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Abstract

Ricinoleic acid (12-hydroxyoleic acid) has a wide range of industrial uses. Its
current source is the castor plant (Ricinus communis) which contains up to 90%
ricinoleic acid in its seed storage lipid. R. communis has significant limitations as
an agricultural source of ricinoleic acid; it produces potent allergens, requires hand
harvesting and only grows effectively in limited climatic zones. A solution to these
limitations is to identify the components of the seed storage lipid biosynthetic pathway
and transfer them to an agronomic host such as oil seed rape. The developing seed
ER is the major compartment of storage oil biosynthesis, whereas during germination
these storage compounds are broken down to support the germinating seedling. In
this study, a quantitative gel-based proteomic approach has been used to identify the
proteins elevated in the developing seed ER compared to the germinating seed ER. On
identification of the protein components of storage lipid biosynthesis in the developing
seed, their influence on oil quality will be assessed. The use of yeast may be useful
in this regard as the influence of transformed gene products on oil production can be
measured within days of transformation. A protocol for the analysis of lipid production,
including triricinolein production, in a yeast model has been established.

Developing ER preparations were made from seed material harvested between 25
to 30 days after flowering; a stage where lipid biosynthesis is at its maximum. ER
samples prepared from 3-day germinated seed were used in a differential screen to
identify a subset of proteins elevated in the developing seed. Four independent replicates
of developing and germinating ER were prepared and analysed using 2-Dimensional
Difference In-Gel Electrophoresis (2D DIGE). Spots elevated by ≥10%, with the criteria
that they were present in all four gels with a student t-test value of p<0.02, were deemed
significant and selected for picking and mass spectrometry analysis. Protein sequence
data and peptide mass fingerprints were generated and used to search a complete
R. communis protein database. Prior to the 2D DIGE analysis, all stages of the
proteomic methodology were validated and if necessary optimised for the R. communis
samples, from sample preparation through fluorescent labelling, isoelectric focussing,
reproducibility of the analytical gels to the ability to identify and effectively pick spots
from high loading preparative gels.

91 protein spots were identified as significantly elevated in the developing prepa-
rations and 15 spots as significantly elevated in the germinating preparations. On
analysis with mass spectrometry a total of 54 developing spots and 10 germinating
spots gave confident identities. The majority of the developing spots identified were
protein chaperones, folding proteins, and storage proteins. No components of lipid
biosynthesis were identified in the 2D DIGE analysis, likely due to their membrane
bound nature and the loss of these proteins due to poor solubility in 2D electrophoresis
buffers or their precipitation during isoelectric focussing.

The oleaginous yeast Yarrowia lipolytica was identified as a suitable candidate for
in-vivo assays of the effect of R. communis lipid biosynthesis gene products on oil com-
position. This yeast can utilise hydrophobic substrates for growth including ricinoleic
acid, makes significant amounts of storage oil, has a complete genome sequence available



and mature genetic tools facilitating its transformation. A protocol for its growth on
hydrophobic substrates, lipid extraction and analysis of triricinolein production has
been established.

2D DIGE provides a statistically rigourous method for identifying and quantifying
elevated proteins in differential screens of plant seed ER. For the identification of the
components of lipid biosynthesis in the developing ER, attention now turns to the
membranes. Gel-free mass spectrometry based approaches provide the best chance of
identifying these proteins and will complement the proteomic analysis presented here.
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1.1 Background

1.1.1 R. communis Seed Oil Has Significant Industrial Applications

The seeds of castor bean (Ricinus communis) contain up to 90% ricinoleic acid, the

majority of which is in the form of storage oil; esterified to all three positions of the

glycerol backbone of the triacylglycerol molecule (triricinolein). Whilst most vegetable

oils are produced for food and animal feed uses, vegetables oils are also used for

industrial uses. For example, up to 15% of soya oil and up to 100% of certain commodity

oils are used for industrial applications (McKeon, 2005). Commodity oils containing

unusual fatty acids, while having no nutritive value, have chemical properties that make

them amenable to industry. For example, ricinoleic acid has a mid-chain hydroxyl group

