doppler shift of

constant frequency, and the analogy with moving transmitters and receivers can be carried

further to the point where a real network can be visualised as an area of space with each

node moving at a constant velocity.

The net effect of the Doppler effect is that if it were possible to ensure that all nodes had

a minimum and maximum relative frequency then the overall performance would be

improved. In practice this is not possible because the desired spread in clock frequencies

would prohibit the use of cost effective clocks. In a physical system this would correspond

to all the nodes travelling away from each other at constant velocity, i.e. an "expanding

universe" of nodes.

The maximum number of information exchanges allowable on a given network with a

given length of code sequence is a very important parameter in local area network design.

In a local area network with nodes producing data at rates of up to 1 MBps code

sequences longer than 9 bits are at present unrealistic, because of the limitations of

electronic circuits at high frequencies. GigaHertz sequence generators do exist, but their

use in a local area network will have to wait until the availability of cheap, multi-drop

fiber-optic networks. Using the equation discussed in appendix B, the number of

simultaneous exchanges available is equal to the number of m-sequences of a particular

length, and this is maximised when the sequence length is prime. This occurs for 127 and

8191 bit long sequences, corresponding to shift register lengths of 7 and 13 bits. These

sequences are referred to as Mersenne Prime sequences.
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The possibility that certain combinations of m-sequences would not be capable of

extracting accurate synchronisation information was also made clear, and one example of

this is shown in Figure 14 below.

Correlation for a Preferred Set of M-sequences
Correlation

120

100

80

60

40

20

0
Phase Shift (bits)

Figure 14: Crosscorrelation of M Sequences

This shows the correlation function for a transmitter set of all 127 bit long m-sequences,

correlated with the 127 bit m-sequence generated by the shift register with taps at bit

positions 7, 4, 3, and 2. A value of correlation that would provide accurate reception with

one sequence would not with another, it would merely result in a large number of false

correlation peaks.
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4.6 Conclusion

The simulations indicate that even the performance of a so called well known family of

codes (m-sequences) is not fully understood.

Other types of deterministic sequence are better, for instance Gold codes, Kasami codes

and Bent sequences, but these have restricted set of code lengths.
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CHAPTER 5

SIMULATED ANNEALING

5.1 Genetic Algorithms and Simulated Annealing

Simulated Annealing is a stochastic computational technique derived from statistical

mechanics for finding globally minimum cost solutions to large optimisation problems.

Kirkpatrick [31] was the first to propose and demonstrate the application of simulation

techniques from statistical physics to problems of combinatorial optimisation, specifically

to the problems of wire routing and component placement in VLSI design. More recently

other workers have applied Simulated Annealing to the design of source and channel codes

[32]

In general, finding the global minimum value of an objective function with many degrees

of freedom subject to conflicting constraints is an NP complete problem, since the objective

function will tend to have many local minima. A procedure for solving hard optimisation

problems should sample values of the objective function in such a way as to have a high

probability of finding a near optimum solution and should also lend itself to efficient

implementation. Over the past few years simulated annealing has emerged as a viable

technique which meets the criteria.

To appreciate the relationship between techniques in statistical physics and the solution

of large optimisation problems one must understand the basics of statistical mechanics.

Statistical mechanics is the study of the behaviour of very large systems of interacting

components, such as atoms in a fluid in thermal equilibrium at a finite temperature.
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Suppose that the configuration of the system is identified with the set of spatial positions

of the components. If the system is in thermal equilibrium at a temperature T then the

probability TcT(s) that the system is in a given configuration s depends on the energy E(s)

of the configuration and follows the Boltzmann distribution:

-E(s)
ae 

nr(s ) =	 -E la))

E e kr
03 G S

where k is Boltzmann's constant and s is the set of all possible configurations.

One can simulate the behaviour of a system of particles in thermal equilibrium at

temperature T using a stochastic relaxation technique developed by Metropolis [33].

Suppose that at time t the system is in configuration q. A candidate r for the configuration

at time t+1 is generated randomly. The criterion for selecting or rejecting configuration r

depends on the difference between the energies of configurations r and q. Specifically the

ratio of the probability of being in r and the probability of being in q is computed:

7E4) 
— e

"fr)-E" •kr
P =

nr(q)

If p> 1 the energy of r is less than the energy of q then configuration r is automatically

accepted as the new configuration for time t+1. If p < 1 the energy of r is greater than the

energy of q then configuration r is accepted as the new configuration with probability p.

Thus configurations of higher energy can be reached.

It can be shown that as t ---) .o the probability that the system is in a given configuration

s is 7IT(s) regardless of the starting configuration. The distribution of configurations

therefore converges to the Boltzmann distribution [31]

55



In studying such systems of particles the nature of the low energy states is important. The

system might be in a crystalline or glassy state. Very low energy states are not common

when considering the set of all configurations. However, at low temperatures they

predominate because of the nature of the Boltzmann distribution. To achieve low energy

configurations it is not sufficient to simply lower the temperature. One must use an

annealing process where the temperature of the system is elevated and then gradually

lowered, spending enough time at each temperature to reach thermal equilibrium. If

insufficient time is spent at each temperature then the probability of reaching a very low

energy configuration is greatly reduced.

The simulation of annealing applied to optimisation problems involves the following steps.

First, the analogue of physical parameters of energy and temperature must be found. The

energy becomes the objective function, the particle configurations become the parameter

values and finding a low energy configuration becomes seeking a near optimum solution,

and temperature becomes the control parameter. Second, an annealing schedule consisting

of decreasing temperatures and time to be spent at each temperature must be decided.

Third, a method for generating and selecting new configurations must be chosen.

The annealing algorithm proposed by Kirkpatrick consists of running the Metropolis

algorithm at each temperature in the annealing schedule for the amount of time prescribed

by the schedule, and selecting the final configuration generated as a near optimum solution.

The Metropolis algorithm, which accepts configurations that increase the cost as well as

those that decrease the cost, is the mechanism for avoiding entrapment at a local minimum.

The annealing process is inherently slow. Geman and Geman P4] determined an annealing

schedule sufficient for convergence. Specifically, for a given sequence of temperatures
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Co is equal to no(s). Others have also improved thisthe system is in configuration s as t

bound [35]

In practice it is often unnecessary to adhere to this conservative schedule in order to achieve

acceptable results. Many applications of simulated annealing map naturally into a parallel

processing implementation and hence the speed of execution can be substantially

increased. Determining the proper annealing schedule for a given problem is frequently

a matter of trial and error. Davis and Ritter [36] have used a genetic algorithm to determine

the best annealing schedule.

5.2 Simulated Annealing for Code Set Design

In the case of spectrum code set design, the design parameters are the code length and the

code set size. The performance measure is the correlation threshold for the first or higher

order correlations. Assume it is the first order correlation threshold. This measures the

in-phase autocorrelation against the out of phase auto correlation and cross correlation for

the sets <1,11> and <1,10>. The in-phase autocorrelation is always fixed as +- code length,

so the out of phase autocorrelation and crosscorrelation measure the performance. It is

desired to minimise this value for a given code set in order to maximise the code set

performance. Thus, this value is the objective function or energy in the annealing schedule.

The temperature parameter determines the amount of scrambling that is done to codes in

the code set. A random variable dependent on the value of the temperature determines the

number of bits that will be inverted in each code, with all codes in the set treated

independently. After the codes have been scrambled the new configurations' energy is

calculated using the cyclic convolution, and returned as the new energy value. If this is

less than the previous energy then the new configuration is accepted, otherwise it is
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accepted with probability equal to =LE, so that a large increase in energy means a low
e T

probability of acceptance. This procedure is repeated many times for each temperature

before the temperature is dropped, and when the temperature has reached a low enough

value and the improvements in energy are insignificant the code set is accepted as the final

configuration and its peak correlation parameters are determined for graphical output.

5.3 Program Design

The program that performs the simulated annealing is written in ANSI C. Two functions

perform the annealing, others implement a fast correlation, output results and organise the

overall flow of the program. The main function parses the command line, initialises data

structures and then iterates throught the Metropolis algorithm until a stable configuration

has been reached, or a maximum number of tries have been unsuccessful. The Metropolis

algorithm applied to this problem consists of scrambling all the codes in the code set and

then calculating their peak correlation. This is used as the energy which is to be minimised.

The probability of being in the new configuration is calculated and it is either accepted or

rejected based on a simple test. See Figure 14.A for details

5.3.1 Output of Results

The simulated annealing program produces three types of output. The codes that have

been designed by the program are output to a file or to the screen. Second, diagnostic

output showing the energy, temperature and number of bits scrambled can be output to

show the annealing process at work. The third output consists of a pair of sequences which

show the largest value of correlation at each phase shift for all code pairs in the code set.

This provides an envelope of maximum correlation for visual verification of the results

when used with a graph plotting routine. This format has been used in the results chapter.
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The notation for graphs of peak correlation shows the code length and code set size. For

instance, a code set of 20 codes, each of length 100 bits would be denoted (100,20), i.e.

(length, set size).

5.3.2 Random Numbers

The scrambling of bits in the sequence and generation of random numbers for the

probability test are all done using a very long period random number generator written

especially for this application. It is based on three linear congruential generators. One is

used for the most significant part of the output number, the second for the least significant

part and the third to control a shuffling operation. A detailed description of the different

operations is available in [37].

5.3.3 High Speed Correlation

If we denote the correlation between two sequences as C 	 the discrete correlation

theorem implies the Fourier transform pair

Cxy <=> Xk Y:

This can be used to do very fast correlations. The two sequences to be compared are Fourier

transformed, one transform is then mutiplied by the complex conjugate of the other, point

by point. The resulting sequence is inverse transformed to produce the correlation

sequence. The imaginary part of the transformed sequence will be zero because all the

input samples were real, so this means. that two simultaneous correlations of a given length

can be done by one Fourier transform.

This method implements a circular correlation of the same length as the Fourier transform.

The fastest implementation of a Fourier transform in C is using base 2 transforms, so the
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length of the circular correlation must be a power of 2. To implement correlations that are

not a power of 2, the next highest power of 2 is used as the transform length and unused

bits discarded after the transform. A simple Fourier transform program was written for

this purpose, which exploits the symmetrical property of Fourier transforms to do two

transforms at once [54]

The algorithm for calculating Y, the correlation parameter, is shown below:
SET Y to 0
FOR each sequence a'

FOR each sequence al
calculate
FOR each phase shift k

IF ai = aj and k = 0
skip next steps

IF I 0 #(k)I > Y
Y= I O(k) I

IF I ieu(k)1 > Y

Y= I ()(k) i

The Simulated Annealing Algorithm, which tries to reduce the correlation pa-
rameter, is also shown below. This pseudo-code corresponds to the computer
program in Appendix H.

1. Given the code set size and code length, a set of random sequences is gener-
ated.

2. Y for this set is calculated.

3. A copy of the sequences is made, and randomly selected bits in the copy are
inverted, the number of bits being a function of the temperature.

4. Y of the copy is calculated.

5. If Y for the copy is less than Y for the original, or Y for the copy is greater
than Y for the original and the metropolis test is passed then the copy re-
places the original and the temperature is lowered.

6. If the temperature has dropped to a preset level, then end.

7. Go to step 3.

Figure 14.A
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CHAPTER 6

HARDWARE

This chapter will describe the design of the prototype Spread Spectrum network. The

choice of a microprocessor to implement the control of the transceiver is justified on the

basis of flexibility of design. The choice of the Intel 432 advanced microprocessor, as the

first transceiver controller, is discussed later. Subsequent events prevented the use of the

Intel microprocessor and so the Motorola 68000 32 bit microprocessor was used instead

and its use as the controller is described. The demonstrator Spread Spectrum Local Area

Network used several innovative hardware design techniques, and these are described in

this chapter. The software that runs on each Node is also described in detail.

6.1 Objectives of the prototype system

As was mentioned in previous chapters, the use of direct sequence spread spectrum in

local area networks is a novel idea. The type of sequence most suitable for this use is open

to debate, but guidelines do exist in the form of desired upper and lower bounds for

correlation parameters. One of the principal objectives of this work was to verify the

theoretical work experimentally. This led to interesting results concerning the effects of

clock drift between receiver and transmitter and the problems associated with hard limiting

the signal. It was against this background that the decision to build a prototype network

with limited performance was reached.

The specification for the production local area network included many facilities that were

considered non-essential to the demonstration of the principles of operation of such a

network. For example, many of the higher level protocols involved in code distribution

and network management would only be necessary on a final design or as part of the
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testing of such protocols. The type of prototype to be built was therefore a simple set of

receivers and transmitters, with the capability of being upgraded to provide a test-bed for

the management functions when that part of the work was completed.

To recap, the design issues to be confronted were as listed below:

To find the best type of codes or code sets for use in this network.

The long term effects (compared to sequence duration) of loss of synchronism

between receiver and transmitter clocks.

The impact that the use of a fiber optic based network would have on the design

of the hardware.

The effect of using hard limiting techniques at the receiver, for simplicity.

In order to study these problems in detail, it was decided to proceed with the prototype in

two stages: first, the construction of a single transmitter and receiver to investigate the

problem of fiber optics and second, to build a multiple transmitter single receiver network

using either fiber optics or cable technology to investigate the remaining three points.

6.2 Host Computer

The transmitter and receiver units for the network require a considerable amount of

intelligence, so that code sequence changes, code sequence distribution, encryption and

decryption and other higher level protocol activities could be performed at the critical

place in the network, i.e. in the node unit. The choice of a microprocessor to perform this

task was made because these electronic devices are being used increasingly for adaptability

in similar applications.
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One of the most important attributes of the control unit is the ability to manage more than

one spread spectrum channel hardware unit at a time, which will be the case when a node

has more than one transmitter or receiver. This requirement amounts to providing a

multi-tasking facility in the node controller. At the time that this work was in progress, a

promising new microprocessor was released by Intel, based on the work on Object Oriented

Programming [38] that had been done in the U.S.A. and in the U.K. at the Royal Signals

and Radar Establishment [39], [40], [41], [42], and resulted in the release of an object

oriented microprocessor, the Intel iAPX432.

6.2.1 The Intel iAPX432

The issues of which computer to use as the controller for an access unit were to be based

on the use of the Intel 1APX432 advanced microprocessor. Unfortunately the use of this

processor was not feasible, because Intel stopped production of the 432. The alternative

decided upon in this case was the Motorolla MC68000 (68K). The most important reason

was the fact that the digital research group already had seven development boards based

on the 68K, and also a disk based 68K computer. Avoiding the need to build or purchase

new equipment on this scale was a major consideration. The interfacing requirements of

the development board and the computer were slightly different, the former being based

on a Motorolla standard called the Motorolla 68 K Development Module (K.D.M.) and

the latter a fully asynchronous bus specification called V.M.E. The implications on the

final design of having two types of interface 'are; reduced to a minimum however, requiring

only minor changes in the controller software to distinguish between the two.

6.2.2 The MC68000 microprocessor

This is an advanced design 32 bit microprocessor with fully asynchronous bus control

based on the use of a common acknowledge signal called DTACK (not data transfer
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acknowledge). During normal operation of the microprocessor, devices connected to the

bus such as memory, input output ports, floppy disks hard disks and the spreadnet

controller, have to acknowledge reception of data written by the microprocessor or validity

of data read by the microprocessor through DTACK.

6.3 Transmitter Design

There were several basic options for the transmitter design. These are listed below:

Use a dedicated shift register with switchable feedback taps to allow different

sequences to be generated.

Use a counter to address a memory containing the value of each chip of the sequence.

Use a memory in combination with a shift register to operate as a state machine.

In the first case, the type of sequence generated is limited to linear sequences. The delay

between the start of a chip and the arrival of the next bit at the start of the shift register

depends on the number of feedback taps used. At speeds approaching the limit of

operability of the logic this is a crucial factor.

In the second case, sequences are limited to a fixed length (the modulus of the counter)

unless some sort of reset capability is included in the counter. In this case there will be a

delay, again limited by the speed of the logic, while the counter is reset.

In the third case, the delay between each chip is equal for all chips and is limited by the

access time of the memory and the clock speed of the shift register. This design also allows

variable length sequences to be generated, as well as non-linear sequences.

Based upon these considerations, the third method was chosen as the basis for the

transmitter design. A simplified diagram of the sequence generation part of the transmitter

is shown below in Figure 15
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Figure 15 : Block Diagram of Transmitter

The operation of the state machine is as follows. The outputs of each stage of the shift

register are used as addresses into the memory, the location addressed by them contains

the next bit to be shifted into the shift register. To assemble the contents of the memory,

each state of the desired sequence is isolated and set up as an address. The value of the

next chip in the sequence is then the contents of the addressed location. Since this is an

almost literal implementation of the concept of a pseudo random sequence, equivalent

states are truly equivalent and so are degenerate sequences. Sequences of any length (up

to the modulus of the shift register) and non-linear sequences can be generated.

Although the above presents a workable solution to the problem of generating sequences,

the type of memory and the interfacing of this circuit to the transmitter have yet to be

discussed. The use of fixed Read Only Memories (R.O.M.'s) was considered, since these
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are available with shorter access delays than most read/write memories. A very fast

Random Access Memory (R.A.M.) was found however, that had access delays in the order

of 35 nano-seconds. By using a R.A.M., sequences could be changed very quickly by

re-writing the contents of the R.A.M. during operation of the transmitter. The output of

the generator connects to a suitable driver circuit for whichever access medium is being

used. Setting up the memory is slightly more complicated however, since the interfacing

requirements of the MC68000 have to be taken into account. With the use of P.A.L.'s as

mentioned earlier, this reduced the complexity of this part of the circuit. A more detailed

block diagram of the circuit is shown below in Figure 16.
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Figure 16 : Detailed Block Diagram of Transmitter

The operation of the circuit is as follows. There are two separate states that the transmitter

can be in: a load state in which codes are being loaded into the R.A.M. from the computer;
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and a running state in which the transmitter is generating sequences. For the purpose of

the prototype, the second state is limited to the generation of continuous sequences. The

second state can only be halted at the intervention of the computer, i.e. to load new codes.

By using a programmable logic array, it is arranged that the first state is entered

automatically when the transmitter is referenced by the computer, i.e. when a valid address

is decoded which represents a location in the state-machine R.A.M. In this way, codes are

loaded by the computer when it writes to the state-machine R.A.M. At all other times the

state-machine is running at the clock speed of the shift register. The signals that drive the

multiplexors are driven by the P.A.L. appropriately so that routing of the address and data

buses on the computer and the data and address lines on the state-machine R.A.M. depends

on whether the R.A.M. is being addressed by the computer or not.

In the running state, the address presented to the state-machine R.A.M. (SMR) is generated

by the SR. The input to the SR comes from one of the four data bits available on the SMR.

The most significant address bit of the SMR is also the output chip and is sent to the

modulation circuitry. The lower of the three multiplexors provides the capability for

pre-loaded codes to be used with a very rapid changeover. The codes are all loaded into

the SMR, and when a change of code to one of the others present is desired, the contents

of one memory location are changed.

