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Abstract

In this thesis, we consider the noise properties of a Coulomb blockaded quantum dot weakly

coupled to two non-interacting leads. We consider two approaches to calculating the density

of states of the quantum dot, the first of which uses a functional integral approach which is

difficult to extend to consider the noise problem. We show that the second approach also

returns the correct result for the density of states and can be extended to calculate the noise

power spectrum for the interacting quantum dot. We calculate the Fano factor in the shot

noise regime and evaluate numerically the Fano factor as a function of the bias voltage.
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Chapter 1

INTRODUCTION

1.1 Structure of the Thesis

Within this thesis, we will consider the noise properties of a Coulomb blockaded quantum

dot weakly coupled to two non-interacting leads. This thesis is split into three main parts,

the first of which consists of the first three chapters. In this part, we introduce the sys-

tem that we will consider, the phenomena in which we are interested and the techniques

which we require to tackle the problem. We will begin by introducing quantum dots and the

phenomena of the Coulomb blockade. We will then move on to discuss the causes of noise

in mesoscopic conductors and the different approaches that are used to model the noise

properties. We will conclude this first part of the thesis by introducing Keldysh Green’s

functions and use the Green’s function approach to calculate the noise for the resonant level

non-interacting system.

In the second section, we will derive the density of states of the quantum dot using two

different approaches. The reason for this is that the first, which is a functional integration

approach, cannot be easily extended to consider the two-particle Green’s functions which

are required to calculate the noise. We will show that the second approach can be extended

to consider the two-particle Green’s function and use this approach to calculate the noise
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power spectrum for the interacting system. We will consider several sensible limits and

derive the Fano factor in the shot noise regime.

In the third part, of the thesis we will consider full counting statistics. We will begin

by giving a brief explanation of why we are interested in this area of study. We will then

develop an effective technique for calculating the full counting statistics of a system using

Keldysh Green’s functions. We will conclude this chapter by considering some of the recent

work in the field.

1.2 Quantum Dots

A quantum dot is a system used to confine electrons to a small region. Quantum dots can

vary in size, although they are small enough to be considered as zero-dimensional. This

means that they have a diameter less than the Thouless length, LTh. The Thouless length

is the length over which an electron will defuse between inelastic collisions which cause de-

phasing. Quantum dots typically range in size from a few Angstroms to several micrometers

and can confine between one and several thousand electrons.

There are several methods of confinement, one of which is to confine the electrons to a

metallic island using an insulating material boundary. Alternatively and generally the more

popular method of confinement is to use electric fields to restrict electrons to a small re-

gion within a semi conductor. A semi-conductor quantum dot can be created in the two-

dimensional interface between gallium arsenide (GaAs) and aluminium gallium arsenide

(AlGaAs). As the AlGaAs is positively doped due to the aluminium the electrons in the

GaAs layer are attracted to the boundary and form a two dimensional layer of electrons.

Chromium and gold layers can then be added to form the necessary pattern for the gates.

When a negative potential is applied to the gates, a region around them is depleted of elec-
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Figure 1.1: A scan of a quantum dot [7]. The point contacts are coupled to the leads which
allow electrons in and out of the dot. The voltage bias of the contacts can be controlled to
open and close the quantum dot. The electrons are confined to the central region and it’s
size can be controlled via the gate voltages Vg1 and Vg2.

trons forming a quantum dot. See Fig. (1.1) for a diagram of a semi conductor quantum

dot.[1]

By changing the bias on the voltage gates it is possible to confine the electrons in such

a way that the quantum dot can be referred to as either open or closed. In an open quan-

tum dot it is easy to tunnel between the dot and the leads. In a closed quantum dot there

is only weak coupling between the leads and the dot. As the coupling between the dot and

the leads is weakened, i.e the dot is closed, the Coulomb repulsion between the electrons

becomes more significant and leads to a charging energy, which restricts the flow of electrons

on to the dot. This effect is known as Coulomb blockade.

We can consider a quantum dot in a more rigorous manner, if we consider a dot that is

completely isolated from the leads we can write the following Hamiltonian,

Ĥ =
∑
i,j,σ

εij d̂
†
iσd̂jσ +

1

2

∑
i,j,k,l

∑
σ,σ′

uijkld̂
†
iσd̂
†
jσ′ d̂kσ′ d̂lσ, (1.2.1)
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where d̂iσ creates a particle in the state ψi(r) with spin σ. Transitions between energy levels

of the dot are described by εij which is spin independent as we assume that the energy states

are spin degenerate. The two electron interaction, uijkl is given by

uijkl =

∫
dr

∫
dr′ψ∗i (r)ψ

∗
j (r
′)U(r− r′)ψk(r

′)ψl(r). (1.2.2)

We can simplify this Hamiltonian to the one we will use in later chapters. We will first

assume that the energy levels are randomly spaced with mean level spacing ∆, which is

small compared with the temperature and all other relevant energy scales. It is then possible

to neglect all the off diagonal terms in the interaction, in the limit that the dimensional

conductance is large:

g ≡ ET
∆
≫ 1, (1.2.3)

where ET is the Thouless energy ET ∼ vF
L
. However we will not reproduce the proof here

as it is far from trivial [2][3]. After neglecting the off diagonal terms, there are only three

possible terms which can contribute; the Coulomb interaction which we consider, a cooper

interaction which we neglect and the exchange interaction which we also can neglect. The

exchange interaction can be neglected as the exchange energy is less than the mean level

spacing. The exchange energy is the energy difference between spins which are parallel and

anti-parallel. Hence the interaction part of the Hamiltonian can be simplified to

Hint =
1

2
EcN̂

2, (1.2.4)

where Ec =
e2

2C
is the charging energy, C is the total capacitance of the dot and N̂ is the

number operator. In terms of the original interaction Eq. (1.2.2) the charging energy is

Ec ∼
1

2

∫
d2r

L2
U(r). (1.2.5)
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The Hamiltonian for the isolated dot thus becomes

H =
∑
i,j

εij d̂
†
i d̂j + Ec(N̂ −Ng)

2, (1.2.6)

where we have introduced a gate and are choosing to measure the electrostatic energy of the

dot relative to the coupling to the gate, Ng = CVg/e, which we describe in the Hamiltonian

as an effective charge. This Hamiltonian appears simple, yet is non-trivial to solve. For an

in depth review of quantum dots see [1] and [4].

1.3 Coulomb Blockade

The conductance through a nearly closed quantum dot is suppressed: this effect is referred

to as Coulomb blockade. It is due to the Coulomb repulsion between the electrons, this

repulsion results in an extra electron entering the dot being energetically unfavourable. To

model the effects of the Coulomb blockade, consider an electron tunneling from one of the

leads, which we will refer to as the source, to the quantum dot and then from the dot to

another lead, which we will refer to as the drain. The source and the drain are modeled

as electron reservoirs and the dot is neutrally charged to begin with. The energy required

to add an electron to the dot is e2

2C
where C is the capacitance between the dot and the

system. This means that the minimum amount of energy required for charge to flow from

the source to the dot is e2

2C
. In addition, for the electron to tunnel from the dot to the

drain, a hole must tunnel from the drain to the dot which requires an amount of energy

equal to e2

2C
. This results in an energy gap of e2

C
in the energy spectra being formed. [5]

This also means that there is a minimum temperature kT > e2

2C
required for electrons to flow.

By altering the gate voltage, Ug, it is possible to change the energy required to add an

electron to the dot. Changing Ug will affect the potential between the gate and the source

but if the potential difference between the source and the drain is small, the drain, source
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and dot can be considered to be at the same potential. The electrostatic potential energy

when Ug is applied of a charge Q on the dot is [5]

E = QUg +
Q2

2C
, (1.3.1)

where the first term represents the attraction to the gate and the second represents the

Coulomb repulsion between the electrons. The minimum is when

Q = −CUg, (1.3.2)

as the quantum dot that we are considering is nearly closed there is an integer number of

electrons on the dot and the charge Q is quantised. This produces the parabolic curves in

Fig. (1.2). By altering the gate voltage, it is possible to shift the curve until two of the en-

ergy states are degenerate [6]. This will result in the charge being able to fluctuate between

these two states even at zero temperature and current can flow. This results in the peaks in

conductance, occurring when CUg = Q = −(N + 1
2
)e periodically every e

C
in gate voltage

see Fig. (1.3) [5].

From this analysis, we gain the simple picture of the Coulomb staircase. As we increase the

gate voltage, Ug, the number of electrons on the quantum dot will increase by one every time

we pass through a degeneracy point. This results in the conductance versus gate voltage

graph looking like a staircase.
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Figure 1.2: The parabolic curves in this diagram correspond to the allowed energy values the electrons
may have. Due to the quantisation of charge the electrons can only take values that corresponding to the
dots on the curves. The two curves represent two different possible gate voltages. The curve on the right
corresponds to a possible choice of gate voltage that makes two of the states degenerate

Figure 1.3: The differential conductance G in a quantum dot as a function of the gate voltage Vg. From
[7]
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1.4 Introduction to Statistics

In this section, we will review some basic statistics that will be useful later on when we

consider full counting statistics. We will begin by defining the moment and the generating

function and we will use these to define the cumulant.

The definition of the nth raw moment µ (i.e, the moment about zero) of a probability

distribution function P(x) is

µn = ⟨xn⟩, (1.4.1)

where

⟨f(x)⟩ =
∑

f(x)P (x). (1.4.2)

We will consider the generating function χ(λ), which is sometimes referred to as the char-

acteristic function. It is defined as

χ(λ) =
∑
x

eiλxP (x) = ⟨eiλx⟩. (1.4.3)

If we Taylor expand the exponential term in the above expression, we obtain

χ(λ) =
∑
x

P (x) + iλ
∑
x

xP (x) + (iλ)2
∑
x

x2P (x) + . . . (1.4.4)

Therefore, the generating function can be written in terms of the raw moments as

χ(λ) =
∞∑
k=0

(iλ)k

k!
µk. (1.4.5)

8



It is usually more convenient to calculate the cumulant generating function lnχ(λ) which is

defined as

lnχ(λ) =
∞∑
r=1

kr
(iλ)r

r!
, (1.4.6)

where we have introduced the cumulants kr. Taking the Maclaurin series of Eq. (1.4.5) we

obtain

lnχ(λ) = iλµ1 +
1

2
(iλ)2(µ2 − µ2

1) +
1

3!
(iλ)3(2µ3

1 − 3µ1µ2 + µ3) + . . . , (1.4.7)

so the cumulants, kr, are given by

k1 = µ1

k2 = µ2 − µ2
1

k3 = 2µ3
1 − 3µ1µ2 + µ3

... (1.4.8)

The cumulants give useful information about the system; for example, the first cumulant

gives the mean current and the second gives the noise of the system.

1.5 Summary

In this chapter, we have presented an overview of the quantum dot and in particular de-

scribed the cause of the Coulomb blockade effect which we will be primarily concerned with

throughout this thesis. We have also introduced some basic statistics which will be of help

when considering the full counting statistics later on. In the next chapter, we will introduce

the noise power spectrum; which we will then in later chapters go on to calculate for the

Coulomb blockade quantum dot.
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Chapter 2

NOISE IN MESOSCOPIC CONDUCTORS

In this chapter, we will introduce and define the noise power spectrum. We will briefly

introduce the different approaches used in the literature to calculate the noise. One of

the methods we will consider is scattering theory. Using this approach we will derive the

Landauer formula for conductance and state the result for the noise power spectrum. We

will also go on to define the Fano factor which is a useful way of expressing the noise power

spectrum in terms of the noise produced by a poissonian process. We will conclude the

chapter by showing the Fano factor result which is obtained for the resonant level double

tunnel barrier problem.

2.1 Noise in Mesoscopic Conductors

Noise is the fluctuation in time of a measurement, these fluctuations can be a source of

information that cannot be obtained from time averaged results. The noise which we will be

concerned with during this thesis, will be the noise in the conductance of mesoscopic systems.

The noise in conductance can be caused by several different processes, not all of which

are informative. The most obvious cause of noise is thermal noise which is sometimes re-

ferred to as Johnson-Nyquist noise, after the first two physicists to study it in a quantitative

way.[8] It is caused by thermal fluctuations and is unavoidable at non zero temperatures: it
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also provides no useful information about the system other than the temperature which is

usually already known.

At low frequencies (typically below 10kHz) the noise is dominated by the “1/f noise” or

“flicker noise” which is caused by the random motion of impurities which produce time-

dependent fluctuations in the conductance[8]. However, we will not be considering this type

of noise production. Another source of noise in a mesoscopic conductor is shot noise. It is

caused by the discreteness of electron charge. It gets its name from the analogy between

electrons and the lead pellets in a shotgun shell. This analogy was drawn by Walter Schot-

tky, who in 1918, predicted that there would be two intrinsic sources of time-dependent

fluctuations in a vacuum tube; noise from the thermal agitation of the electrons and noise

due to the discreteness of electron charge[9]. Noise in a measurement is characterised by its

spectral density or power spectrum[10]:

2πδ(ω + ω′)Sαβ(ω) = 2⟨∆Îα(ω)∆Îβ(ω′)⟩, (2.1.1)

where ∆Îα(ω) = Îα(ω) − ⟨Îα(ω)⟩ is the frequency dependent fluctuations in the Fourier

transformed current operator at a given voltage and temperature of lead α. The triangular

brackets indicate taking the ensemble average or equivalently an average over the initial time

t0 of the quantum expectation value. For the two terminal case,

S11 = S22 = −S12 = −S21 = S, (2.1.2)

due to current conservation[26].

Both the thermal and shot noise power do not depend on frequency over a very wide range

and therefore both have a white noise power spectrum. It will be shown later that the ther-

mal noise (V = 0, T ̸= 0) is related to the conductance, G, by the fluctuation-dissipation
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theorem [13],

S = 4kBTG, (2.1.3)

as long as ~ω ≪ kBT . As previously stated, it is apparent that the thermal noise does not

provide any new information about the system.

Shot noise, however, is more interesting. It provides information about the temporal cor-

relation of the electrons which you cannot obtain from just measuring the conductance of

a system. For some devices the shot noise can be easily predicted. For devices where the

transfer of electrons is random and independent of each other, Poisson statistics can be used

to describe the transfer of the electrons. Poisson statistics is used to analyze events which

have no correlation in time. An example of a device where this is the case is the p-n junction.

For devices that obey Poisson statistics the shot noise takes its maximum value,

S = 2e⟨I⟩ ≡ SPoisson, (2.1.4)

which is proportional to the time averaged current ⟨I⟩. In general, electrons in a system are

correlated. Even for a model where the electrons are non-interacting, there is a correlation

due to the Pauli exclusion principle. This correlation suppresses the shot noise power be-

low SPoisson. The shot noise is also reduced by inelastic electron-phonon scattering which

averages out the current fluctuations. This is the process that results in macroscopic metals

having zero shot noise. However, the shot noise will be non zero on the length scale that

we will be considering. This is because the mesoscopic length scales that we are concerned

with are small compared with the electron - phonon scattering length.
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2.2 Approaches to Calculating the Noise Power Spec-

trum

Within the literature there are three main approaches to calculating the noise; scattering

theory, the rate equation/master equation approach and the Green’s function approach. In

the scattering theory approach, the system is modeled as leads connected to scattering re-

gions within which the electron can be transmitted or reflected. We will go on to introduce

this approach shortly.

In the Green function approach, which we use in later chapters to calculate the noise for the

Coulomb blockaded system, the current is expressed via the Heisenberg equation of motion

which allows the noise and current to be expressed in terms of Green’s functions. The so-

lutions to these Green’s functions are then calculated. The third and final approach, which

dominates the literature in the field, is the rate equation or master equation approach. In

this approach, the system is considered to be classical and the rates of change of charge

in the leads are calculated. From these rate equations, the current and the noise can be

obtained. We will not however consider this approach in this thesis but there is a large body

of work that use this approach [14][15][16][17][18] to calculate the noise in similar regimes to

the one in which we consider. However we choose to treat our system using a fully quantum

mechanical approach, this is because at the peak of the conductance there are two degenerate

interacting levels and it is not clear that these can be treated classically.

2.2.1 Scattering Theory

Scattering theory is a method of expressing the conductance of a system in terms of its

scattering properties. This was first discussed by Rolf Landauer in 1957 [19] for two terminals

and latter generalised to multiple channels.[20]
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Figure 2.1: A general elastic scattering system. An incoming normalised wave in the jth channel from

the left has the probabilities Tij of being transmitted into the ith channel on the right and Rij of being

reflected back into the ith channel on the left

2.2.2 The Landauer Formula

We begin by modeling the system as two leads connected by a general elastic scattering

system S (see Fig. (2.1)). The leads are ideal and are quantised in the transverse direction

with discrete transverse energies εi. Each of these energies corresponds to a channel in

the lead; this means that the lead will have N⊥ channels at the Fermi energy εF . At zero

temperature, each channel can be characterised by a wave vector ki (which relates to velocity

by vi =
~ki
m
),

ϵi +
~k2i
2m

= ϵf i = 1, . . . N⊥, (2.2.1)

where N⊥ =
Ak2f
2π

for a two dimensional cross section A . For finite temperature, the values of

k require a finite thermal width[22]. The incoming channels are fed from electron reservoirs

with chemical potentials µ1, µ2 and the overall temperature of the system is T . We assume

that the difference in chemical potential µ1 − µ2 is small, that the outgoing channels from

each reservoir are fed up to a thermal equilibrium population and that the electrons that

reach the drain are absorbed there. We also assume that there is no phase relation between

electrons in different channels.
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Consider an incoming wave from the jth left hand channel. It has probabilities [22]

Tij =| tij |2 (2.2.2)

of going into the ith channel on the right hand side (R.h.s) of the scattering region and

Rij =| rij |2 (2.2.3)

of being reflected into the ith channel on the left hand side (L.h.s).

The analogous matrices for waves entering the dot from the right are denoted by primes.

These form a 2N⊥× 2N⊥ scattering matrix S. (It is 2N⊥ as N⊥ possible transitions and N⊥

possible reflections.)

S =

 r t′

t r′

 . (2.2.4)

Using the fact that the current must be conserved and that time-reversal symmetry holds,

we can derive the identities,

SS∗ = 1 (2.2.5)

and

S = S̃, (2.2.6)

where˜denotes the transpose and * denotes the complex conjugate. The total transmission

and reflection probability into the ith channel are [22]

Ti =
∑
j

Tij, T ′i =
∑
j

T ′ij (2.2.7)

and

Ri =
∑
j

Rij, R′i =
∑
j

R′ij. (2.2.8)
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As the incoming waves are normalised, we are able to relate the above expressions by the

following expressions ∑
i

Ti =
∑
i

(1−Ri) (2.2.9)

and ∑
i

T ′i =
∑
i

(1−R′i). (2.2.10)

Due to current conservation, the S matrix has the restriction S†S = 1. This restriction to

the matrix results in two more equalities being produced

R′i + Ti = 1 and Ri + T ′i = 1. (2.2.11)

These identities allow us to write the time averaged current on the right hand side of the

scattering region as

I =
e

h

∑
i

∫
dε[f1(ε)Ti(ε) + f2(ε)R

′
i(ε)− f2(ε)], (2.2.12)

where f1 and f2 are the Fermi distributions of the two leads, α = 1(2) corresponding to

the left (right) lead. The first term inside the integral of Eq. (2.2.12) corresponds to the

transmission from the L.h.s, the second term corresponds to the reflection back from the

R.h.s and the final term is the normalised wave incoming from the right. By introducing

the chemical potential, taking the summation inside the integral and using Eq. (2.2.11), the

current can be written as

I =
(µ1 − µ2)e

h

∫
dε

(
−∂f
∂ε

)∑
i

Ti(ε). (2.2.13)

The current on the L.h.s is also equal to Eq. (2.2.13), as the current is conserved. The linear

conductance can be defined as,

G ≡ eI

µ1 − µ2

, (2.2.14)
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therefore,

G =
e2

h

∫
dε

(
−∂f
∂ϵ

)∑
i

Ti(E). (2.2.15)

In the zero temperature limit, T → 0, everything is evaluated at εF and Eq.(2.2.15) becomes

G =
e2

h

∑
ij

Tij

=
e2

h
Tr tt†. (2.2.16)

This is the Landauer formula for two-terminal conductance[22].