(Figure 1.1) that enhances its viscous properties making it useful in the formulation

lubricants, grease and coatings. The reactivity of the mid-chain hydroxyl group also

allows the production of a range of thermopolymers and plastics (Caupin, 1997). It

is the principle ingredient in the synthesis of Nylon 11, an important polymer for the

automotive industry due to its superior heat and solvent resistant properties. Castor oil

is an important ingredient in the cosmetics industry, where it is found in a diverse array

of products, primarily as skin-conditioning agents, emulsion stabilisers and surfactants.

The highest reported concentration of castor oil in a cosmetic product is a lipstick

which contained 81% castor oil (Elmore, 2007). In the United States, 40 to 45 thousand

tonnes of castor oil are imported annually to supply its entire domestic needs (Brigham,

1993). The European Union is similarly dependent on imported stocks, consuming 40%

of world castor oil production (Laureti et al., 1998). Its importance to the industries of

both regions mean it is considered to be of strategic importance, and in the case of the

United States it is stockpiled should imports be disrupted in times of global turbulence

(Brigham, 1993; Roetheli et al., 1991).

Historically, castor oil has been used as an engine lubricant but mineral oil based
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Figure 1.1: Structure of ricinoleic acid (12-hydroxyoleic acid).

products have generally replaced this role. The rise in mineral oil prices and the

increasing will to reduce carbon emissions makes alternative vegetable oil-based engine

lubricants more attractive as a product. Vegetable oil-based engine lubricant formu-

lations exist and the inclusion of 10% ricinoleic acid is essential for their performance

(James and Johnson, 1999). The inherently distributed nature of biological systems,

that is, their ability to produce oil locally and on a scale appropriate for local demands,

reduces the requirement to ship huge volumes of mineral oil around the world and the

major associated environmental risks of spillage.

1.1.2 Castor Oil Production: Problems and Alternatives

R. communis is currently the only commercial source of triricinolein and its derivatives,

yet the global scale of its production is restricted due to reasons which will be outlined

here. R. communis is highly susceptible to divergent climatic variations, restricting its

reliable growth to sub-tropical climatic regions of the world. Seed development occurs at

different rates on a single R. communis raceme (i.e. it is a non-determinant plant) which

makes optimum harvesting difficult to achieve. It produces toxic compounds which

remain in the seed meal after oil pressing: the mildy toxic pyridine alkaloid ricinine and

the highly toxic (7 times more toxic than cobra venom) ribosome inactivating protein

ricin. R. communis also produces potent allergens including 2S albumin (Bashir et al.,

1998) which can result in sensitisation of the harvester to the crop.

One approach being taken is to circumvent some of the plant’s difficulties within

the agricultural setting by identifying and removing or replacing the genes involved
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in toxin and allergen biosynthesis (McKeon et al., 2002). If this approach works, and

the nutritional content of the seed meal (which is currently heat-inactivated and used

as an animal feed) can be maintained, the agronomic difficulties of restricted growing

locations and its non-determinant seed development would remain. An alternative

approach is to identify the constituent enzymes of the high triricinolein production

biochemical pathway and ultimately re-build it in a plant such as Brassica napus.

This may allow the production of high percentage triricinolein in a plant suited to

agriculture, especially growth in temperate climatic regions, without the production of

toxins and allergens associated with its traditonal source. Such a development would

be compatible with the political will of large power blocs such the United States, as

outlined in legal orders to fast track the creation of novel renewable plant sources

of energy, chemicals and pharmaceuticals (Executive Order 13134 - Developing and

Promoting Biobased Products and Bioenergy, 1999) (Clinton, 1999).