In the load state, the multiplexors are switched to select the computer address bus and data

bus as the source of address and data for the SMR. The PAL uses the various control

signals provided by the 68K computer to decode addresses and produce the

acknowledgement signal /DTACK. The PAL also contains logic to convert the computer

read/write line into write information for the SMR.
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6.3.1 The Receiver

The receiver is based on a correlator which has the ability to receive data out of

synchronisation. A choice can be made between traditional acquire and track systems, or

a form of continuous correlation. Because the continuous correlator is available in vlsi

chip form, this makes this option much more attractive and its disadvantages are countered

by the simplicity of design and its tolerance to errors. The particular chip in this design is

the TRW 64 bit correlator TDC1023J. The TDC10237 uses emitter coupled logic (ECL)

to realise a very fast correlation speed. A block diagram of the correlator is shown below

in Figure 17.
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Figure 17: Block Diagram of Correlator
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Operation is as follows. The two shift registers marked 'A' and 'B' are compared

continuously in the exclusive-or gates, if two bits in each shift register are the same then

the output of the gate is a logic 0, otherwise they are different and the output is a logic 1.

The outputs of all the exclusive or gates are taken to a three stage carry look-ahead adder

to produce a correlation sum. The maximum clock frequency of the shift registers is

40MHz, that of the adder 25MHz. The chip is therefore capable of continuous operation

up to 25MHz and can be cascaded to produce correlation of sequences of lengths which

are a multiple of 64 bits- in the prototype design two were used per receiver. Which of

the two shift registers is used as the input and which as the reference sequence is arbitary

since the chip operates symmetrically. In this case, the 'A' shift register is the input. A

general block diagram of the receiver is shown below in Figure 18
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BIT	 BIT

Figure 18 : Block Diagram of Receiver
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Interface circuits connect to the access medium to the correlators and the outputs from the

two correlator chips are added in a simple carry look ahead adder. The correlation sum is

then compared with a threshold value in another adder and if the correlation value exceeds

the threshold then a signal denoting a valid data bit is cleared. This flag, together with the

value of the data bit decoded are used to produce a measure of the discrimination properties

of the codes used. This is measured by a high speed logic analyser, which is capable of

detecting given correlation levels and recording up to 2048 correlation scores in total.

6.3.2 Host Computer Software

In the prototype network, each host computer can control one transmitter and one receiver.

The software that runs on the node host computer consists of three simple routines and

initialisation software. The three routines perform the following functions:

CALC	 Mimics a shift register SETUP

TRANS	 Sets up and starts the Transmitter

SETUP REC	 Sets up and starts the Receiver

The following three sections give detailed description of each of these routines.

6.3.3 Shift Register Operation

The principle of operation of this routine is to mimic a shift register with feedback taps.

It does this by using one of the microprocessor's registers as the shift register and

calculating a feedback bit based on the contents of a mask (which determines which bits

are significant in the feedback), and a temporary copy of the existing shift register. By

calling a suitable piece of software during the calculation of the feedback bit, various

non-linear operations can be implemented in order to generate non-linear sequences [43].
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6.3.4 Setting up the Transmitter

Sets up the transmitter RAM by reading the feedback taps for each code and then selecting

code number 0 as the current code. This allows fast reloading of codes during transmission.

The use of dual port memory would allow true dynamic code swapping without interrupting

the output of the transmitter, although this was not tried.

6.3.5 Setting up the Receiver

This is done by sending each bit of the received sequence to the correlator A register,

along with its correspong mask bit. Bit 0 is the sequence value while bit 1 is the mask

value.

6.4 Conclusion

In this chapter the detailed design and operation of the prototype spread spectrum network

was described. The use of a state machine based sequence generator for the transmitter

was detailed, along with the computer software required to drive it. In the receiver, use

was made of the high speed correlator chip produced by TRW- the TDC 1023J and the

operation of this device was explained in depth, including its operation by the computer.
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CHAPTER 7

NETWORK OPERATION

In this chapter the operation of the ISO model level 2 and 3 network layers in the Spread

Spectrum Local Area Network (SSLAN) will be described, and compared to the operation

of some of the more conventional local area networks described in chapter 2. The various

communications methods available will be described, along with the mechanisms used to

manage the network. The problem of network security and in particular code sequence

allocation and distribution will be addressed, and a solution to this problem using public

key cryptographic techniques will be described.

The use of spread spectrum techniques has, up to now, been limited to anti-jam situations

in the military environment and situations where noise is a great problem, as was seen in

chapter 3. In local area networks, noise and intentional jamming are not so much of a

problem and the advantages offered by SS are utilised in other ways. As was shown in

chapter 4, one of the properties of SS is its immunity to noise, and in a LAN the perceived

noise at a node consists of the data being generated by other users of the network.

A common problem with conventional LAN's is that of network management, e.g. keeping

the network working when something goes wrong. In many cases the problem may be

minor, for instance the loss of a packet of data due to a burst of noise, or collision between

two packets in a CSMA type network and in these cases individual nodes are able to cope.

Other types of problem will occur which will require drastic action on the part of one or

more of the nodes in order to rectify them. The solution to the class of non trivial problems

and to the continued smooth operation of the network is known as network management.
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The SSLAN has a major advantage as far as real time LAN's are concerned, and that is

its guaranteed maximum message delivery time for any user of the network at any time.

An expression for the maximum message delivery time based on signalling rate,

propagation delays and software overhead will be derived later in this chapter. This

property is one of the prime considerations when dealing with critical systems in the

military environment, and is one of the reasons that the SSLAN has been chosen as the

basis for the future command system for the Royal Navy in the 1990's.

7.1 Multiple Access

Because the codes used in the SSLAN are chosen to have a high dimensionality (i.e. they

are orthogonal or as nearly so as possible), the presence of one code sequence modulating

data on the network has the same effect on another sequence as would coloured noise [44].

Referring to chapter 4, the number of m sequences that can be generated by a shift register

of length n was seen to be V . For the case n=7, or sequences of length 127, the number

of m sequences is 18. Therefore, if m sequences were to be used in the SSLAN, the

maximum number of simultaneous conversations (SC's) able to exist on the network at

the same time, ignoring problems such as cabling attenuation and interference, is 18.

When attenuation is considered, along with other types of signal losses, the number of

possible SC's is reduced. This reduction in numbers depends on the length of the sequences

and their cross and auto correlation properties, and it is the intention of a later chapter to

describe work done to calculate exactly what effect attenuation and non-synchronisation

will have on the SSLAN.
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7.2 Transmission Mechanisms

Given that a set of codes (possibly of differing lengths) has been chosen for the SSLAN

code set, there are several methods for transmission of data between nodes. The choice

of method is dependent on the type of application, but does not depend on the codes

themselves. For example, a broadcast mode of operation where a single node sends data

to all other nodes is often provided on existing LAN's and proves to be useful. A study

of the requirements of a military network combined with the strengths and weaknesses of

the SSLAN suggested six possible operating modes, described below. The six data

transmission methods are called point to point, broadcast, group, function, message and

protocol.

7.2.1 Point to Point

In this method, each receiver node is allocated a code or group of codes. Thus, each receiver

is allocated a unique code and so only one receiver can receive data using that code. To

transmit to a node the transmitter must use that node's code to modulate its data. Since

the receiver is listening to the network at all times, it will pick up any data with its address.

There is a problem if more than one transmitter sends data to the receiver node, but this

may be overcome by the use of multiple receivers at each node and through the coordination

of their code synchronisation at a higher level. The diagram below illustrates this

transmission method. The box marked tx holds the code being transmitted by a node, and

the box marked rx holds the code being received by a node. See Figure 19 below.

74



NODE 2

POTENTIAL

CONTENTION

RX

13	 27
LAN BUS

7	 13

Rx

NODE 5NODE 4NODE 3

-L--
26 "41111- 

CODE
31	 7

SEQUENCE

NUMBERS

18

NODES
NODE 1

2 26 133

Figure 19: Point to Point Protocol

7.2.2 Broadcast

In this method a code or codes are allocated to each transmitter node rather than to each

receiver node in point to point mode. When the node wishes to transmit data it uses its

code to modulate the data. The receiver must be listening for this particular code for its

reception to be assured. This method is termed broadcast because it is possible to transmit

to all the receiver nodes using only one code. A major advantage from the point of view

of the receiver hardware is that there cannot be a contention, since there can only be one

transmitter originating a particular code. The main disadvantage with this method is that

the receiver must be capable of receiving multiple codes for it to be of any use in a multiple

access network. A possible solution to this is to have one receiver scanning a group of
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codes for activity, where it is assumed that the transmitters using these codes are

implementing a data available protocol. This of course negates one of the advantages of

the SSLAN, that of guaranteed minimum message delivery time.

The diagram below, Figure 20, illustrates the principle of this method, again using the
nomenclature used in the previous figure._	 _

Figure 20 : Broadcast Protocol

7.2.3 Group

This method uses a logical grouping of a set of nodes, into a zone or domain [45] [46]

These zones consist of nodes which regularly communicate with each other to perform a

common function, distributed across the network. Within each zone a set of code sequences
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is allocated and communication amongst zone members is limited to the use of these codes.

Different zones may use different types of code, depending on the type of application they

are performing. Similarly, a node could be a member of more than one zone.

The problem of nodes external to a zone communicating with nodes within the zone can

be resolved by using common code sets, or utilising a higher level protocol to tell nodes

in a zone to listen out for externally generated data. The use of common code sets produces

the same problem as the point to point method, that of contention, and thus the management

channel solution is normally preferred.

The diagram below (Figure 21) illustrates the operation of the Group method.
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Figure 21: Group Protocol
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7.2.4 Function

This method is perhaps best seen as an extension of the previous method, where each

group is assigned a specific function, and where each group is ideally small in size. Thus,

a functional element consists of a series of permanently established links between pairs

of nodes, all of which can operate simultaneously. The problem of contention is removed

by the condition that each functional group has no duplicated code for transmission.

Security of the system is improved since particular knowledge of which nodes are using

a code is restricted to within the functional group.

This method is used when nodes are grouped together in applications such as industrial

command and control, where it is advantageous that the number of wires used to read data

from a large number of sensors is minimised. Sensors would report to individual

semi-intelligent controllers, while a central management device would be used to report

faults, etc. Figure 22 below illustrates the operation of the function method.
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7.2.5 Message

This method assigns code sequences to messages according to the type of data contained

in the message. A receiver must listen to all codes for which it expects to receive a given

data type. Before transmitting, the transmitter must ascertain from its internal code pool

which code is allocated to that particular type of message. There is a high probability of

contention using this method, especially if messages are of long duration. The ideal

application is therefore one in which the messages are all of short duration, for instance

in a system which implements a remote procedure call facility. Figure 23 below illustrates

the operation of this method.
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Figure 23 : Message Protocol

7.2.6 Protocol

The final method relies on the use of one of the protocol standards. Codes are allocated

either on the protocol level at which they are to be used or to the states possible within a

particular protocol level. Errors within a protocol level would indicate loss of code

sequence synchronisation, and hence recovery from message loss would be simplified,

relying only on the re-synchronisation of the code sequence. A receiver need only listen

for the code or codes associated with a given protocol level. There is a probability of

contention if more than one node steps across a protocol boundary at the same time as

another, but this type of fault would be handled by the next layer in the hierarchy. This is

illustrated in Figure 24 below.

80



NODE 2

4,5 P1
18.13 Pa
21 ,20 Pa
30,31 P4

NOCIE 1

P1 4,5
Pa 18.13
PS 21,28
P4. 30.31

DA-r.a. sou FICE
NODE NUMBERCOME SEQUENCE

NJUIVIBEFIS
NOME 3

4,5 PI
18.13 Ra
21,28 PS
30,31 P4

NOME 3

P1 4,5
P2 10,10
PS 21,28
P4. 00,01

L-AN BUSP Ft 0-1-000
LEVELS

NOME 0

4,5 R1
10,13 R2
21,28 R3
30,31 P4

NCADE 5

P1 4,5
Pa 18,13
P3 21,28
P4. 30,31

Figure 24: Protocol Mode

7.3 Limitations

As with any communications system, the SSLAN has limitations which can lead to failures

of the network under certain conditions. This section is intended to illustrate these

problems, mainly the low point to point data rate, problems of synchronisation without

the use of common clocks or synch pulses and the problems of implementing protocols

as defined by the ISO and the IEEE.

7.3.1 Low Point to Point Data Rate

Most LAN's operate at point to point data rates between 1 and 10 Mbits/S. The limitations

of TDMA systems and the overheads introduced by implementing the physical layer

81



protocol on the networks. The point to point data rate averaged over a long time is normally

at least 10 times lower than the quoted figure. In the prototype implementation of the

SSLAN, using 127 bit m sequences with a chip frequency of 10 MBps , the point to point

data rate was close to 100KBps . In the proposed working version of the SSLAN the

point to point data rate will be an order of magnitude higher on average, due to the increased

chip frequency and use of optimal codes sequences for a particular application.

Another aspect of this problem is the effect that the type of signalling medium has on the

point to point data rate. In the prototype implementation, coaxial cable was used, but

experiments with optical fibers suggested that the large bandwidth they offered would

allow even larger increases in the data rate. There are problems with running high speed

logic at rates close to GHz frequencies, but with the introduction of Gallium Arsenide

(GaAs) logic devices with operating frequencies in the 10's of GHz these problems are

being resolved.

The type of data source that is connected to the Spread Spectrum LAN should reflect the

advantages offered by the LAN. The data source should produce data at a steady rate, with

as few bursts as possible. In conventional LAN's a data source of this type requires a large

amount of buffering at the source node in order to cope with variations in the availability

of the network.

7.3.2 Protocol Incompatibilities

The standardisation bodies - the International Standards Organisation (ISO) and the

Institute of Electrical and Electronic Engineers (IEEE) produced a set of proposals for

protocols for local and wide area networks, resulting in the ISO Open Systems Interconnect

seven layer model for wide area networks and the IEEE 802 series of proposals for local

area networks. As was mentioned in chapter 2, the principle of operation of a protocol is
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that each layer should be isolated as much as possible from the layers to which it interfaces,

each layer providing a service to the layer above it and using the service provided by the

layer below it.

With the protocol type of code utilisation described in this chapter, knowledge of the type

of protocol message being sent between nodes is required at the lowest level, in order for

the appropriate code sequence to be used. This is contrary to the recommendations of both

the IEEE and ISO.

7.4 Security and Code Distribution

In the applications for which the SSLAN was originally designed, the security of the data

being transmitted was considered to be important. If the network is operating in the function

or group mode, then the allocation of a set of codes within a group is known only to

members within the group, so any eavesdropper would have to listen to all the codes used

by a group in order to extract information about a particular member of the group. A

corrolary is that the more nodes there are within a group, the harder it will be to eavesdrop.

The distribution of code sequences within a group, or across the whole network is obviously

of great importance, since if this operation can be guaranteed to be secure, the security of

the network is greatly increased. The use of various cryptographic techniques was

investigated, and some of the conclusions and methods found are presented here. These

include Public Key Cryptography [47] the Data Encryption Standard (D.E.S.) [48] and

Knapsack algorithms [49] although the latter has recently been discounted because it is

possible to decode Knapsack codes rather easily using Discrete Fourier Transform

techniques.
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7.5 Authentication and Signatures

When data encryption methods are being used to distribute spread spectrum sequences,

as has been proposed here, the problem of authenticating the distributor of the codes is

important. It is essential that the receiver of the new codes can verify that the sequences

have been sent by the claimed person and that the sender knows about the allocation as

well. The requirements of a large number of codes and authenticability are, however,

conflicting because a good code requires a large code space ( code space = potential number

of codes ) while an authenticable code requires a small code space in order to validate the

code and prevent intrusion.
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CHAPTER 8

RESULTS OF CODE SET DESIGN

The performance of the code sets designed with the simulated annealing programme show

that the peak correlation is nearly as good as other types of deterministic sequence, with

the added advantage of being able to use arbitrary length codes. For comparison with

deterministic sequences, code sets of the same length as the deterministic set were

generated, and performance was measured by the peak correlation.

APPENDIX I shows the results of a typical simulated annealing run on the computer.

Each line in the listing shows the annealing temperature, the change in energy and the

number of bit changes. At the end of the run the codes in the code set are printed out, along

with the maximum correlation value.

Defining the peak out of phase autocorrelation to be O c, the peak cross correlation to be

O„ the peak aperiodic out of phase autocorrelation to be Ca and the peak aperiodic cross

correlation to be C„ the following graphs plot two seperate curves for each code set. The

first is max{0„ O} taken over all code pairs in the code set and plotted over half the x

axis. The second is max{I C c I, I C, II again taken over all code pairs in the code set and

plotted over the whole x axis. The important point to note is that all the curves have two

large peaks at zero phase shift and full length phase shift. The zero phase shift peak shows

the ability of the codes to extract the correct phase information, while the peak at full

length phase shift shows their ability to discriminate between positive and negative

modulation of data.

Figure 25 illustrates a code set of 18 codes of length 127 bits. The code set size and length

are the same as the m-sequence set of length 127 bits. This particular m-sequence set has
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some very good properties, such as a very large code set size (for m-sequences) of 18

codes. The peak cross correlation for all pairs of m-sequences of length 127 is 41, while

for a preferred sub set of 6 codes it is 17. Using simulated annealing, a peak correlation

of 30 can be acheived, which is better than that of the m-sequence set.

Peak Correlation against Phase Shift
Code Set {127,18}

Peak Correlation
150 	

100

50

-50

-100

-150 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1

Phase Shift (bits)

Figure 25: Correlation for Code Set {127,18}

An important property of the simulated annealing method is the ability to design code sets

with arbitrary length, and the next two figures illustrate this. Figure 26 illustrates the

correlation for the code set {50,50}. While Figure 27 showd the code set (25,25). Code

set (25,25) also demonstrates the existence of reasonably large code sets of very short

length, an important point in the design of networks.
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Figure 26 Peak Correlation for Code Set {50,50}

The final Figure, 28 illustrates the correlation for code set (100,40). This shows that the

correlation threshold is over 50% of the code length for a large code set of medium length.
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Figure 27 : Peak Correlation for Code Set {25,25}

One of the limitations of this method is the time taken to design a code set. The codes

100,40) took approximately.5 hours to design on a high performance personal computer.

Given that a code set only needs to be designed once however, the overhead of code design

is almost certainly worth the penalty.
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CHAPTER 9

CONCLUSION

The use of direct sequence spread spectrum signalling in local area networks is a new

technique which has been demonstrated by the author to be feasible. The type of sequence

that is used is crucial to the performance of the network. The physical realisation of a

spread spectrum network such as has been described in this thesis is limited by two factors:

The performance of correlators. The state of the art in correlators is a device that

continuously correlates at 25 million bits per second at one bit resolution and with 64

register stages. Optical correlators are a theoretical possibility, with clock speeds measured

in Gigahertz. Combined with optical mixers for code modulation high speed optical

correlators could provide the basis for an ultra high speed network.

Code restrictions. One of the limitations of presently available spread spectrum systems

is the restriction on code length. Most methods for generating sequences involve using

Galois Field Theory, or the use of fourier transforms. Optimal sequences can be designed

using these methods, but two major problems exist. A prototype network was constructed

to demonstrate the principle of the netowrk, and although the results were encouraging

this showed the limitations of using m-sequences.

First, their length has to be related to an integer power of a prime. This means that the

clock rate and data rate cannot be independent.

Second, the performance of the codes in a true multiple access environment is not taken

into account in their design.

As was mentioned in CHAPTER 3 the network signalling mechanism affects the way

codes combine and interfere with each other. There is a large difference between using
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code division in an optical network and in an electrical network. Therefore any method

for generating codes should try to minimise the signal to noise ratio of the network as a

whole based on the signalling mechanism. A code set that has a good performance for one

type of signalling mechanism will not neccessarily have good performance for another

signalling mechanism.