2.3 Shot Noise Power Spectrum

The noise power spectrum can be calculated in a similar manner by introducing the operators

â†α,n(ε) and âα,n(ε) which create and annihilate electrons which are incident on the scattering

region with energy ε in the nth transverse channel of lead α. The operators b̂†α,n(ε) and b̂α,n(ε)

create and annihilate electrons in the outgoing states. The operators are related by the same

scattering matrix S,



b̂1,1(ε)

...

b̂1,N1(ε)

b̂2,1(ε)

...

b̂2,N2(ε)


= S



â1,1(ε)

...

â1,N1(ε)

â2,1(ε)

...

â2,N2(ε)


, (2.3.1)

as the approach used to calculate the Landauer formula. By deriving an expression for the

time dependent current as a function of these creation and annihilation operators and the

scattering matrix, it is possible to calculate the shot noise power spectrum[20]. We will not
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derive this expression here, as it is a quite long derivation for details see [21][23]. The two

terminal case can be written as

S =
2e2

h

∫
dε
{
[f1(ε)(1− f2(ε)) + f2(ε)(1− f1(ε))] Tr tt†(1− tt†)

+ [f1(ε)(1− f1(ε)) + f2(ε)(1− f2(ε))] Tr tt†tt†
}
. (2.3.2)

Eq. (2.3.2) allows us to evaluate the noise for a variety of cases. If we assume that eV and

kBT are small, we can neglect the energy dependence of the transmission matrices. Let

us first determine the noise in equilibrium, µ1 = µ2, and show that the noise is related to

the conductance by the fluctuation - dissipation theorem. In equilibrium, f1 = f2 = f and

f(1− f) = −kBT df
dε

we find that,

S = 4kBT
e2

h
Tr tt†

= 4kBTG (2.3.3)

as required.

If we now consider the shot noise at zero-temperature, the terms that contain fa(1 − fa)

vanish and the Fermi functions are just step functions, fa(ε) = 1−Θ(ε− µa). Therefore at

zero temperature we obtain,

S = 2eV
e2

h
Tr tt†(1− tt†) = 2eV

e2

h

N∑
n=1

Tn(1− Tn). (2.3.4)

Eq. (2.3.4) was first derived by Büttiker [20] and is the multi-channel generalisation of the

single channel formula derived by G. B. Lesovik [24]. We notice that like the conductance,

the noise power is only a function of the transmission eigenvalues. However, unlike the con-

ductance which can be expressed in terms of the transmission probabilities, the shot noise,

even for two terminal conductors, cannot. This implies that the carriers from different chan-
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nels interfere and must remain indistinguishable.

It is clear from Eq. (2.3.4) that the transmission eigenstates that correspond to Tn = 0

and Tn = 1 will not contribute to the shot noise. This is because when Tn = 0, there

are no electrons being transmitted so therefore no noise. When Tn = 1 there is complete

transmission so the electrons stream will again be noise free. This means that in a Coulomb

blockaded system, the plateaus in the Coulomb staircase are noise free as they correspond

to the regime where all the channels are either open or closed. Therefore, the shot noise is

only generated when moving between the plateaus on the staircase. It is clear that the noise

will be suppressed below the Poisson limit given by Eq. (2.1.4). A convenient measure of

sub-poissonian shot noise is the Fano factor F .

2.4 Fano Factor

The Fano factor is the ratio of the actual noise S and the Poisson noise Spoisson that would

be obtained if the noise in the system were created by a Poissonian process [26],

F =
S

Spoisson
=

S

2e⟨I⟩
. (2.4.1)

The Fano factor takes values between zero which corresponds to a noise free system, and

one, which corresponds to the noise of the system being Poissonian. In the situation we

discuss above, for the two terminal case of an arbitrary scattering region, Eq. (2.3.2), for

energy independent transmission the Fano factor is given by

F =

∑
n Tn(1− Tn)∑

n Tn
. (2.4.2)

The Fano factor takes values between zero (all the channels are transparent) and one (Poisson

noise) depending on the transmission probabilities of the region under consideration..
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Resonant Double Tunnel Barriers

We can now use the scattering approach to derive the Fano factor for a simple model of a

quantum dot. We will model the dot as a potential well separated from electron reservoirs by

two finite width tunnel barriers. To do this we will require a slightly more general expression

for the noise power spectrum. This can be obtained by using the operator approach and is

given by,

S =
e2

π

∑
n

∫
dε
[
Tn(ε) [f1(ε) (1− f1(ε)) + f2(ε) (1− f2(ε))] + Tn(ε) [1− Tn(ε)] (f1(ε)− f2(ε))2

]
,

(2.4.3)

where the transmission probabilities are now energy dependent. For the resonant double

barrier problem, the transmission probabilities are given by the Breit-Wigner formula [25],

Tn(ε) =
Γ1nΓ2n

(ε− εn)2 + Γ2
n

4

, (2.4.4)

where we have introduced the tunneling rates Γ1,Γ2 and Γn = Γ1n+Γ2n. It will be clear later

why the transmission probabilities can be expressed as Eq. (2.4.4) when they are calculated

using the Keldysh Green’s functions, Eq. (3.5.26) in the following chapter. Inserting the

tunneling probabilities into the expression for the noise and the equivalent current expression

allows us to express the noise as

S = 2e2
Γ2
1 + Γ2

2

(Γ1 + Γ2)
2 I. (2.4.5)

Therefore, the Fano factor for the resonant level double barrier problem is given by

F =
Γ2
1 + Γ2

2

(Γ1 + Γ2)
2 , (2.4.6)

in the symmetric case Γ1 = Γ2 the Fano factor takes its minimum value of 1/2 and increases

to 1 for very asymmetrical barriers. For a full review of shot noise and the Fano factor see
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[26].

2.5 Summary

In this chapter, we have introduced the noise power spectrum and the Fano factor. We

have briefly described the scattering matrix approach to calculating the noise and the Fano

factor of a system. We obtained the Fano factor for the double barrier resonant level model

and showed that it ranges from 1/2 to 1 depending on the symmetry of the coupling of the

leads to the dot. The scattering approach considered in this chapter, however, does not take

into account the Coulomb blockade phenomena which we are primarily concerned with. To

investigate this phenomena, we will use a Keldysh Green’s function approach to calculate

the noise. In the following chapter, we will introduce the Keldysh Green’s function and show

how we can use this approach in the resonant level problem to obtain the noise.
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Chapter 3

KELDYSH GREEN FUNCTIONS AND

FUNCTIONAL INTEGRATION

In this chapter, we will briefly introduce the basic ideas and techniques which we will require

for the calculations in the later chapters. We will introduce the Keldysh Green’s function

technique and derive some basic results. We will then go on to introduce Grassman fields,

coherent states and the functional integration representation. We will conclude the chapter

by calculating the noise power spectrum of a non-interacting quantum dot as an example of

the techniques we have developed.

In order to discuss the statistical properties of a system we will need to consider the corre-

lation functions of the field variables. We will refer to these correlation functions as Green’s

functions. We will occasionally use the word propagator for various types of Green’s func-

tions. Before defining the Green’s function, we will briefly introduce the different represen-

tations for the wavefunctions and the operators that we will use.

3.1 Interaction Representation

There are three different representations of the wavefunctions and the operators in quantum

mechanics that we will consider. They differ in where the time dependence resides, It can
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reside in the wavefunction, in the operator or both (in all the representations we use the

units ~ = 1).

3.1.1 Schrodinger Representation

The Schrodinger representation assumes the time dependence resides in the wave function

ψ(t) and the operators (eg the Hamiltonian) are independent of time,

i
∂

∂t
ψ(t) = Hψ(t), (3.1.1)

ψ(t) = e−iHtψ(0). (3.1.2)

3.1.2 Heisenberg Representation

This is a different way of looking at quantum mechanics that produces exactly the same

results. It assumes that the wave functions are time independent and the operators are time

dependent,

O(t) = eiHtO(0)e−iHt. (3.1.3)

When we express the wave functions in the Heisenberg representation, we will use the sub-

script H.

3.1.3 Interaction Representation

The most useful representation for our purposes will be the interaction representation. In

this representation both the wave functions and the operators are time dependent. If we

consider the Hamiltonian separated into two parts,

H = H0 +Hi. (3.1.4)
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H0 is the free or unperturbed Hamiltonian, which is quadratic in nature and Hi is the

interaction Hamiltonian, which is free to take any form. In the interacting representation,

the operators contain the time dependence of the free Hamiltonian, but not the interaction,

O(t) = eiH0tOe−iH0t, (3.1.5)

and the wave functions have the time dependence:

ψ(t) = eiH0te−iHtψ(0). (3.1.6)

It is not possible to combine the exponentials in Eq. (3.1.6) unless

[H0, Hi] = 0, (3.1.7)

as

eAeB = eA+B iff [A,B] = 0. (3.1.8)

In Eq. (3.1.6), we have introduced an operator which we define as S(t, 0):

S(t, 0) = eiH0te−iHt. (3.1.9)

This function obeys the differential equation [27]:

∂S(t, 0)

∂t
= −iHi(t)S(t, 0), (3.1.10)

which we can solve to obtain,

S(t, 0) = 1− i
∫ t

0

dt1Hi(t1)S(t1, 0). (3.1.11)
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If this is repeated iteratively, it gives

S(t, 0) = 1 +
∑ (−i)n

n!

∫ t

0

dt1 . . .

∫ t

0

dtnTHi(t1) . . . Hi(tn) (3.1.12)

where we have introduced the time ordering operator T , which is defined as

Ta(t1)b(t2) =

 a(t1)b(t2) if t1 > t2

∓b(t2)a(t1) if t2 > t1

, (3.1.13)

where ∓ is for the fermionic/bosonic case. Eq. (3.1.12) can be abbreviated to

S(t, 0) = T exp

[
−i
∫ t

0

dt1H1(t1)

]
, (3.1.14)

however, it should always be kept in mind that the exponential form is just shorthand for

Eq. (3.1.12).

3.2 Green’s Functions

The Green’s function can be though of as the inverse of a differential operator, at least for

the single particle case [27] [28]. It is possible to write it for the more general many particle

and interacting systems. The single particle Green’s function can be defined as the solution

to

(
ε̂− Ĥ

)
G(r, t; r′, t′) =

[
i∂t −

∇2

2m
+ µ −Hi

]
G(r, t; r′, t′) = δ(t− t′)δ(r− r′). (3.2.1)

If we consider the case H = H0, by Fourier transforming to momentum space, the solution

to this can be found to be

G0(ε,p) =
1

ε− ξp + iδsgn(ξp)
(3.2.2)
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where ξp = p2

2m
− µ and sgn(α) is +1 for positive α and −1 for negative α. This however,

is not the most useful form for the more general cases, as not all Green’s functions can be

expressed as the inverse of a differential operator. In general, the single particle Green’s

function can be written as

G(r, t; r′, t′) = −i⟨TψH(r, t)ψ†H(r
′, t′)⟩, (3.2.3)

where T is the time ordering operator. It is useful to express the Green’s function in the

interaction representation. If we assume that the interactions are introduced adiabatically,

it is given by

G(r, t; r′, t′) = −i⟨Tψ0(r, t)ψ
†
0(r
′, t′)S(∞,−∞)⟩

⟨S(∞,−∞)⟩
, (3.2.4)

where ψ0(r, t) evolves under the free Hamiltonian. The advantage of the interaction repre-

sentation is that it is possible to Taylor expand S(∞,−∞). This leads to a perturbation

expansion if the interaction Hi is small.

Many physical properties for the many-body system can be specified using one particle

Green’s functions. For example, in a system, in an arbitrary state described by the density

matrix ρ, the average density at a space time point, is given by

n(r, t) = Tr
(
ρψ†H(r, t)ψH(r, t)

)
(3.2.5)

where the quantum fields describing the particles ψH(r, t) are in the Heisenberg picture and

Tr denote the trace. The average density can be expressed in terms of the G-lesser Green’s

function, as

n(r, t) = −G<(r, t; r, t), (3.2.6)
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where

G<(r, t; r′, t′) = iTr
(
ρψ†H(r

′, t′)ψH(r, t)
)

≡ i⟨ψ†H(r
′, t′)ψH(r, t)⟩, (3.2.7)

for fermions. It is clear from this that the triangular brackets mean the trace of the operators

weighted with respect to the state of the system,

⟨. . .⟩ ≡ Tr(ρ . . .). (3.2.8)

For the case of a pure state, G<(r, t; r′, t′) is the amplitude to remain in the state |Ψ⟩ after

removing, at a time t, a particle at position r and restoring, at a time t′, a particle at posi-

tion r′. In the case of a mixed state, an additional statistical averaging over the distribution

of initial states takes place. As well as G-lesser, we shall encounter several other Green’s

functions and to make the introduction of Keldysh Greens functions easier, we shall define

them all here.

The G-greater Green’s function,

G>(r, t; r′, t′) = −iTr
(
ρψH(r, t)ψ

†
H(r

′, t′)
)
= −i⟨ψH(r, t)ψ†H(r

′, t′)⟩, (3.2.9)

is the amplitude to remain in the state |Ψ⟩ after adding at time t′, a particle at position r′

and then removing, at time t, a particle from position r. Using these Green functions it is

possible to define the time ordered Greens function Eq. (3.2.3), which we introduced earlier,

G(r, t; r′, t′) = GT (r, t; r′, t′) = −i⟨TψH(r, t)ψ†H(r
′, t′)⟩
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where the time ordering operator arranges the quantum fields to its right in order of time,

largest time value first then decreasing as you move to the right, as either the G-lesser or

G-greater Green’s function:

G(r, t; r′, t′) =

 G<(r, t; r′, t′) t′ > t

G>(r, t; r′, t′) t > t′
(3.2.10)

In Eq. (3.2.10), we have used the minus sign convention when two fermi field operators are

interchanged. Later, we shall encounter the anti-time ordered Green’s function,

GT̃ (r, t; r′, t′) = −i < T̃ψH(r, t)ψ
†
H(r

′, t′) > (3.2.11)

where T̃ anti-time orders, i.e orders the operators opposite to that of T . We note that with

the aid of the step function Θ, the time ordered and anti-time ordered Green functions can

be written as

G(r, t; r′, t′) = Θ(t− t′)G>(r, t; r′, t′) + Θ(t′ − t)G<(r, t; r′, t′) (3.2.12)

and

GT̃ (r, t; r′, t′) = Θ(t− t′)G<(r, t; r′, t′) + Θ(t′ − t)G>(r, t; r′, t′). (3.2.13)

The Green’s function can also be written in terms of the retarded and advanced Green’s

functions, GR and GA, which again will be useful when we consider the Keldysh approach.

They have the following properties:

ℜG(ε,p) = ℜGR(ε,p) = ℜGA(ε,p) (3.2.14)

ℑGR(ε,p) = ℑG(ε,p)sgn(ξp) (3.2.15)

ℑGA(ε,p) = −ℑG(ε,p)sgn(ξp) (3.2.16)
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where ℜ indicates the real part and ℑ indicates the imaginary part. For the case H = H0,

the retarded and advanced Green’s functions can be written as

G
R/A
0 (ε,p) =

1

ε− ξp ± iδ
. (3.2.17)

They can also be formed in terms of the greater and lesser Green’s functions. The advanced

Green function is

GA(r, t; r′, t′) = −Θ(t′ − t) (G>(r, t; r′, t′)−G<(r, t; r′, t′)) (3.2.18)

and the retarded Green’s function is

GR(r, t; r′, t′) = Θ(t− t′) (G>(r, t; r′, t′)−G<(r, t; r′, t′)) . (3.2.19)

The other Green’s function that we will encounter is the Keldysh Green’s function that can

be defined in terms of the greater and lesser Green’s functions as

GK(r, t; r′, t′) = G>(r, t; r′, t′) +G<(r, t; r′, t′). (3.2.20)

3.3 Keldysh Green’s Functions

Throughout this thesis, we will be making use of Keldysh Green’s functions. This approach

was developed in the 1964 paper by L.V. Keldysh [29]. In addition to this work, parallel

work was carried out by Martin [30] and Schwinger [31].

3.3.1 The Time Contour

As opposed to the Matsubara and the zero temperature methods, the Keldysh approach

allows us to consider systems that are not in thermal equilibrium. It allows this by consid-
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t0 t

c
k

Figure 3.1: The Keldysh time contour ck, which runs from an initial time t0 to a time t, which is the
max{t, t′}, in the standard Keldysh approach we let t→∞ and t0 → 0.−∞.[35]

ering a different time contour to the other approaches that does not require knowledge of

the final state of the system. In the zero temperature approach, the time contour runs from

t = −∞ to t = ∞ where the system is considered to be in the known ground state of the

non-interacting Hamiltonian H0, at t = −∞. The interactions H−H0 are then adiabatically

switched on and the system evolves to the ground state of the interacting Hamiltonian H.

The interactions are then adiabatically switched off in the distant future, arriving at t =∞

at the state |∞⟩. The assumptions of this approach is that this state is unique, independent

of the switching procedure and is again the ground state of H0 up to a phase factor. How-

ever, out of equilibrium this is not the case when the interactions are turned on and off, the

system evolves to an unknown state.

To avoid this, in the Keldysh approach, we consider a time contour that was first sug-

gested by Schwinger [31] which is to take the final state to be exactly the same state as the

initial state. To do this, we consider the time contour in figure (3.1) where we once again

start at t = −∞ then adiabatically switch on the interactions and let the system evolve in

the forward direction to t = ∞ and then “unwind” the evolution backwards to t = −∞ to

the known initial state. This allows us to bypass the lack of information about the state

at t =∞, but does result in the algebraic structure of this approach being more complicated.

We should remind ourselves at this point that, as the Green’s function in the Heisenberg
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Figure 3.2: The addition imaginary contour cx.[28][?]

representation is given by

G(r, t; r′, t′) = −iTr
(
ρTψ†H(r

′, t′)ψH(r, t)
)
. (3.3.1)

When the system is in equilibrium ρ = e−βH . This is the Gibbs distribution. If we change

to the interaction representation for ψ and its conjugate, we also have to change e−βH to

the interaction representation. This becomes

e−βH = e−βH0T exp

[
−
∫ t0−iβ

t0

dt1Hi(t1)

]
, (3.3.2)

where the time ordering operator T in Eq. (3.3.2) orders along the contour that stretches

down into the lower complex plane from t0 to t0 − iβ[33]. This results in the extra contour,

cx, in Fig. (3.2) needing to be considered. This can be included with the real time contour

to form the interaction contour, cK , depicted in Fig. (3.3). In the Keldysh formalism, the

imaginary leg of the contour is usually ignored and the contour Fig. (3.1) is used. The

imaginary part of the contour describes the initial distribution of the system and neglecting

this part of the contour corresponds to losing this information [32][34].
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Figure 3.3: The Keldysh interaction time contour cK .[35]

c
1

c
2

Figure 3.4: The Keldysh contour considered in two parts the upper part, C1, of the contour runs from
t = −∞ to t =∞ and the lower part, C2, runs from t =∞ back to t = −∞.[35]

3.3.2 The Matrix Structure

The result of using this time contour in the Keldysh approach is that the general expression

for the single particle Green’s function can be written as

G(r, t; r′, t′) = −i⟨TckψH(r, t)ψ
†
H(r

′, t′)⟩ (3.3.3)

where Tck is the contour time ordering operator which arranges the quantum fields to its

right in the order in which they appear on the time contour, as shown in Fig. (3.1). A

property of this time contour is that the partition function, Z,

Z = 1 (3.3.4)

as the contributions from the upper and the lower branches of the contour cancel exactly. In

order to derive the matrix structure of the Keldysh Green’s functions, we need to consider

the two parts of the contour, upper and lower, separately (see Fig. (3.4)). Eq. (3.3.3) is now
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split into four separate cases depending on if t and t′ reside on the upper, lower or different

contours. Labeling the upper contour as 1 and the lower contour as 2, it is possible to write

Eq. (3.3.3) as the matrix G̃ij. i = {1, 2} and j = {1, 2} refer to t and t′ respectively residing

on the corresponding contour,

G̃ =

 G̃11 G̃12

G̃21 G̃22

 . (3.3.5)

For the off diagonal elements G̃12 and G̃21, the time co-ordinates are always on different

branches of the time contour. This means that they are always ordered either forward (G̃12)

or backwards (G̃21) along the contour and are therefore equivalent to G< and G> respec-

tively. For the diagonal elements both t and t′ reside on the same branch of the contour so

correspond to the time ordered and anti-time ordered Green’s functions.