1.2 Plant Lipid Biochemistry

Metabolic pathways leading to the formation of neutral lipids, and hydrolytic reactions

catalysing their mobilisation, are similar in the different kingdoms of life (Daum et al.,

2007). The biochemistry of fatty acid and storage oil production in plants is examined

here, presented alongside the biochemistry of storage oil production in yeast. Special

attention is given to the relevant organisms R. communis and Y. lipolytica where

applicable.

1.2.1 Plastidial Fatty Acid Biosynthesis

De novo fatty acid biosynthesis occurs in the plastid, and in developing oil seed virtually

all de novo synthesised fatty acids are incorporated into storage oil (Murphy 1993). De

novo fatty acid biosynthesis requires the concerted activity of acetyl-CoA carboxylase
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(ACCase) and fatty acid synthase (FAS). ACCase catalyses the carboxylation of acetyl

CoA to form malonyl CoA in an ATP and bicarbonate dependent reaction. ACCase is

a key regulatory enzyme in fatty acid biosynthesis, as it is the first committed step of

the pathway. Its regulation determines the level of fatty acid biosynthesis (Sasaki and

Nagano, 2004; Ohlrogge and Jaworski, 1997).

The second fatty acid biosynthesis enzyme is FAS, which is found in two distinct

arrangements in biology. Mammals, fungi and certain bacteria have a Type I FAS

enzyme, a very large multi-domain enzyme where each reaction step is catalysed at a

particular active site (Rock and Cronan, 1996). In contrast, plants and many bacteria

including Eschericia coli have discrete fatty acid synthases consisting of at least eight

separate proteins that are together termed Type II FAS (Shimakata and Stumpf, 1982).

Following acetyl CoAs conversion to malonyl CoA by ACCase, the malonyl CoA

molecule can enter the FAS cycle. Malonyl-CoA:ACP transacylase (MCAT) converts

malonyl CoA to malonyl acyl carrier protein (ACP) which is the carbon donor molecule

for acyl chain elongation (Slabas et al., 2001). Elongation begins with the condensation

of malonyl ACP with a molecule of acetyl CoA by the enzyme β-ketoacyl-ACP synthase

(KAS) III. This forms β-ketoacyl-ACP, which is subsequently reduced by β-ketoacyl-

ACP reductase (βKR) in an NADPH dependent reaction to form β-hydroxyacyl-ACP.

This resulting compound then has a water molecule removed by β-ketohydroxyacyl-

ACP dehydrase (DH) to give trans 2-enoyl acyl-ACP which is reduced by enoyl re-

ductase (ENR) utilising NADH as the reductant. This initial sequence of reactions

produces butyryl ACP, a four carbon fatty acid. Butyryl ACP can then replace acetyl

CoA as the co-substrate (with malonyl CoA) for further elongation. However, another

KAS enzyme is required for this to occur: KAS I. Unlike KAS III, KAS I uses acyl

ACPs as a substrate rather than acetyl CoA. KAS I continues to feed elongated acyl

ACPs into the reduction / dehydration / reduction pathway, increasing the acyl length

by 2 carbons at a time, until the chain length reaches the 16 carbon (C16:0) product of
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palmitoyl ACP (Stymne and Stobart, 1987). The remaining condensing enzyme, KAS

II, can further elongate palmitoyl ACP to the 18 carbon (C18:0) product stearoyl ACP.

The activity of KAS II is especially relevant as it determines the C16 / C18 ratio of

the resulting acyl ACP pool, which in turn influences the degree of unsaturation of the

final oil product as stearoyl ACP is almost entirely desaturated (Salas et al., 2000).