The thesis has described the concept of a code division multiple access spread spectrum

local area network. A discussion of finite field algebra has shown that good code sets are

available, but that they have some limitations. A new method for generating arbitrary

length code sets which uses the method of Simulated Annealing has been described, and

several examples of code sets designed by it have been included. The simulated annealing

program does not optimise code sets based on higher order correlations, and this would

be a good starting point for further work.
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APPENDIX A

SEQUENCE SETS WITH SMALL CROSS CORRELATION

A communications system that is intended to support a number of users requires a distinct

code for the exclusive use of each user. Thus, the selection of code sets with high in-phase

auto-correlation and low cross correlation is of great importance. The automatic generation

of such code sets is, unfortunately, impossible however several criteria exist for judging

how good a particular set of codes is. Much effort has been devoted to establishing upper

and lower bounds on the correlation performance of code sets [50] and [51] These

treatments are restricted to the aperiodic and odd cross correlation functions, and the

realisation of bounds by these methods are impractical due to the large number of

calculations necessary to scan all possible phases of the sequences in the set. The choice

of code sets is therefore mostly based on efficient methods for searching by computer, but

for long sequences these methods are not realistic either. In summary, a set of sequences

for spread spectrum multiple access communications must satisfy the following criteria

[52].

Each sequence x e K possesses a small out of phase periodic auto correlation.

Each pair of sequences x, y e K possess a small periodic cross correlation.

The number of members of the set K which satisfy the two previous rules must be large.

Each sequence x E K must be easy to generate.

Each sequence x E K must be secure.

Although Shaar lists these criteria as being of direct relevance to selection of code sets,

the method of using other means (such as formal encryption) to lessen the constraints on

92



a code set is not mentioned. If we examine the problem of selecting a first guess bound

on the auto correlation and cross correlation of a set of sequences, the following equations

will yield the desired result: In general

N-1N-1

E (I) [0
x ' 

(I + n)] * =	 e„, x (1) [0 
'

(1 + n)]*
=0	 z	 1=0	 Yl

The first bound on x,y (1) is

1 ex, y (01 � 11x11	 11

From this, setting n=0, z=y and w=x,

N-1	 N-1

y,0,0,(01 2= ZOWX ety(/)
/	 = o x

Applying the Cauchy Inequality

N-1

Elx yn 2 � '\/ E 1 ex(01 2	E 10),(01 2
N-1	 x.,\IN-1

e
/ 

Rewriting 3 as

N-1	 N-1

E ex (i)1 2 = ex(0) x ey (0) +	 ex) x e;(0

and re-applying the Cauchy Inequality to the RHS to find an upper and lower bound,

	

N-1	 N-1

E 1 ex (/)1 2	(to) x ey (0)	 E I ex(01 2

	

= o	 'Y	 1=1

N-1

1 ey(012
1=1

If 0, is the peak cross correlation magnitude of a set of sequences, and O. is the peak out

of phase auto correlation magnitude of the same set, then

0, = maxl 0 x ,y (1)I :0 � 15..N— 1,x Ex,ye x,x � y
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= maxi ex(01:1 1 5N — 1,x e z

Sarwate [53] has shown that

(

01  N —1  x(5.)>
1\r-- N x(K —1) N

Which can be re-arranged to give

Omax Emax(Ba,Oc) � N x
	

K-1 
NxK-1

which is the correlation parameter and represents the lowest possible crosscorrelation and

out of phase autocorrelation value for a given code set. Similar limits apply for aperiodic

correlation parameters.
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APPENDIX B

THEORY OF FINITE FIELDS

A finite field GF(p) is a finite set of elements with addition (+), subtraction (-),

multiplication (x) and division (/) defined. The number (p) of field elements denotes the

order of the field. Addition and multiplication satisfy commutation, distribution and

association as defined below:

For all oc,13,7 e GF(p)

a+13=13+a

axf3=13xoc

cc-F(13+7)=(a+P)+7

a x (13 x y) = (a x j3) x y

ax(f3+y)=ax0+ocxy

Also, elements 0, 1,—a, cc' for all a e GF(p) must exist such that:

0+a=cc

(—a)+a=0

Oxcc=0

lxoc=cc

if a � 0 then (a-1) x cc= 1

95



One of the fundamental theorems of the algebra of finite fields is:

There exists a finite field GF(p) only for p prime or a power of a prime.

There are therefore two cases of interest, first when p is prime the field is known as the

ground field, GF(p) and when p is the n th power of a prime the field is known as the

extension field GF(n).

2.1 The Ground Field GF(p)

When p is a prime number, arithmetic is performed modulo p. The result of an arithmetic

operation is the usual result modulo p.

A non zero element a e GF (p) is said to be of multiplicative order X, if X, is the lowest

non-zero integer such that a'= 1. An element with X = p-1 is called a primitive element.

A primitive element has the property that its powers generate all the non-zero field

elements. The number of primitive elements in the field is 0(01)(p)) = 01)(p - 1) where 4(p)

is the Euler function [1] or totient.

2.2 The Extension Field GF(N)

Operations in GF(n) [2] are carried out modulo a primitive polynomial q(t) (whose

coefficients are from GF(p)) of degree n. For the same reason that 2E=.- 0 in GF(2), q(t) E 0

in GF(n). A primitive polynomial is irreducible and divides tm- 1 form = 2" 1 and for no

[1] The Euler function has the value of the number of numbers that are relatively prime

to its argument

[2] In the case of spread spectrum communications, where two valued functions are

used the prime p is normally 2, and the remainder of this section will assume that p--.2.
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smaller m. Elements of GF(n) are all polynomials of degree n-1 or less with coefficients

from GF(2). Representing each polynomial element by its coefficients gives an n-tuple

version of the element, e.g. t2 + 1 .m 101. Elements from GF(n) can also be represented as

powers of a primitive element a. A primitive element is defined in a similar way to one

in GF(p). The number of primitive elements is therefore 4)(p A — 1).
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APPENDIX C

THE THEORY OF INFORMATION

This Appendix contains a derivation of the Channel Capacity equation derived by Claude

Shannon in 1949.

3.1 The Discrete Channel without Noise

The capacity of a discrete channel is given by

C = LtIlog2r1
T-4-	 T

Where N(T) is the number of allowed signals of duration T.

Theorem 1: If the sequences of symbols allowed can be described as a state machine then

the channel capacity can be found.

Theorem 2: If kr.; is the duration of the 5:h 	 which is allowable in state i and leads

to state j then

C = log2(W)

Where W is the largest real root of

fW (—b) — Ou= 0

8 being the identity matrix. A discrete source can be modelled by a stochastic process,

more specifically by a Markov process.
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Definition 1: An Ergodic process is one in which every sequence produced by the process

is identical in statistical properties. Relating this to state machines, a state machine is

ergodic if it does not consist of more than one disjoint part and if and only if the circuit

lengths of the state machine are relatively prime.

If the first condition is satisfied but not the second, the sequences have periodicity, and

fall into d classes (d being the G.C.D. of the circuit lengths). If the first condition is violated,

we have a set of pure Ergodic sources, only one of which will be chosen. If pi is the

probability of state i and Pi (j) is the transition probability to state j, for a stationary process

P= PP(j)

For an Ergodic source, P i(N) of being in state j after N symbols approaches equilibrium

value as N ---> ....

3.2 Entropy

If there are a set of events with probabilities pl,p 2, p3,....pn we can assign a measure

II (Pi, P22 P3, • • • *P) of the choice of the outcome of an event. H will then satisfy the

following conditions:

H should be continuous with respect to pi

If p i = P2=
	 then H should be monotonic and increasing (the more events, the

more uncertainty).

If a choice is broken down into two successive choices, the original H should be the

weighted sum of the individual values of H.
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From this we can decompose a choice from s m equally likely possibilities into a series of

m choices each from s equally likely possibilities and obtain

A (en) = mA(s)

A (tn) = nA(t)

Choosing n arbitrarily large, take m such that

s m <ta <sm+1

Taking logs and dividing by n log s,

m log t m
n — logs n + 1

or

m log t	 1
— — — < e ,e :--. —
n logs	 n

where e is arbitrarily small. From the monotonic property of A(n),

A(s m) � A(tn).� A(sm+1)

mA(s) � nA(t) � (m +1)A(s)

Dividing by nA(s),

m A (t) m
n — A (s) — n + 1

or
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m A (t)
— —<e
n A(s)

Combining with 7,

A (t) log t <
2e

A (s) logs

Or

A (t)= —K log(t)

With K positive to satisfy (2). If we have a choice from n possibilities with probabilities

p = ;(—dnT). We can break down a choice from E(ni) possibilities into a choice from n

possibilities with probabilities D	 1101) 2), 3) • • • 43), and then if the i th was chosen, a choice from

ni with equal probabilities. Using the third condition,

K log 14(ni) = H(n D 19	 )+ K E(pi log ni)— 1, 2, - 3, • •

So

H = K E(p i log (ni))—E(pi log ni)

H = —K X4(p i)logk-In

H = —K (p) logpi.

3.3 Properties of H

H vanishes if and only if all pi but one are zero, the remaining one having a probability

of one.
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For a given n, II is a maximum when all p = - so that H log (n).

Assume two events x and y, with m possibilities for x and n for y. If p(ij) is the prob. that

x=i and y=j,

H(x,y)--= 	(i,j)

So H(x,y)  F1(x) + H(y), with equality only when x and y are independent. Any change

towards equalising the pi, p„ increases H. Assume two interdependent events x and y.

If pi(j) is the probability that y=j given that x=i,

pi(i)-151 E(p(i(ji,)i))

The conditional entropy Hy is the average of the entropy of y for each value of x, weighted

according to p(x).

H(y) — >,jP (i , j) logP (i,))+ Z, jP (i, j) log I P (i,j)

H(x)+Hx(y)

If we consider a long message of N symbols, it will contain with high probability AN

occurrences of the first symbol ,....p„N occurrences of the n th symbol. The probability

of this message is

p = plpiN 	 PnPAN

Or

log p N pi logpi
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logp = —NH

log!
H = 

N
P

Relative entropy is defined as the ratio of the entropy of a source to the maximum value

it can have for the same set of symbols. The redundancy is defined as (1 - relative entropy).

3.3.1 Representing the encoding and decoding operations

Both transmitter and receiver are known as discrete transducers. They may have internal

finite memory in which case there are a finite number of states that the transducer can be

in. The output and next state of the transducer will be functions of the present state and

the input:

Y. = f(x., a.)

a 1  g (x„, a „)

Where x„ is the n th input symbol, a„ is the state of the transducer when the n th input symbol

is introduced, y a is the output symbol. If there is a second transducer which operates on

the output of the first and recovers its original input, the first transducer is non-singular

and the second is its inverse.

Theorem 3: The output of a finite state transducer driven by a finite state source is a finite

state source with entropy less than or equal to that of the input. If the transducer is

non-singular they are equal.
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Theorem 4: If a source has entropy H (bits per symbol) and a channel has a capacity C

then it is possible to encode the output of the source so to transmit 5- e symbols per second

c
with e arbitrarily small. It is not possible to transmit at an average rate greater than IT

3.4 The Discrete Channel with Noise

Two types of noise may be identified: if a given transmission always produces the same

received signal then the noise is distortion, otherwise the noise is an independent variable

N.

E = f(S ,N)

Where E is the received signal, S is the transmitted signal and N is the noise. In general,

the noise may be considered as a stochastic process. The probability that if the channel is

in state a and symbol i is transmitted, that symbol j will be received and the channel left

in state b is

P. ,i(b,f)

a and b range over all the possible states and i over the possible transmitted signals, j over

the possible received signals. If successive symbols are independently perturbed there is

only one state and the channel is described by a set of transition probabilities pi (j). If the

entropy of the source is H(x), the entropy of the output of the channel is H(y), the joint

entropy of the input and output H(x,y) and the conditional entropies H(y) and Hy (x) then

H(x,y)= H(x)+ Hx(y)= H(y)+ Hy(x).

The rate of transmission R is the rate of production (entropy of the source) minus the

average rate of conditional entropy:

R = H(x)— Hy(x)
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The conditional entropy H y (x) is known as the equivocation and it measures the average

ambiguity of the received signal. If we imagine an observer who notes errors in the received

data and transmits this information over a correction channel back to the transmitter, then

Theorem 5: If the correction channel has a capacity Hy (x) it is possible to so encode the

correction data as to send it over the correction channel and correct all but an arbitrarily

small fraction e of the errors. This is not possible if the correction channel capacity is less

than Hy(x).

Hy (x) is the amount of additional information that must be supplied per second at the

receiving point to correct the message. Moreover, it possible to send information over the

channel at the rate C with as small a frequency of errors or equivocation as desired by the

use of suitable coding.
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APPENDIX D

THE THEORIES OF MOBIUS AND EULER

4.1 The Mobius Function

The mobius function of a number n, li(n) is defined as follows

1.t(n) = 1 if n = 1

g(n) = 0 if n contains a prime factor raised to a power greater than 1

ti(n) = (-1)k if n is the product of k distinct primes

4.1.1 Properties of the Mobius Formula

dExcept in the case n = 1, >t(d) = 0 where the summation limit ; means for all divisors d
d
n

of n.

(d)
I,d 117,D = 1
n Ln j

where div(n) is the number of divisors of n

n
X(n) = I 4—_,)log(d)

d	 a
n

where

X(n) = log(p) if n is a power of a single prime p or 0 if n contains different primes
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This function is used when one is calculating the inverse of a function given by

F(n) = f(d) where n is an integer and d is a divisor of n. The values of F for n up to 8

are shown below.

1

d

1

F(n)

f(1)

2 1,2 f(1) + f(2)

3 1,3 f(1) + f(3)

4 1,2,4 f(1) + f(2) + f(4)

5 1,5 f(1) + f(5)

6 1,2,3,6 f(1) + f(2) + f(3) + f(6)

7 1,7 f(1) + f(7)

8 1,2,4,8 f(1) + f(2) + f(4) + f(8)

solving for f(n):

f(6) = F(6)

f(2)

f(3)

f(4)

f(5)

- F(3)

f(7)

f(8)

f(1)

= F(2)

= F(3)

= F(4)

= F(5)

- F(2)

= F(7)

= F(8)

= F(1)

- F(1)

- F(1)

- F(2)

- F(1)

+F(1)

- F(1)

- F(4)

In general,
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f(n) = 4-ci
n :

F (d) = E p.(d)F(11)
d	 d_

.	 .

4.2 The Euler Function

The Euler function 4)(n) gives the number of numbers less than n

and prime to it. So

4)(1) = 1, 4)(2) = 1, 4)(3) = 2,4)(4) = 2, 0(5) = 4,4)(6) = 2...

An important property of the Euler function is the one mentioned above, namely

n = E 4:(d)
d_
n

Applying the mobius inversion formula to this gives

4)(n) = p.(d) (lci)

(1)(n) 
= E

R(d)

n	 d d
.

For a shift register of length n, the number of m sequences that it can generate is, in general,

4)(2n — 1)

n

and if 2n-1 is prime this is equal to	 , e.g. for n=7, this is 18.
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The work so far in this chapter has used linear feedback shift register sequences as its

examples, and m sequences in particular as a special case, using the properties of these

types of sequence to classify them.

A more general type of linear sequence is the two-level sequence, i.e. one in which the

auto-correlation has two values, as discussed before.
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APPENDIX E

ENCRYPTION METHODS

5.1 The R.S.A. Public Key Cryptographic Method

Both this method and the Knapsack method rely for their success on the principle that a

two-key code, where the two keys are not related in any way, simplifies the problems

associated with keeping the keys secret. In other words, it is possible for anyone to encrypt

data using one of the keys (the public key), but only the receiver has a copy of the private

key and so only he can decrypt the data. In fact, the public key should be made as widely

available as possible. In more concise form:

DECRYPT(ENCRYPT(DATA))=DATA

It is difficult to deduce D from E

E cannot be broken given the data and its encrypted form.

The problem with this method is finding good candidates for DECRYPT and ENCRYPT.

The method proposed by Rivest et al. provides a solution that is widely used today:

Choose two large prime numbers with more than 100 digits.

Find the product of these prime numbers: N = P1 * P2. Compute another number, Q = (P1

-1) * (P2 - 1).

Find a number DECRYPT such that GCD(DECRYPT,Q)=1, i.e. pick DECRYPT so that

it is relatively prime to Q.

Find ENCRYPT such that ENCRYPT * DECRYPT = 1 mod Q.

In order to encrypt data, it is split into blocks of N or less bit-equivalents, and compute
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SECRET = MESSAGE BITS A ENCRYPT

Where A refers to exponentiation modulo Q. To decrypt the encrypted message, compute

RECEIVED = SECRET A DECRYPT

The public key then consists of both ENCRYPT and N, and the private key DECRYPT

and N. Given that finding large prime numbers is a formidable task, finding a suitable

DECRYPT given all the other parameters of the system is a non-trivial task. In fact, one

of the inventors of the RSA algorithm commented that factoring a 500 bit binary number

would take approximately 1025 years.

5.2 The Data Encryption Standard

The principle behind this standard is to use a simple cryptographic method (in this case

bit permutation) many times in succession to encrypt the data. This philosophy of applying

a simple method many times is contrasted by the method used in the RSA algorithm

described elsewhere in this chapter. If a number of data bits (say 3) are used to activate

one of eight outputs (22 = 8) and those eight bits are permuted before being re-encoded as

a three bit number, a cipher can be built simply and easily. The DES standard uses this

method, with a series of 16 key-dependent and 3 key-independent transpositions operating

on 64 bits of data. The three key-independent transposition are:

The first transposition.

The next to last transposition, which exchanges the upper and lower 32 bits.

The last transposition, which is the exact inverse of the first.
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The operation of the 16 intermediate stages involves taking the upper and lower 32 bits,

setting the upper 32 bit output to be the lower 32 bits input, and the lower 32 bits output

to be the exclusive-or of the upper 32 bits input and a function of the lower 32 bits input.

This is illustrated in Figure 29 below.

L 11	 f (R
1
 ,K	 )

1-

4TriiTiT Tif=
32 BITS	 32 BITS

R
I

Figure 29 : Data Encryption Standard

The secret to DES lies in the function which acts on one 32 bit input. This function operates

in five parts, as shown in the table below:

A 48 bit number (N) is derived from the 32 bit input by applying a fixed transposition and

duplication rule

and the stage-key are exclusive-or'ed together

The result is partitioned into eight groups of 6 bits.

112



Each 6 bit word is permuted 4 bits

The eight groups of four bits are permuted together to produce a 32 bit result.

The stage-key is derived from the master key as follows:

A 56 bit transposition is applied to the key

The result of this is split into two 28 bit parts, and these parts are logically rotated a number

of bits n, which depends on the iteration number

The result is again permuted as 56 bits and becomes the final 48 bit stage key.

Despite the apparent complexity, DES is a single alphabet encryption method, which is

breakable in a finite time using modern computers.

5.3 The Knapsack Algorithm

This method of encryption relies on an analogy for its explanation. If we imagine a set of

objects, with specified weights, then a bag containing a subset of the objects will have a

total weight equal to their combined weight. It is exceedingly difficult to determine which

objects are in the bag, given the total weight of the bag and the weights of the individual

objects.