To summarise the elements of G̃ are given by

G̃11(r, t; r
′, t′) = −i⟨TψH(r, t)ψ†H(r

′, t′)⟩ (3.3.6)

G̃22(r, t; r
′, t′) = −i⟨T̃ψH(r, t)ψ†H(r

′, t′)⟩ (3.3.7)

G̃12(r, t; r
′, t′) = G<(r, t; r′, t′) = i⟨ψ†H(r

′, t′)ψH(r, t)⟩ (3.3.8)

G̃21(r, t; r
′, t′) = G>(r, t; r′, t′) = i⟨ψH(r, t)ψ†H(r

′, t′)⟩. (3.3.9)

However, this is not the simplest form that the matrix can take, as not all the entries

are linearly independent. To simplify the matrix, we can now make the rotation to the

Larkin-Ovchinnikov basis [36],

G = L0τ
3G̃L†0, (3.3.10)
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where

L0 =
1√
2

(
τ 0 − iτ 2

)
(3.3.11)

and the τ ’s are the Pauli matrices,

τ 0 =

 1 0

0 1

 τ 1 =

 0 1

1 0

 τ 2 =

 0 − i

i 0

 τ 3 =

 1 0

0 − 1

 . (3.3.12)

The simplified matrix has the form

G =

 GR GK

0 GA

 , (3.3.13)

for fermions. The new elements of G relate to the old by

GR(t, t′) = G̃11(t, t
′)− G̃12(t, t

′) = G̃21(t, t
′)− G̃22(t, t

′),

GA(t, t′) = G̃11(t, t
′)− G̃21(t, t

′) = G̃12(t, t
′)− G̃22(t, t

′) (3.3.14)

and

GK(t, t′) = G̃21(t, t
′) + G̃12(t, t

′) = G̃11(t, t
′) + G̃22(t, t

′). (3.3.15)

Near thermal equilibrium, the Keldysh component can be written as [35]

GK(ε,p) = h(ε)
(
GR(ε,p)−GA(ε,p)

)
(3.3.16)

where h(ε) = 1− 2fε = tanh
(
1
2
βε
)
and fε is the fermi distribution. It can be verified that

this is exact for the equilibrium case. However, away from equilibrium and more generally,

the distribution function must be found from the quantum kinetic equation and the Keldysh
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component is given by

GK(t, t′) = GR(t, t′′)F(t′′, t′)−F(t, t′′)GA(t′′, t′), (3.3.17)

where integration over the time index t′′ is implied and F(t, t′′) is the distribution function.

3.3.3 Langreth Theorem

Within the real time Dyson Equation and in the perturbative expansion of the contour

ordered Green’s function, we will encounter objects which are integrated over the Keldysh

contour. In this section, we will derive the appropriate formula to deal with these situa-

tions. In the following section, only the contour ordered time variables are important, so

the spacial components and any spin indices shall be suppressed.

If we consider the case where the Hamiltonian contains a time dependent potential V ,

then the Dyson equation has the form:

G(t, t′) = G0(t, t
′) +

∫
ck

dt1

∫
ck

dt2G0(t, t2)Σ(t2, t1)G(t1, t
′) +

∫
ck

dt1G0(t, t1)V (t1)G(t1, t
′),

(3.3.18)

where Σ is the self energy of the problem. We thus have to solve integrals of the form

C(t, t′) =

∫
ck

dt1A(t, t1)B(t1, t
′), (3.3.19)

where A and B are functions that have a contour time order dependence. We need to turn

the contour time integral into integrations over the real time axis. To do this we need to

consider the analytic functions C<(t, t′) and C>(t, t′). We will demonstrate the analytical

continuation procedure for the C<(t, t′) case. This means that the contour time t appears

earlier than the contour time t′. Exploiting the analyticity of the Keldysh contour, we deform
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Figure 3.5: Deforming the Keldysh contour into the contour formed from the contours ct and ct′ [37]

the contour into the contour ct + ct′ depicted in Fig. (3.5)[37][28]. Therefore, the expression

for C< becomes

C<(t, t′) =

∫
ct

dt1A(t, t1)B(t1, t
′) +

∫
ct′

dt1A(t, t1)B(t1, t
′)

=

∫
ct

dt1A(t, t1)B
<(t1, t

′) +

∫
ct′

dt1A
<(t, t1)B(t1, t

′), (3.3.20)

where we have used the fact that on the ct contour, t1 < t′ and on the ct′ contour, we have

t1 > t. If we now spilt the contours into upper (forward time) and lower (reverse time)

parts, we have

C<(t, t′) =

∫
−→ct
dt1A

>(t, t1)B
<(t1, t

′) +

∫
←−ct
dt1A

<(t, t1)B
<(t1, t

′)

+

∫
−→ct′
dt1A

<(t, t1)B
<(t1, t

′) +

∫
←−ct′
dt1A

<(t, t1)B
>(t1, t

′) (3.3.21)

where −→ct indicates the upper half of the ct contour and
←−ct indicates the lower half of the ct

contour. We can now parameterise the contour in terms of the real time variable and taking

the limit t0 → −∞, we obtain

C<(t, t′) =

∫ t

−∞
dt [A>(t, t1)− A<(t, t1)]B<(t1, t

′)

+

∫ t′

−∞
dtA<(t, t1) [B

<(t1, t
′)−B>(t1, t

′)] (3.3.22)
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which can be written as

C<(t, t′) =

∫ ∞
−∞

dtΘ(t− t1) [A>(t, t1)− A<(t, t1)]B<(t1, t
′)

+

∫ ∞
−∞

dtΘ(t′ − t1)A<(t, t1) [B<(t1, t
′)−B>(t1, t

′)] . (3.3.23)

If we now use the identities for the retarded and advanced Green’s functions:

AR(t, t′) = Θ(t− t′) [A>(t, t′)− A<(t, t′)] ,

AA(t, t′) = Θ(t′ − t) [A>(t, t′)− A<(t, t′)] , (3.3.24)

we obtain the Langreth theorem for the lesser component

C<(t, t′) =

∫
ck

dt1A
R(t, t1)B

<(t1, t
′) +

∫
ck

dt1A
<(t, t1)B

A(t1, t
′). (3.3.25)

Analogously, we can show that the greater component is given by

C>(t, t′) =

∫
ck

dt1A
R(t, t1)B

>(t1, t
′) +

∫
ck

dt1A
>(t, t1)B

A(t1, t
′). (3.3.26)

3.3.4 Functional Integration

To calculate the density of states and the conductance of the interacting system, we will use

functional integration representation. A functional integral is a path integral defined with

the overcomplete set of coherent states. As we shall be dealing with Fermions, it is also

necessary to introduce Grassmann Algebra, but first it is helpful to define coherent states

for the Bosonic case.
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Coherent States (Bosons)

A coherent state is defined as the eigenstate of an annihilation operator. For Bosons, the

eigenstates are known as bosonic coherent states [38],

|ϕ⟩ ≡ e[
∑

i ϕiâ
†
i ]|0⟩, (3.3.27)

where |0⟩ is the vacuum state and ϕ = {ϕi} represents a set of complex numbers. The states

are eigenstates in the sense that for all i,

âi|ϕ⟩ = ϕi|ϕ⟩. (3.3.28)

It is also useful to note here some other properties. By taking the Hermitian conjugate of

Eq. (3.3.28), we find

⟨ϕ|â†i = ⟨ϕ|ϕ̄i, (3.3.29)

where ϕ̄i is the complex conjugate of ϕi and

⟨ϕ| = ⟨0|e[
∑

i ϕ̄iâi]. (3.3.30)

By Taylor expanding Eq. (3.3.27), it is possible to show that

â†i |ϕ⟩ = ∂ϕi|ϕ⟩. (3.3.31)

The overlap between two coherent states is given by

⟨θ|ϕ⟩ = e[
∑

i θ̄iϕi]. (3.3.32)
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This implies that the norm is given by

⟨ϕ|ϕ⟩ = e[
∑

i ϕ̄iϕi]. (3.3.33)

The coherent states form an overcomplete set of states in Fock space:

∫ ∏
i

dϕ̄idϕi
π

e[−
∑

i ϕ̄iϕi]|ϕ⟩⟨ϕ| = 1̂ (3.3.34)

where dϕ̄idϕi = dℜϕidℑϕi and 1̂ represents the unit operator. With these definitions, we

have all that we require to derive the many-body path integral for the bosonic system but,

before we proceed, let us first introduce the fermionic version of the coherent state.

Coherent States (Fermions)

As for the bosonic case, the annihilation operators are characterised by a set of coherent

states such that for all i [38],

âi|ψ⟩ = ψi|ψ⟩ (3.3.35)

but as we are now dealing with fermions, the operators anticommute {âi, âj} = 0 for i ̸= j.

This implies that the eigenvalues ψi must also anticommute,

ψiψj = −ψjψi. (3.3.36)

Clearly, the eigenvalues can not be ordinary numbers. To overcome this we introduce Grass-

mann numbers that obey the anticommutation relation

{ψi, ψj} = 0. (3.3.37)
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This results in Grassmann numbers having the property that the square of a Grassmann

number is zero and hence any function of Grassmann numbers is linear. We can define

integration and differentiation as

∫
dψi = 0,

∫
dψiψi = 1 (3.3.38)

and

∂ψi
ψj = δij. (3.3.39)

In order to be consistent with the anticommutation relation, the differentiation operator ∂ψi

must be anti-commutative as well, i.e for i ̸= j, ∂ψi
ψjψi = −ψj.

By making use of the Grassmann algebra, it is possible for us to define the fermionic coherent

state as

âi|ψ⟩ = ψi|ψ⟩, (3.3.40)

where

|ψ⟩ = e[−
∑

i ψiâ
†
i ]|0⟩. (3.3.41)

This expression can be simplified to

|ψ⟩ =
∏
i

(
1− ψiâ†i

)
|0⟩, (3.3.42)

where we have Taylor expanded the exponential. This expression is exact, as all higher

order terms are zero due to Eq. (3.3.37). It is clear that the properties (3.3.31), (3.3.32) and

(3.3.33) carry over to the fermionic case. We associate the ai with the fermionic operation

and replace ϕi with ψi. There are two major differences between the fermionic and bosonic
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cases. The Grassmann variables ψ̄i appearing in the adjoint

⟨ψ| = ⟨0|e[
∑

i ψ̄iâi], (3.3.43)

are not related to the ψi’s of the state |ψ⟩. The ψi and ψ̄i are independent variables. The

other major difference is that the Grassmann version of the Gaussian integral

∫ ∫
dψ̄dψe−ψ̄ψ = 1, (3.3.44)

does not contain the factor of π that the standard Gaussian integral contains (see Appendix

A). We will also require the overcompleteness property for the fermions which is given by

∫ ∏
i

dψ̄idψie
−

∑
i ψ̄iψi|ψ⟩⟨ψ| = 1̂. (3.3.45)

Finally, before we develop functional field integration, it is useful to remind ourselves of

some basic results of Gaussian integration which are covered in Appendix A.

To derive the functional integral representation of the Green’s function, we will need to

make use of the property

TrÂ =

∫
DψDψ̄e−ψ̄ψ⟨−ψ|Â|ψ⟩ (3.3.46)

where Dψ =
∏

i dψi and ψ̄ψ =
∑

i ψ̄iψi. This can be easily proved by making use of the

properties of coherent states. If we consider the trace of an operator explicitly, as the sum

over a complete set of many body states {|n⟩},

TrÂ =
∑
n

⟨n|Â|n⟩, (3.3.47)

41



and insert the resolution of unity Eq. (3.3.45)

TrÂ =

∫ ∏
i

dψ̄
(0)
i dψ

(0)
i e−

∑
i ψ̄

(0)
i ψ

(0)
i

∑
n

⟨n|Â|ψ(0)⟩⟨ψ(0)|n⟩. (3.3.48)

Since Grassmann variables are involved in the definition of |ψ(0)
i ⟩, we can not simply change

the order in which the matrix elements are multiplied

⟨n|Â|ψ(0)⟩⟨ψ(0)|n⟩ ̸= ⟨ψ(0)|n⟩⟨n|Â|ψ(0)⟩. (3.3.49)

To over come this, we first need to consider ⟨ψ(0)|n⟩ and represent |n⟩ as â†nâ
†
n−1 . . . â

†
1|0⟩,

⟨ψ(0)|n⟩ = ⟨0|e−
∑

i âiψ̄
(0)
i â†nâ

†
n−1 . . . â

†
1|0⟩, (3.3.50)

by Taylor expanding the exponential, this becomes

⟨ψ(0)|n⟩ = ⟨0|(−â1ψ̄(0)
1 ) . . . (−ânψ̄(0)

n )â†nâ
†
n−1 . . . â

†
1|0⟩

= (−1)n(−1)
n(n+1)

2 ψ̄
(0)
1 ψ̄

(0)
2 . . . ψ̄(0)

n ⟨0|â1 . . . ânâ†n . . . â
†
1|0⟩

= (−1)n(−1)
n(n+1)

2 ψ̄
(0)
1 ψ̄

(0)
2 . . . ψ̄(0)

n . (3.3.51)

If we now move the result above to the left of Â|ψ(0)⟩, we can use the fact that any term

of the expansion of both |ψ(0)⟩ and Â has an even number of anti-commuting terms, so

commutes to give

⟨n|Â|ψ(0)⟩⟨ψ(0)|n⟩ = (−1)n(−1)
n(n+1)

2 ⟨0|â1â2 . . . ânψ̄(0)
1 ψ̄

(0)
2 . . . ψ̄(0)

n Â|ψ(0)⟩. (3.3.52)

If we now move all the ψ̄(0)’s to the left of the annihilation operators, we get another factor

of (−1)n2
and use the fact that (−1)n2

= (−1)n. We can now attribute a minus sign to each
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of the Grassmann variables and obtain

⟨n|Â|ψ(0)⟩⟨ψ(0)|n⟩ = (−1)n(−1)
n(n+1)

2 (−ψ̄(0)
1 )(−ψ̄(0)

2 ) . . . (−ψ̄(0)
n )⟨n|Â|ψ(0)⟩, (3.3.53)

if we now use Eq. (3.3.51) again this becomes Eq. (3.3.46), as required [38].

3.4 Functional Integration Representation of the Green’s

Function

We will now make use of coherent states to derive the Green’s function in the functional

integration representation. If we start from the Green’s function in the form

G(t, t′) = − i

Z

∑
n

⟨n|TcK ψ̂tψ̂
†
t′e
−i

∫
cK

dt1H(t1)|n⟩, (3.4.1)

where we have now suppressed the position indices. We can now use Eq. (3.3.46) and

express the Green’s function as

G(t, t′) = − i

Z

∫
Dψ0Dψ̄0e

−ψ̄0ψ0⟨−ψ0|TcK ψ̂tψ̂
†
t′e
−i

∑
i δiH(ψ̂†

i ,ψ̂i)|ψ0⟩, (3.4.2)

where we have split the time contour into N pieces of width δi. We can now define −ψ0 =

ψN+1 and insert the resolution of unity between each of the time slices

G(t, t′) = − i
Z

∫
DN+1ψDN+1ψ̄e−ψ̄0ψ0−

∑N
i=1 ψ̄iψi⟨ψN+1|e−iδNH(ψ̂†,ψ̂)|ψN⟩⟨ψN |

. . . e−iδ1H(ψ̂†,ψ̂)|ψ1⟩⟨ψ1|e−iδ0H(ψ̂†,ψ̂)ψ̂tψ̂
†
t′|ψ0⟩, (3.4.3)
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where the 0 and i subscripts refer to the different completeness relations. This expression

can be simplified by making use of the properties of coherent states to give [38]

G(t, t′) = − i

Z

∫
DψDψ̄eiSψ̂tψ̂

†
t′ , (3.4.4)

where DψDψ̄ = DN+1ψDN+1ψ̄ and

iS = −ψ̄0ψ0 −
N∑
i=1

ψ̄iψi +
N∑
i=0

[
ψ̄i+1ψi − iδiH(ψ̄i+1, ψi)

]
. (3.4.5)

This in turn can be simplified to

N∑
i=0

δi

(
ψ̄i+1

ψi − ψi+1

δi
− iH(ψ̄i+1, ψi)

)
, (3.4.6)

which can be written in the continuum limit as

iS = i

∫
ck

dt

(
ψ̄(t)i

dψ(t)

dt
−H(ψ̄(t), ψ(t))

)
. (3.4.7)

The continuum expression however, is strictly symbolic and the discrete expression is the

only one with any real meaning. It is possible to calculate the partition function in the same

way, resulting in

Z =

∫
DψDψ̄eiS. (3.4.8)

3.4.1 Useful Results of Functional Integration

We can use the standard definition,

∫
DψDψ̄e−ψ̄αMαβψβ = detM, (3.4.9)
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to consider a matrix M defined as

M =



−1 0 0 · · · aN+1

−a1 1 0 · · · 0

0 −a2 1 · · · 0

...
...

. . . . . .
...

0 0 · · · −aN 1


, (3.4.10)

where ai = 1 − iδiφi. The index i labels the time, δ1 is a time segment and φi is the

Hamiltonian at time ti. We can compare the matrix with Eq. (3.4.4) to derive the following

identities

−
∫
DψDψ̄e−ψ̄Mψ = −detM = 1 +

N+1∏
i=1

ai, (3.4.11)

and

−
∫
DψDψ̄ψmψ̄ne

−ψ̄Mψ =

 −
∏m+1

i=n ai if m > n∏m−1
i=1

∏N+1
i=n ai if m < n

. (3.4.12)

As ai = 1− iδiφi ≈ e−iδiφi , Eq. (3.4.11) and Eq. (3.4.12) can be written as

∫
DψDψ̄e−ψ̄Mψ = 1 + e−i

∫
φ(t)dt (3.4.13)

and

∫
DψDψ̄ψ(t)ψ̄(t′)e−ψ̄Mψ =

 e−
∫ t
t′ φ(t

′′)dt′′ if t > t′

e−
∫ t0
t φ(t′′)dt′′e

−
∫ t′
tN+1

φ(t′′)dt′′
if t < t′

. (3.4.14)

If we can not write such a simple form for the matrix, we must use the result

∫
DψDψ̄e−ψ̄Mψ = detM. (3.4.15)
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3.5 Noise of a Non-interacting Quantum Dot

In this section, we will calculate the zero frequency noise power spectrum of a non-interacting

resonant level quantum dot [39], as an example of using the Keldysh Green’s functions

approach to calculate the noise. We will begin with a similar system to that which we

will consider for the interacting problem later. We will consider two non-interacting leads

(α = 1, 2) coupled via tunneling contacts to a non-interacting central region modeled as a

resonant level. The Hamiltonian for the system is given by

H = εd†(t)d(t) +H leads
0 +

∑
α,k

[
γαkc

†
k(t)d(t) + h.c.