The reactions of fatty acid biosynthesis are described in Table 1.1.
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Table 1.1: Enzymes of plant Type II FAS. After transacylation of malonyl CoA to malonyl ACP, reactions occur in a cycle
of condensation, reduction, dehydration and reduction. Three types of KAS enzyme condense increasing carbon chain length
molecules to acetyl CoA with each cycle of the FAS reactions. Malonyl ACP (2 carbon) is initially condensed by KAS III to
acetyl CoA. KAS I feeds C4:0 to C14:0 acyl ACPs into the cycle. The final condensation step is catalysed by KAS II, which feeds
C16:0 palmitoyl ACP into a further round condensation, reduction, dehydration and reduction resulting in the 18 carbon (C18:0)
stearoyl ACP product

Reaction type Enzyme name Substrate(s) Product

Full name Short hand

Transacylation malonyl-CoA:ACP transacylase MCAT malonyl CoA malonyl ACP

Condensation (Initial) β-ketoacyl-ACP synthase III KAS III malonyl ACP (C2) + acetyl CoA β-ketoacyl-ACP

Reduction β-ketoacyl-ACP reductase a βKR β-ketoacyl-ACP β-hydroxyacyl-ACP

Dehydration β-ketohydroxyacyl-ACP dehydrase c DH β-hydroxyacyl-ACP trans-2 enoyl acyl ACP

Reduction enoyl reductase b ENR trans-2 enoyl acyl ACP butyryl ACP (C4:0)

Condensation β-ketoacyl-ACP synthase I KAS I C4:0 ⇒ C14:0 ACP + acetyl CoA β-ketoacyl-ACP (C6:0 ⇒ C16:0)

(2nd to penultimate)

Condensation (final) β-ketoacyl-ACP synthase II KAS II palmitoyl (C16:0) ACP + acetyl CoA β-ketoacyl-ACP (C18:0)

a NADPH dependent
b NADH dependent
c Releases H2O molecule
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The plastid synthesised acyl ACPs are either substrates for incorporation into

glycerolipids such as monogalactosyldiacylglycerol and digalactosyldiacylglycerol by

acyl transferases, or they can be hydrolysed by acyl-ACP thioesterases to produce ACP

and free fatty acid. The released fatty acids are subsequently exported to the cytosol

from the plastid, although the exact mechanism of transport is not yet certain. The

substrate selectivities of thioesterases determines the pattern of fatty acid products

synthesised by FAS. Hellyer et al. (1982) determined the substrate selectivity of B.

napus acyl-ACP thioesterase for C16:0 and C18:1 fatty acid species. They found B.

napus has considerable preference for C18:1 explaining why only small amounts of

C16:0 are exported from the plastid (Hellyer et al., 1992). Cocoa butter from the

cocoa tree (Theobroma cacoa) has an unusually high content of stearic acid (C18:0).

It was hypothesised that this resulted from a thioesterase with a high preference for

C18:0 fatty acid species rather than the usual C18:1 desaturated oleoyl-ACP substrate.

Griffiths et al found that T. cacoa thioesterase had the usual preference for oleoyl-

ACP, but it also showed four times as much activity for stearoyl-ACP compared to

other plastid acyl-ACP thioesterases (Griffiths et al., 1993). Although it is thought a

low activity of T. cacoa stearoyl-ACP 49-desaturase plays a part in its unusually high

levels of 18:0 species it is likely that its thioesterase substrate preference contributes to

the high levels of stearic acid, indicating the roles thioesterases can play in final fatty

acid profiles. California bay laurel (Umbellularia californica) (Pollard et al., 1991) is

another example of the influence of thioesterase specificity on fatty acid makeup. It

accumulates C10:0 and C12:0 fatty acids as the principle reserve of fatty acyl groups

due to the presence of highly specific thioesterases.