In order to use this method for encryption, a message is split into a number of bits, and

each bit multiplied by a binary weight W. The encoded message is the sum of the weighted

values of each of the bits. If each bit weight W is larger than the sum of all the previous

weights, the coded message can be decrypted by subtracting the largest weight less than

the current total weight. The code user then chooses two large numbers such that:

GCD(N1,N2) = 1

and the weight vector is chosen so that
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WEIGHTVEC = N2 * W (mod Ni)

This Weight vector is published, and data encrypted by computing

ENCRYPT = WEIGHTVEC * DATA

To decrypt the data, the receiver computes

RECEIVED = 1/N2 * ENCRYPT (mod Ni)



APPENDIX F

SIMULATOR LISTINGS

#include <stdio.h>
#define TRUE 1
#define FALSE 0
#define max(a,b) (((a)>(b))?(a):(b))
#define min(a,b) (((a)<(b))?(a):(b))
struct transition (

struct transition *flex
double t_amplitude,

t_time;

struct gen I
unsigned *mask,

*shift_reg,
length;

double clock_period,
amplitude;

struct event (
struct event *nxt event;
int get_event;
struct gen *source;
double event_time,

amplitude;
I ;
/*@(#)sim.c 1.6*1
#include <math.h>
#include "sim.h"
/*-
This program simulates the operation of a communications
channel connected to a number of spread spectrum sequence
generators or sources.
The number of seperate sequences is not limited,
neither is the length, amplitude and clock period of any one
sequence.
The simulation is event driven, on a demand basis.
This means that new events are generated only when needed, as opposed to
for all time.
This slows the simulation down somewhat, but allows
very long effective duration of simulation (potentially infinite).
The program offers the choice of either a perfect integrator at the
receiver, or more realistically a sampling receiver.
If the number of samples is set at 1, then the receiver becomes hard limited.
The simulator can be run either from the command line or from a data file.
The mode of operation is determined from the command line itself, i.e. if
there is a source file then non-interactive mode is chosen.
In interactive mode, the program prompts for the following information
for each transmitted sequence:
sequence polynomial in octal <octal integer>
sequence start time <double real>
sequence clock period <double real>
sequence amplitude <double real>
another sequence? <yln>
This is repeated for as long as the answer to the last question is y, then
the following questions are asked:
receiver polynomial in octal <octal integer>
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receiver clock period <double real>
simulation duration <double real>
The results of the simulation are output either on the standard output
or to a output file specified on the command line

/*- global variables */
FILE *	 *d_file;
struct event *event header
int do_integrate,

interactive;
/* receiver registers */
int r_length,

*r_sequence,
*r_reference;

/* receiver clock, total simulation time and global amplitude */
double r_clock,

s_time,
g_amplitude = 0.0;

1*- memory allocation primitives for the two types of structure */
struct gen *galloc 0 C	 -	 •

return ((struct gen *) malloc (size of (struct gen)));

struct event *ealloc 0 (

return ((struct event *) malloc (size of (struct event)));
);
/*- used when EOF is prematurely read */
void read error 0

fprintf (stderr, "Unable to read file: %s\n", s_file);
exit (2);

/
;
*- simple integer arithmetic routines necessary for spread spectrum sequences */

int two_power (power)
int power;

int count;
int i = 1;
for (count = 1; count != power + 1; count++)

i *= 2;
return (i);

int exor (vall, val2)
int vall,

val2;

switch (vall) (
case 0:

if (val2 == 0)
return (0);

else
return (1);

default:
if (val2 == 0)

return (1);
else

return (0);

1*

insertsinserts an event in the event list, pointed to by event_header. Sets the
pointer to the generator, the event time, amplitude etc.
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on entry:
initiator: pointer to the generator that caused this event
time:	 time at which the transition is to occur
amplitude: amplitude of the transition
more:	 true if there are more transitions to be
generated for this bit, false otherwise

on exit:
the global variable event header will point to the modified
event list with the new event inserted in chronological order

global variables referenced:
event_header

global variables altered:

functions called:
*1

void insert event (initiator, time, amplitude, more)
struct gen '7initiator;	 - - • • -
int more;
double time,

amplitude;

struct event *first,
*next;

/* start at the head of the event list */
first = next = event_header;

/* step through events until the correct time slot is found */
for (;;)
/* insert events in chronological order */

if (next -> event_time > time) (
next = first;
break;

/* unless at the end of the event list */
if (next -> nxt_event == NULL)

break;
/* otherwise check the next event in the list */

first = next;
next = next -> nxt_event;

/* insert the new event */
first = next -> nxt event;
next -> nxt_event = ealloc 0;
next -> nxt_event -> nxt_event = first;
next = next -> nxt_event;

/* fill in the fields of the event record */
next -> event_time = time;
next -> amplitude = amplitude;
next -> get event = more;
next -> source = initiator;

/*
insert a new generator, with corresponding first event in the event list.
This routine is used in the read_params function •

on entry:
on exit:

adds the first event associated with a generator to the
event list. All parameters of the generator and first event
are set up as read in.
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global variables referenced:
s_file

global variables altered:
functions called:

galloc0
canoe°
insert_event

void insert_gen
struct gen *this;
int val,

len;
unsigned poly;

/* get an uninitialised structure */
this = galloc 0;

/* read in the feedback taps for the shift register */
if (interactive = TRUE)

fprintf (stderr, "enter generator polynomial: ");
fscanf	 "%o", &poly);
len = (int) floor (log ((double) poly) / log (2.0));
poly /=- 2;
this -> shift_reg = (unsigned *) calloe ((unsigned) len,

size of (unsigned));
this -> mask = (unsigned *) canoe ((unsigned) len,

size of (unsigned));
/* initialise the shift register to all l's (see below) */

for (val = 0; val < len; val-H-)
this -> shift_reg[val] = 1;

/* read in the taps */
for (val = 0; val < len; val++) (

this -> mask(val] = poly % 2;
poly /= 2;

/* read in the rest of the fields */
this -> length = len;
if (interactive =-- TRUE)

fprintf (stderr, "start time: '!);
if (fscanf (s_file, "%If', &s_time) --= EOF)

read error 0;
if (interactive = TRUE)

fprintf (stderr, "clock period: ");
if (fseanf (s_file, "%lf", &(this -> clock_period)) == EOF)

readerror 0;
if (interactive = TRUE)

fprintf (stderr, "amplitude: ");
if (fseanf (s_file, "%lf", &(this -> amplitude)) == EOF)

readerror 0;
/* insert the first transition into the event list. This line of code

assumes that all sequences start with a 1 (see above), hence the 112
amplitude */
insert_event (this, s_time, this -> amplitude / 2, TRUE);

read the communication channel specification, including as many transmitters
as are wanted, and the receiver spec.

on entry:
on exit:

has set up the data structures necessary for the simulation
global variables referenced:

event_header
s_file
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global variables altered:
r length
r_sequence
r reference

functions called:
ealloc
calloc
two_power
exor
cfree

read_params 0
int	 i,

j,
bit,
r_poly,
*r_shiftreg,
*r_mask;

char reply;
/* insert a dummy event at zero time into the event list */

event_header = ealloc ();
event_header -> get_event = FALSE;
event_header -> event_time = 0.0;
event_header -> amplitude = 0.0;

/* read sequence parameters until no more are required */
do (

insert_gen ();
if (interactive == TRUE)

fprintf (stderr, "Another sequence?: ");
) while (fscanf (s file, "% ls", &reply) != EOF &&

reply == T;
/* read in the feedback taps etc. for the receiver, and initialise the

receiver registers */
if (interactive == TRUE)

fprintf (stderr, "Enter the receiver generator polynomial: ");
if (fscanf (s_file, "%o", &r_poly) != EOF) (

r_length = (int) floor (log ((double) r_poly) flog (2.0));
r_shiftreg = (int *) calloc ((unsigned) riength, sizeof (int));
r_mask = (int *) calloc ((unsigned) r_length, sizeof (int));
r_poly /= 2;

/* read in the taps */
for (i = 0; i < r_length; i++)

r_mask(i) = r_poly % 2;
r_poly 1= 2;

else
readerror ();

/* set up the reference sequence in the receiver correlator and
initialise the receiver to all O's (not strictly speaking necessary)

r_reference = (int *) calloc ((unsigned) two_power (r_length) - 1,
sizeof (int));

r_sequence = (int *) calloc ((unsigned) two_power (r_length) - 1,
sizeof (int));

for (i = 0; i < two_power (r_length) - 1; i++)
r_sequence[i] = 0;

/* start off with all l's in the shift register (see earlier) */
for (i = 0; i < r_length; i++)

r_shiftredi] = 1;
/* generate the reference */
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for (j = 0; j < two_power (r_length) - 1; j++) (
bit = r reference[j] = r shiftreg[r length - 1];
for (i = r_length - 2; i >= 0; i--)

if (r_mask[i] == 1)
bit = exor (bit, r shiftredij);

for (i = r_length - 1; i >0; i--)
r_shiftreg[i] = r_shiftreg[i - 1];

r shiftreg[0] = bit;

/* dispose of all unwanted space */
cfree ((char *) r mask);
cfree ((char *) r shiftreg);

/* read in the remaining parameter */
if (interactive =-- TRUE)

fprintf (stderr, "Enter the receiver clock period: ");
if (fscanf (s file, "%if' , &r clock) =-- EOF)

readerror();

/* use the information in an event and its corresponding source to
generate the next voltage transition, by sequencing the shift
register through states until a change in output is observed

on entry:
eptr:	 pointer that is to be referenced

on exit:
leaves a new
event in the event list at the time of the next change in output of
the sequence contained in the generator

global variables referenced:
global variables altered:
functions called:

exor
insert_event

new_event (eptr)
struct event *eptr;

struct gen *gptr;
double time;
unsigned bit,

obit;
int	 i;

/* generate a new event if the flag is TRUE. This will always be the
case, unless Manchester coding or some variant is used which results
in multiple transitions per bit *1
if (eptr -> get_event =-- TRUE) (

time = eptr -> event_time;
gptr = eptr -> source;

1* generate bits from the shift register *1
do (

bit = obit = gptr -> shift_reg[gptr -> length - 1];
/* exor bits corresponding to those set in the mask register */

for (i = 0; i < gptr -> length - 1; i++)
if (gptr -> mask[i] == 1)

bit = exor (bit, gptr -> shift reg[i]);
/* shift */

for (i = gptr -> length - 1; i > 0; i--)
gptr -> shift_reg[i] = gptr -> shift reg[i - 1];

gptr -> shift_reg[0] = bit;
/* step the time period and save the new output value */

bit = gptr -> shift_reg[gptr -> length - 1];
time += gptr -> clock_period;
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) while (bit == obit);
/* having found the event time, insert the transition */

insert_event (gptr, time,
bit == 0? -(gptr -> amplitude) : gptr -> amplitude, TRUE);

eptr -> get_event = FALSE;

/*
sample the output waveform a given number of times, and decide on a
majority basis whether a bit is 1 or 0. If a single sample is used
then reception is hard limited.
on entry:

clock:	 receiver clock period
start_time: start of sample time period
n_samples: number of samples

on exit:
returns the bit value of the bit period

global variables referenced:
event_header
g_amplitude

global variables altered:
g_amplitude
event_header

functions called:
new_event
cfree

*1
int sample (clock, start time, n_samples)
double clock,

start_time;
int n_samples;

struct event *even;
int sample,

double t_inc,
t;

even = event_header;
t inc = clock / n samples;
sample = (g_amp—litude >= 0.0? 1: -1);
t = start time;
for (j = 1; j < n_samples; j++)

while ((t + t_inc >= even -> event_time)) (
g_amplitude += even -> amplitude;
new_event (even);
event_header = even -> nxt_event;
cfree ((char *) even);
even = event_header;

t += tine;
sample += (g_amplitude >= 0.0? 1: -1);

while (even -> event_time <= start_time + clock) (
g_amplitude += even -> amplitude;
new_event (even);
event_header = even -> nxt_event;
cfree ((char *) even);
even = event_header,

);
return (sample >= 0? 1: 0);

121



perform a continuous integration over one receiver bit period. This
type of reception is ideal, as opposed to the sampling method used
above which is quantised

on entry:
clock:	 denotes the time period over which the

integration is calculated.
start_time: denotes the starting time for the integration

on exit:
returns the value of the single bit based on a simple
quantisation of receiving a 1 if the integral is >=1,
otherwise retuning a zero.

global variables referenced:
event_header
g_amplitude

global variables altered:
event_header
g_amplitude

functions called:
new_event
cfree

*/
int integrate (clock, start_time)
double clock,

start_time;

struct event *even;
double integral_sum,

t,
t last;

/* set up the initial conditions */
even = event_header;
integral_sum = 0.0;
t = start_time;

/* do this for all events before the end of this time slot including any
transitions that occur exactly at the end of the integration period */
while ((even -> event_time)	 (start_time + clock)) (

t_last = t;
t = even -> event_time;

/* increment the integral */
integral_sum += g_amplitude * (t - t last);

/* increment the global amplitude */
g_amplitude += even -> amplitude;

/* and dispose of this transition */
new_event (even);
event_header = even -> nxt_event;
cfree ((char *) even);
even = event_header;

integral_sum += g_amplitude * (start_time + clock - t);
return (integral_sum >. 0.0? 1: 0);

main (argc, argv)
char argc,

**argv;

int csum,

n_samples;
char *s;
double
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s_time,
time;

interactive = TRUE;
r_clock = 0.0;
s_file = stdin;
d_file = stdout;

/*- parse the command line invocation for parameters */
switch (argc) (

case 4:
if ((d_file = fopen (argv[31, "w")) == NULL) (

fprintf (stderr, "Can't open %s\n", argv[3]);
exit (1);

)
case 3:

if ((s_file = fopen (argv[2], "r")) == NULL) (
fprintf (stderr, "Can't open %s\n", argv[2]);
exit (1);

)
interactive = FALSE;

case 2:
s = argv[1];
switch (*s) (

case 'i':
do_integrate = TRUE;
break;

case 's':
do_integrate = FALSE;
break;

default:
fprintf (stderr,

":Usage: sim i/s (<sourcefile>) (<plotfile>)\n");
exit (2);

)
break;

default:
fprintf (stderr,

"Usage: sim Vs ksourcefile>) (<plotfile>)\n");
exit (2);

/*.. read in the remaining global variables */
if (interactive = FALSE)

fprintf (stderr, "Reading simulation parameters\n");
read_params 0;
if (interactive = TRUE)

fprintf (stderr, "Enter simulation time: ");
if (fscanf (s_file, "%If', &s_time) =-- NULL)

readerror 0;
if (do_integrate = FALSE) (

if (interactive == TRUE)
fprintf (stdeff, "Enter number of samples: ");

if (fscanf (s_file, "%d", &n_samples) =-- NULL)
readerror 0;

)
time = 0.0;

/* main program loop */
while (time < s_time) (
/* shift the received sequence and read in the next bit */

for (i = 0; i < two_power (r length) -2; i++)
r_sequence[i] = r_sequence[i + 1];

r_sequence[two_power (r_length) -2] =
do_integrate == TRUE? integrate (r_clock, time) :
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sample (r_clock, time, n_samples);
I* calculate the correlation sum */

csum = 0;
for (i = 0; i < two_power (r length) - 1; i++)

if (r_reference[i] == r sequence[i])
csum++;

PI output the correlation value for further processing or display */
fprintf (d_file, "%d\n", csurn);

/* move on to the next chip period */
time += r_clock;

);
)



time

amplitude

more

APPENDIX G

GLOSSARY OF SIMULATOR FUNCTIONS

7.1 Main

This part of the programme simulates the operation of a communications channel connected to a
number of spread spectrum sequence generators or sources.

The number of separate sequences is not limited, neither is the length, amplitude and clock period of
any one sequence. The simulation is event driven, on a demand basis. This means that new events are
generated only when needed, as opposed to for all time. This slows the simulation down somewhat,
but allows very long effective duration of simulation (potentially infinite). The programme offers the
choice of either a perfect integrator at the receiver, or more realistically a sampling receiver. If the
number of samples is set at 1, then the receiver becomes hard limited.

7.2 Insert Event

Inserts an event in the event list, pointed to by event_header. Sets the pointer to the generator, the
event time, amplitude etc.

On Entry
	

initiator	 pointer to the generator that caused
this event

On Exit

time at which the transition occurred

amplitude of the transition

true if there are more transitions to
be generated for this bit, false otherwise

the global variable event_header will
point to the modified event list with the new event inserted
in chronological order

Global Variables
Referenced

Global Variables
Altered

Functions Called

event_header
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7.3 Insert Gen

Insert a new generator, with corresponding first event in the event list. This routine is used in the
read_params function

On Entry

On Exit

Global Variables	 s_file
Referenced

Global Variables
Altered

adds the rust event associated with a generator to the
event list. All parameters of the generator and first
event are set up as read in

Functions Called galloc
calloc
insert_event

7.4 Read Params

Read the communication channel specification, including as many transmitters as are wanted, and the
receiver spec.

On Entry

On Exit	 Has set up the data structures necessary for the
simulation

Global Variables	 event_head
Referenced	 s_file

Global Variables	 r_length
Altered	 r_sequence

r reference

Functions Called ealloc
calloc
two_power
exor
cfree
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7.5 Next Event

Use the information in an event and its corresponding source to generate the next voltage transition,
by sequencing the shift register through states until a change in output is observed

On Entry	 eptr	 Pointer that is to be referenced

On Exit	 Leaves a new event in the event list at the time of
the next change in output of the sequence contained
in the generator

Global Variables
Referenced

Global Variable
Altered

Functions Called	 exor
insert_event

7.6 Sample

Sample the output waveform a given number of times, and decide on a majority basis whether a bit is
1 or O. If a single sample is used then reception is hard limited.

7.7 Integrate

Perform a continuous integration over one receiver bit period. This type of reception is ideal, as
opposed to the sampling method used above which is quantised.
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APPENDIX H

SIMULATED ANNEALING LISTING

The simulated annealing program is included in this appendix. It was written on an IBM

AT using a proprietary C compiler which conforms to the ANSI C standard. The first file

is a sourcefile for the "make" utility which combines the other files to create the executable

code. The program has been written to be portable and should run on any machine using

unix.