]
. (3.5.1)

The current through the first contact is given by

I1(t) = ei
∑
k

[
γ1,kc

†
k(t)d(t)− γ

†
1,kd

†(t)ck(t)
]
, (3.5.2)

where c†k is a creation operator for lead 1, d is an annihilation operator for the dot and the

tunneling rate from the dot to the lead is γ1,k. If we now define δI1(t) = I1(t)−⟨I1⟩, we can

express the noise correlation function as

S(t, t′) = ⟨{δI1(t), δI1(t′)}⟩

= ⟨{I1(t), I1(t′)}⟩ − 2⟨I1⟩2

= (ie)2
∑
k,k′

[
γ1,kγ1,k′⟨c†k(t)d(t)c

†
k′(t
′)d(t′)⟩ − γ1,kγ†1,k′⟨c

†
k(t)d(t)d

†(t′)c(t′)k′⟩

− γ†1,kγ1,k′⟨d
†(t)c(t)kc

†
k′(t
′)d(t′)⟩+ γ†1,kγ

†
1,k′⟨d

†(t)c(t)kd
†(t′)ck′(t

′)⟩
]

+ h.c.− 2⟨I1⟩2. (3.5.3)

The noise power spectrum, Eq. (2.1.1) is defined as the Fourier transform of Eq. (3.5.3)

and we will calculate the zero frequency component. We chose to consider just the zero

frequency, as this is the component we will be interested in for the interacting system. In
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order to evaluate the above expression, we will need to calculate the two-particle Green’s

functions,

G1(t, t
′) = i2⟨Tc†k(t)d(t)c

†
k′(t
′)d(t′)⟩,

G2(t, t
′) = i2⟨Tc†k(t)d(t)d

†(t′)ck′(t
′)⟩,

G3(t, t
′) = i2⟨Td†(t)ck(t)c†k′(t

′)d(t′)⟩,

G4(t, t
′) = i2⟨Td†(t)ck(t)d†(t′)ck′(t′)⟩. (3.5.4)

The noise correlator can be written in terms of these Green’s functions as

S(t, t′) = e2
∑
k,k′

[
γ1,kγ1,k′G

>
1 (t, t

′)− γ1,kγ†1,k′G
>
2 (t, t

′)− γ†1,kγ1,k′G
>
3 (t, t

′)

+ γ†1,kγ
†
1,k′G

>
4 (t, t

′)
]
+ h.c.− 2⟨I1⟩2. (3.5.5)

To calculate the two particle Green’s functions, we will use Wicks theorem to rewrite them

in terms of single particle Green’s functions. We are allowed to do this as there are no

interactions in our system, so the Hamiltonian is quadratic. Therefore, we can express

G2(t, t
′) as

G2(t, t
′) = i⟨Tck′(t′)c†k(t)⟩i⟨Td(t)d

†(t′)⟩

− i⟨Td(t)c†k(t)⟩i⟨Tck′(t
′)d†(t′)⟩ (3.5.6)

The other two particle Green’s functions can be expressed in a similar manor. Using a Dyson

equation approach, it is possible to express the mixed Green’s functions in terms of the non

interacting green’s function of the leads and the full Green’s function of the dot. The mixed

Green’s functions come in two forms:

Fk(t, t
′) = i⟨Tck(t)d†(t′)⟩ and F̄k′(t, t′) = i⟨Td(t)c†k′(t

′)⟩ (3.5.7)
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The Dyson series for these expressions are similar, so we will only write one explicitly [39],

Fk(t, t
′) =

∫
dt1γ1,kg1,k(t, t1)G0(t1, t

′) +

∫
dt1dt2dt3γ1,kg1,k(t, t1)G0(t1, t2)Σ(t2, t3)G0(t3, t

′) + . . .

=

∫
dt1γ1,kg1,k(t, t1)G(t1, t

′) (3.5.8)

and

F̄k′(t, t
′) =

∫
dt1γ

†
1,k′G(t, t1)g1,k′(t1, t

′), (3.5.9)

In Eq. (3.5.8) and Eq. (3.5.9) the zero subscript in the full Green’s function of the dot indi-

cates the unperturbed function. The lower case g1,k′ is the Green’s function of lead 1 and

Σ is the mass operator. Inserting these expressions back into the equation for the noise

correlator Eq. (3.5.5), we obtain two types of terms; terms where the t1 and t2 integrals

can be calculated separated and terms where the integrals are intertwined. We will begin

by considering the terms of the first kind which we shall refer to as disconnected as their

diagrams form two disconnected loops.

3.5.1 Disconnected Terms

The disconnected part of the noise is

Sdis(t, t
′) = e2

∑
k,k′

|γk|2γk′|2
∫
dt1

∫
dt2 [G(t, t1)g1,k(t1, t)G(t

′, t2)g1,k′(t2, t
′)

− G(t, t2)g1,k(t1, t)g1,k′(t
′, t2)G(t2, t

′)− g1,k(t, t1)G(t1, t)G(t′, t2)g1,k′(t2, t′)

+ g1,k(t, t1)G(t1, t)g1,k′(t
′, t2)G(t2, t

′)] + h.c. (3.5.10)

As we can separate the integrals in the above expression, lets begin by examining the first

t1 integral in Eq. (3.5.10):
∫
dt1G(t, t1)g1,k(t1, t). At first it appears that there is some

ambiguity to the time ordering of this term and that we may be unable to use the Langreth
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theorem [27][28]. However, if we go back to the origin of this term in Eq. (3.5.4) we see that

the time t in the lead Green’s function, g1,k must be greater than that of the time t in the

Green’s function of the dot, G, because otherwise the c†k(t) would not be to the left of the of

d(t). Therefore, we need to consider the lesser component which by the Langreth theorem,

Eq. (3.3.25), is

[∫
dt1G(t, t1)g1,k(t1, t)

]<
=

∫
dt1
[
GR(t, t1)g

<
1,k(t1, t) +G<(t, t1)g

A
1,k(t1, t)

]
(3.5.11)

which is the same form as the Green’s functions that appear in the average current. In

fact using the Langreth theorem on all the expressions in both the t1 and t2 integrals in

Eq. (3.5.10) we obtain,

Sdis(t, t
′) = e2

∑
k,k′

|γk|2γk′|2 [G<
nk(t, t)−G<

kn(t, t)] [G
<
nk′(t

′, t′)−G<
k′n(t

′, t′)]

= 2⟨I1⟩2 (3.5.12)

where

G<
nk(t, t) =

[∫
dt1G(t, t1)g1,k(t1, t)

]<
and G<

kn(t, t) =

[∫
dt1g1,k(t, t1)G(t1, t)

]<
. (3.5.13)

Therefore, the disconnected terms cancel the current squared terms exactly.

3.5.2 Connected Terms

The remaining terms which, can be represented in terms of ring diagrams, are

S(t, t′) = e2
∑
k

|γk|2 [g1,k(t′, t)G(t, t′) + g1,k(t, t
′)G(t′, t)] +

∑
k, k′|γk|2γk′ |2

∫
dt1

∫
dt2

× [−G(t, t2)g1,k′(t2, t′)G(t′, t1)g1,k(t1, t) +G(t, t′)g1,k′(t
′, t1)G(t1, t2)g1,k(t2, t)

+ g1,k(t, t1)G(t1, t2)g1,k′(t2, t
′)G(t′, t)− g1,k(t, t1)G(t1, t′)g1,k′(t′, t2)G(t2, t)] + h.c.
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(3.5.14)

We will now only consider the situation where t > t′. We have chosen this case as the noise

correlator only depends on the difference between the two times and this case corresponds

to the difference being positive. The first two terms in Eq. (3.5.14) are only products of two

Green’s functions, so we can easily obtain the result,

[g1,k(t
′, t)G(t, t′) + g1,k(t, t

′)G(t′, t)]t>t′ = g<1,k(t
′, t)G>(t, t′) + g>1,k(t, t

′)G<(t′, t). (3.5.15)

To calculate the required components from the other terms in Eq. (3.5.14), we need to con-

sider the Keldysh contour. As we have defined t > t′, t must be after t′ on the contour,

therefore we will place t′ on the upper branch of the contour and t on the lower branch.

However, we still have two variables t1 and t2 which are integrated over the whole Keldysh

contour. To calculate these terms, we need to split the integrals into two halfs; the integral

over the upper half of the contour from minus to plus infinity and the integral over the lower

half from infinity to minus infinity. As this produces four double integrals for each of the

remaining terms in Eq. (3.5.14), we will not list all 32 terms here as once they are expressed

in this form, we can now easily determine the required time ordering of the Green’s functions.

As single particle Green’s fuctions only depend on the difference between their variables,

G(t, t′) = G(t− t′), we now make the change of variables:

t− t′ = τ, t− t1 = τ1, t′ − t2 = τ2 (3.5.16)

and perform the Fourier transform,

S(ω) =

∫ ∞
−∞

dτeiωτS(τ). (3.5.17)
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As the time dependence of all the terms in the noise correlator have only two different forms,

Π1(τ) = A(−τ)B(τ)

Π2(τ) =

∫ ∞
−∞

dτ1

∫ ∞
−∞

dτ2A(τ1)B(−τ1 + τ)C(τ2)D(−τ2 − τ), (3.5.18)

the transform results in terms which have the frequency dependence,

Π1(ω) =
1

2π

∫ ∞
−∞

dω1A(ω1)B(ω + ω1)

Π2(ω) =
1

2π

∫ ∞
−∞

dω1A(ω + ω1)B(ω + ω1)C(ω1)D(ω1). (3.5.19)

As we are only concerned with the zero frequency noise we can simplify the expressions

further by taking the ω → 0 limit,

Π1(0) =
1

2π

∫ ∞
−∞

dωA(ω)B(ω)

Π2(0) =
1

2π

∫ ∞
−∞

dωA(ω)B(ω)C(ω)D(ω). (3.5.20)

Using the definitions for the retarded and advanced Green’s functions, Eqs. (3.3.14), and

substituting in the expressions for the Green’s functions of the leads,

∑
k

|γαk|2g<α,k(ω) = iΓαfα(ω),∑
k

|γαk|2g>α,k(ω) = −iΓα [1− fα(ω)] (3.5.21)

where Γα = 2π
∑

k |γαk|2δ(ω − ωk), into the expression for the noise we obtain

S(0) = S1 + S2. (3.5.22)
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S1,2 are the expressions arising from the gG and ggGG terms respectively and are given by

S1 = 2e2iΓ1

∫
dω

2π

{
f1(ω)

[
GR(ω)−GA(ω)

]
+ [2f1 − 1]G<(ω)

}
(3.5.23)

and

S2 = 2e2
∫
dω

2π

{
if1(ω)Γ1

[
GR(ω)−GA(ω)

]
+ iΓ1 [2f1(ω)− 1]G<(ω)

+ f1(ω)Γ1Γ1

[
GR(ω)−GA(ω)

] [
GR(ω)−GA(ω)

]
+ Γ1Γ1 [2f1(ω)− 1]G<(ω)

[
GR(ω)−GA(ω)

]
− Γ1Γ1f1(ω) [1− f1(ω)]

[
GA(ω)GA(ω) +GR(ω)GR(ω)

]
+ Γ1Γ1G

<(ω)
[
GR(ω)−GA(ω)

]
+ Γ1Γ1G

<(ω)G<(ω)
}
. (3.5.24)

We now use the following relations for the resonant level Green’s functions [39],

G<(ω) = iGR(ω) [f1(ω)Γ1 + f2(ω)Γ2]G
A(ω),

GR(ω)−GA(ω) = −iGR(ω) [Γ1 + Γ2]G
A(ω), (3.5.25)

GA(ω)GA(ω) +GR(ω)GR(ω) =
[
GR(ω)−GA(ω)

] [
GR(ω)−GA(ω)

]
+ 2GR(ω)GA(ω)

and the definition of the transmission coeffcient [39],

T (ω) = Γ1Γ2G
R(ω)GA(ω). (3.5.26)

We can express the zero frequency noise power spectrum as

S(0) = 2e2
∫
dω

2π
{[f1(ω)(1− f1(ω)) + f2(ω)(1− f2(ω))]T (ω)

+ [f1(ω)− f2(ω)]2 T (ω) [1− T (ω)]
}
. (3.5.27)
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Eq. (3.5.27) is an important result that agrees with the results obtained from the scattering

theory approach, which we discussed in the previous chapter [26]. The first term is the

thermal noise and at zero temperature, it vanishes. The second term is the nonequilibrium

term and it vanishes at zero bias.

3.6 Summary

Within this chapter, we have introduced several techniques and basic results that we will

make use of in the following chapters. We have introduced Green’s functions, in particular

the Keldysh Green’s function and it’s associated contours. We have also reviewed functional

integration and derived several basic results. We finished the chapter with an example

of using the Keldysh Green function approach to calculate the non-interacting noise of a

quantum dot. We chose this example due to the similarities it has to the interacting result

that we calculate later and to show the Green’s function approach produces the same T (1−T )

result as the scattering theory approach we discussed in Chapter 2. In the following chapter,

we will consider two different approaches to deriving the density of states for the Coulomb

blockaded quantum dot.
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Chapter 4

THE DENSITY OF STATES AND CONDUCTANCE

OF A QUANTUM DOT

In this chapter, we will derive two different approaches to calculating the tunneling density

of states and the conductance of a quantum dot weakly coupled to non-interacting leads. In

both approaches, we consider the quantum dot to be zero dimensional and will primarily be

concerned with the Coulomb blockade effects. We will always consider the charging energy,

Ec to be the largest energy scale. We will begin by considering a functional integration

approach which we are unable to extend to calculate the noise power spectrum. We will

then turn our attention to an alternative derivation of the density of states to show that the

same result is obtained. We will then extend this approach in the next chapter to calculate

the noise power spectrum.

4.1 Functional Integration Approach

In this section, we will summarise a technique developed by Sedlmayr et al.[40] to derive

the Green’s function for an isolated zero dimensional quantum dot. We will then make use

of this Green’s function to derive the tunneling density of states and conductance of a dot

weakly coupled to non-interacting leads.
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4.1.1 Green’s Function for an Isolated Quantum Dot

We start from the standard universal Hamiltonian for a zero-dimensional system [3] keeping

only the charging term:

Ĥ = Ĥ0 +
Ec
2

(
N̂ −Ng

)2
. (4.1.1)

Ĥ0 is the hamiltonian for a tightly confined non-interacting electron system in a random

potential,

Ĥ0 =
∑
n

ψ†nεnψn, (4.1.2)

where n labels the energy levels of the dot. N̂ = ψ̄ψ is the number of electron on the

dot, eNg is the neutralising background charge which is proportional to a gate voltage and

Ec is the charging energy, which is dependent on the effective capacitance of the system,

Ec = e2/C. We wish to define the Green’s function on the full interacting Keldysh contour.

To do this we start from the functional integral form, which can be written as

iGn(t, t
′) =

1

Z

∫
DψDψ̄ψn(t)ψ̄n(t

′)e
i
∫
cK

dt[
∑

k ψ̄k(t)i∂tψk(t)−H]. (4.1.3)

If we now perform the Hubbard-Stratonovich transformation on the Green’s function (see

appendix B) we find

iGn(t, t
′) =

1

Z

∫
DϕeiS(ϕ)

∫
DψDψ̄ψn(t)ψ̄n(t

′)eiS(ψ̄,ψ,ϕ), (4.1.4)

Z =

∫
DϕeiS(ϕ)

∫
DψDψ̄eiS(ψ̄,ψ,ϕ), (4.1.5)
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where the new actions are defined as

iS(ψ̄, ψ, ϕ) = i
∑
k

∫
cK

dtψ̄k(t) [i∂t − ξk − iϕ(t)]ψk(t) (4.1.6)

and

iS(ϕ) = −i 1

2Ec

∫
cK

dtϕ2(t). (4.1.7)

The Fermionic integrals are now Gaussian and can be calculated using the identities Eq. (3.4.13)

and Eq. (3.4.14) to obtain an expression for the Green’s function in terms of just the Bosonic

field:

iGn(t, t
′) =

sgn(t, t′)

Z

∫
DϕeiS(ϕ)e

∫
cktt′ dt[ϕ(t)−iξn]

∏
k ̸=n

[
1 + e

∫
ck
dt[ϕ(t)−iξk]

]
(4.1.8)

where

Z =

∫
DϕeiS(ϕ)

∏
k

[
1 + e

∫
cK

dt[ϕ(t)−iξk]
]
. (4.1.9)

The sgn function is defined on the contour in Fig. (3.3) and equals 1 (or -1) when t precedes

(or goes after) t′. We have also introduced the contour:

∫
cktt′

dt =


∫ t
t′
dt if t > t′ on the contour cK and∫

cK
dt−

∫ t′
t
dt if t < t′ on the contour cK .

(4.1.10)

We can now use the canonical ensemble to rewrite the Bosonic integrals. If we define

ϕ0 =
∫
cK
dtϕ(t), then Eq. (4.1.8) can be written as

iGn(t, t
′) =

sgn(t, t′)

Z

∫
DϕeiS(ϕ)e

∫
cktt′ dt[ϕ(t)−iξn]Ξn(ϕ0) (4.1.11)
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where

Z =

∫
DϕeiS(ϕ)Ξ(ϕ0). (4.1.12)

We have chosen at this point to include the background charge, Ng, in the chemical potential.

We have introduced the grand canonical partition function, Ξ(ϕ0), and the grand canonical

partition function with the nth level removed, Ξn(ϕ) where the energy levels in both have

been shifted due to the charging effects of the dot:

Ξ(ϕ0) =
∏
k

[
1 + e−βξk+ϕ0

]
, Ξn(ϕ0) =

Ξ(ϕ0)

1 + e−βξn+ϕ0
. (4.1.13)

We can now expand the grand canonical partition functions in Eq. (4.1.11) in terms of the

canonical partition functions:

Ξ(ϕ0) =
∞∑
N=0

ZNe
(βµ+ϕ0)N , ZN =

∮
dθ

2π
e−iNθ

∏
k

[
1 + e−βξk+iθ

]
,

Ξn(ϕ0) =
∞∑
N=0

ZN(εn)e
(βµ+ϕ0)N , ZN(εn) =

∮
dθ

2π
e−iNθ

∏
k ̸=n

[
1 + e−βξk+iθ

]
.(4.1.14)

ZN is the canonical partition function for N particles and ZN(εn) is the partition function

without any N-particle states which contain the single particle level εn. This can be formally

defined as

ZN(εn)

ZN
=

TrN

(
ψnψ

†
ne
−βĤ0

)
TrN

(
e−βĤ0

) = 1− FN(εn) (4.1.15)

where FN(εn) is the canonical distribution function for the system of N noninteracting

electrons containing εn . As FN(ε) is a canonical distribution, the charging energy is constant

and does not contribute. Substituting the expression for ZN(εn) into the Green’s function,

we can easily perform the Gaussian integral over the Bosonic fields. Thus, the Fourier
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transform of the greater Green’s function is given by:

G>(ε) = −2πi

Z

∑
n

∞∑
N=0

e−βENZN(ε− ΩN)δ(ε− εn − ΩN), (4.1.16)

where

Z =
∞∑
N=0

e−βENZN . (4.1.17)

The energy levels EN and the difference in energy between consecutive levels ΩN are defined

as

EN =
Ec
2

(N −Ng)
2 − µN and ΩN = EN+1 − EN = Ec

(
N −Ng +

1

2

)
. (4.1.18)

If we average over disorder, by substituting the mean tunneling density of states of non-

interacting electrons, ν0, for the sum over the delta function,
∑

n δ (ε− εn − ΩN). In doing

so, we assume that the tunneling density of states is smooth in any realisation of disorder

which is valid when the temperature, T , is much greater than the mean level spacing, ∆.