1.2.2 Fatty Acid Modification and Hydroxylation

Desaturation is the introduction of double bonds at specific points along the acyl chain

of a fatty acid. The main products of fatty acid biosynthesis are the C16:0 or C18:0
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saturated acyl chains. However, most plant oils are rich in desaturated fatty acid

species, such as oleic acid (C18:1) and linoleic acid (C18:2). For example, oil seed

rape (B. napus) contains ∼ 60% oleic acid in its seed. Plants must then have efficient

desaturase capabilities. In the plastid stroma there is a highly active soluble stearoyl-

ACP 49 desaturase which introduces a double bond at the 49-10 position of the acyl

chain. This highly active desaturase results in oleate as the main product of fatty acid

formation in most plant species (Shanklin and Somerville, 1991). Knutzon et al. (1992)

used B. napus antisense stearoyl-ACP 49 desaturase sequences to manipulate the

activity of this enzyme in an early genetic engineering of plant oils, significantly reducing

the unsaturated fatty acid pool in B. napus seed oils and producing a high stearate

oil (Knutzon et al., 1992). Spectroscopic analysis of the enyzme revealed evidence of a

diiron-oxo centre in the desaturase (Fox et al., 1994), a powerful reactive group capable

of hydrogen abstraction in the formation of double bonds and well conserved within

this class of enzyme (Browse, 1996). The crystal structure of R. communis stearoyl-

ACP 49 desaturase has been published (Lindqvist et al., 1996) which revealed a tunnel

into the protein, lined by hydrophobic residues and of sufficient size for an 18 carbon

substrate. The crystal structure also revealed the presence of the diiron structure within

the hydrophobic tunnel. A diverse array of acyl chain modifications occur in plants,

including other desaturation reactions. However, the majority of these occur in the

endoplasmic reticulum (ER) (see Section 1.2.2) after plastid export.

Oleate produced through plastidial fatty acid biosynthesis and stearoyl-ACP 49

desaturation can be further desaturated to form polyunsaturated fatty acids. This

can take place within the plastids or the ER, via what are respectively known as the

prokaryotic or eukaryotic desaturation pathways (Heinz and Roughan, 1983). With

the eukaryotic pathway, oleate is exported out of the plastid where it is subsequently

activated to its CoA form by acyl-CoA synthetase (ACS). The acyl-CoA intermediates

are incorporated into phosphatidylcholine (PC) where the PC-esterified acyl chain is
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then a suitable substrate for ER resident desaturases. For example, oleate can be

desaturated to linoleate (C18:2412) by the FAD2 (fatty acid desaturase) oleate 412

desaturase, an enzymatic reaction initially characterised in 1972 (Vijay and Stumpf,

1972). Deficiencies in the activity of this enzyme caused by mutation to Asp150 to

Arg150 produced a high oleic acid variety of Arachis hypogaea, the SunOleic 95R

peanut (Gorbet and Knauft, 1997). Classical breeding techniques produced mutant

B. napus lines with ∼ 80% oleic acid content. Analysis of these mutant lines indicated

that the further increase in oleic acid resulted in a decrease in cold tolerance during

seed germination. This was ascribed to a reduction in the polyunsaturated fatty acid

content of membrane lipid (Kinney, 1994; Miquel and Browse, 1994). Indeed, the

extent of desaturation of membrane fatty acids is known to play a significant role in

cold tolerance, with the upregulation of fatty acid desaturases in response to cold shock

reported in cyanobacteria Synechocystis sp. PCC6803 (Suzuki et al., 2000). When a

49 desaturase cloned from the cyanobacterium Anacystis nidulans was introduced

into tobacco, the transgenic plants exhibited significant chilling resistance (Ishizaki-

Nishizawa et al., 1996).

Further desaturation of linoleate to form linolenate (C18:3412,15) is catalysed by

415 desaturase (FAD3). Plastid localised 412 and 415 desaturases have been found,

but their contribution to overall fatty acid desaturation is insignificant compared to

the ER resident desaturases; instead they are primarily utilised for the production of

specialised thylakoid membrane lipid (Harwood, 1996).

Oleate 412 hydroxylase is a membrane bound enzyme that catalyses the hydroxy-

lation of oleic acid (C18:1) to give ricinoleic acid (C18:1-OH). In vivo labelling studies

on developing castor endosperm have shown that the reaction proceeds via a direct

hydroxyl substitution with the oleic acid moiety without requiring an intermediate

step such as desaturation (Morris, 1967). Hydroxylase activity was localised to the ER

(Galliard and Stumpf, 1996) and this was confirmed by Maltman et al. (2002) where
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a purified NaCl/NaCO3 washed ER membrane fraction was separated by SDS PAGE

and the bands excised and identified by matrix assisted laser desorption/ionisation

time-of-flight (MALDI TOF) mass spectrometry and peptide mass fingerprinting.