8.1 File Anneal

CFLAGS=/I..\crecipies /c /Dfloat=double /Dranl=ran3
F...\erecipie\files

fourl.obj: $(F)Vourl.c
cl $(CFLAGS) $(F)\fourl.c

realft.obj: $(F)\realft.c fourl.obj
cl $(CFLAGS) $(F)\realft.c

twofft.obj: $(F)\twofft.c fourl.obj
cl $(CFLAGS) $(F)\twofft.c ..

correl.obj: S(F)\correl.c twofft.obj realft.obj
cl $(CFLAGS) $(F)\correl.c

ran3.obj: $(F)\ran3.c
cl $(CFLAGS) $(F)\ran3.c

irbitl.obj: $(F)\irbitl.c
cl $(CFLAGS) $(F)\irbitl.c

nrutil.obj: ..\crecipie\nrutil.c
cl $(CFLAGS) ..\crecipie\nrutil.c

util.obj: util.c anneal.h
cl $(CFLAGS) util.c

scramble.obj: scramble.c ran3.obj anneal.h
cl $(CFLAGS) scramble.c

energy.obj: energy.c correl.obj util.obj anneal.h
cl $(CFLAGS) energy.c
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return de < 0.0 II ran3(&gljdum) < exp(-de/t);
)

int	 main (int argc, char *argv[]) (
int	 i,

output.obj: output.c util.obj anneal.h
cl $(CFLAGS) output.c

anneal.obj: anneal.c nrutil.obj irbitl.obj ran3.obj util.obj output.obj scramble.obj energy.obj anneal.h
cl $(CFLAGS) anneal.c

anneal.exe: anneal.obj
cl /I..\crecipies /Feanneal.exe *.obj

8.2 File Anneal.c

/* first attempt at a simulated annealing program for designing cdma
code sets */
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include "anneal.h"

int	 idum = -1;

int metrop(de,t)
double de,t;
(

static int gljdum=1;

j,
length,
no of codes,
ntries,
try_limit,

successes,
successlimit;

unsigned long int iseed;

double energy,
energy_prev,
de,
temperature,
coolingfactor,

**sequence,
**backup;

FILE *s_file,
*code file,
*plot Tile;
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/* read in the program variables */
s_file = stdin;
code_file = stdout;
plot_file = stdout;

/*- parse the command line invocation for parameters */
switch (argc) (

case 3:
if ((plot_file = fopen (argv[2], "w")) =--- NULL) (

fprintf (stderr, "Can't open %s\n", argv[2]);
exit (1);

)
fprintf(stderr,"Opened %s as plot file\n",argv[2]);

case 2:
if ((code_file = fopen (argv[1], "w")) =---- NULL) (

fprintf (stderr, "Can't open %s\n", argv[1]);
exit (1);

)
fprintf(stderr,"Opened %s as code file\n",argv(u);

case 1:
break;

default:
fprintf (stderr,

"Usage: anneal (<zcodefile>) ('(plotfile>)\n");
exit (2);

)
fprintf (stderr, "enter the code length: ");
fscanf (s file, "%d", &length);
fprintf (sTderr, 	 "enter the code set size: ");
fscanf (s_file, "%d", &no_of codes);

/* initialise the data structures */
cooling_factor = 0.9;
energy_prev = (double) length;
successes = 0;
ntries = 0;	 .
temperature = (double) length;
success_limit = (int) floor (-log ((double) length) flog (cooling_factor));
try_limit = length;
sequence = dmat (1, no_of codes, 1, near2(length));

/* initialise the sequence set to be completely random on the first try
of this algorithm */
for (i = 1; i <= no_of codes; i++)

for (j = 1;j <= length; j++)
sequence[i][j] = (irbitl (&iseed) == 1? 1.0: -1.0);

/* main program loop */
do (

/* save a copy of the current version of the sequence in case the
scrambled copy fails the metrop test */
backup = dmat (1, no_of codes, 1, near2(length));
for (i = 1; i <= no_of codes; i-H-)

for (j = 1; j <= length; j++)
backup[i]U] = sequence[i]U];

/* scramble the sequences and then calculate the new energy value */
i = scramble_sequences (temperature,sequence,no_of codes,length);
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#if defined(DEBUG)
fprintf(code_file,"number:%tht",i);

#endif

energy = calculate_energy (sequence,no_of codes,length);

/* decide whether to update the sequence set based on the current
value of temperature and the improvement in energy */

de = energy - energy_prev;

#if defined(DEBUG)
fprintf (codeine,

"e: %7.41Nde: %7.41Ntemp: %7.41N",

#endif
	 energy, de, temperature);

if (metrop (5.0 * de, temperature))
(

successes++;
ntries = 0;
temperature *= cooling_factor;
energy_prev = energy;
free_dmatrix( backup, 1, no_of codes, 1, near2(length));

)
else
f

ntries++;
free_dmatrix( sequence, 1, no_of codes, 1, near2(length));
sequence = backup;

)
if (nines >= trylimit)
(

successes++;
nines = 0;
temperature *= cooling_factor;

)

#if defined(DEBUG)
fprintf (codeine, "\n");

#endif

I

/* if we have tried to improve this one and it doesn't work then give up */
while (ntries < length && successes < success_limit);

/* now output the results */
fprintf (code_file, "the figure of merit is: %if' , energy_prev);
for (i = 1; i <= no_of codes; i++) (

fprintf (code_file, "\nsequence %d:
for (j = 1; j <= length; j++)

fprintf (code_file, "%d", (sequence[i][j] == 1.0 7 1 : 0));
)
fprintf (codeine, "\ii");

131



/* output the correlation values */
output_results(sequence,no_of codes,length,plot_file);

return (1);
)

8.3 File Scramble.c

/* scramble up the sequences in the two dimensional array sequence. The
amount of scrambling ot be done is based on the temperture. High temp
means more scrambling */

#include <math.h>
#include "anneal.h"

int scramble_sequences (double temperature, double **sequence,
int no_of codes, int length)

(
/* scrambling is done on the basis of getting a portion of the full

sequence and inverting it. This is done repeatedly, the number of
times being dependent on the annealing temperature. The position
and length of each portion are determined randomly */

extern int idum;

int	 i,
iter = 0,
.i;

for (i = 1; i <= no_of codes; i-H-) (
for (j = 1; j <= length; j++) (

if (ran3(&idum)<temperature/(2.0*(double)length))(
iter++;
sequence[i][j] = (sequence[i][j] == 1.0? -1.0: 1.0);

)
)

)
return(iter);

)

8.4 File Energy.c

/* routine to calculate the energy for the simulated annealing program
based on the auto and cross correlation properties of the code set.
there are two global variables, length and no_of_codes. length is the size
of the sequences, and no_of codes is the desired code set size */

#include <math.h>
#include "anneal.h"
#include <stdio.h>
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double	 calculate_energy (double **sequence, int no_of codes, int length) [

int	 i,
j,
k;

double *ans,
*a,
*b,

thap;

thap = 0.0;
ans = dvec	 (1,4 * near2(length));
a = dvec (1,2 * near2(length));
b = dvec (1, 2 * near2(length));

/* find the <1,11> autocorrelation */
for (i = 1; i <= no_of codes; i++) (

cone! (sequence[i],sequence[i],near2(length),ans);
for (j =2; j <= length; j++)

if (fabs (ans[j]) > thap) thap = fabs (ans[j]);

/* find the <1,10> autocorrelation */
for (i = 1; i <= no_of codes; i++) (

for (j = 1; j <= length; j++) (
a[j] = sequence[i][j]; 	 .
a[j + length] = -sequence[1][j];
b[j] = sequence[i][j];
b[j + length] = 0.0;

)
correl (a, b, 2 * near2(length), ans);
for (j = 2; j <= length; j++) (

if (fabs (ans[j]) > thap) thap = fabs (ans[j]);
if (fabs (ans[j + length]) > thap) thap = fabs (ans[j + length]);

)

/* do the <1,11> cross correlation */
for (i = 1; i <= no_of codes; i++) ( .

for (j = 1; j <= no_of codes; J++) [
if (i != j) [

cone! (sequence[i],sequence[j],near2(length),ans);
for (k = 1; k <= length; k++)

if (fabs (ans[k]) > thaP)
thap ;---- fabs (ans[k]);

)

/* do the <1,10> cross correlation */
for (i = 1; i <= no_of codes; i++) ( .

for (j = 1; j <= no_of codes; j++) (
if (i != j) [

for (k = 1; k <= length; k++) (
a[k] = sequence[i][k];
a[k + length] :-.1 -sequence[i][k];

)

)
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b[k] = sequencerjlik];
b[k + length] = 0.0;

)
correl (a, b, 2 * near2(length), ans);
for (k = 1; k <= length; k++) (

if (fabs (ans(4) > thap)
thap = fabs (ans[k]);

if (fabs (ansgc + length]) > thaP)
thap = fabs (ans[k + length]);

)

]

free_dvector (ans, 1, 4*near2(length));
free_dvector (a, 1, 2*near2(length));
free_dvector (b, 1, 2*near2(length));

return thap;

)

8.5 File Output.c

#include <math.h>
#include <stdio.h>
#include "anneal.h"

void output_results (double **sequence, int no_of codes, int length, FILE *plot file) (

int	 i,
.i,

k;

double *ans,
*a,
*b,
*M;

ans = dvec	 (1, 4 * near2(length));
a = dvec (1, 2 * near2(length));
b = dvec (1, 2 * near2(length));
m = dvec (1, 2 * near2(length));

/* print the <1,11> correlation *1
for (i = 1; i <= no_of codes; i++) ( .

for (j = 1; j <= no_of codes;)++) (
correl (sequencelt],sequencennear2(length),ans);
for (k = 1; k <= length; k++)

if(fabs(ans[k]) > fabs(m[k])) m[k] = ans[k];

)
for(k=1;k<=length;k++)

fprintf(plot_file,"%d ",(int)m[k]);
fprintf(plot_file,"\n");

)
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for(kz.-1;k<=length;k++)
m[k]O.0;

1* print the <1,10-) correlation */
for (i = 1; i <= no_of codes; i++) (

for a = 1; j <= no_of codes; I++) (
for (k = 1; k <= length; k++) (

a[k] = sequence[i][k];
a[k + length] = -sequence[i][k];
b[k] = sequence[j][k];
b[k + length] = 0.0;

)
correl (a, b, 2 * near2(length), ans);
for(k=1;k<=2*length;k++)

if(fabs(ans[k])›fabs(m[k])) m[k] = ans[k];

)

for(k=1;k<=2*length;k++)
fprintf(plot_file,"%d ",(int)m[k]);

fprintf(plot_file,"\n");

free_dvector (ans, 1, 4*near2(length));
free_dvector (a, 1, 2*near2(length));
free_dvector (b, 1, 2*near2(length));
free_dvector (m, 1, 2*near2(length));

return;
I

8.6 File Util.c

#include <math.h>
#include <nrutil.h>
#include "anneal.h"

double *dvec(int low, int high) [
int i;
double *ptr;
ptr=dvector(low,high);
for(i=low;i<=high;i++)

ptr[i]=0.0;
return ptr;

)

double **dmat(int lowrow, int highrow, int lowcol, int highcol) (
int ij;
double **ptr;
ptr=dmatrix(lowrow,highrow,lowcol,highcol);
for(i=lowrow;i<=highrow;i++)

for(j=lowcol;j<=highcobj++)
ptr[i][j]=0.0;

return ptr;
I

I
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int near2(int num) (
return (int) pow(2.0,ceil(log( (double) num)/log(2.0) ));

8.7 File Anneal.h

#include "nrutil.h"
#include <stdio.h>

#define DEBUG
#if defmed (MSDOS)
extern	 int main(int argc, char *argv0);
extern void correl(double *datal,double *data2,int n,double *ans);
extern	 double calculate_energy(double **sequence,int no_of codes,int length);
extern void fourl(double *data,int nn,int isign);
extern int irbitl (unsigned long *iseed);
extern int metrop(double de,double t);
extern double ran3(int *idum);
extern	 void realft(double *data,int n,int isign);
extern	 double *dvec(int low, int high);
extern	 double **dmat(int lowrow, int highrow, int lowcol, int highcol);
extern	 int near2(int num);
extern	 int scramble_sequences(double temperature,double **sequence,int no_of codes, int
length);
extern	 void twofft(double *datal,double *data2,double *fftl,double *fft2,int n);
extern	 void output_results(double **sequence,int no_of codes,int length, FILE *plot file);
#else
int main();
void correl0;
double calculate_energy0;
void four10;
int irbitl();
int metrop0;
double ran30;
void realft0;
double *dvec();
double **dmat0;
int near2();
int scramble_sequences();
void twofft0;
void output_results();
#endif

8.8 File Fourl.c

#include <math.h>

#define SWAP(a,b) temprr----(a);(a)=(b);(b)=temPr

void fourl(data,nn,isign)
float data[];
int nn,isign;
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)
m=n » 1;
while (m >= 2 Mc j > In) (

.i -= m;
m »= 1;

I
i += m;

)
wr---(wtemp=wr)*wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;

)

i
mmax=istep;

int n,mmax,m j,istep,i;
double wtemp,wr,wpr,wpi,wi,theta;
float tempr,tempi;

n=nn « 1;
j=1;
for (i=1;i<n;i+=2) [

if(j>i) (
SWAP(data[j],data[i]);
SWAP(data[j+1],data[i+1]);

)
mmax=2;
while (n > mmax) (

istep=2*mmax;
theta=6.28318530717959/(isign*mmax);
wtemp=sin(0.5*theta);
wpr = -2.0*wtemp*wtemp;
wpi=sin(theta);
wr=1.0;
wi=0.0;
for (m=1;m<mmax;m+=2) (

for (i=m;i<=n;i+=istep) [
j=i+mmax;
tempr.---wrsdata[j]-wi*data[j+1];
tempi=wr*data[j+11+wi*data[j];
data[j]=data[i]-tempr;
data[j+1]=data[i+1]-tempi;
data[i] += tempr;
data[i+1] += tempi;

I

#undef SWAP

8.9 File Realft.c

#include <math.h>

void realft(data,n,isign)
float data[];
int n,isign;
(

int i,i1,i2,i3,i4,n2p3;
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if (isign == 1) (
data[1] = (hlr=data[1])+data[21;
data[2] = h 1r-data[2];

data[1]=c1*((h1r=data[1])+data[2]);
data[2]=c1*(h1r-data[2]);
fowl (data,n,-1);

) else (

)
)

8.10 File Twofft.c
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float c1=0.5,c2,h1r,h1i,h2r,h2i;
double wr,wi,wpr,wpi,wtemp,theta;
veld loud();

thota=3.141592653589793/(double) n;
if (iSign == 1) (

c2 = -0.5;
fourl(data,n,1);

c2=0.5;
theta = -theta;

)
wtemisin(0.5*theta);
wpr t--_ -2.0*wtemp*wtemp;
wp1=sin(theta);
wr=1,0+wpr;
wi=Wpi;
n2P3=2*n+3;
for (i=2;i<=n/2;i++) [

i4=1+(i3=n2p3-(i2=1+(il=i+i-1)));
h 1 r=c1*(data[i 1 ]+data [i3]);
hli=c1*(data[i2]-data[i4]);
h2r = -c2*(data[i2]+data[i4]);
h2i=c2*(data[i1]-data[i3]);
data[i/]=h1r+wr*h2r-wi*h2i;
data[i2]=h1i+wr*h2i+wi*h2r,
data[i3]=h1r-wr*h2r÷wi*h2i;
data[i4] = -h1i+wr*h2i+wi*h2r;
wr----(wtemp=wr)*wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;

) else [

void twofft(datal,data2,fftl,fft2,n)
float datal[],data2[],fftl[],fft2[];
int n;
(

int nn3,nn2jj,j;
float rep,rem,aip,aim;
void fowl();

nn3=1+(nn2=2+n+n);
for (j=1,jj=2;j<=ni-H-jj+=2) [

fftl [jj-1]=data 1 [j];
fftl (jj]=data2W;

)
four1(fft1 ,n,1);
fft2 [1]=fft 1 [2];



fft1[2]=M2[2]=0.0;
for (j=3;j<=n+1;j+=2) (

rep=0.5*(fftl [j]+fftl [nn2-j]);
rem=0.5*(fftl[j] -fftl[nn2-j]);
aip=0.5*(fftl [j+1]+fftl [nn3-j]);
aim=0.5*(fft1 [j+1]-ffil [nn3-j]);
fftl [j]=rep;
fftl [j+1]=aim;
fftl [nn2-j]=rep;
fftl [nn3-j] = -aim;
fft2[j]=aip;
fft2[j+1] = -rem;
fft2[nn2-j]=aip;
fft2[nn3-j]=rem;

)
1

8.11 File Correl.c

void correl(datal,data2,n,ans)
float datal[],data2[],ans[];
int n;
{

int no2,i;
float dum,*fft,*vector();
void twofft(),realft(),free_vector0;

fft=vector(1,2*n);
twofft(datal,data2,M,ans,n);
no2=n/2;
for (i=2;i<=n+2;i+=2) (

ans[i-1]=(fft[i-1]*(dum=ans[i-1])+fft[i]*ans[i])/no2;
ans(i1=(fkirdum-fftg-transCii)fixol:,

)

8.12 File Ran.c

#define MBIG 1000000000
#define MSEED 161803398
#define MZ 0
#define FAC (1.0/MBIG)

float ran3(idum)
int *idum;
(

static int inext,inextp;
static long ma[56];
static int iff=0;
long mj,mk;
int i,ii,k;

)
ans[2]=ans[n+1];
realft(ans,no2,-1);
free_vector(fft,1,2*n);
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if (*idum < 0 II iff =--. 0) (
iff=1;
mj=MSEED-(*idum < 0 ? -*idum : *idum);
mj %= MBIG;
ma[55]=mj;
ink= 1;
for (i=1;i<=54;i++) (

ii=(21*i) % 55;
ma[ii]=mk;
mk=mj-mk;
if (Ink < MZ) mk += MBIG;
mj=ma[ii];

)
for (k=1;k<=4;k++)

for (i=1;i<=55;ii-i-) (
ma[i] -= ma[1+(i+30) % 551;
if (ma[i] < MZ) ma[i] += HMG;

)
inext=0;
inextp=31;
*idum=1;

)
if (+-Finext == 56) inext=1;
if (++inextp == 56) inextp=1;
mj=ma[inext]-ma[inextp];
if (mj < MZ) mj += MBIG;
ma[inext]=mj;
return mj*FAC;

)

#undef MBIG
#undef MSEED
#undef MZ
#undef FAC

8.13 File Ranbit.c

#define IB1 1
#define IB2 2
#define IB5 16
#define I818 131072

int irbitl (iseed)
unsigned long *iseed;
(

unsigned long newbit;

newb it = (*iseed & IB 18) >> 17
A (*iseed & IB5) » 4
A (*iseed & 1B2)>> 1
A (*iseed & 13 1);

*iseed=(*iseed « 1) I newbit;
return (int) newbit;

)
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#undef IB 1
#undef IB2
#undef 1B5
#undef IB18

8.14 File Nutil.c

#include <malloc.h>
#include <stdio.h>
#include <nrutil.h>

void nrerror(error_text)
char error_text[];
(

void exit();

fprintf(stderr,"Run-time error...\n");
fprintf(stderr,"%s\n",error_text);
fprintf(stderr,"...now exiting to system..M");
exit(1);

)

double *dvector(nl,nh)
int nl,nh;
C

double *v;

v=(double *)malloc((unsigned) (nh-n1+1)*sizeof(double));
if (!v) nrerror("allocation failure in dvector0");
return v-n1;

)

double **dmatrix(nrl,nrh,ncl,nch)
int nrl,nrh,ncl,nch;
(

int i;
double **m;

m=(double **) malloc((unsigned) (nrh-nr1+1)*sizeof(double*));
if (!m) nrerror("allocation failure 1 in dmatrix0");
m -= nrl;

for(i=nr1;i<=nrh;i++) [
m[i]=(double *) mallocqunsigned) (nch-nc1+1)*sizeof(double));
if (!m[i]) nrerror("aliocation failure 2 in dmatrix0");
m[i] -= ncl;

)
return m;

)
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void free_dvector(v,n1,nh)
double *v;
int nl,nh;
[

free((char*) (v+n1));
)

void free_dmatrix(m,nrl,nrh,ncl,nch)
double **m;
int nrl,nrh,nclinch;
{

int i;

for(i=nrh;i>=nr1;i--) freeachar*) (m[111-flop);
free((char*) (m+nr1));