Hence, we obtain

G>(ε) = −2πiν0
Z

∞∑
N=0

e−βEN [1− FN(ε− ΩN)] , (4.1.19)

where we have used Eq. (4.1.15) to rewrite our Green’s function in terms of the canonical

distribution function. We have also used the fact that ZN is a smooth function, on a scale

∆/T , to cancel it from both the numerator and the denominator. If we limit ourselves

to considering the situation were there are many electrons occupying the dot N ≫ 1, the

canonical distribution function FN(ε−ΩN) is approximately the same as the grand canonical

Fermi function f(ε− ΩN) with a chemical potential of order N∆ which we can ignore as it

is small compared with ΩN . Therefore, the greater and lesser Green’s functions are given
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by:

G>(ε) = −2πiν0
Z

∞∑
N=0

e−βEN [1− f(ε− ΩN)] ,

G<(ε) =
2πiν0
Z

∞∑
N=0

e−βENf(ε− ΩN−1). (4.1.20)

4.1.2 Density of States

Starting from the standard formula for the tunneling density of states,

ν(ε) =
i

2π
[G>(ε)−G<(ε)] , (4.1.21)

and inserting the Green’s function expressions Eqs. (4.1.20), we find the tunneling density

of states to be:

ν(ε) =
ν0
Z

∑
N

e−βEN [f(ε− ΩN−1) + 1− f(ε− ΩN)] . (4.1.22)

If we now only keep the leading order terms in the summation, we need to maximise the

coefficients e−βΩN and e−βEN . It can be clearly seen that the terms that we need to keep

are the terms for N closest to Ng + 1/2. These are of order EN0 and EN0+1 where N0

corresponds to the maximal term. We can ignore the N0 − 1 term as it is exponentially

suppressed. Therefore, we obtain

ν(ε)

ν0
=
U(ε− ΩN) + e−βΩNU(ε− ΩN+1)

1 + e−βΩN
, (4.1.23)

where

U(ε− ΩN) = f(ε− ΩN−1) + 1− f(ε− ωN). (4.1.24)

59



−1 1 ε

1
ν

−1 1 ε

1
ν

−1 1 ε

1
ν

(a) (b) (c)

Figure 4.1: The tunneling density of states (in the units of ν0) as a function of energy (measured in
Ec)[40]: (a) in the valley, (b) through an intermediate region, and (c) at the peak.

Away from the degeneracy point which corresponds to the valley of the Coulomb blockade,

one of the terms in Eq. (4.1.23) is exponentially suppressed and the tunneling density of

states has a gap. At the degeneracy point, ΩN = 0 which corresponds to the peak of the

Coulomb blockade, the tunneling density of states remains finite for all energy values but

has a half gap at |ε| < EC (see Fig. (4.1))[40].

4.1.3 Current Through a Dot

We can also consider the dot connected to two non-interacting leads via point contacts using

the functional integration approach. The Hamiltonian for this system is given by

Ĥ = Ĥ0 +
Ec
2

(
N̂ −Ng

)2
+ Ĥt, (4.1.25)

where we have now also included the leads in Ĥ0 and introduced the coupling term,

Ĥt =
∑
α,k,n

γαknc
†
αk(t)dn(t) + h.c., (4.1.26)

between the leads and the dot. c†αk is the creation operator with momentum k on lead

α = 1, 2 and dn is an annihilation operator on level n of the dot. The parameter γαkn is the

tunneling rate from dot to lead. Using the Heisenberg equation of motion, the current is
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defined as

I = Q̇ = ei[Ĥ, N̂ ] = ei[Ĥt, N̂ ], (4.1.27)

which after calculating the commutator is given by

I = ie
∑
α,k,n

⟨γαknc†αk(t)dn(t)− γ
∗
αknd

†
n(t)cαk(t)⟩. (4.1.28)

As we would like to work in the functional integral representation, we can rewrite the current

using a source field, J as

I = e
∑
α,k,n

∂ lnZ[J ]

∂Jαkn(t)

∣∣∣∣∣
J=0

(4.1.29)

with

Z(J) =

∫
DψDψ̄ exp

{
iS0 + iSt + i

∑
α,k,n

(
γαknψn(t)ψ̄αk(t)− γ∗αknψαk(t)ψ̄n(t)

)
Jαkn(t)

}
,

(4.1.30)

where

iS0 = i

∫
c

dt

(∑
n

ψn(t)i∂tψn(t)−H

)
+ i
∑
α,k

∫
c

dtψ̄αk(t) (i∂t − ξαk)ψαk(t) (4.1.31)

iSt = i
∑
α,k,n

∫
c

dtγα,k,nψ̄αk(t)ψn(t) + γ∗αknψ̄n(t)ψαk(t). (4.1.32)

H is the Hamiltonian of the dot given by Eq. (4.1.1) and ξαk are the dispersion relations

for the leads. DψDψ̄ are the integrals over the fields for both the leads and the dot. The
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current now takes the form

I =
ie

Z[0]

∑
α,k,n

∫
DψDψ̄

(
γαknψn(t)ψ̄αk(t)− γ∗αknψαk(t)ψ̄n(t)

)
eiS0+iSt , (4.1.33)

which is equivalent to Eq. (4.1.28). To be able to perform the field integrals, we have to

complete the square and make the action Gaussian. This can be done by shifting the fields

in the following way

ψ̄αk(t) → ψ̄α,k(t)−
∑
n′

∫
K

dt′γ∗αknψ̄n′(t′)G0(t
′, t), (4.1.34)

ψαk(t) → ψαk(t)−
∑
n′

∫
K

dt′γαkn′G0(t, t
′)ψn′(t′). (4.1.35)

Inserting these into the action in Eq. (4.1.31) and Eq. (4.1.32), we can integrate out the

leads. The current can now be written as the Green’s function of the dot coupled to two

mass operators due to the leads:

I = e
∑
α,n,n′

∫
K

dt′ (iGnn′(t, t′)iΣαn′n(t
′, t)− iΣαnn′(t, t′)iGn′n(t

′, t)) . (4.1.36)

The mass operators are given by

iΣαnn′(t, t′) =
∑
k

γαknγ
∗
αkn′iGαk(t, t

′). (4.1.37)

and the green’s function of the dot is

Gn,n′(t, t′) =

∫
DψDψ̄ψn(t)ψ̄n′(t′)e(iS0−i

∑
α,n,n′

∫
K dtdt′ψ̄n(t)Σαnn′ (t,t′)ψn′ (t′)). (4.1.38)

If we now neglect the “tail” term (t0 → t0 − iβ), contour cx, from the Keldysh contour and

extend the contour to plus and minus infinity, we can rearrange the current expression to
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give

I = e
∑
α,n,n′

∫ ∞
−∞

dt′ (iG>
nn′(t, t′)iΣ<

αn′n(t
′, t)− iΣ>

αnn′(t, t′)iG<
n′n(t

′, t)) . (4.1.39)

Using the Green function identities, Eqs. (3.3.14) and Eq. (3.3.15), we can rewrite this as

I =
e

2

∑
α,n,n′

∫ ∞
−∞

dt′
(
iGK

nn′(t− t′)∆Σαn′n(t
′ − t)− iΣK

αn′n(t− t′)∆G(t′ − t)
)
, (4.1.40)

where ∆G = iGR − iGA.

Dyson’s Equations

We now can use Eq. (4.1.38) to calculate the Dyson’s equations. If we define Σ = Σ1 + Σ2

where 1 and 2 refer to the lead index and denote the Green’s function for the quantum dot

not coupled to the leads, Eqs. (4.1.20) as g. We find G−1 = g−1 − Σ which gives

iG
R/A
nn′ (ε) = ig

R/A
nn′ (ε)− igR/Anl (ε)iΣ

R/A
lm (ε)iG

R/A
mn′ (ε) (4.1.41)

for the retarded and advanced Green’s functions. The Keldysh component is given by

iGK
nn′(ε) = igKnn′(ε)− igRnl(ε)iΣR

lm(ε)iG
K
mn′(ε)− igRnl(ε)iΣK

lm(ε)iG
A
mn′(ε)

− igKnl(ε)iΣ
A
lm(ε)iG

A
mn′(ε), (4.1.42)

where the dummy indices m and l are summed over. If we now assume that the probability

to tunnel to different levels is uncorrelated and Σnm is diagonal, we can easily solve Dyson’s

equations. Using the Dyson’s equations as well as

∑
n

gR/An (ε) = ∓iν(ε) (4.1.43)
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and

iΣR/A
nm = ±1

2
Γδnm, (4.1.44)

where Γ = Γ1 + Γ2 and Γα = 2πνα|t|2, we find that the current to the lowest order in Γ is

I =
e

2

∑
α

∫
dε

2π
Γα [h(ε)− hα(ε)] 2πν(ε). (4.1.45)

The distribution function of the dot, h(ε) = 1 − 2f(ε), can be found from the quantum

kinetic equation. Alternatively, it can be found by balancing the currents through the dot.

As we are in the steady state and we are not allowing charge to acuminate on the dot, the

current through the left contact has to equal the current through the right, due to current

conservation. In other words I1 = I2 where I = I1 + I2 which results in the distribution

function being given by

f(ε) =
Γ1f1(ε) + Γ2f2(ε)

Γ1 + Γ2

, (4.1.46)

where fα is the fermi function for the lead α with the chemical potential given by µα =

µ− eVα. Thus, we find the current to be given by

I =
e

2

∫
dε

Γ1Γ2

Γ1 + Γ2

ν(ε) [h1(ε)− h2(ε)] . (4.1.47)

This is the Landauer formula Eq. (2.2.15) that we introduced earlier written in a different

form. If we rewrite Eq. (4.1.40) using the identity

∆G = GR∆ΣGA = GRGA [Γ1 + Γ2] , (4.1.48)
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we obtain

I =
e

2

∫
dε

2π
[h1(ε)− h2(ε)]T (ε) (4.1.49)

where T (ε) is given by Eq. (3.5.26). If we now insert the expression for the density of states

in the Coulomb blockade regime (Ecβ ≫ 1) Eq. (4.1.23), we find that to linear order in the

bias voltage V = V1 − V2,

I =
e2V ν0

2

Γ1Γ2

Γ1 + Γ2

∫
dx

sech2(x)

[1 + e−βΩN ]

[
1 +

1

2
tanh

(
x+

β

2
[ΩN − Ec]

)
− 1

2
tanh

(
x+

βΩN

2

)
+ eβΩN

{
1− 1

2
tanh

(
x+

β

2
[ΩN + Ec]

)
+

1

2
tanh

(
x+

βΩN

2

)}]
. (4.1.50)

This leads to the linear conductance, for small ΩN , being given by

G =
dI

dV
=
e2ν0
2

Γ1Γ2

Γ1 + Γ2

βΩN

sinh (βΩN)
. (4.1.51)

This is the classic result for a peak in the conductance [3],[1],[40]. However, it is worth noting

that the correct expression for the density of states is required to describe the conductance.
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4.2 Alternative Derivation of the Green’s function

In the previous section, we calculated the Green’s function using a functional integration

approach which allowed us to calculate the conductance. However, the functional integration

approach is not ideal for the noise calculation. We have attempted to calculate the noise

using this approach but with no success. The main problem is that the noise requires the

calculation of two-particle Green’s functions which in the functional integration approach

would take the form,

iGnm(t, t
′, t1, t2) =

1

Z

∫
DψDψ̄ψn(t)ψ̄n(t

′)ψn(t1)ψ̄n(t2)e
i
∫
cK

dt[
∑

k ψ̄k(t)i∂tψk(t)−H]. (4.2.1)

When we attempt the functional integration approach outlined in the previous section, there

is only one Bosonic field that is introduced from the Hubbard-Stratonovich transformation

which links the time dependence of the terms. After the Hubbard-Stratonovich transforma-

tion the Fermionic action is quadratic and Wick’s theorem can be used to obtain expressions

for which the Fermionic integrals can be performed. The resulting Bosonic integral now how-

ever depends on all four of the time variables due to the time dependence of the operators

ψn(t). Therefore, when this is coupled with the two legs of the Keldysh contour there are

sixteen possible time orderings, this results in a large number of integrals to perform. How-

ever, I am sure that it is possible to over come this problem but we chose to derive a different

approach to obtaining the Green’s functions of the quantum dot.

In this section, we will derive a new approach to obtain the Green’s function for our system,

showing that the same expressions for the tunneling density of states and conductance can

be obtained.

It will be useful at this point to clearly define the hierarchy of the energy scales that we

are considering in this problem. We are interested in the Coulomb blockade regime. This is

66



when the charging energy, Ec, is the dominating energy scale of the system. The temper-

ature, 1/β, should however remain much greater than the mean level spacing, ∆, which in

turn should be much greater than the tunnelling rate, γ,

γ ≪ ∆≪ 1/β ≪ Ec. (4.2.2)

We will put no restriction on the energy scale of the bias voltage, eV , across the leads.

However, we are primarily interested in the shot noise which is dominant when the bias

voltage is much greater than the temperature eV β >> 1[26].

In the new approach we will begin by considering the quantum dot coupled via tunnelling

contacts to two non-interacting leads. We will begin from the resonant level approximation.

This is the assumption that the tunnelling between the leads and the dot is dominated by

resonant level processes, which is a reasonable assumption for this problem as Γ ≪ ∆. As

the quantum dot we are considering is zero-dimensional and the energy levels are quantised

we can write the Green’s function of the quantum dot as the sum over n of the Green’s

function for the nth level of the dot,

G(ε) =
∑
n

Gn(ε). (4.2.3)

The tunnelling is dominated by the resonant processes because the energy levels of the dot

are quantised and the width of these levels (Γ) is much smaller than the distance between

the levels (∆) this allows us to treat each level n with energy εn as a resonant level. For

the resonant level problem when an electron from a lead is incident on the potential barrier

that separates the lead from the dot with an energy which isn’t coincident with one of the

levels of the dot then its transmission coefficient is very small. However, when the electrons

energy coincides with that of a level, resonance occurs and its transmission coefficient is

greatly increased.
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4.2.1 Calculation of the Green’s function

We will start from the definition of the Green’s function written in the Heisenberg represen-

tation as a trace,

Gn(t, t
′) =

Tr
(
e−βHdn(t)d

†
n(t)

)
Tr (e−βH)

. (4.2.4)

We will now use the resonant level approximation to simplify the Hamiltonian and limit the

coupling between the leads and the dot to just the nth level,

HT =
∑
α,k

[
γαnd

†
n(t)cαk(t) + h.c.

]
. (4.2.5)

This is equivalent to ignoring the terms from the Hamiltonian which couple the leads to any

other level of the dot,

HT ′ =
∑

α,k,m ̸=n

[
γαmd

†
m(t)cαk(t) + h.c.

]
. (4.2.6)

We now can write the simplified Hamiltonian in a form, where we have singled out the nth

level,

H = H0 + EN +Hn +H leads
0 (4.2.7)

where

H0 =
∑
m ̸=n

εmd
†
m(t)dm(t), (4.2.8)

EN =
Ec
2

(
N̂ −Ng

)2
, (4.2.9)

Hn = εnd
†
n(t)dn(t) + Ω(N)d†n(t)dn(t) +

∑
α,k

[
γαnd

†
n(t)cαk(t) + h.c.

]
. (4.2.10)

N̂ is now no longer the total number of electrons confined to the dot, it is the number of

electrons on the dot, excluding the occupancy of the nth level. We also assume that there is

no independent chemical potential on the dot, the role of the chemical potential is instead

performed by the gate voltage which determines the occupancy of the dot. We are now able
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to use the Hamiltonian in this slightly peculiar form to derive the Green’s function of the

dot. The first step is to separate out the trace over the EN term, we are able to do this as

it commutes with the rest of the Hamiltonian. As the trace over the EN term only depends

on the total number of electrons confined to the dot, not on their configuration we can write

the Green’s function as

Gn(t, t
′) =

1

Z
∑
N

e−βENTr
(
e−β[H0+Hleads

0 +Hn]dn(t)d
†
n(t)

)
. (4.2.11)

The next step is to split up the trace to consider the nth level separately we are again able

to do this as H0 commutes with the other terms in the Hamiltonian. This gives

Gn(t, t
′) =

1

Z
∑
N

e−βENTr
(
e−βH0

)
Tr
(
e−β[H

leads
0 +Hn]dn(t)d

†
n(t)

)
. (4.2.12)

The first trace in the equation above is a trace over everything but the nth level and is

equivalent to the canonical partition function with the nth level removed, ZN . The second

trace is just over the nth level and is nearly the resonant level Green’s function, GRL(t, t
′)

with a shift in energy εn = εn + Ω(N). Multiplying and dividing by the resonant level

partition function (ZRL) allows us to express the Green’s function it terms of the resonant

level Green’s function,

Gn(t, t
′) =

1

Z
∑
N

e−βENZNGRL(t, t
′)ZRL. (4.2.13)

The partition function can be obtained using the same technique and is given by

Z =
∑
N

e−βENZNZRL. (4.2.14)
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4.2.2 Tunneling Density of states

Using the newly derived Green’s function Eq. (4.2.13), we will now derive the tunneling

density of states (TDoS) and compare it with the result from Sedlmayr et al.[40]. we re-

derived earlier, Eq. (4.1.23), to check that we obtain the correct expression for the Green’s

function. We will begin with the retarded Green’s function

GR(ε) =
∑
n

GR
n (ε), (4.2.15)

and write the resonant level partition function explicitly

ZRL = 1 + e−β(εn+Ω(N)). (4.2.16)

Substituting this expression into the Green’s function, we can now express the Green’s

function in two parts depending on the occupancy of the nth level,

GR(ε) =
∑
n

1

Z
∑
N

ZN
(
e−βENGR

RL(ε,ΩN) + e−β(EN+εn+Ω(N))GR
RL(ε,ΩN)

)
(4.2.17)

where it is useful to remember that

EN + Ω(N) = EN+1, (4.2.18)

so the Green’s function becomes

GR(ε) =
∑
n

1

Z
∑
N

ZN
[(
e−βEN

)
GR
RL(ε,ΩN)

]
. (4.2.19)

If we now make a shift of variables,N + 1→ N in the second of these terms, we obtain

GR(ε) =
∑
n

1

Z
∑
N

ZN
[
e−βENGR

RL(ε,ΩN) + e−β(EN+εn)GR
RL(ε,ΩN−1)

]
. (4.2.20)
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We can carry out the same procedure on the partition function,

Z =
∑
N

ZN
(
e−βEN + e−β[εn+EN+1]

)
. (4.2.21)

If we now tune the gate voltage (Ng) such that we are close to the peak of conductance, we

can truncate the summation over N to the two terms closest to Ng + 1/2, as all the other

terms will be exponentially suppressed. If we also assume that N ≫ 1, we can assume that

the partition functions ZN an ZN+1 are approximately equal. This allows us to consider

just two terms, from the summation over N , which correspond to there being N or N + 1

electrons upon the dot. This means in total there will be four terms in the Green’s function

expression. We obtain two expressions for each situation, we have N or N + 1 electrons

on the dot, with the nth level begin either occupied or unoccupied. We can now write the

Green’s function as

GR(ε) =
∑
n

1

Z
{
e−βεnGR

RL(ε,Ω(N − 1)) +
[
1 + e−β(εn+ΩN )

]
GR
RL(ε,Ω(N))

+ e−βΩNGR
RL(ε,Ω(N + 1))

}
(4.2.22)

where the partition function is

Z =
(
1 + e−βεn

) (
1 + e−βΩN

)
. (4.2.23)

The resonant level retarded Green’s function is given by

GR
RL(ε,ΩN) =

1

ε− εn − ΩN + iΓn

2

, (4.2.24)

which upon substitution gives

GR(ε) =
∑
n

1

Z

{
e−βεn

ε− εn − ΩN−1 + iΓn

2

+

[
1 + e−β(εn+ΩN )

]
ε− εn − ΩN + iΓn

2
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+
e−βΩN

ε− εn − ΩN+1 + iΓn

2

}
. (4.2.25)

Using this Green’s function and the advanced Green’s function which can be calculated in

the same manner we can calculate the tunneling density of states (ν(ε)) starting from the

standard formula [41],

ν(ε) =
i

2π

[
GR(ε)−GA(ε)

]
. (4.2.26)

Inserting the Green’s function expressions into Eq. (4.2.26) gives

ν(ε) =
1

π

∑
n

1

Z

{
Γn

2
e−βεn

[ε− εn − ΩN ′−1]
2 +

(
Γn

2

)2 +
Γn

2

[
1 + e−β[εn+ΩN′ ]

]
[ε− εn − ΩN ′ ]2 +

(
Γn

2

)2
+

Γn

2
e−βΩN′

[ε− εn − ΩN ′+1]
2 +

(
Γn

2

)2
}
. (4.2.27)

As Γn is the smallest energy scale in our system (Γn ≪ ∆ ≪ T ≪ Ec), we can make the

approximation that the Lorentzian function is a delta like function of width Γ,

1

π

Γn

2

[ε− εn − ΩN ′ ]2 +
(
Γn

2

)2 = δΓ(ε− εn − ΩN ′). (4.2.28)

We now average over disorder by substituting the mean tunnelling density of states (TDoS)

of noninteracting electrons, ν0 for the sum over the delta like functions, with the assumption

that the TDoS is smooth in any realisation of disorder. This is valid when the mean level

spacing, ∆, is much smaller than the temperature 1/β. Therefore, we can now write the

TDoS as

ν(ε)

ν0
=

1

1 + e−βΩN′

{
e−β[ε−ΩN′−1]

1 + e−β[ε−ΩN′−1]
+

1 + e−β[ε−ΩN′+ΩN′ ]

1 + e−β[ε−ΩN′ ]
+

e−βΩN′

1 + e−β[ε−ΩN′+1]

}
. (4.2.29)

The above expression can be rewritten in terms of Fermi functions as

ν(ε)

ν0
=
U(ε− ΩN ′) + e−βΩN′U(ε− ΩN ′+1)

1 + e−βΩN′
, (4.2.30)
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where we have defined U(ε − ΩN ′) = f(ε − ΩN ′−1) + 1 − f(ε − ΩN ′). This is the correct

expression for the density of states [40] and is identical to the expression obtained using the

functional integral approach in the previous chapter. In the following chapter, we will use

this same approach to calculate the two-particle Green’s function which will then allow us

to calculate the noise power spectrum for the Coulomb blockaded quantum dot.