Bafor et al. (1991) used developing castor microsome preparations to investigate

the hydroxylation of oleic acid. Using [14C]-oleoyl CoA they found it was readily

incorporated into PC at the sn-2 position, but very rarely at the sn-1 position. When

NADH was included in the assay radioactive ricinoleate was synthesised from the [14C]-

oleate and this was primarily recovered in the PC fraction and as free fatty acid (FFA).

They were unable to find any evidence that oleoyl CoA is a direct substrate for the

oleate 412 hydroxylase, rather that the action of oleate 412 hydroxylase is dependent

on oleate being incorporated into PC (Bafor et al., 1991). The group also reported

that after the introduction of NADH to the reaction mixture, radioactivity in the PC

fraction decreased and a corresponding increase was observed in the free fatty acid pool.

This suggests that as the [14C]oleoyl-PC is hydroxylated to form [14C]ricinoleoyl-PC it

is selectively removed by phospholipase A (Bafor et al., 1991). Hydroxylase is NADH

dependent as this provides the reducing power for the monooxygenase (incorporation

of a single atom of oxygen from water into the substrate) reaction. In the presence of

Mg2+, ATP and CoA they found that [14C]-ricinoleate released from the PC fraction

was activated by ACS to form ricinoleoyl CoA which was then readily incorporated into

TAG by the acylation of glycerol-3-phosphate (G3P). A year later this group reported

the role of cytochrome b5 as an electron transporter from NAD(P)H to the site of

hydroxylation. They raised antibodies against cytochrome b5 which when added to

the reaction mixture shut down the action of both oleate 412 hydroxylase and oleate

412 desaturase (Smith et al., 1992). Plant fatty acyl desaturases contain two histidine

rich motifs that form a di-iron oxo (Fe-O-Fe) bridge which are a critical component

of the catalytic activity of the enzyme. Raman spectroscopy has been used to show

that the soluble ubiquitous plant desaturase stearoyl 49 desaturase from R. communis
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contains this di-iron oxo bridge (Fox et al., 1994). The Fe-O-Fe cofactor is also found

in the bacterial hydroxylase enzyme methane monooxygenase hydroxylase. Van de

Loo et al. (1995) hypothesised that the R. communis oleate 412 hydroxylase would

have these histidine rich motifs for the binding of the Fe-O-Fe co-factor. They also

hypothesised that as R. communis leaves do not produce ricinoleic acid that there

would not be oleate 412 hydroxylase gene expression in these tissues. They prepared

a cDNA library from developing R. communis endosperm which was then differentially

subtracted for expressed leaf cDNAs. They obtained 468 clones with this differential

screening method of which three were found to have the two desaturase/hydroxylase

histidine rich regions. They found that these clones were all of a single gene which

was very strongly expressed in developing endosperm but not expressed at all in leaf

(Van de Loo et al., 1995). Transgenic tobacco lines were developed containing the

putative R. communis hydroxylase/desaturase gene and these were found to contain

0.1% ricinoleic acid in total seed fatty acids confirming the oleate 412 hydroxylase

activity of this gene. Lesquerella fendleri also accumulates ricinoleic acid in its seed

oil, along with lesquerolic and densipolic acid. The oleate 412 hydroxylase from L.

fendleri was isolated on the basis of sequence similarity with the R. communis oleate