)
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number:302 e: 23.0000 de: -2.0000
number:265 e: 19.0000 de: -4.0000
number:248 e: 17.0000 de: -2.0000
number:245 e: 17.0000 de: 0.0000
number:210 e: 17.0000 de: -0.0000
number: 193 e: 19.0000 de: 2.0000
number: 177 e: 17.0000 de: -2.0000
number:143 e: 18.0000 de: 1.0000
number:157 e: 19.0000 de: 2.0000
number: 142 e: 17.0000 de: -2.0000
number:114 e: 20.0000 de: 3.0000
number: 126 e: 23.0000 de: 6.0000
number:109 e: 21.0000 de: 4.0000
number: 149 e: 21.0000 de: 4.0000
number: 117 e: 19.0000 de: 2.0000
number: 142 e: 19.0000 de: 2.0000
number:115 e: 21.0000 de: 4.0000
number:116 e: 19.0000 de: 2.0000
number: 122 e: 19.0000 de: 2.0000
number:103 e: 19.0000 de: 0.0000
number:94 e: 21.0000 de: 2.0000
number:96 e: 19.0000 de: 0.0000
number:82 e: 17.0000 de: -2.0000
number:68 e: 17.0000 de: 0.0000
number:64 e: 19.0000 de: 2.0000
number:76 e: 17.0000 de: -0.0000
number:82 e: 19.0000 de: 2.0000
number:70 e: 19.0000 de: 2.0000
number:60 e: 19.0000 de: 2.0000
number:60 e: 19.0000 de: 2.0000
number:59 e: 17.0000 de: -0.0000
number:65 e: 19.0000 de: 2.0000
number:50 e: 19.0000 de: 2.0000
number:49 e: 17.0000 de: 0.0000
number:47 e: 19.0000 de: 2.0000
number:54 e: 19.0000 de: 2.0000
number:55 e: 19.0000 de: 2.0000
number:46 e: 17.0000 de: 0.0000
number:45 e: 19.0000 de: 2.0000
number:55 e: 21.0000 de: 2.0000
number:47 e: 18.0000 de: -1.0000
number:45 e: 18.0000 de: 0.0000
number:39 e: 19.0000 de: 1.0000
number:30 e: 18.0000 de: -1.0000
number:27 e: 19.0000 de: 1.0000
number:23 e: 19.0000 de: -0.0000
number:43 e: 17.0000 de: -2.0000
number: 14 e: 19.0000 de: 2.0000
number:23 e: 17.0000 de: -0.0000
number:22 e: 17.0000 de: -0.0000
number:15 e: 17.0000 de: -0.0000
number:15 e: 17.0000 de: 0.0000
peak correlation is: 17.000000
sequence 1:1001011111100000000011110
sequence 2:1101110010110001110101101

APPENDIX I

OUTPUT FROM CODE SET DESIGN

temp: 25.0000
temp: 22.5000
temp: 20.2500
temp: 18.2250
temp: 16.4025
temp: 14.7623
temp: 13.2860
temp: 11.9574
temp: 11.9574
temp: 10.7617
temp: 9.6855
temp: 9.6855
temp: 9.6855
temp: 9.6855
temp: 9.6855
temp: 9.6855
temp: 9.6855
temp: 9.6855
temp: 9.6855
temp: 8.7170
temp: 7.8453
temp: 7.8453
temp: 7.0607
temp: 6.3547
temp: 5.7192
temp: 5.7192
temp: 5.1473
temp: 5.1473
temp: 5.1473
temp: 5.1473
temp: 5.1473
temp: 4.6326
temp: 4.6326
temp: 4.6326
temp: 4.1693
temp: 4.1693
temp: 4.1693
temp: 4.1693
temp: 3.7524
temp: 3.3771
temp: 3.3771
temp: 3.0394
temp: 2.7355
temp: 2.4619
temp: 2.2157
temp: 1.9942
temp: 1.7947
temp: 1.6153
temp: 1.6153
temp: 1.4537
temp: 1.3084
temp: 1.1775
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sequence 3: 0000110011000010010001111
sequence 4: 1000001100101110000111111
sequence 5: 0000101101010000100011111
sequence 6: 0010111011100000110011010
sequence 7: 0000101001101011000011111
sequence 8: 1111111111011101101110000
sequence 9: 1111010111000111101101111
sequence 10: 1111111110011001110111001
sequence 11: 0001110111110001111101001
sequence 12: 0110010011101001011000011
sequence 13: 1101100011101001010111101
sequence 14: 0101001000101000111101111
sequence 15: 1011011010101000000011011
sequence 16: 1110011101011100000100011
sequence 17: 1100100010010101111110100
sequence 18: 1011001000000010010000111
sequence 19: 1010110001100110011101100
sequence 20: 1101010000101100011100011
sequence 21: 0011000101011001101101010
sequence 22: 1100000101101011001010111
sequence 23: 1001110010100010010100011
sequence 24: 10011101/1100110010100110
sequence 25: 0101100001101111111011100
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APPENDIX J

REAL TIME ADAPTIVE TEXT COMPRESSION

ARE suggested a study for real time text compressor, suitable for use on RAIT links. The

purpose of this section is to describe a novel, adaptive, real-time text compressor. The

system uses a widely available single board microprocessor system to perform the

transmitter and receiver functions and achieves substantial compression at a realistic cost

using ready made components. The system is completely self contained, small and can

adapt to any text system automatically. The compression efficiency depends on the

redundancy in the text being sent - it is clear that a completely random stream of words

could not be compressed at all. Bearing this in mind, a compression efficiency of 30%

may be obtained in average text, while heavy use of abbreviations, as found in military

signals, will reduce this efficiency to around 25%. Compression efficiency is defined as

A 1,.,,,,—Alc

1 = 	x100
Nr.

Where Nr„,, is the number of bits required to transmit the raw information, N, is the number

of bits required to transmit the compressed information.

10.1 Fixed Dictionary Compression

As far as the author is aware, very few attempts have been made at text compression for

real time applications. Library applications have in general centred around the use of fixed

application dictionaries. For every application a predefined dictionary is maintained of

commonly occurring words which, when encountered in the text, are assigned specific

reserved codes that are not allowed to occur otherwise. It is clear that such a system could
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easily be implemented for use in a military environment.

Brushing aside for the moment potential problems that might be encountered (capital

letters, plurals, words followed by punctuation parentheses etc.), such a system could be

implemented as shown below. At the transmitter the processor is required to delimit the

incoming text stream into isolated words, which may be checked against the fixed

dictionary held in permanent storage. If a match is found, the appropriate code is sent over

the link, otherwise the uncompressed word is transmitted.

Advantages:

Simple implementation

Rapid Search of fixed dictionary - no updating

Fixed codes - no need to transfer code words

Disadvantages:

Fixed, application dependent dictionary

Large dictionary needed to get good compression

An alternative to this scheme is suggested below. Here the processor examines the

incoming text stream and notes frequently occurring words. These are assigned the codes

which are used to achieve compression. These two requirements pose problems:

How to determine frequently occurring words.

How to convey to the receiver the codes mappings.

In order to determine the most frequently occurring words, the processor must keep a

record of all different words that it identifies in the incoming text stream and their usage

count. Words attracting a heavy usage are viewed by the system as potential candidates

for code allocation. Clearly, the total number of different words that can be received is

very large, but it is likely that in any particular situation or piece of text the number
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encountered will be much smaller. In any case the present system can store over 100,000

letters, or three hours worth of text at 100 baud. When a word is received by the processor

it first searches for it in the dictionary, which is organised as a tree structure to allow for

rapid searching. If a match is found the processor updates the usage count and examines

a flag that indicates whether the received word is coded or not. If it is coded then the code

is transmitted, otherwise the original word is used. This part of the program operates as

an interrupt driven routine.

If a word is not found in the dictionary, it is placed in an update queue. A background

process on the computer continuously updates the dictionary and selects words for coding.

To avoid possible deadlock, or out of sync codes being used, a system of semaphores is

used to communicate between the interrupt process and the background process. After

updating the dictionaries tree structure to incorporate new words, the processor performs

a sequential search through the entire dictionary. It notes:

The word with the lowest usage count 1n1,,i,,,,,

The uncoded word with the highest usage count Nu.high

If N. ,high is greater than Is I c dow the code for N „sow is removed and used instead for N.,high,

unless the total sum of all the codes used so far is less than the maximum allowed, in which

case N. ,high is allocated a code anyway. This latter situation will usually occur at start up

when no codes have been allocated, however, the subject of pre-defined dictionaries will

be covered later.

Since the dictionary search routine (for code identification) is interrupt driven, it is not

possible for the update routine to modify the codes during a search operation and thus no

contention is possible.
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After a code change has occurred, it is essential that the processor should inform the

receiver before any more text is transmitted. This is easily accomplished by having the

background task place code updates in a queue. Before the interrupt routine transmits a

word it checks the status of the code queue to see if it is full. If a new code word is

discovered it is sent, prior to the outstanding text word, since it is conceivable that the

update occurred during reception of the current text word. This is particularly true if data

is being sent relatively slowly, allowing updates to occur between the reception of words.

Under normal circumstances the code queue will be short because there will be sufficient

time to update the dictionary between received words, and therefore only the last word

received is a candidate for updating. If text is received rapidly, dictionary updating may

fall behind reception of data, although any code updates placed in the queue will be cleared

rapidly. If the queue grows long, this implies that there has been a break in a rapid period

of text transmission, allowing dictionary updating to catch up. As described, the system

operates with an interrupt driven input/output system and a background updating operation.

If the source of the text should attempt to send text to the processor very rapidly there will

be little or no remaining time to perform dictionary updating. It will never be possible to

overrun the receiver since DTR and Xon Xoff can be used. As soon as a character is

removed from the serial interface, the text source may place another character there. This

will cause the interrupt routine to be immediately re-entered with the new character, as

soon as the old one has been processed. In general this should not be a problem, since we

assume the text is transferred at a sufficiently slow baud rate. For a given system the

maximum baud rate will be highly dependent upon the dictionary size, compression

efficiency, etc., which will be text content dependent.

A bottle neck exists in the previously described information when the uncoded word is

transmitted. As shown, the processor transmits this word while it is in the interrupt routine.
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This means that it will poll the transmit data register of the serial interface whilst waiting

for characters to be transmitted. At 100 baud, it might take one second to transmit a

complete word. To overcome this problem the transmit data routine is also interrupt driven,

using the transmit data register empty flag from the serial interface to initiate an interrupt.

The processor used for the prototype system supports autovectoring of interrupts from

many sources - it is therefore not necessary to determine which serial interface caused the

interrupt since this is implicit in the address vectored to. The receive routine is afforded

a higher priority interrupt so that the transmit data routine may be interrupted at appropriate

moments. Thus, the data to be transmitted is placed in a queue which is gradually emptied

by the transmit data routine. At any time the processor may be:

Receiving data and searching the dictionary

Updating the dictionary

Transmitting data.

Routine (3) is very short and consumes negligible time. Routine (2) consumes the majority

of the processing time at low baud rates, since the dictionary may be searched very rapidly.

The sequential search used in (1) must access the dictionary for every word present, which

is a very time consuming task.

The system described so far works efficiently once equilibrium has been reached.

Unfortunately, at start-up, the dictionary is empty and so no codes exist, giving rise to an

initial compression efficiency of worse than 0%. This may not be a problem in some

applications, but the present system supports an optional start-up dictionary which may

be application dependent. This start-up dictionary is transferred from back-up storage at

start-up. Consideration is also given to providing a memory with battery back-up to hold

dictionaries that may be transferred from the dictionary currently being used, ready for
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when the resident dictionary is required again. This back-up memory would not need to

be very large since it would only hold the coded words, unlike the processors memory

which must also hold the uncoded words in order to maintain a usage count. The use of a

back-up would also be very useful if the subject of the text is suddenly changed - since it

might be possible to call up the new dictionary immediately - the old dictionary being

placed in the back-up memory. This facility would require some intelligence on the part

of the text source, and would therefore be included only as an optional enhancement for

those devices able to take advantages of it.

10.2 Updating the Control Codes

In conventional text compression systems with fixed application dictionaries, the size of

the dictionary will need to be large to maximise the chance of finding words that match.

A small dictionary, even for a relatively well defined application, will lead eventually to

a low compression efficiency. In general, the format for such a system will be as shown

below, and it will be necessary to use multi-byte codes. This is because the number of

words in the dictionary is likely to be in excess of 2" where N is the number of bits used

in the transmission process.

In the adaptive text compressor the number of coded dictionary words can be very much

smaller than in the fixed dictionary scheme, since the codes represent the most frequently

used words at that moment in time. The distribution of the most frequently occurring words

will be text context dependent, and it is therefore impossible to predict the optimum

dictionary size exactly. Also, the way in which the data is transmitted over the

communications link will affect matters. In conventional serial communications systems

ASCII (ASCII: American Standard Code for Information Interchange) characters are

mapped into an 8 bit byte for convenience, with the most significant bit as a don't care a
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ninth parity bit is often added and removed by the serial interface and is transparent to the

processor unless an error occurs. However, some serial systems utilise only seven bits

(even though the data will probably end up in byte format, the serial interface will only

transmit seven bits per character), or 5 bits (BAUDOT code with letter and numeric shift

characters).

It is desirable that any text compressor should be able to cope with all these formats and

it is certain that a software selectable scheme could be implemented. Military

communications still utilise the older BAUDOT scheme for RATT. Modern computer

systems do not normally support BAUDOT. This is not a serious problem since it is

possible to simulate a BAUDOT scheme with an eighth or seven bit scheme. The present

system adopts this method.

Given that we expect the number of words in the coded dictionary to be relatively small

and heavily used, it is not worthwhile considering the 7 bits of the first code and the 8 bits

of the second to constitute a 15 bit code (32768 words), since this clearly exceeds our

likely usage. It is better to concentrate on a single byte code, with a possible extension if

necessary, since we might expect heavy use to be made of relatively few code words. The

following diagrams indicate the protocol adopted for both 8-bit and 7-bit ASCII. In the

eight bit code, bit 7 is used to separate code words and ASCII characters. If bit 7 = 0 then

the character is considered as straight ASCII - this means that there is no restriction

whatsoever on the ASCII character used in the text. If bit 7 = 1 then the following 7 bits

constitute either a code address (03-7F) or one of three control characters. Thus, the 125

most frequently encountered words may be compressed into a single byte. If the control

character = 00, then this indicates that the following byte (01-FF) constitutes a secondary

address, allowing an extension of a further 255 addresses. To define a new code at the
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receiver, the transmitter first sends a 01 control code (ie 81 is transmitted, since bit 7 = 1)

followed by the appropriate address, extended if need be, followed by the word to be

expanded in normal ASCII text, followed by an 02 (ie 82), which is code word end.

During transmission of 8-bit characters, bit 7 will be 1 to indicate code word start (rather

than an ASCII character) but following codes, addresses will have bit 7= don't care, since

they can be unambiguously separated from the ASCII text by their position in the control

stream. This has been done in the present system for reasons of software compatibility

with the 7-bit code. However, code word end must have bit 7 = 1 to separate it from the

preceeding ASCII text.

The 7-bit protocol is similar to the 8-bit, except that the user must now identify a reserved

control code to separate ASCII characters and control. Thus, the shortest possible sequence

is two bytes long, the reserved code followed by a code address (03-127, as in the previous

case). A similar scheme is used for address extensions etc, except that their addresses are

limited to 01-127 for extensions.

10.3 The Effect of Errors

It is clearly possible (and with RATT links, even likely) that errors will occur in the received

text. This section considers the possible implications for compressed text transmission of

this state of affairs for two conditions:

Errors occur, and the presence of those errors is detected (but not corrected) by some

undefined mechanism (ie parity check) at the receiver.

In normal text transmission a? is printed at the receiver.

Errors occur, and their presence is not detected at the receiver (ie either no parity check

etc exists, or possibly it was ineffective).
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Depends on the faulty character - however, it is likely that a faulty character will

be printed.

Since only complete words are candidates for coding, and we define a complete work as

one delimited by either spaces on either side or some combination of spaces and carriage

return symbols we will have the situation shown below.

Here the previous character must have either been 20, OD or OA. In this case we are unable

to distinguish whether this was a code or the first letter of a new word (uncoded). However,

if the previous character was not 20, OD or OA and we are not in a code sequence, then it

must be a letter. In the text, if the previous character was 20, OD or OA, a? is printed to

draw attention to the possibility of code word corruption (? underlined), otherwise a ? is

printed (non underlined). The worst possibility is that the corrupted byte marked the start

of a new code word definition, or occurred during sensitive parts of the definition (address

extension or particularly address definition). If the ASCII text part of a code definition is

corrupted, the effects will not be too serious - possibility one letter out of place. If the code

terminating character is corrupted, but still has bit 7 = 1, this has no effect. If bit 7 is

corrupted to 0, then it is still likely the effect will not be too serious, since 20, OD or OA

will follow and the processor will terminate the code word definition and delete the

character from the code word that occurred last.

The serious effect is when a new code word definition has a corrupted address and the

processor then does not know what code to use. In this situation the processor at the receiver

will search its (small) code word dictionary for the coded word with the lowest usage

count and replace this, on the basis that the transmitter would not have selected any other

candidate for replacing, unless the complete of codes is as yet unused, when the next code

in sequence will be allocated. This mechanism is used as a check at every update, since

153



for systems with no parity check, this will represent the only checking mechanism

available. If, when the check is completed, a discrepancy is found (and no parity error or

similar was detected) then a serious error has occurred and the user is informed. Since it

is likely, when a new code is defined, that is soon followed by a use of that code, the

processor waits for the next occurrence of a code. If the code is either of the two codes

above (usage count generated code address, or incoming code) then this is the one selected

for updating. This mechanism provides a powerful resistance to false updating of the codes

in the receiver, potentially the most dangerous area.

If we receive a code address incorrectly (say a primary address), then the processor assumes

that only one bit of the received data was in error, and indicates the seven possible

alternative code words, or the appropriate ASCII character for selection by the user.

Note that a large number of these types of errors will upset the receiver usage count,

possibly causing serious problems. However, since we might expect the errors to be random

in nature, this is unlikely to happen.

If we have no parity check facility in our date transmission system, or if the parity system

in use is overcome (two errors in one byte) then, except for the update operation mentioned

above, the processor will be unable to determine that an error has occurred. One incorrect

ASCII character, or one incorrect code word will be printed - however, this will be an

isolated event - corruption of a code word definition is checked for, since this is potentially

a dangerous area, with the possibility that many subsequent words would be misprinted.

10.4 System Design

The prototype uses a powerful microprocessor to implement the adaptive coding

algorithms, basing the demonstrator on a readily available development system, the Force
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GmbH 68K Profi Kit with built in software development tools. The code for the text

compressor was written in assembly language (see APPENDIX K for a complete listing).

The text compressor consists of three main modules.

The first module performs initialisation of the code pool if necessary, and sets up

communication ports as appropriate. The second module is a tree manager which is used

in all references to the code pool and code mapping linked list. The third module performs

input and output through buffers and is interrupt driven.