4.3 Summary

In this chapter, we have reviewed a functional integration approach to calculating the Green’s

function for the Coulomb blockaded dot. Using the Green’s function, we then derive the

tunnelling density of states and the conductance of our system. This approach, however,

presents difficulties when one tries to extend the approach to calculating the two-particle

Green’s functions which is required for the noise calculation. Therefore, we have derived a

secondary approach for calculating the Green’s function of the dot. In this approach, we

write the Green’s function as a trace and by extracting the term responsible for charging

energy, express the Green’s function as a summation over resonant level Green’s functions.

We then go on to show that the newly derived Green’s function produces the expected

result for the tunnelling density of states Eq. (4.1.23). In the next chapter, we will calculate

the two-particle Green’s function and use this to obtain an expression for the noise power

spectrum.
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Chapter 5

THE NOISE POWER SPECTRUM OF A

QUANTUM DOT

In this chapter, we will derive the two-particle Green’s function and use this to derive an

expression for the noise power spectrum. We will then consider some sensible limits of the

noise power spectrum and derive the Fano factor in the shot noise regime and calculate

numerically the Fano factor as a function of the bias voltage.

5.1 The Noise Power Spectrum

The noise power spectrum is defined as the Fourier transform of the noise correlator [26],

Sαβ(ω) =

∫
dωeiωtSαβ(t, t

′) = ⟨{δIα(t), δIβ(t′)}⟩ (5.1.1)

where δIα(t) = Iα(t)− ⟨Iα(t)⟩. The noise correlator can equivalently be written in the form

Sαβ(t, t
′) = ⟨{Iα(t), Iβ(t′)}⟩ − 2⟨I(t)⟩2. (5.1.2)

It can be clearly shown, by using the definition of the current

Iα(t) =
ei

~
∑
k,n

[
γαknc

†
αk(t)dn(t)− γ

†
αknd

†
n(t)cαk(t)

]
, (5.1.3)
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that, as we showed for the non-interacting case earlier, the noise correlator can be written

in terms of Green’s functions as

S(t, t′) =
( e
~

)2 ∑
n,m,k,k′

γknγk′mG
>
1 (t, t

′)− γknγ†k′mG
>
2 (t, t

′)− γ†knγk′mG
>
3 (t, t

′)

+ γ†knγ
†
k′mG

>
4 (t, t

′) + h.c.− 2⟨I(t)⟩2. (5.1.4)

The Green’s functions are given by

G1,nm(t, t
′) = i2⟨Tc†k(t)dn(t)c

†
k′(t
′)dm(t

′)⟩,

G2,nm(t, t
′) = i2⟨Tc†k(t)dn(t)d

†
m(t
′)ck′(t

′)⟩,

G3,nm(t, t
′) = i2⟨Td†n(t)ck(t)c

†
k′(t
′)dm(t

′)⟩,

G4,nm(t, t
′) = i2⟨Td†n(t)ck(t)d†m(t′)ck′(t′)⟩. (5.1.5)

Therefore, the noise calculation requires the evaluation of the two-particle Green’s functions

Eqs. (5.1.5). As for the resonant level example we considered earlier, to calculate these

Green’s functions we are required to calculate Green’s functions of the form

Gnm(t, t
′, t1, t2) = i2

⟨
Tckdn(t)d

†
n(t
′)dm(t1)d

†
m(t2)

⟩
. (5.1.6)

We will however now assume that the resonant level tunneling is dominant, as Γ≪ ∆. This

allows us to approximate the Green’s functions by their diagonal elements, [27]

∑
n,m

Gnm(t, t
′) ≈

∑
n

Gnn(t, t
′). (5.1.7)
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5.1.1 Two-particle Green’s Function

As we have made the assumption that we only need consider the diagonal components of

the Green’s functions, we are required to calculate expressions of this form,

Gnn(t, t
′) =

Tr
(
e−βHc†k(t)dn(t)c

†
k′(t
′)dn(t

′)
)

Tr (e−βH)
. (5.1.8)

It is clear that we can use the same method for calculating this Green’s function expression as

we used in the previous chapter. If we once again single out the nth level of the Hamiltonian,

we can follow the same method as for the single particle Green’s function. This is because

the only differences between the two expressions are the extra creation and annihilation

operators in the two-particle case. This allows us to express the Green’s function Eq. (5.1.8)

in the form

Gnn(ε) =
1

Z
∑
N

e−βENZNGRL(ε,ΩN)ZRL, (5.1.9)

where

Z =
∑
N

e−βENZNZRL (5.1.10)

and GRL(ε,ΩN) is the corresponding two particle resonant level Green’s function with the

shift in energy, εn = εn + ΩN . ZRL is the resonant level partition function.

5.1.2 The Shot Noise Power Spectrum

Using the Green’s functions, we can now easily derive an expression for the noise. If we

insert the Green’s functions in the form of Eq. (5.1.9) back into the noise power spectrum

Eq. (5.1.22), we are able to arrange the terms such that we can write the noise in terms of

76



the resonant level noise expression as

S(ε) =
∑
n

1

Z
∑
N

e−βENSRL(ε,ΩN)ZRLZN . (5.1.11)

We will now insert the resonant level partition function,

ZRL = 1 + e−β(εn+ΩN ), (5.1.12)

and tune the gate voltage, Ng, such that we are close to the peak of conductance. This

means that we can truncate the sum over N to the two terms closest to Ng + 1/2, as all

other terms will be exponentially suppressed. We will once again consider the limit N ≫ 1

and therefore assume that ZN+1 ≈ ZN . We can now write the zero frequency noise as

S(0) =
∑
n

1

Z
{
e−βεnSnRL(0,ΩN−1) +

(
1 + eεn+ΩN

)
SnRL(0,ΩN) + e−βΩNSnRL(0,ΩN+1)

}
.

(5.1.13)

Inserting the partition function and rewriting the exponential terms as Fermi functions, we

obtain

S(0) =
∑
n

1

1 + e−βΩN′

{
f(εn)SnRL(0,ΩN−1) +

(
1− f(εn) + e−βΩNf(εn)

)
SnRL(0,ΩN)

+ e−βΩN (1− f(εn))SnRL(0,ΩN+1)
}
. (5.1.14)

As we showed in Eq. (3.5.27), the zero frequency resonant level noise power spectrum is

given by

SnRL(0,ΩN) =
2e2

~2

∫
dε

2π
{f1(ε) [1− f1(ε)] + f2(ε) [1− f2(ε)]}T (ε,ΩN)

+ [f1(ε)− f2(ε)]2 Tn(ε,ΩN) [1− Tn(ε,ΩN)] . (5.1.15)
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The transmission probabilities, Tn(ε,ΩN), are given by

Tn(ε,ΩN ′) = Γ1Γ2G
R
nRL(ε,ΩN ′)GA

nRL(ε,ΩN ′)

=
Γ1Γ2

Γ1 + Γ2

2πνnRL(ε,ΩN ′) (5.1.16)

where the resonant level density of states is a Lorentzian which we approximate as being

delta like;

νnRL(ε,ΩN ′) =
1

π

Γ/2

(ε− εn − ΩN ′)2 + (Γ/2)2
= δΓ (ε− εn − ΩN ′) . (5.1.17)

The summation over the delta like terms is the bare density of states,

∑
n

δΓ (ε− εn − ΩN ′) = ν0. (5.1.18)

The transmission squared term, T 2
n(ε,ΩN ′), can also be written as a delta like term as

Tn(ε,ΩN ′)2 = (Γ1Γ2)
2 (GR

nRL(ε,ΩN ′)GA
nRL(ε,ΩN ′)

)2
=

[
Γ1Γ2

Γ1 + Γ2

]2
(2π)2 ν2nRL(ε,ΩN ′), (5.1.19)

where the summation over the resonant level density of states squared is given by

∑
n

ν2nRL(ε,ΩN ′) =
∑
n

1

π2

(Γ/2)2[
(ε− εn − ΩN ′)2 + (Γ/2)2

]2
=

1

π2

(
Γ

2

)2∑
n

1[
(ε− εn − ΩN ′)2 + (Γ/2)2

]2 . (5.1.20)

We can express this in terms of the Lorentzian by considering the sum above as a differential

with respect to (Γ/2)2,

∑
n

ν2nRL(ε,ΩN ′) = = − 1

π

(
Γ

2

)2
d

d
(
Γ
2

)2 ∑
n

1

π

1

(ε− εn − ΩN ′)2 + (Γ/2)2
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= − 1

π

(
Γ

2

)2
d

d
(
Γ
2

)2 2Γν0
=

1

πΓ
ν0. (5.1.21)

If we now insert these expressions into the noise power spectrum, we obtain

S(0) = 2
e2

~2

∫
dε

2π

ν(ε)

ν0

{[
f1(ε) [1− f1(ε)] + f2(ε) [1− f2(ε)] + [f1(ε)− f2(ε)]2

]
T1

− [f1(ε)− f2(ε)]2 T2
}
, (5.1.22)

where the density of states, ν(ε), is given by Eq. (4.2.30). The constants T1 and T2 are given

by

T1 =
Γ1Γ2

Γ1 + Γ2

2πν0,

T2 =
(Γ1Γ2)

2

(Γ1 + Γ2)
34πν0. (5.1.23)

The noise expression Eq. (5.1.22) can be solved exactly. However, the expression that is

obtained is very messy and little is to be gained by doing the tedious and longwinded cal-

culation.

We will now consider several sensible limits to the noise power spectrum. This will en-

able us to compare the relevant current calculations to obtain the Fano factor in the shot

noise regime.

5.2 Limits of the Noise Expression

We will now consider some sensible limits of the noise power spectrum Eq. (5.1.22). We will

begin by calculating the noise in the zero bias regime and by comparing it to the conductance

expression, we will show that we obtain the fluctuation dissipation theorem, as expected.
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We will then go on to consider the shot noise regime. This is the limit where the voltage

difference between the leads is much greater than the temperature. In this limit, we will

derive a noise expression and by comparing it to the average current expression, we will

obtain the Fano factor.

5.2.1 Zero Bias Voltage

In this section, we will consider the zero bias regime and calculate the thermal noise in the

system. We will show that the noise is given by the usual fluctuation dissipation expression.

We will begin by considering the current in the form of Eq. (4.1.47),

I =
e

2

∫
dε

Γ1Γ2

Γ1 + Γ2

ν(ε) [h1(ε)− h2(ε)] . (5.2.1)

From this, we can derive an expression for the linear conductance in terms of the integral of

the density of states. If we rewrite this expression in terms of Fermi functions of the leads,

we obtain

I = e
Γ1Γ2

Γ1 + Γ2

∫
dεν(ε) [f2(ε)− f1(ε)]

= e
Γ1Γ2

Γ1 + Γ2

∫
dεν(ε)eV

(
−df
dε

)
, (5.2.2)

where we have expanded the Fermi functions to linear order in the applied voltage. If we

now make the substitution x = tanh(βε
2
), we can write the current as

I =
e2V

2

Γ1Γ2

Γ1 + Γ2

∫ 1

−1
dxν(x), (5.2.3)

and therefore the linear conductance, G, is given by

G =
dI

dV
=
e2

2

Γ1Γ2

Γ1 + Γ2

∫ 1

−1
dxν(x). (5.2.4)
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If we now consider the noise expression at zero bias voltage, the Fermi functions for the

leads are identical and a lot of the terms cancel, to leave

S(0) = 4e2
Γ1Γ2

Γ1 + Γ2

∫
dεν(ε)f(ε) [1− f(ε)] . (5.2.5)

Now we can rewrite the Fermi functions as f(ε) = 1/2−1/2 tanh(ε) and use the substitution

x = tanh(βε
2
), to express the noise as,

S(0) =
2e2

β

Γ1Γ2

Γ1 + Γ2

∫ 1

−1
dxν(x). (5.2.6)

Therefore, we can write the noise in terms of the linear conductance as

S(0) =
4G

β
, (5.2.7)

and the thermal noise is just given by the fluctuation dissipation theorem.

5.2.2 The Shot Noise Regime

In this section, we will consider the shot noise regime, We will derive expressions for the

current and the noise in the the large voltage limit, eV ≫ 1/β, using these results to derive

the Fano factor.

We will begin by deriving the expression for the average current. If we again start from

Eq. (4.1.47), we can write the current as

I = e

∫
dε

Γ1Γ2

Γ1 + Γ2

ν(ε) [f2(ε)− f1(ε)] . (5.2.8)
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If we write the Fermi functions in terms of tanh functions, make the substitution x =

tanh(βε
2
) and use the tanh identity,

tanh(A±B) =
tanh(A)± tanh(B)

1± tanh(A) tanh(B)
, (5.2.9)

we can express the average current as

I =
2e

β

Γ1Γ2

Γ1 + Γ2

∫ 1

−1
dxν(x)

A

1− A2x2
. (5.2.10)

We have introduced the shorthand notation A = tanh(βeV
4
). We will now derive the noise

power spectrum and show that we can write it as a function of the same integral. We will

start from the noise expression Eq. (5.1.22) and using the same substitution as the current

case, we obtain

S(0) =
2e2

β

Γ1Γ2

Γ1 + Γ2

∫ 1

−1
dxν(x)

[
1 + A2

1− A2x2
− Γ1Γ2

(Γ1 + Γ2)
24A

2 1− x2

(1− A2x2)2

]
. (5.2.11)

Both the current Eq. (5.2.10) and the noise Eq. (5.2.11) above are general expressions. We

now consider the large voltage limit eV ≫ 1/β. We can clearly see that this implies A =

tanh(βeV
4
) = 1 in terms of the notation we have introduced. Therefore, we can express the

current as

I = 2
2e

β

Γ1Γ2

Γ1 + Γ2

∫ 1

−1
dxν(x)

1

1− x2
, (5.2.12)

and the noise power spectrum can be written as a function of the noise;

S(0) = 2eI

[
1− 2

Γ1Γ2

(Γ1 + Γ2)
2

]
. (5.2.13)
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Figure 5.1: The Fano factor as a function of the asymmetry in the coupling to the leads, x = Γ2

Γ1
. The

Fano factor takes it’s minimum value of 1/2 when the coupling to the leads is symmetric and tends to 1 if
one of the leads is isolated from the system.

Using the definition of the Fano factor Eq. (2.4.1),

F =
S(0)

2eI
= 1− 2

Γ1Γ2

(Γ1 + Γ2)
2 =

Γ2
1 + Γ2

2

(Γ1 + Γ2)
2 . (5.2.14)

A plot of the Fano factor can be seen in Fig. (5.1), In this figure, we have written Γ2 as a

function of Γ1, Γ2 = xΓ1, We can do this without any loss of generality. In doing so we see

that the Fano factor is now a function of the ratio of the Γ’s and ranges from a half to one.

The minimum value for the Fano factor of a half corresponds to the tunnelling rates being

equal, Γ1 = Γ2, and means that the noise is suppressed to half of what would be measured

if the noise were produced by a Poissonian process. This result, however, is exactly the

same expression as that which is obtained if you consider the double tunnel barrier problem

without taking into account the Coulomb interaction between the electrons [26]. It is also

in complete agrement with the classical master equation approach [14][16][18] at the peak

of conductance, ΩN = 1.
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Using the method that we have developed, we do not need to restrict ourselves to these

limits and it is possible to calculate the noise power spectrum analytically in the vicinity of

the peak of conductance for voltage values between these limits. We choose not to express

the noise and current calculations explicitly in this region as the expressions are extremely

long winded and no more physical understanding can be interpreted from them. We will

calculate these expressions numerically to show the Fano factor as a function of the bias

voltage.

5.3 The Noise and Fano Factor as a Function of the

Applied Voltage

We showed in the previous section that we can express the generic noise power spectrum

and the current expressions as Eq. (5.2.11) and Eq. (5.2.10). The integrals can be solved

analytically to obtain expressions for the noise and current. However, we do not need to

do this to see that the Fano factor does not have the same dependence on the coupling to

the leads for all values of eV . It is clear from the integral form of the noise power spectrum

Eq. (5.2.11) that as the voltage changes the dependence on Γ will also change.

In Fig. (5.2), we have plotted the Fano factor for symmetric coupling, Γ1 = Γ2, as a function

of bias voltage. In the limit βeV ≫ 1, we obtain the limit of 1/2 for the Fano factor. As the

voltage tends to zero the Fano factor tends to infinity. This is due to the current tending

to zero linearly and the thermal noise being constant at zero voltage. If we define our Fano

factor as the ratio of excess noise instead of the total noise with the poissonian noise we can

avoid this effect which otherwise dominates the small voltage regime. The excess noise is

defined as the total noise of the system minus the zero voltage contribution,

Sex(ω, eV ) = S(ω, eV )− S(ω, 0). (5.3.1)
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Figure 5.2: The Fano factor of the noise as a function of the bias voltage, for the symmetric case, Γ1 = Γ2,
in units of temperature β. The Fano factor tends to 1

2 for large eV .

The Fano factor of the excess noise is considered in Fig. (5.3). We plot the Fano factor for

both the symmetric case, Γ1 = Γ2 and an asymmetric situation, Γ2 = 10Γ1. For both cases,

in the large voltage limit, we obtain the required shot noise result. For small voltages, the

Fano factor of the excess noise is linear. This is due to the excess noise being quadratic and

the current being linear in nature.