412 hydroxylase (Broun et al., 1998a). Interestingly, they presented evidence that

the L. fendleri oleate 412 hydroxylase is bifunctional, having both hydroxylase and

desaturase activities. Expression of the gene in an A. thaliana fad2 mutant (which

is deficient in oleate 412 desaturase activity) resulted in a partial suppression of the

mutant phenotype in the roots suggesting desaturase activity. Further investigations

into the activity of L. fendleri oleate412 hydroxylase confirmed its bifunctionality and

also identified it in R. communis oleate 412 hydroxylase (Smith et al., 2003). This

group made use of an A. thaliana mutant line containing lesions in the 412 desaturase

(FAD2 ) and C18:1 elongase (FAE1 ) genes. It produces a seed oil containing over 80%

oleic acid (C18:1) but no linoleic acid (C18:2). Using seed specific promoters they

12



transformed separate fad2 /fae1 mutants with either the L. fendleri or R. communis

oleate 412 hydroxylase. Fatty acid analysis of these transformed plants showed they

both produced ricinoleic acid (C18:1-OH) in their seed oil but also the polyunsaturated

fatty acid linoleic acid (C18:2) (Smith et al., 2003). The reported bifunctionality and

significant homology of oleate 412 hydroxylase and oleate 412 desaturase indicates

very little evolutionary divergence. Indeed, the R. communis oleate 412 desaturase

has been converted into an oleate 412 hydroxylase and vice versa by site-directed

mutagenesis (Broun et al., 1998b).

Some storage lipid contains acyl residues with a chain length greater than 18

carbons. Elongases, complexes localised to the membrane of the ER, catalyse elongation

in a similar manner to fatty acid synthesis, although different enzymes are involved

and acyl and malonyl residues are activated as acyl-CoA esters. The elongase complex

cycles through four successive reactions of condensation (3-ketoacyl CoA synthetase),

reduction (3-ketoacyl reductase) dehydration (3-OH acyl CoA dehydratase) and a

further reduction (enoyl reductase) (Domergue et al., 2000). For example, C22:1 is the

product of the elongation of oleoyl CoA and malonyl CoA, and is the major fatty acid

component of the natural high erucic acid rapeseed (HEAR) variety which accumulates

∼ 50% C22:1.

1.2.3 PA and DAG Production

Plant energy reserves in the form of fatty acids are, with the exception of jojoba

(Simmondsia chinensis), esterified to a glycerol backbone to form triacylglycerol (TAG)

molecules (in S. chinensis fatty acids are esterified to long chain alcohols to form waxes

(Yermanos, 1975)). The chemical properties of TAG molecules make them excellent

energy stores. They store more energy per gram than any other cell component, giving

2.5 times the ATP yield of glycogen and, being hydrophobic, require less water for

hydration than polysaccharide and thus are far less bulky per gram to store.
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The acyl chains produced in the plastid by the FAS enzymes are transferred to a

glycerol backbone by a series of esterification reactions catalysed by the acyltransferase

enzymes in the endoplasmic reticulum. The classical pathway of reactions resulting

in TAG is known as the Kennedy pathway (Kennedy, 1961). It consists of a series

of reactions sequentially acylating a G3P molecule and producing the intermediates

of monoacylglycerol (MAG), phosphatidic acid (PA) and diacylglycerol (DAG). The

final step in the enzymatic production of TAG is known to occur through two broad

alternative routes, the acyl-CoA dependent and independent pathways. These are

considered separately in Sections 1.2.4.1 and 1.2.4.2 respectively.

G3P is initially acylated with an acyl-CoA molecule by the action of glycerol-3-

phosphate:acyl CoA acyltranferase (GPAT, EC 2.3.1.15) at the sn-1 position of the

glycerol backbone to create lysophosphatidic acid (LPA, see Figure 1.2, step A). This

enzyme resisted cloning for a considerable period, although more was known about

the soluble chloroplast GPAT which had been cloned and its structure determined

in squash (Cucurbita moschata) (Slabas et al., 2000). GPAT has been cloned in A.

thaliana (AtGPAT) where there are at least 8 GPAT isoforms, the majority of which

are ER localised (Zheng et al., 2003). Substrate selectivities of GPAT isoforms 1 and

5 have been studied in this organism, although neither have been reported to play a

clear role in TAG biosynthesis (Zheng et al., 2003; Beisson et al., 2007).