10.5 Conclusion

The previous section has described the design and development of a real-time adaptive

text compressor suitable for RATT use. The variable dictionary approach ensures that the

compressor adapts to the current text content, and therefore requires only a short code

word, resulting in high efficiency. Careful thought has been given to the protection from

corruption by errors of the system. A standard single-board microprocessor system

utilising the Motorola M68000 has been used both at the receiver and the transmitter,

resulting in a very economical and compact design.
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APPENDIX K

TEXT COMPRESSOR LISTING

/*********************************************************************/
/*	 TEXT COMPRESSOR	 */
/*********************************************************************/
BASE: EQU @800; /*START OF THE PROGRAM*/
TACIA: EQU @C0080; /*ACIA ADDRESSES*/
HACIA: EQU @$C0041;
TDRE: EQU #1; /*READY FLAGS IN THE ACIA'S*/
RDRF: EQU #0;
SPACE: EQU "; /*CHARACTER CONSTANTS*/
CRET: EQU #13;
LFEED: EQU #10;
/**********************************************************************/
/* REGISTER EQUATES 	 */
/**********************************************************************/
FLAGS: EQU D7;	 /*D7 IS THE FLAG REGISTER*/
EOL: EQU #0;
TEXT: EQU #1;
HSHAK: EQU #2;
BPTR: EQU AO;
DP: EQU A4;
SP: EQU A3;
SLP: EQU A6;
LEP: EQU A5;
CODE: EQU D2;
CHCTR1: EQU Dl;
CHCTR2: EQU D3;
ENEXT: EQU AO;
PPREV: EQU Al;
PREY: EQU A2;
CRNT: EQU A3;
RECCH: EQU D5;
TRCH: EQU D6;
/*********************************************************************/
/* THE TEXT BUFFER AND DICTIONARY START AT THE BOTTOM OF MEMORY *1
/*********************************************************************/

ORG BASE;
DS 10;	 /*STACK*/
ORG BASE;
BRA.L BOOT;

SYSSTK:
BUFF: DS $20;
DICT: DS 1;
/*********************************************************************1

/* TABLE OF MESSAGES TO BE SENT TO THE TERMINAL 	 *1
f*********************************************************************1

ORG @$1000;
BRA.L BOOT;
BRA.L BOOTD;
DC #SYSSTK; /*INITIAL STACK POINTER*/
DC #BOOT; /*INITIAL PROGRAM COUNTER*/

MSSG: DC.B CRET; DC.B LFEED; DC.B LFEED; DC.B LFEED; DC.B LFEED; DC.B LFEED;
DC'	 DURHAM UNIVERSITY TEXT COMPRESSOR'; DC.B CRET;
DC.B LFEED; DC.B LFEED; DC.B LFEED;
DC'	 VERSION 1.0'; DC.B CRET; DC.B LFEED;
DC.B LFEED;
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DC 'TCOMP: IS THIS DEVICE A TRANSMITTER OR A RECEIVER ?'; DC.B CRET;
DC.B LFEED;
DC 'TCOMP: TYPE T FOR TRANSMIT, R FOR RECEIVE';
DC.B CRET; DC.B LFEED;
DC.B #0;

/*********************************************************************/
TMSG: DC 'TCOMP: TRANSMITTER-% DC.B CRET; DC.B LFEED; DC.B #0;
1*********************************************************************/
RMSG: DC 'TCOMP: RECEIVER-'; DC.B CRET; DC.B LFEED; DC.B #0; DC.B #0;
/*********************************************************************/
/* THE PROGRAM STARTS HERE AND IS FULLY RELOCATABLE. IT IS NORMALLY */
/* RELOCATED TO THE SYSTEM EPROM, SO THE REAL START ADDRESS IS $28146*1
1*********************************************************************/
/*
BOOT: MOVEM.W D0,@$406;

LEA.L $8,A0;
STRP: LEA.L #@BOOT,A1;

MOVE.L A 1 ,(A0)+;
CMP.L #$400,A0;
B/vILS STRP; */

BOOT: BSET IISHAK,FLAGS;
BRA.S TIGH;

BOOTD: BCLR HSHAK,FLAGS;
TIGH: MOVE #$FF,DO; 	 /*CLEAR MEMORY*/

MOVE #DICT,A0;
CLRM: MOVE #0,(A0)÷;

DBF DO,CLRM;
INIT: MOVE #0,FLAGS;	 /* CLEAR ALL FLAGS */

MOVE #DICT,DP;	 /*INITIALISE DICT POINTER*/
MOVE #DICT,SP;	 /*INITIALISE SEARCH POINTER*/
MOVE #DICT,SLP;	 /*IN1T START OF LIST PTR*/
MOVE #DICT,LEP;	 /*INIT LAST ENTRY POINTER */
CLR RECCH;	 /*CLEAR COUNT RECEIVED CHARS*/
CLR TRCH;	 /*CLEAR COUNT OF TX'ED CHARS*/
CLR CODE;	 /*THE FIRST CODE*/
CLR CHCTR1;	 /*CLEAR THE COUNT REGISTERS*/
CLR CHC'TR2;
MOVE.B #$43,HAC1A;	 /*RESET THE HOST ACIA*/
MOVE.B #$43,TAC1A;	 /*RESET THE TERMINAL ACIA*/
MOVE.B #$15,TAC1A;	 /*ENABLE ACIA FOR MESSAGES*/
LEA MSSG,A0;	 /*PRINT THE STARTUP MESSAGE*/
BSR.L TYPE;

INC: BTST RDRF,TACIA;	 /*GET THE RESPONSE*/
BEQ.S INC;
MOVE.B TACIA+2,D0; 	 /*TRANSMIT OR RECEIVE MODE */
BCLR #7,1)0;	 /*MAKE IT A LEGAL CHARACTER*/
CMP.B 'R',DO;	 /*RECEIVE ?*/
BEQ.L RECEIVE;	 /*YES GO TO RECEIVE ROUTINE*/
CMP.B 'T',DO;	 /*TRANSMIT ?*/
BNE.S IN1T;	 /*NO SO ASK AGAIN*/

/*********************************************************************/
/*	 TRANSMIT ROUTINE	 *1
/*********************************************************************/

LEA TMSG,A0;	 /'PRINT THE TRANSMIT MESSAGE*/
BSR.L TYPE;
MOVE #BUFF,BPTR;	 /* INITIALISE CHARACTER BUFF*/

/******************************************/
/* IS EOL SET ?	 *1
/******************************************/

MOVE.B #$55,TAC1A;
MOVE.B #$19,HACIA;
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TRANSM: BTST #E0L,FLAGS;	 PIS END OF LINE SET*/
BEQ.S NOCR;

/******************************************/
/* TRANSMIT A CRLF 	 */
1******************************************1
HSRWATT: MOVE #$FFF,DO;
WAITJ: DBF DO,WAITJ;

CLR DO;
BSR.L HSEND;	 /*WAIT FOR THE LINE TO CLEAR*/
MOVE.B CRET,HACIA+2;	 /*TRANSMIT A CARRIAGE RETURN*/
BCLR #E0L,FLAGS;	 /*CLEAR EOL FLAG*/

/******************************************/
P SET AO TO START OF BUFFER	 *1
/******************************************/
NOCR: MOVE #BUFF,BPTR;	 /*SET AO TO START OF BUFF*/
/******************************************/
/* READ A CHARACTER FROM TERMINAL INTO DO */
f******************************************1
TSRWAIT: BTST HSHAK,FLAGS;

BEQ.S TWAIT;
WT: BTST TDRE,TACIA;

BEQ.S WT;
MOVE.B '*',TACIA+2;

TWAIT: BTST RDRF,TACIA;
BNE.S GETCH;
MOVE.B #$15,TACIA; 	 /*AWAIT INCOMING CHARACTER*/

WAITR: BTST RDRF,TACIA;
BEQ.S WAITR;
MOVE.B #$55,TAC1A;

GETCH: MOVE.B TACIA+2,DO; 	 /*GET THE CHARACTER INTO DO*/
BTST HS HAK,FLAGS;
BNE.S SICP;
MOVE.B TACIA+2,TACIA+2; /*AND ECHO THE CHARACTER*/

SICP: BCLR #7,DO;	 /*MAKE IT A LEGAL CHARACTER*/
p*****************************************1
/* IS THE CHARACTER < '!' 	 *1
/******************************************/

CMP.B '!',DO;	 Ins IT A SPACE OR LESS*/
BMI.S CNTRL;	 /*YES SO CHECK IT*/

pc*****************************************1
/* SET THE TEXT FLAG	 */
/******************************************/

BSET TEXT,FLAGS; 	 /*SET TEXT MODE*/
/******************************************/
P PUT THE CHARACTER INTO THE BUFFER */
/******************************************/

MOVE.B DO,(BPTR)+;	 /*PUT CHARACTER INTO BUFF*/
BRA.S TSRWAIT; 	 /*AND GET THE NEXT CHARACTER*/

/******************************************/
/* IS THE CHARACTER CR OR LF ? 	 *1
/******************************************/
CNTRL: CMP.B CRET,DO;	 /*WAS CHARACTER A CR OR LF*/

BNE.S QTXT;	 /*YES SO SEND A CR*/
1******************************************1
/* SET THE EOL FLAG	 *1
/******************************************/

BSET EOL,FLAGS;	 /*SET THE EOL FLAG*/
/******************************************/
/* IS THE TEXT FLAG SET	 *1
/******************************************/
QTXT: BTST TEXT,FLAGS; 	 /*ARE WE IN TEXT MODE*/
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BEQ.L TRANSM;	 /*NO SO IGNORE THE CHARACTER*/
/******************************************/
/* GET THE LENGTH OF THE WORD INTO DI */
/******************************************/

MOVE BPTR,C1ICTR1; 	 /*GET THE LENGTH INTO D1*/
SUB #BUFF,CHCTR1;

/******************************************/
/* CLEAR THE TEXT FLAG 	 */
/******************************************/

BCLR TEXT,FLAGS;	 /*NO LONGER IN TEXT MODE*/
f******************************************/
/* GET THE ADDRESS OF THE START OF THE */
/* START OF THE DICT INTO A3 	 iv
/******************************************/

MOVE SLP,SP;	 /*START SEARCHING*/
/******************************************/
/* ARE THE LENGTHS EQUAL	 *1
/******************************************/
COMP: CMP.B $E(SP),CHCTR1;	 /*ARE THE LENGTHS EQUAL*/

BNE.S NEXT;	 /*NO SO CHECK THE NEXT ENTRY*/
/******************************************1
/* SET Al TO BUFF FOR START OF COMPARISON */
/******************************************/

MOVE #BUFF,A1;	 /*SET UP FOR COMPARISON*/
/******************************************1
/* SET D3 TO THE LENGTH OF THE WORD *1
/******************************************/

MOVE.B CHCTR1,CHCTR2;	 /*GET THE LENGTH INTO D3
SUBQB # 1 ,CHCTR2;	 /*FOR DBF INSTRUCTION*/
MOVE SP,A2;
ADD #$F,A2;	 /*OFFSET TO FIRST CHARACTER*/

1******************************************/
/* COMPARE CHARACTERS 	 */
/******************************************/
CCOMP: CMPM.B (A1)+,(A2)+; 	 /*COMPARE CHARACTERS*/

BNE.S NEXT;
DBF CHCTR2,CCOMP;
CLR CHCTR2;	 /*RESTORE D3

/******************************************1
/* INCREMENT THE USAGE COUNT	 *1
/******************************************/

ADDI #1,8(SP);	 /"FOUND IT INC USAGE COUNT*/
1******************************************1
/* SEND THE CODE	 */
/******************************************/
HTWAIT: BSR.L HSEND;	 /*SEND FIRST BYTE OF CODE*/

MOVE.B $C(SP),DO;
ADD.B #$80,DO;
MOVE.B DO,HACIA+2;

SINGLE: BSR.L HSEND; 	 /*SEND THE SECOND BYTE*/
MOVE.B $D(SP),DO;
ADD.B #$80,DO;
MOVE.B DO,HACIA+2;
BSR.L SWP;
BRA.L TRANSM;	 /*GET MORE CHARACTERS*/

/******************************************1
/* IS THE NEXT ADDRESS ZERO	 *1
1******************************************/
NEXT: CMPI #0,(SP);	 /*IS THE NEXT ADDRESS ZERO*/

BEQ.S FILL;	 /*YES SO MAKE A NEW ENTRY*/
/******************************************/
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/* SET A3 TO THE NEXT ADDRESS 	 *1
/******************************************/

MOVE (SP),SP;	 /*NO SO GET THE NEXT ENTRY*/
BRA.S COMP;	 /*TRY THE NEXT ENTRY*/

/******************************************/
/* MAKE A NEW ENTRY IN THE LIST	 */
/******************************************/
FILL: MOVE DP,(SP)+;	 /*LINK*/

MOVE #0,(DP)+; 	 /*NEXT ADDRESS*/
MOVE SP,(DP)+;
MOVE # 1 ,(DP)+;	 /*USAGE COUNT*/
MOVE.W CODE,(DP)+;	 /*CODE*/
MOVE.B CHCTR1,(DP)+;	 /*CHARACTER COUNT*/
SUB Q.B # 1 ,CHCTR 1 ;	 /*FOR DBF*/
MOVE #B UFF,A 1; 	 P`START THE SEARCH AT BUFF*/

/******************************************/
/* SEND A CHARACTER TO THE ACIA 	 */
/******************************************/
HERE: BSR.S HSEND;

MOVE.B (A1),HACIA+2;	 /*SEND THE CHARACTER*/
/******************************************/
/* PUT THE CHARACTER INTO THE DICTIONARY */
/******************************************/

MOVE.B (A1)+,(DP)+;	 /AND PUT IT IN 'THE DICT*/
1* *****************************************/
r MORE CHARACTERS? 	 */
/******************************************/

DBF CHCTR 1 ,HERE; 	 /*MORE TO DO?*/
f******************************************/
/* ROUND A4 UP	 *1
/******************************************/

CLR CHCTR1;	 /*ZERO D1*/
MOVE DP,DO;
ADDQ #1,DO;	 /*ROUND A4 UP"/
BCLR #0,DO;
MOVE DO,DP;

/******************************************/
/* SEND THE CODE JUST ALLOCATED	 */
/******************************************/

BSET #7,CODE;
BSET #15,CODE;
ROR #8,CODE;

WAIT9: BSR.S HSEND;
MOVE.B CODE,HACIA+2;
ROL #8,CODE;

WAIT8: BSR.S HSEND;
MOVE.B CODE,HACIA+2;
BCLR #7,CODE;
BCLR #15,CODE;
ADDQ.B #1 ,CODE;
BCLR #7,CODE;
BEQ.L TRANSM;
ADD.W #$100,CODE;
BRA.L TRANSM;	 /*AND GET THE NEXT CHARACTER*/

/*********************************************************************/
/* THIS SUBROUTINE SENDS A CHARACTER TO THE HOST PORT

	 41
/*********************************************************************/
HSEND: BTST TDRE,HACIA;

BEQ.S HSEND;
RTS;0

/********************************************************************/
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/* THIS SUBROUTINE PERFORMS THE HANDSHAKING WITH THE HOST PORT
/********************************************************************/
HSHK: BTST RDRF,HACIA;

BNE.S NOREAD;
MOVE.B #$19,HACIA;

WAIT: BTST RDRF,HACIA;
BEQ.S WAIT;
MOVE.B #$59,HAC1A;

NOREAD: ADDQ #1,RECCH;
RTS;

/********************************************************************/
/* THIS ROUTINE PERFORMS THE HANDSHAKING WITH THE TERMINAL PORT
/********************************************************************/
TSHK: BTST TDRE,TACIA;

BEQ.S TSFIK;
ADDQ #1,TRCH;
RTS;

/********************************************************************/
/*	 RECEIVER ROUTINE	 *1
/********************************************************************/
RECEIVE: LEA RMSG,A0;

BSR.L TYPE;
MOVE #BUFF,BPTR;

/******************************************/
/* READ A CHARACTER FROM THE ACIA */
/******************************************/
CHRWAIT: BSR.S HSHK;

MOVE.B HACIA+2,DO;
/******************************************/
/* IS IT A CARRIAGE RETURN	 */
/******************************************/
START: CMP.B CRET,DO;	 /ns IT A CARRIAGE RETURN*/

BNE.S NOCRET;
/*****************************************/
/* PRINT A CARRIAGE RETURN LINEFEED */
/*****************************************/

BSR.L DISPST;	 -
WAIT!: BSR.S TSHK;	 /*PRINT A CRLF*/

MOVE.B #CRET,TACIA+2;
BSR.S TSHK;
MOVE.B #LFEED,TACIA+2;
BRA.S QTEXT;	 /*CHECK FOR END OF WORD*/

/******************************************/
/* IS THE CHARACTER A CODE 	 */
/******************************************/
NOCRET: BTST #7,DO; 	 /IS IT A CODE*/

BNE.S QTEXT;	 /*CHECK FOR AND OF WORD*/
/******************************************/
/* SET THE TEXT FLAG, BUFFER THE	 */
1* CHARACTER AND READ ANOTHER	 *1
/******************************************/

BSET TEXT,FLAGS;	 /*READING CHARS SO FLAG IT*/
MOVE.B DO,(BPTR)+; 	 /*AND BUFFER THE CHARACTER*/

WAIT3: BSR.S HSHK;
MOVE.B HACIA+2,DO;
BRA.S START;	 /*AND CHECK IT*/

/******************************************/
/* IS THE TEXT FLAG SET	 */
/******************************************/
QTEXT: BTST TEXT,FLAGS; 	 /*ARE WE IN TEXT MODE*/

BEQ.L QCODE;	 /*NO SO DECODE THE CODE WORD*/
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BCLR TEXT,FLAGS;
/************************** ****************/
/* MAKE A NEW ENTRY, READ IN THE REST OF */
/* THE CODE AND COMPARE WITH THE ONE JUST */
/* ALLOCATED	 */
/******************************************/

MOVE DP,(LEP)+;
	

p' WAS TEXT MAKE A NEW ENTRY*/
MOVE #0,(DP)+;
	

/*NEXT ADDRESS*/
MOVE LEP,(DP)+;
MOVE DP,LEP;
SUB #8,LEP;
MOVE # 1 ,(DP)+;
	

/*USAGE COUNT*/
MOVE.W CODE,(DP)+;
	

/*CODE*/
MOVE BPTR,CHCTR1;
	

/*GET THE LENGTH INTO D1*/
SUB #BUFF,CHCTR1;
MOVE.B CHCTR1,(DP)+;	 /*AND PUT IT IN THE DICT*/
SUB Q.B # 1 ,CHCTR I;
	

/*FOR THE DBF*/
MOVE #BUFF,BPTR;
	

/*START MOVING CHARACTERS*/
STCHAR: BSR.L TSHK;

MOVE.B (BPTR),TACIA+2;
MOVE.B (BPTR)+,(DP)+;	 /*COPY A CHARACTER*/
DBF CHCTR 1 ,S TCHAR;
CLR CHCTRI;	 /*CLEAR CHARACTER COUNTER*/
MOVE DP,D3;	 /*ROUND A4 UP*/
ADDQ # 1 ,D3 ;
BCLR #0,D3;
MOVE D3,DP;

/******************************************/
/* RESET THE INPUT BUFFER	 */
/******************************************/

ROL #8,DO;
BSR.L HSHK;
MOVE.B HACIA+2,D0;	 /*GET RECEIVED CODE INTO DO*/
BCLR #7,DO;
BCLR #15,DO;
CMP.W DO,CODE;
BEQ.S NRROR;
MOVE.W CODE,DO;
LEA ERMSG1,A0;
BSR.L TYPE;