5.4 Application of the Noise Power Spectrum Result

In the previous sections we have calculated several sensible limits of our noise power spec-

trum. We showed that in the zero voltage limit the expected fluctuation dissipation result

is obtained. We have also calculated the noise in the shot noise regime and shown that

the same Fano factor is obtained as that which is obtained from a fully classical approach

to calculating the noise at the peak of conductance. We can conclude from this that it is

reasonable in this limit to model the system classically, this however, was not clear from

the outset as at the peak of conductance there are two interacting degenerate energy levels.
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Figure 5.3: The Fano factor of the excess noise as a function of the bias voltage, in units of temperature
β. We consider two situations; the symmetric case, Γ1 = Γ2 (solid line) and the asymmetric case,Γ1 = 10Γ2.
The Fano factor tends to the shot noise result for both cases for large eV . The Fano factor is linear in nature
for small eV .

The expressions we have calculated however are not just limited to these regimes and this

is the advantage of the approach we have developed within this thesis.

Experimentally it would be interesting to study the noise properties of a quantum dot

in the energy regime that we consider within this thesis. Initially it would be sensible to

check the limits we have talked about in detail, but the expressions we have calculated hold

for all values of the applied voltage and it would be very interesting to experimentally in-

vestigate the noise power in the small voltage regime were we predict that the excess noise

would be linear in nature. It would also be interesting to investigate experimentally the

effect on the noise of moving away from the peak of conductance. It is possible to calculate

the noise expression for this situation as long as we remain close to the peak, as in the

valleys of conductance of co-tunnelling processes are dominate, which are not considered in

the approach.
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5.5 Summary

In this chapter, we have derived an expression for the noise power spectrum of a Coulomb

blockaded quantum dot. In doing so, we have made use of the techniques that we devel-

oped in the previous chapter to derive the diagonal two-particle Green’s function. We then

calculated both the zero voltage and shot noise limits. In the zero voltage limit, we showed

that our approach recovers the standard fluctuation dissipation theorem, as expected. In the

shot noise limit, we also recover the standard result for the non-interacting double tunnel

barrier problem for the Fano factor. This is in agreement with the classical master equation

approach [18]. We also study the quantum dot in the regime where the noise isn’t dominated

by the shot noise and plot the Fano factor as a function of the bias voltage. In the following

chapter, we will move on to introduce full counting statistics.
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Chapter 6

FULL COUNTING STATISTICS

Within this chapter, we will introduce full counting statistics. We will begin the chapter

with a brief explanation of why we are interested in this area of study. We will then go on to

develop one of the more effective techniques for calculating the full counting statistics which

uses Keldysh Green’s functions. Whilst we develop this method, we will use the example

of a tunneling junction to explain the steps required to formulate this approach. We will

finally review some recent work in the field.

Counting Statistics is a method that was first considered in the field of quantum optics. It

is understood that photon counting is essentially a many-particle statistics problem. A pho-

ton detector counts the number n of photons that reach it within a given time by absorbing

them. If this process is repeated many times, one can obtain the counting distribution P (n).

The difference, when considering electrical noise measurements, is that electrons in a circuit

cannot be absorbed. To obtain the distribution P (Q) of the transferred charge Q, the sys-

tem needs to be coupled to a measuring device. This can be achieved in several ways. The

current I can be coupled to the electromagnetic field and the magnetic field generated by I

can then be detected in a current meter. Alternatively, the voltage drop over a resistor can

be measured by a voltage meter.
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Moments of the transferred charge

Q =

∫ τ

0

dtI(t), (6.0.1)

where τ is the detection time, are related to the current correlations by

< Qn > = <

[∫ τ

0

dtI(t)

]n
> (6.0.2)

=
n∏
i=1

∫ τ

0

dt1 . . .

∫ τ

0

dtn < I(t1) . . . I(tn) > . (6.0.3)

This relation can be rewritten to provide the cumulants by Fourier transforming to the

frequency domain. The frequency dependent current is given by

I(ω) =

∫
dteiωtI(t) (6.0.4)

for a long detection time τ . In the low frequency limit ω → 0, the relation takes the form

<< I(ω1) . . . I(ωn) >>=
2π

τ
δ

(
n∑
k=1

ωk

)
<< Qn >> (6.0.5)

where << . . . >> indicates the cumulants [42]. These relations indicate that the moments

of P (Q) can be obtained by calculating the correlations of the current fluctuations.

6.1 Electron Gas at Zero Temperature

For electron counting statistics, we need to consider a closed electric circuit. To do this,

we need to consider two electron reservoirs connected by a conductor in which the electrons

scatter. The simplest form this can take is a potential barrier at zero temperature. In this

case, the scattering is described by a single transmission probability T , in an energy interval
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Figure 6.1: An illustration of electrons tunneling through a potential barrier between two electron reser-
voirs at zero temperature with voltage difference V . The current due to the electron states below the Fermi
energy E = 0 cancel each other pairwise and therefore need not be considered. [42]

δE = eV above the fermi level, see Fig. (6.1). In this case, particle transfer is a Bernoulli

process [44]. N = τeV
h

particles try to pass the barrier independently in a time τ and each

succeeds with a probability T . The number of transmitted particles n for a given number

of trials N has binomial statistics and the distribution is given by

P (n) =

 N

n

T n(1− T )N−n (6.1.1)

where  N

n

 =
N !

(N − n)!n!
. (6.1.2)

The cumulant generating function is given by

lnχ(λ) = N ln
[
1 + T (e−iλ − 1)

]
. (6.1.3)
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The first few cumulants are

<< n2 >>= NT (1− T ) (6.1.4)

<< n3 >>= NT (1− T )(1− 2T ). (6.1.5)

If the transmission probability is T ≪ 1, the counting statistics will have a Poisson distri-

bution,

P (n) =
< n >

n!

n

e−<n>, (6.1.6)

where < n >= NT = τeV T
h

is the mean number of transferred particles.

The Poisson distribution has the cumulant generating function

lnχ(λ) =< n >
(
e−iλ − 1

)
(6.1.7)

where all the cummulants are equal to < n >.

6.2 Microscopic Theory and the Keldysh Approach

To consider more complicated systems, we need to consider a more rigorous method of ob-

taining the counting statistics. The first attempt to do this in the literature [43] was a

straight forward calculation of the expectation values < [
∫ τ
0
dtI(t)]m >. However, for m ≥ 2

this leads to unphysical results. The full counting statistics obtained in this manner for

non-interacting electrons suggests that the charge carriers have a fraction of the electron

charge. It is clear when we look at the higher moments that the expression is incorrect. We

obtain ⟨Q1 . . . Q2⟩ =
∫
dt1 . . . dtn⟨I(t1) . . . I(tn)⟩ which doesn’t contain any time ordering.

As the current operators I(t) do not commute at different times, this expression is clearly

not well defined.
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The problem was first solved by L.S. Levitov and G.B. Lesovik [44]. For a full review,

see Ref. [12] [45]. An alternative method can be found in Ref. [46] which produces the same

expression for the full counting statistics. As we have already mentioned that in a realistic

noise measurement, for a example a point contact, the current fluctuations are not detected

directly. Instead, the measurement is performed on the electromagnetic fluctuations and

induced by the current fluctuations. The conversion from fluctuations due to fermions to

fluctuations due to bosons is important, as it allows amplification without compromising

the noise statistics. The measurement scheme that they develop is to consider a spin 1/2

placed near an electron system and magnetically coupled to the current. As the electrons

move through the system they will cause the spin to precess and, by measuring the angle of

precession, the number of transmitted charges can be calculated.

It has been shown by Yu. Nazarov and M. Kindermann [49] that this approach can be

generalised to arbitary quantum variables. In particular, the details of the measuring device

is not relevant as long as the device is passive. This means that the back action of the

measuring device on the system is negligible. The method which we chose to follow is the

refined version of the original approach [48] which involves a slight modification of the usual

Keldysh approach. A good introduction to this approach can be found in [50].

6.2.1 Transformation of the Hamiltonian

This approach can be developed quite generally. However, we will use the example of the

tunnelling junction to outline the method. We will characterise the tunnelling junction by

the tunnelling amplitude, γ, which we will assume is energy-independent. As we showed

earlier, the transport statistics for this system will be binomial [44]. Despite this, we will

develop a method which can be easily generalised to apply to interacting systems [51]. The
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Hamiltonian for the junction is

H = H1 +H2 +HT +HI , (6.2.1)

where H1 and H2 describe the leads 1 and 2 respectively. We will model the leads as

non-interacting with an applied voltage eV = µ1 − µ2. The tunnelling term is

HT = γ
[
ψ†1(0)ψ2(0) + ψ†2(0)ψ1(0)

]
, (6.2.2)

which describes the tunnelling barrier at x = 0. The particle number on the left hand side

of the barrier is N1 =
∫
dxψ†1ψ1. The current from left to right is given by

I = −Ṅ1 = iγ
[
ψ†1(0)ψ2(0)− ψ†2(0)ψ1(0)

]
. (6.2.3)

The remaining term in the Hamiltonian HI has been included because, in order to calculate

the full counting statistics the device for measuring, the current has to be be included in the

Hamiltonian. Irrespective of the measuring device, this term takes the form HI = λ(t)I/2

where λ(t) is the time dependent coupling between the counting device and the system. It

is possible to remove this term from the Hamiltonian. The result of doing so is that the

counting fields will multiply the operators. The unitary transformation which is suggested

is

U = e−iλ(t)NL/2. (6.2.4)

This is explicitly time dependent[50].

We will now briefly explain how to perform a time dependent unitary transformation.
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6.2.2 Unitary transformation

The transformation of an arbitrary operator ψ is given by

ψ′ = UψU †, (6.2.5)

where we are denoting transformed operators with primes. We would like to transform all

the operators in this manner. However, we need to be careful about how we transform the

Hamiltonian. If we take the naive solution for the new Hamiltonian H ′, the Heisenberg

equation,

dO

dt
= Ȯ = i [H,O] , (6.2.6)

will no longer be valid for the transformed quantities. Instead, for the transformed operator

O′, we have the Heisenberg equation

Ȯ′ = U̇OU † + UȮU † + UOU̇ †, (6.2.7)

which with the identity UU † = 1, we can write as

Ȯ′ = U̇U †O′ +O′UU̇ † + i [H ′, O′] . (6.2.8)

Using the identities U̇U † = U †U̇ and UU̇ † = −U †U̇ , we obtain

Ȯ′ =
[
U †U̇ , O′

]
+ i [H ′, O′] . (6.2.9)

Therefore, for the Heisenberg equation to hold for the transformed operators we require the

Hamiltonian,

H∗ = UHU † − iU †U̇ . (6.2.10)
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Therefore, whenever we use time dependent unitary transformations, we acquire an addi-

tional term in our Hamiltonian. It is this additional term which we will use to remove the

HI term from the Hamiltonian.

6.2.3 Applying the Unitary Transformation

We would now like to apply the transformation Eq. (6.2.4) to the Hamiltonian Eq. (6.2.1)[50].

To do so, we will use the general transformation rule,

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + . . . , (6.2.11)

for the operator ψ1 which obeys the anti-commutation rule {ψ1(x), ψ
†
1(y)} = δ(x− y). This

leads to

Uψ1(x)U
† = ψ1(x)− i

λ(t)

2

∫
dy
[
ψ†1(y)ψ1(y), ψ1(x)

]
+ . . .

=

[
1 + i

λ(t)

2
+ . . .

]
ψ1(x)

= ei
λ(t)
2 ψ1(x). (6.2.12)

Before we go on to transform the Hamiltonian, it is useful to “integrate by parts” the extra

term in the Hamiltonian. By this, we mean we make the following change [50]

HI =
λ(t)I

2
= −λ(t)Ṅ1

2
=
λ̇(t)N1

2
. (6.2.13)

It is not obvious from the first glance that this change is allowed but if the system were

written using the path integral formalism, the action would be written as a integral over t,

which we can integrate by parts to obtain the expression on the right above. This requires

that the boundary terms vanish which means that λ(−∞) = λ(∞) = 0. As we require

λ ̸= 0, λ(t) has to have explicit time dependence. We assume that this time dependence is
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given by

λ(t) =


0, for t < 0

λ, for t < τ

0, for t > τ,

(6.2.14)

where τ is measuring time. If we now apply the transformation to the Hamiltonian, it is

clear that HI , H1 and H2 will all commute with U . Therefore, the only affected part of the

Hamiltonian will be the tunnelling term HT . The transformed Hamiltonian, Hλ, is given by

Hλ = H1 +H2 + γ
[
e−i

λ(t)
2 ψ†1(0)ψ2(0) + ei

λ(t)
2 ψ†2(0)ψ1(0)

]
+HI − iU †U̇ . (6.2.15)

Using the definition of the transformation U , we note that iU †U̇ = λ̇(t)N1/2, therefore we

can cancel the last two terms of the Hamiltonian as planned. We are now left with the

transformed Hamiltonian

Hλ = H1 +H2 + T λ, (6.2.16)

where the interaction term has become

T λ = γ
[
e−i

λ(t)
2 ψ†1(0)ψ2(0) + ei

λ(t)
2 ψ†2(0)ψ1(0)

]
. (6.2.17)

Within this section, we have introduced a unitary transformation. This demonstrates that

the only effect of including the measuring device in the system is a time dependent transfor-

mation of the field operators. We have introduced the function λ(t) which is usually referred

to in the literature as the counting field, as it can be interpreted as counting the charges.

This agrees with the time dependence that we chose for the counting field, as we switch the

field on for the measurement time τ and then switch the field back off.
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6.3 The Cumulant Generating Function

Within this section, we will derive an expression for the cumulant generating function. By

definition Eq. (1.4.3), the generating function is given by

χ(λ) = ⟨eiλQ(τ)⟩, (6.3.1)

where τ is the measuring time and Q(τ) is the number of charges transferred in this time.

We can write Q(τ) in terms of the particle number operator for the tunnelling juction,

Q(t) = N1(0) − N1(t) = N0 − N1(t), where N1(t) is the number of electrons in lead 1 at

time t. We can assume that N0 = 0, as we are only concerned with the difference in electron

number. Using this, we can rewrite Eq. (6.3.1) in the Heisenberg representation as

χ(λ) = ⟨eiHτe−iλN1eiHτ ⟩, (6.3.2)

where H is the original Hamiltonian. Using the fact that e−iλN1/2eiλN1/2 = 1 this can be

expressed as

χ(λ) = ⟨e−iλN1/2eiλN1/2eiHτe−iλN1/2e−iλN1/2eiHτeiλN1/2e−iλN1/2⟩. (6.3.3)

If we now use the unitary transformation, we can rewrite the expression as

χ(λ) = ⟨e−iλN1/2eiH−λτeiHλτe−iλN1/2⟩, (6.3.4)

where Hλ is the transformed Hamiltonian given by Eq. (6.2.16). If we now assume that at

time t = 0, we are in an eigenstate of N1, N1|0⟩ = N0|0 >= 0, we can write the generating

function as

χ(λ) = ⟨eiH−λτeiHλτ ⟩. (6.3.5)
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If we now define a time dependent Hamiltonian such that it has different λ’s on the different

branches of the Keldysh contour, in particular if we define λ(t) on the Keldysh contour as

λ(t) =


λ for 0 < t < τ and t on the upper half contour, C1

−λ for 0 < t < τ and t on the lower half contour, C2

0 otherwise,

(6.3.6)

we can write the generating function as

χ(λ) = ⟨Tcke
−i

∫
ck
dtHλ(t)⟩. (6.3.7)

If we change to the interaction representation, the generating function becomes

χ(λ) = ⟨Tcke
−i

∫
ck
dtTλ(t)

⟩, (6.3.8)

where we have taken the unperturbed part of the Hamiltonian to be H0 = H1 +H2.[52]

6.4 Green’s functions

In this section, we will apply the Green function formalism to our example of the tunnelling

junction. We will begin by first generalising the generating function Eq. (6.3.8). We will do

this by letting λ1 and λ2 be arbitrary functions, respectively on the upper branch, C1 and

the lower branch C2 of the Keldysh contour, such that

χ(λ1, λ2) = ⟨Tcke
−i

∫
ck
dtTλ(t)

⟩. (6.4.1)

We can recover the original expression by taking χ(λ,−λ) at the end. It has been argued

for a similar problem [53] that, for large measuring times τ , the above expression can be
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described in terms of an effective action, U(t, λ1, λ2),

χ(λ1, λ2) = e−i
∫ τ
0 dtU(t,λ1,λ2). (6.4.2)

If we now take the derivative of this expression with respect to λ1, we obtain

∂

∂λ1
e−i

∫ τ
0 dtU(t,λ1,λ2) = −iχ(λ1, λ2)

∫ τ

0

dt
∂U(t, λ1, λ2)

∂λ1
. (6.4.3)

We will use this result shortly but first let us consider the differential of Eq. (6.4.1) with to

respect λ1,

∂

∂λ1

⟨
Tcke

−i
∫
ck
dtTλ(t)

⟩
=

⟨
Tck

∂

∂λ1
e
−i

∫
ck
dtTλ(t)

⟩
, (6.4.4)

where we have used the Hellmann-Feynman theorem which states that the order of the

differentiating and averaging maybe switched in this case. In brief the proof of this theorem

proceeds through the application of the chain rule for the time derivative of the wavefunction

[55] This expression can be simplified further to give

∂

∂λ1

⟨
Tcke

−i
∫
ck
dtTλ(t)

⟩
=

⟨
Tck

(
−i
∫ τ

0

dt
∂T λ1

∂λ1

)
e
−i

∫
ck
dt′Tλ(t′)

⟩
= −i

∫ τ

0

dt

⟨
Tck

∂T λ1

∂λ1
e
−i

∫
ck
dt′Tλ(t′)

⟩
. (6.4.5)

If we combine this expression with that of Eq. (6.4.3), we obtain

∂U(t, λ1, λ2)

∂λ1
=

1

χ(λ1, λ2)

⟨
Tck

∂T λ1

∂λ1
e
−i

∫
ck
dt′Tλ(t′)

⟩
, (6.4.6)
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which holds for the integrands as the expectation value will be time independent. If we now

define the “λ expectation value” as

1

χ(λ1, λ2)

⟨
Tck

∂T λ1

∂λ1
e
−i

∫
ck
dt′Tλ(t′)

⟩
=

⟨
Tck

∂T λ1

∂λ1

⟩
λ

, (6.4.7)

it takes the same form as the interaction representation expectation value.

We now have all the building blocks required to calculate the full counting statistics. If

we calculate the expectation value of the derivative of our modified interaction part of the

Hamiltonian T λ, we obtain the derivative of the effective action U using Eq. (6.4.6). If

we then integrate this expression, we obtain U which leads to the generating function via

Eq. (6.4.2) and the substitution λ1 = −λ2 = λ.

The important task which still remains is the calculation of

⟨
Tck

∂T λ1

∂λ1

⟩
λ

, (6.4.8)

we can solve this for our example by using Eq. (6.2.17) to obtain

⟨
Tck

∂T λ1

∂λ1

⟩
λ

= −iγ
2
e−i

λ1
2

⟨
Tckψ

†
1(t)ψ2(t)

⟩
λ
+ i

γ

2
ei

λ1
2

⟨
Tckψ

†
2(t)ψ1(t)

⟩
λ
. (6.4.9)

These expressions are correlation functions and, as t is on the upper branch of the contour,

correspond to time ordered Green’s functions,

⟨
Tckψ

†
1(t)ψ2(t)

⟩
λ
= −iGT

21(t, t) and
⟨
Tckψ

†
2(t)ψ1(t)

⟩
λ
= −iGT

12(t, t). (6.4.10)

Generally, we can write

Gαβ(t, t
′) = −i

⟨
Tckψα(t)ψ

†
β(t
′)
⟩
. (6.4.11)
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Using this representation has the obvious advantage that we are able to use the well estab-

lished Green’s function formulism to calculate the expressions. In the next section, we will

introduce several Dyson’s equations that will allow us to calculate the Green’s functions.

6.5 Dyson’s Equations

To calculate the Green’s functions, we shall derive several Dyson’s equations It is clear to

see from the expansion of the Green’s functions that they are given by

G12(t, t
′) = γ

∫
ck

dt′′e−iλ(t
′′)/2g1(t, t

′′)G22(t
′′, t′), (6.5.1)

and

G21(t, t
′) = γ

∫
ck

dt′′eiλ(t
′′)/2g2(t, t

′′)G11(t
′′, t′), (6.5.2)

where gα is the unperturbed Green’s function of lead α which does not contain any tunnelling.

However, we still have the Green’s functions G11 and G22 to solve. If we split the Keldysh

contour into the upper and lower parts and Fourier transform, we can write the Dyson’s

equations for the required components

GT
12(ε) = γ

(
e−i

λ1
2 gT1 (ε)G

T
22(ε)− e−i

λ2
2 g>1 (ε)G

<
22(ε)

)
, (6.5.3)

GT
21(ε) = γ

(
ei

λ1
2 gT2 (ε)G

T
11(ε)− ei

λ2
2 g>2 (ε)G

<
11(ε)

)
. (6.5.4)

To calculate the Gαα Green’s functions we use another pair of Dyson’s equations

G11(t, t
′) = g1(t, t

′) + γ2
∫
ck

∫
ck

dt′′dt′′′e−i
λ(t′′)

2 ei
λ(t′′′)

2 G11(t, t
′′)g2(t

′′, t′′′)g1(t
′′′, t′),

(6.5.5)

G22(t, t
′) = g2(t, t

′) + γ2
∫
ck

∫
ck

dt′′dt′′′ei
λ(t′′)

2 e−i
λ(t′′′)

2 G22(t, t
′′)g1(t

′′, t′′′)g2(t
′′′, t′).
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(6.5.6)

If we now split the Keldysh contour into upper and lower parts and Fourier transform, we

can write the above expressions as

Gij
αα(ε) = gijα (ε) + γ2

∑
k,l={1,2}

akle
−imλkeimλlGik

αα(ε)g
kl
ᾱ (ε)g

lj
α (ε) (6.5.7)

where we have introduced a lot of new notation. Firstly, the ij in the Green’s function

Gij
αα(t, t

′) denotes the contour 1, 2 which the t, t′ reside respectively. We have also introduced

the matrix,

akl =

 1 −1

−1 1

 . (6.5.8)

We have also introduced the vector m = (1,−1) for α = (1, 2). Finally, we have introduced

ᾱ = (2, 1) for α = (1, 2). The reason for writing the Green’s function in this compressed

form is that it allows us to introduce the Dyson equation in terms of the following matrices;

Gαα(ε) =

 G11
αα(ε) G12

αα(ε)

G21
αα(ε) G22

αα(ε)

 , (6.5.9)

and

Σα(ε) = γ2

 g11α (ε) −eimλg12α (ε)

−e−imλg21α (ε) g22α (ε)

 , (6.5.10)

where λ = 1
2
[λ1 − λ2]. If we also use the matrix gα(ε) for the unperturbed Green’s functions,

we can write the Dyson’s equation as

Gαα(ε) = gα(ε) +Gαα(ε)Σᾱ(ε)gα(ε). (6.5.11)
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Rearranging this equation, we obtain

Gαα(ε) = gα(ε) (1−Σᾱ(ε)gα(ε))
−1 . (6.5.12)

We can solve this equation using the standard definitions for the unperturbed Green’s func-

tions, to obtain

Gαα(ε) =
1

detA
Bα, (6.5.13)

where the determinant and matrix are given by

detA = (1 + Γ)2 + 4Γ
[
f1(ε) (1− f2(ε))

(
eiλ − 1

)
+ f2(ε) (1− f1(ε))

(
e−iλ − 1

)]
,(6.5.14)

and

Bα = −iπν0

 2fα(ε)− 1 + Γ (2fᾱ(ε)− 1) 2fα(ε) + 2Γe−imλfᾱ(ε)

2 (fα(ε)− 1) + 2Γeimλ (fᾱ(ε)− 1) 2fα(ε)− 1 + Γ (2fᾱ(ε)− 1)

 .

(6.5.15)

The density states of both the leads is assumed to be constant, ν0, and we have used a

slightly different form for Γ = (πν0γ)
2. We now have everything we need to calculate the

cumulant generating function for the tunneling junction. If we begin from Eq. (6.4.6) and

use Eq. (6.4.9), we can write

∂U(λ1, λ2)

∂λ1
=

⟨
Tck

∂T λ1

∂λ1

⟩
λ

= −γ
2

2

∫
dε

2π

(
g112 (ε)G11

11(ε)− g111 (ε)G11
22(ε) + eiλg121 (ε)G21

22(ε)− e−iλg122 (ε)G21
11(ε)

)
.

(6.5.16)
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Inserting the solution into this expression we obtain

∂U(λ1, λ2)

∂λ1
=

i

2

∫
dε

2π

∂λdetA(ε, λ)

detA(ε, λ)
(6.5.17)

=
i

2

∫
dε

2π
∂λ ln detA(ε, λ). (6.5.18)

We can now integrate this expression, to obtain U(λ1, λ2), change the λ variables and then

use Eq. (6.4.2) to obtain the cumulant generating function

lnχ(λ) = τ

∫
dε

2π
ln
[
1 + T

{
f1(ε) (1− f2(ε))

(
eiλ − 1

)
+ f2(ε) (1− f1(ε))

(
e−iλ − 1

)}]
(6.5.19)

where T = 4Γ/ (1 + Γ)2 and can be thought of as a transmission coefficient. This obeys

binomial statistics as we expected. This approach is extremely effective and can be applied

to much more complicated systems.

In the next section, we will briefly explain how to modify the procedure outlined above

to apply to a non-interacting quantum dot. We will then review some of the recent work

that has been carried out which uses this method and other approaches to calculate the full

counting statistics of coulomb blockade systems and quantum dots.

6.6 Application to the Quantum dot

The method derived in the previous section can easily be applied to the non-interacting dot.

The main difference with the example of the tunnel junction is that we have to introduce an

additional counting field. This is because we would require a counting field for each contact.

If we start from the Hamiltonian

H = H1 +H2 +Hd +HT +HI , (6.6.1)
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where Hd is the Hamiltonian of the dot

Hd =
∑
n

εnd
†
ndn, (6.6.2)

Hα is the Hamiltonian of the lead α,

Hα =
∑
k

εαk, (6.6.3)

and the tunnelling term is given by

HT =
∑
α,k,n

[
γαd

†
nψαk + h.c

]
. (6.6.4)

The extra term in the Hamiltonian due to the measuring device has two terms in this system,

as we are counting the charges at two points, and is given by HI =
∑

α λα(t)I/2 where λα(t)

is the time dependent coupling to lead α. We can perform both the unitary transformations

simultaneously to remove these terms from the Hamiltonian. This is because the number

operators N1 and N2 commute. This procedure is identical to the tunneling junction case

and results in the new tunneling term being given by

T λ =
∑
α,k,n

[
γαe

iλα/2d†nψαk + h.c
]
, (6.6.5)

where the transformed Hamiltonian is

Hλ = H1 +H2 +Hd + T λ. (6.6.6)

Due to the fact that we have two measuring devices we have to define the current in a

slightly different form as

⟨I12⟩ =
1

2
[⟨I1⟩ − ⟨I2⟩] (6.6.7)
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where 1/2 has been included to avoid double counting. The cumulant generating function

can be generalised slightly, as shown below:

lnχ(λ1, λ2) =
⟨
e−i

∑
α λαNα

⟩
. (6.6.8)

Once again, we can use the effective potential U to derive an expression for the cumulant

generating function and the problem is reduced to solving

⟨
Tck

∂T λ

∂λ1α

⟩
λ

=
∑
nk

{
γα
2
e−i

λ1α
2 Gαkn(t, t)−

γ†α
2
ei

λ1α
2 Gnαk(t, t)

}
, (6.6.9)

where we have had to change notation slightly. The superscript on the λ now indicates the

half contour on which the λ resides and the subscript indicates the lead it is associated with.

We have introduced two new Green’s functions

Gαkn(t, t
′) = i

⟨
Tckd

†
n(t
′)ψαk(t)

⟩
λ

(6.6.10)

and

Gnαk(t, t
′) = i

⟨
Tckψ

†
αk(t

′)dn(t)
⟩
λ
. (6.6.11)

Therefore, the noninteracting quantum dot is reduced to the calculation of these Green’s

functions. In fact, the interacting system is given by the same calculation but with the added

complication of having the Coulomb term in the Hamiltonian. We will not calculate these

Green’s functions at this point, as it is quite a long process but is similar to the tunnelling

junction case, solving the Dyson’s equations and inserting the known results. We would like

to suggest as future work the possible extension of this approach to calculate the Coulomb

blockaded quantum dot. We believe this will be an interesting area of study, as it would

allow access to the higher order cumulants which may contain a more pronounced difference

106



from the non-interacting results, due to the effects of the electron-electron interactions[54].

6.7 Recent Work on Full Counting Statistics in the

Coulomb Blockaded Regime

Within this final section, we will briefly review a few of the recent results in full counting

statistics of Coulomb blockaded dots. For reviews of full counting statistics see [12], [47]. A

lot of work has recently been done in this area by Schmidt et al. [56][57]. In [56], they have

modeled a quantum dot using the Anderson impurity model. They use the same approach

as we outlined above and used a perturbative approach to calculate the Green’s functions.

In this paper, however, they concentrate on a different limit to the one in which we are

interested. They consider Γ to be large and to perturb U (which is the equivalent to Ec).

They discover in this limit that to the second order terms emerge in the cumulant generating

function which can be interpreted as co-tunneling.

In a second paper by the same authors [57], they model the dot using a Kondo model.

In doing so they go to a fixed point that corresponds to U → ∞. At this point, they find

that the system is governed by binomial statistics. Away from the fixed point for large U ,

they find that the system has the same qualitative behaviour as in the case for small U . In

both papers, they are interested in the effect of spin and use a perturbative approach.

Another important approach to the full counting statistics of Coulomb blockaded system is

the master equation approach developed by D. A. Bagrets and Yu. V. Nazarov [58]. In this

paper, they develop a method to evaluate the full counting statistics using a master equation

approach. This approach can be readily applied to the Coulomb blockaded quantum dot, as

shown by the large body of work which calculates the noise using this approach [18] [17] [?].

They discover that for two and three lead quantum dots in the Coulomb blockaded regime
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the Coulomb interaction suppresses the relative probabilities of large current fluctuations

compared with the non-interacting case. This approach is very successful but can only be

applied to systems which can be described classically via the master equation.

6.8 Summary

In summary, in this chapter, we have introduced the topic of full counting statistics. With the

aid of the example of a tunneling junction, we have shown how to derive a Green’s function

approach to calculating the cumulant generating function, which allows the calculation of

all cumulants. We then went on to show how this approach can be applied to calculate

the generating function for a quantum dot and we showed that the problem is just reduced

to calculating the Green’s functions Eq. (6.6.10) and Eq. (6.6.11). We have concluded the

chapter by reviewing some recent work on full counting statistics of quantum dots in the

Coulomb blockaded regime.
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Chapter 7

CONCLUSION

7.1 Discussion of the Coulomb Blockaded Quantum

Dot

In this thesis, we have considered the Coulomb blockaded quantum dot. We began by in-

troducing the phenomena of the Coulomb blockade and how this affects the closed quantum

dot. We then moved on to discuss the different causes of noise that impact on the current

measurements and the regimes in which they are dominant. We introduced the three ap-

proaches to calculating the noise power spectrum in mesoscopic conductors. These are the

scattering theory approach, the Green function approach and the master equation approach.

In the scattering theory approach, we consider the system to be modeled as a scattering

region connected to ideal leads fed from electron reservoirs. This approach allows us to

express the noise properties of the system in terms of a product of transmission proba-

bilities and we obtain the famous expression first derived by Lesovik [24], Eq. (2.3.4). We

also define the Fano factor, which is a way to express the noise as a ratio of the Poisson noise.

The master equation approach is a classical approach in which the rates of change of charge

for the leads are calculated. Using these rate equations, the noise is calculated. This ap-
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proach is well studied and nearly all limits of the Coulomb blockaded noise are studied in

this manner. We chose however to consider a full quantum mechanical approach to study

the Coulomb blockaded dot. This is because at the peak of conductance, there are two de-

generate interacting levels and it is not clear if it is reasonable to treat them using a classical

approach.

We have used the Green function approach to calculate the noise power spectrum to the

Coulomb blockaded. We first introduced the Keldysh Green function and its contour which

can be used to study systems out of equilibrium. We also introduce the functional inte-

gration representation for the Green’s function and, using this representation, re-derive the

density of states for the quantum dot obtained by Sedlmayr et al. [40]. This approach, how-

ever, is not ideal to extend to calculate the noise power spectrum, due to a large number of

terms being produced, due to the Bosonic field introduced during the Hubbard-Stratonovich

transformation. We therefore derive a different Green’s function approach to calculate the

density of states of the quantum dot. This approach involved treating the nth level sepa-

rately to express the Green’s function for the dot as a summation over resonant level Green’s

functions coupled to a background charge, Eq. (4.2.13).

We extend this approach by calculating the single particle Green’s function to calculate

the two-particle Green’s function. Using these two particle Green’s functions, we obtain

integral expressions for the current Eq. (5.2.10) and noise power spectrum Eq. (5.2.11). We

calculate these expressions for zero bias voltage and show that we obtain the fluctuation

dissipation theorem. In the shot noise regime, the regime where the noise is dominated by

the contribution due to the discreteness of the charge carriers, we show that the Fano factor

is given by Eq. (5.2.14), which is the same result as that which is obtained for the non-

interacting double barrier problem. This result is in complete agreement with the master

equation approach [18] and we can conclude that at the peak of conductance we can treat
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the noise power spectrum classically. The results that we obtain are not only valid in the

large voltage limit of the shot noise regime. Using our method, we are able to consider all

voltages less the the charging energy, Ec. We also note that, from the integral form of the

noise power spectrum, Eq. (5.2.11), the Γ dependence of the Fano factor is not constant and

changes as a function of voltage.

In the final chapter of the thesis, we have discussed the full counting statistics. We de-

rive how the full counting statistics can be calculated using a Keldysh Green’s function

approach. We discuss how this approach can be applied to a quantum dot and some of the

recent work that has taken place in this field. We believe that extending the approach that

we have used to calculate the noise power spectrum to the full counting statistics would be

an interesting problem for consideration.
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Appendix A

GAUSSIAN INTEGRATION

In this appendix, we will remind ourselves of some basic results of Gaussian integration. For

a more complete review see Reference [38]. The starting point for Gaussian integration is

the identity ∫ ∞
−∞

dxe−
a
2
x2 =

√
2π

a
ℜa > 0. (A.0.1)

We will also require various generalisations of this expression. Firstly

∫ ∞
−∞

dxe−
a
2
x2x2 =

√
2π

a3
(A.0.2)

which is obtained by differentiating Eq. (A.0.1). We will also encounter integrals where the

exponent is not purely quadratic the generalisation in this case is given by

∫ ∞
−∞

dxe−
a
2
+bx =

√
2π

a
e

b2

2a . (A.0.3)

We must also consider the generalisation to consider complex arguments. In this case Eq.

(4.2.13) is generalised to ∫
d(z̄, z)e−z̄wz =

π

w
ℜw > 0 (A.0.4)

where z̄ represents the complex conjugate of z and
∫
d(z̄, z) ≡

∫∞
−∞ where z = x + iy. It

is also possible to consider linear components in the exponent in the complex case. This
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generalises Eq. (A.0.4) to ∫
d(z̄, z)e−z̄wz+ūz+z̄v =

π

w
e

ūv
w (A.0.5)

where ū and v may be independent complex numbers.

A.1 Gaussian Integration in N-Dimensions

The next situation that we would like to consider is the generalisation to N -dimensional

integration. To simplify notation, we will consider the real and complex cases separately

although this is not strictly necessary.

A.1.1 The Real Case

The N -dimensional generalisation of Eq. (G1) is given by

∫
dve−

1
2
vTAv = (2π)

N
2 detA−

1
2 (A.1.1)

where A is a positive definite real symmetric N -dimensional matrix and v is a N -component

real vector. If we add a linear term into the exponent of Eq. (A.1.3), we obtain

∫
dve−

1
2
vTAv+jT .v = (2π)

N
2 detA−

1
2 e

1
2
jTA−1j (A.1.2)

where j is an arbitrary N -component vector. Eq. (A.1.2) is very useful as we can use it to

generate other identities. If we apply the differential operation ∂2jmjn|j=0 to both sides of Eq.

(A.1.2), we obtain the identity

∫
dve−

1
2
vTAvvmvn = (2π)

N
2 detA−

1
2A−1mn (A.1.3)
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which can be compactly written as

< vmvn >= A−1mn (A.1.4)

where we have used the shorthand notation

< . . . >= (2π)−
N
2 detA

1
2

∫
dve−

1
2
vTAv (. . .) . (A.1.5)

It is possible to iterate this differential operation, for example if we differentiate four times

we obtain

< vmvnvqvp >= A−1mnA
−1
qp + A−1mqA

−1
mp + A−1mpA

−1
nq . (A.1.6)

This generalises to expectation values of arbitrary order

< vi1 , vi2 . . . vi2n >=
∑

all possible
pairings of{x1,...x2n}

A−1ik1 ik2
. . . A−1ik2n−1

ik2n
(A.1.7)

A.1.2 The Complex Case

The results for the N -dimensional Gaussian integrals above are easily extended to the com-

plex case. The complex version of Eq. (A.1.3) is give by

∫
d(v†,v)e−v

†Av = πN detA−1 (A.1.8)

where v is a complexN - component vector and d(v†,v) =
∏N

i=1 dℜvidℑvi andA is a complex

matrix. When linear contributions are included in the exponent, Eq. (A.1.8) becomes

∫
d(v†,v)e−v

†Av+w†.v+v†.w′
= πN detA−1ew

†A−1w′
. (A.1.9)
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where w and w′ can be independent complex vectors. If we differentiate the integral using

the operation ∂2wm,w′
n
|w=w′=0, we obtain the expression

< v̄mvn >= A−1nm (A.1.10)

where

< . . . >= (π)−N detA

∫
d(v†,v)e−v

†Av (. . .) . (A.1.11)

Once again, it is possible to iterate this operation to obtain

< v̄i1 v̄i2 . . . v̄invj1vj2 . . . vjn >=
∑
P

A−1j1P1
. . . A−1jnPn

(A.1.12)

where
∑

P represents the summation over all the permutations of N integers. This is the

mathematical identity underlying Wicks theorem.
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Appendix B

THE HUBBARD-STRATONOVICH

TRANSFORMATION

The Hubbard-Stratonovich Transformation can be used to transform quartic terms of the

action in functional integration into quadratic terms. The expense of doing so, however, is

the addition of a new field which requires integrating. Using the transformation, we would

like to cancel terms in the action of the form,

e−
i
2
Tr[ψ̄ψ̄V ψψ]. (B.0.1)

To do so, the following identity is suggested:

1 =

∫
dϕ

N
e−

i
2
Tr[ϕV −1ϕ]. (B.0.2)

If ψ is a fermionic field, then we require ϕ to be bosoninc and obey periodic boundary con-

ditions on the relevant time contour. If we insert the identity into Eq. (B.0.1) and introduce

the shift the variables in the bosonic field ϕ→ ϕ− ψ̄ψV , we obtain

e−
i
2
Tr[ψ̄ψ̄V ψψ] =

∫
dϕ

N
e−

i
2
Tr[(ϕ−ψ̄ψV )V −1(ϕ−ψ̄ψV )]e−

i
2
Tr[ψ̄ψ̄V ψψ]

=

∫
dϕ

N
e−

i
2
Tr[ϕV −1ϕ]+iTr[ψ̄ϕψ]. (B.0.3)
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