NRROR: ADDQ.B #1,CODE;
BCLR #7,CODE;
BEQ.S WAITB;
ADD.W #$100,CODE;

WAITB: BSR.L TSHIC;
MOVE.B #SPACE,TACIA+2;
MOVE #BUFF,BPTR;
BRA.L WMT3;	 /*AND TEST LAST CHARACTER*/

/*********************************************************************1
ERMSG1: DC.B CRET; DC.B LFEED;

DC 'TCOMY: !!ERROR!! CODE OUT OF SEQUENCE ON NEW WORD';
DC.B CRET; DC.B LFEED; DC.B #0;

1******************************************/
/* IS THE CHARACTER A CODE 	 */
/******************************************/
QCODE: BTST #7,D0;	 /*IS THE CHARACTER A CODE*/

BEQ.L WAIT3;	 /*NO SO IGNORE IT*/
/******************************************/
/* READ THE REST OF THE CODE 	 */
/******************************************1

BSR.L HSHK;
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ROL #8,DO;
MOVE.B HACIA+2,D0;
BCLR #7,1)0;	 /*GET RID OF THE CODE OFFSET*/
BCLR #15,D0;
CMP.W CODE,DO;	 /*IS THE CODE IN RANGE*/
BLE.S NERR;
LEA ERMSG2,A0;
BSR.L TYPE;
BRA.L INIT;

/*********************************************************************/
ERMSG2: DC.B CRET; DC.B LFEED;

DC 'TCOMP: !!FATAL ERROR!! CODE OUT OF RANGE ON WORD';
DC.B CRET; DC.B LFEED; DC.B #0; DC.B #0;

1* *****************************************/

/* SEARCH THE DICTIONARY AND PRINT THE */
/* CHARACTERS	 */
/******************************************/
NERR: MOVE SLP,SP;

	
/*AND START SEARCHING FOR IT*/

SUBQ.W #1,D0;
	

/*IT MAY BE THE FIRST ENTRY*/
BMI.S FOUND;

NXTENT: MOVE (SP),SP; 	 1* SKIP UNTIL WE REACH IT*/
DBF DO,NXTENT;

FOUND: ADDQ.W #1,D0;	 P'ZERO D0*/
/******************************************/
/* UPDATE THE USAGE COUNT AND SWAP IF */
/* NECESSARY	 */
/******************************************1

ADDI #1,8(SP);	 /*INCREMENT THE USAGE COUNT*/
MOVE.B $E(SP),CHCTR1; 	 /* GET THE NUMBER OF CHARACTERS */
SUB Q.B #1,CHCTR1;	 /*FOR THE DBF*/
MOVE #$F,BPTR;	 /*ADDRESS OF THE CHARACTERS*/
ADD SP,BPTR;

WAITS: BSR.L TSHK;	 /*PRINT THE NEXT CHARACTER*/
MOVE.B (BPTR)-1-,TACIA+2;
DBF CHC'TR1,WAIT5;	 /*TILL NO MORE LEFT*/
CLR CHCTR I ;	 /'ZERO D1*/
BSR.L TSHK;	 • /*PRINT A FOLLOWING SPACE*/
MOVE.B #SPACE,TACIA+2;
BSR.S SWP;
MOVE #BUFF,BPTR;
BRA.L WAM;	 /*AND READ ANOTHER CHARACTER*/

/******************************************1

/*THIS IS THE SUBROUTINE THAT SWAPS */
/* DICTIONARY ENTRIES	 */
/******************************************/

SWP: MOVE SP,(DP)+;
STRT: MOVE 4(CRN1),PREV; 	 /*GET ADDRESS OF PREVIOUS */

/*ENTRY INTO A2 */
MOVE CRNT,DO;	 /*CHECK FOR START OF LIST */
ADDQ #4,D0;
CMP 4(CRN1),DO;
BNE.S SW;	 /*IT IS NOT START SO SWAP*/
MOVE CRNT,SLP;	 /*UPDATE START POINTER */
BRA.S NOSWAP;	 /*AND EXIT */

SW: MOVE 8(CRNT),DO;	 /*IS A SWAP NECESSARY */
CMP 4(PREV),D0;
BLE.S NOSWAP;	 /*NO */
MOVE (CRNT),ENEXT; 	 /*YES SO GET OF NEXT ENTRY */
MOVE (PREV),PPREV; 	 /*AND PREY PREV ENTRY */
MOVE PPREV,4(CRNT);	 /*ALTER BACK LINK */
MOVE ENEXT,-4(PREV);	 /*FWD LINK OF PREV ENTRY */
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MOVE PREV,(CRNT);	 /*BACK LINK OF THIS ENTRY */
SUBI #4,(CRN1);
CMP #0,ENEXT;	 /*ENEXT) IF LAST ENTRY*/
BNE.S NLSTENT;
MOVE (CRNT),LEP;
BRA.S LASTENT;

NLSTENT: MOVE PREV,4(ENEXT);	 /'BACK LINK OF NEXT ENTRY */
LASTENT: MOVE CRINIT,(PREV); 	 /*FORWARD LINK OF PREY */

ADD! #4,(PREV);
CMP PREV,PPREV;	 /*PREV=PPREV IF IT IS FIRST */
BNE.S NFRST;	 /*DONT ALTER THE START LINKS*/
MOVE CRNT,4(CRN1);	 /*SET UP SO THAT BACK PTR*/
ADD! #4,4(CRN1); 	 /*POINTS TO ITSELF*/
BRA.S FRST;	 /*AVOID THE BACK LINK ADJUST*/

NFRST; MOVE CRNT,-4(PPREV);	 /*FORWARD LINK OF PREY PREV */
FRST: MOVE.W $C(CRNT),DO;	 PS WA? THE CODES*/

MO'VE.W 8(PREV),$C(CRN1);
MOVE.W D0,8(PREV);
BRA.S STRT;

NOSWAP: MOVE -(DP),SP; 	 /*RESTORE THE REGISTERS */
RTS;	 AND RETURN */

/* THE NEXT SUBROUTINE PRINTS A MESSAGE STARTING AT ADDRESS IN AO ONTO
THE TERMINAL . THE STRING IS TERMINATED BY A NULL */
TYPE: BTST TDRE,TACIA;

BEQ.S TYPE;
MOVE.B (A0)+,TACIA+2;
BNE.S TYPE;
RTS;

THE NEXT SUBROUTINE DISPLAYS THE COMPRESSION STATISTICS*/
DISPST: MOVE TRCH,DO; 	 /*GET THE DIFFERENCE INTO DO*/

SUB RECCH,DO;
BGE.S NONEG;	 /*CHECK THE SIGN OF THIS */

NUP: BTST TDRE,TACIA;	 /*FLAG A NEGATIVE NUMBER*/
BEQ.S NUP;
MOVE.B '-',TACIA+2;
NEG DO;	 /*AND MAKE IT POSITIVE*/

NONEG: MULU #100,D0; •	 /*MAKE THE DIFFERENCE INTO*/
DIVU TRCH,DO;	 /*A PERCENTAGE*/
AND #$FF,DO;	 /*MASK OUT THE LOW BYTE*/
CMP.B #100,DO;	 /*CHECK IF 100% Hifi*/
BNE.S NOONE;

WAITF: BTST TDRE,TACIA;	 IF WAS A 1 THEN PRINT IT*/
BEQ.S WAITF;
MOVE.B '1',TACIA+2;
SUB #100,D0;

NOONE: DIVU #10,DO;	 /*PRINT REST OF THE NUMBER*/
ADD.B '0',DO;

WAITE: BTST TDRE,TACIA;
BEQ.S WAITE;
MOVE.B D0,TACIA+2;
SWAP DO;	 /*THE UNITS*/
ADD '0',DO;

WAITD: BTST TDRE,TACIA;
BEQ.S WAITD;
MOVE.B D0,TACIA+2;

MARK: BTST TDRE,TACIA; 	 AND RETURN*/
BEQ.S MARK;
MOVE.B '%',TACIA+2;
RTS;
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APPENDIX L

SPREAD SPECTRUM NETWORK SOFTWARE LISTING

/*
PROGRAM TO SET UP THE PROTOTYPE SPREAD SPECTRUM NETWORK RECEIVER AND
TRANSMITTER. IN THE EXAMPLE SHOWN BELOW, THE ADDRESSES OF THE
TRANSMITTER MEMORY, THE RECEIVER MEMORY AND THE ASYNCHRONOUS
COMMUNICATIONS INTERFACE ARE FOR THE VME BUS BASED VERSION. FOR THE
ICDM
BASED VERSION IT IS ONLY NECCESSARY TO CHANGE THESE VALUES.
*1
TXRAM: EQU @$500000; TRANSMITTER MEMORY
RXRAM: EQU @$504000; RECEIVER MEMORY
STACK: EQU @$A00;	 PROCESSOR RETURN STACK
TACIA: EQU @$000080; COMMUNICATIONS INTERFACE
ORIGIN: EQU @$1000; START OF THE PROGRAM
/*
INITIALISE PROGRAM VARIABLES
*1
PROG:: ORG ORIGIN;

LEA STACK,A7;
LEA MSGO,A0;

14'
PRINT STARTUP MESSAGE ON THE VDU
*1

BSR TYPE;
LEA MS Gl,A0;
BSR TYPE;

/*
SETUP THE TRANSMITTER AND CONFIRM ON VDU
*1

BSR TXSET;
LEA MSG2,A0;
BSR TYPE;

14'
SET UP THE RECEIVER AND CONFIRM ON VDU
*1

BSR RXSET;
LEA MSG3,A0;
BSR TYPE;

1*
MONITOR ERRORS
*1

BSR ERRORS;;
/*
STARTUP MESSAGE
*/
MSGO:

DC 'CODE MASKS FOR 127 BIT M-SEQUENCES ARE GIVEN BELOW';
DC.W $0D0A;
DC '7 1 0:	 03';DC.W $0D0A;
DC '7 3 0:	 09';DC.W $0D0A;
DC '7 3 2 1 0: OF';DC.W $0D0A;
DC '7 6 54 2 1 0:77';DC.W $0D0A;
DC '7 6 5 2 0: 65';DC.W $0D0A;
DC '7 63 1 0: 4B';DC.W $0D0A;
DC '74 3 20: 1D';DC.W $0D0A;
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DC '7 5 4 3 2 1 0:3F%DC.W $0D0A;
DC '7 6 4 2 0: 55';DC.W $0D0A;DC.W $0000;

P`

*1
MSGI: DC 'SETTING UP TRANSMFITER RAM';

DC.W $0D0A;
DC.W $0000;

1*

*1
MS 02: DC 'SETTING UP RECEIVER CORRELATOR SEQUENCE';

DC.W $0D0A;
DC.W $0000;

1*

*1
MSG3:
DC 'CODES SET UP, USE MEMORY LOCATION $500000 TO SR ACT CODE';

DC.W $0D0A;
DC.W $0000;;

1*

GET A CHARACTER FROM THE ACIA INTO DO

*1
CHIN::
CHAR: EQU DO;

BTST #0,TACIA;
BEQ.S CHIN;
MOVE.B TACIA+2,CHAR;
RTS;;

1*

PRINT A CHARACTER HELD IN DO TO THE TERMINAL ACIA

*1
CHOUT::
CHAR: EQU DO;

BTST #1,TACIA;
BEQ.S CHOUT;
MOVE.B CHAR,TACIA+2;
RTS;;

1*

TYPE A STRING AT THE ADDRESS HELD IN AO TERMINATED BY A NULL

*1
TYPE::
CHAR: EQU DO;
STRADD: EQU AO;

MOVE.B (STRADD)+,CHAR;
BEQ.S EOSTR;
BSR.S CHOUT;
BRA.S TYPE;

EOSTR: RTS;;
1*

CALCULATE THE NEXT SHIFT REGISTER CONTENTS FROM THE OLD USING THE
FEEDBACK TAPS HELD IN D2, LEAVE THE RESULT IN D1
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4.1
CALC::
BITCTR: EQU DO;
RESULT: EQU Dl;
MASK: EQU D2;
REG: EQU D3;

MOVEM DO/D3,-(A7); /*GET REGISTERS FOR LOCAL VARIABLES*/

AND #$7F,RESULT; /*CHECK FOR ZERO IN THE SHIFT REGISTER*/
BNE.S OK;
MOVE.B #$7F,RESULT; /*AND SET TO ALL 1'S IF ZERO*/
BRA.S EXIT;

OK: MOVE.B RESULT,REG; /*MAKE A LOCAL COPY OF THE SHIFT REG*/
MOVEQ #1,BITCTR; /*INITIALISE THE BIT COUNTER*/
AND.B #1,RESULT; /*AND ISOLATE THE ZERO'TH BIT OF THE REG*/

NEXTBIT:	 /*FOR EACH BIT IN THE SHIFT REGISTER*/
BTST BITCTR,MASK; /*TEST WHETHER TO CHECK THIS BIT*/
BEQ.$ NOTAP;	 /*AND SKIP IF NO TEST*/
BTST BITCTR,REG; /*OTHERWISE, TEST THE VALUE OF THE BIT*/
BEQ.S CLEAR;

SET: BTST #0,RESULT; /* SET, SO COMPARE WITH THE MOD 2 SUM"/
BEQ.S SSET;	 /*REG BIT=1, MOD 2 SUM=O SO SET TO I*/

SCLEAR: BCLR #0,RESULT; /*CLEAR RESULT TO 0*1
BRA.S NOTAP;	 /*AND TRY NEXT BIT*/

SSET: BSET #0,RESULT; /*SET RESULT TO 1*1
BRA.S NOTAP;	 /*AND TRY NEXT BIT*/

CLEAR: BTST #0,RESULT; /*CLEAR, SO COMPARE WITH THE MOD 2 SUM*/
BNE.S SSET;	 /*REG BIT=0, MOD 2 SUM=1 SO SET TO I*/
BRA.S SCLEAR;	 /*REG BIT=0, MOD 2 SUM) SO CLEAR TO 0*1

NOTAP: ADDQ #I,BITCTR; /*INCREMENT BIT COUNTER*/
CMP.B #7,BITCTR; /*AND CHECK FOR ALL BITS TESTED*/
BNE.S NEXTBIT; /*MORE BITS TO TEST SO DO THEM*/

LSR.B #1,REG;	 /*SHIFT THE REGISTER AND INSERT BIT*/
BCLR #6,REG;
BTST #0,RESULT;
BEQ.S SKIP;
BSET #6,REG;

SKIP: MOVE REG,RESULT; /*NEW SHIFT REGISTER IS IN RESULT*/
EXIT: MOVEM (A7)+,DO/D3; /*RESTORE THE GLOBAL VARIABLES */

RTS;;

SETUP THE TRANSMITTER RAM BY READING THE MASKS FOR EACH CODE FROM
MADD
AND THEN RESELECT CODE 0 AS THE CURRENT CODE

*1

TXSET::
CCTR: EQU DO;
SHREG: EQU Dl;
MASK: EQU D2;
CODEPTR:EQU D3;
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DATA: EQU D4;
VALID: EQU D5;
MPTR: EQU AO;
RAMPTR: EQU Al;

MOVEM DO-D5/A0-A1,-(A7);/MAKE SPACE FOR LOCAL VARIABLES*/
CLR CCTR;	 /*AND INITIALISE THEM*/
LEA TXRAM,RAMPTR;
LEA MADD,MPTR;

NXCODE: MOVE.B (MP1R)+,MASK; /*GET THE NEXT MASK*/
MOVE.B CCTR,TXRAM; /*SELECT CODE NUMBER*/
MOVEQ #1,CODEPTR; /*AND INITIAL CODE OFFSET*/

OP: MOVE CODEPTR,SHREG; /*NEXT BIT IS THIS PRODUCED BY THIS*/
LSR #1,SHREG;
BSR CALC;	 /*CALCULATE THE NEXT BIT VALUE*/
BTST #6,SHREG;
BEQ.S CLEAR;
MOVE.B #$F,DATA;
BRA.S SKIP;

CLEAR: MOVE.B #0,DATA;
SKIP: MOVE.B DATA,(RAMPTR,CODEPTR);/*SET MEMORY APPROPRIATELY*/

MOVE.B (RAMPTR,CODEPTR),VALID;/*READ THE STORED VALUE */
AND.B #$F,VAL1D;
CMP.B DATA, VALID;
BEQ.S VDATA;
TRAP #13;	 /*RETURN WITH REGISTER IF FAILURE*/

VDATA: ADDQ #2,CODEPTR: /*ADDRESS NEXT STATE MACHINE*/
CMP.B #257,CODEPTR; /*AND CHECK FOR END OF CODE*/
BNE.S OP;

ADDQ #1,CCTR;	 /*SELECT NEXT CODE*/
CMP #8,CCTR;	 /*AND CHECK FOR LAST CODE*/
BNE.S NXCODE;

CLR.B TXRAM;	 /*SELECT CODE 0 AS OPERATIONAL CODE*/
MOVEM (A7)+,D0-D5/A0-A1;/*RESTORE VARIABLES *1

RTS;;
1*

SET UP THE RECEIVER BY SENDING EACH BIT OF THE REQUIRED SEQUENCE TO
RXRAM LOWER BYTE, WITH THE CORRESPONDING MASK BIT ALONGSIDE IT. BIT 0
IS THE SEQUENCE BIT, BIT 1 IS THE MASK BIT. THE SHIFT REGISTER MASK
USED TO GENERATE THE RECEIVER SEQUENCE IS HELD IN LOCATION $808. */
RXSET::
BUCTR: EQU DO;
SHREG: EQU Dl;
MASK: EQU D2;

MOVEM DO-D2,-(A7); /*SAVE SPACE FOR LOCAL VARIABLES*/
CLR BITCTR;	 /*BIT COUNTER*/
MOVE.B RADD,MASK; /*GET THE MASK*/
CLR SHREG;	 /*AND CALCULATE THE FIRST BIT*/

NEXT: MOVE.B SHREG,RXRAM+1; /*STORE THE BIT AND */
BSR CALC;	 /*AND CALCULATE THE NEXT BIT*/

168



ADDQ #1,BITCTR; /*MORE BITS?*/
CM? #129,BITCTR;
BNE.S NEXT;

/*LOAD THE SEQUENCE INTO REGISTER*/
/*SET UP THE THRESHOLD TO 30+40=70*/

/*RESTORE VARIABLES *1

MOVE.B #$80,RXRAM;
MOVE.B #$3F,RXRAM;

MOVEM (A7)+,D0-D2;
RTS;;

/*
TRANSMITTER MASKS
*1
MADD: DC.B $03;

DC.B $09;
DC.B $0F;
DC.B $77;
DC.B $65;
DC.B $4B;
DC.B $1D;
DC.B $3F;

/*
RECEIVER CODE MASK
si
RADD: DC.B $03;

DC.B $00;
/*

ERRORS COUNTS THE NUMBER OF MISSING BITS, BASED ON THE ASSUMPTION THAT
BITS ARE TRANSMITTED CONTINUOUSLY AND CONSECUTIVELY.
/*
ERRORS::
PIT: EQU @$E0000;
TCR: EQU $21;
TIVR: EQU $23;
TSR: EQU $35;
CPRH: EQU $27;
CPRM: EQU $29;
CPRL: EQU $2B;

TRAP 14;
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APPENDIX M

SPREAD SPECTRUM NETWORK CIRCUIT DIAGRAMS
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