A further acylation of LPA is catalysed by lysophosphatidate acyltransferase (LPAT,

EC 2.3.1.51) at the sn-2 position of LPA resulting in PA (see Figure 1.2, step B). Early

insight into the substrate selectivities of LPAT enzymes was gained when Ichihara

(1984) reported that Carthamus tinctorius (Safflower) microsomes show a preference for

palmitate (C16:0) in the formation of LPA. LPA was reported as the the major product

when microsomal membranes were incubated with [14C]acyl-CoA and G3P (Ichihara,

1984). However, this observation was only made when C. tinctorius microsomes were

incubated with saturated acyl-CoAs. The experiment was repeated with linoleoyl CoA
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and G3P and both sn-1 and sn-2 positions were readily acylated in the formation of PA

(Griffiths et al., 1985). This supported the observation that no saturated fatty acids

were present in the sn-2 position of C. tinctorius TAG (Ichihara and Noda, 1980) and

indicates the selectivity C. tinctorius LPAT has for non-saturated acyl-CoAs. Analysis

of the substrate selectivity of LPAT from the high erucic acid rapeseed (HEAR) variety

of B. napus found that, despite the enrichment of erucic acid in the seed oil of the

plant, the LPAT does not utilise erucic acid (C22:1) at all (Cao et al., 1990). Earlier

positional analysis of the oil from a HEAR variety of B. napus found that erucic acid

is a very minor component at the sn-2 position of the seed oil (Brockerhoff, 1971), see

Table 1.2. Two LPATs were cloned from Limnanthes douglassi one of which was found

to utilise erucic acid (Brown et al., 1995). When introduced into a HEAR B. napus

plant, they demonstrated a dramatic increase in the C22:1 content at the sn-2 position

of the B. napus seed oil. There are five predicted isoforms of LPAT in A. thaliana

which have been reported to be ER localised (Kim et al., 2005). They are likely to play

differing roles in the formation of TAG in this organism.

Phosphatidic acid phosphatase (PAP, EC 3.1.3.4) catalyses the removal of the

phosphate group from the sn-3 position of PA and the formation of DAG (see Figure

1.2, step C). It is the formation of DAG that allows the final acylation in the formation

of TAG or alternatively for the molecule to be converted into the membrane lipid

PC (Slack et al., 1985; Browse and Somerville, 1991), catalysed by the reversible

CDP-choline:cholinephosphotransferase. PA is also a precursor for the synthesis of

phosphatidylinositol, phosphatidylserine, phosphatidylethanolamine and phosphatidyl-

glycerol. Therefore, the flux between DAG and PA catalysed by the action of PAP

is highly significant in the relative directions of lipid metabolism in the cell. PAP,

identified in 1955 (Kates, 1955), was first purified to homogeneity in Persea americana

(avocado) in 1998 (Pearce and Slabas, 1998). The enzyme, a monomeric protein

of 51 kDa, displayed a wide substrate selectivity, dephosphorylating not only PA
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Figure 1.2: Route of PA and DAG Biosynthesis. G3P is acylated by an acyl-
CoA at the sn-1 position by glycerol-3-phosphate acyltransferase (GPAT, A) to form
LPA. This molecule can then be acylated at the sn-2 position by another acyl-CoA and
lysophosphatidic acid acyltransferase (LPAT, B) to form PA. Dephosphorylation of PA
is catalysed by phosphatidic acid phosphatase (PAP, C) to yield DAG and inorganic
phosphate.
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but also sn-1 LPA, sn-2 LPA and ceramide-1-phosphate. Interestingly, sn-1 LPA

was demonstrated to be a competitive inhibitor of the dephosphorylation of PA. It

was proposed that this may hinder the formation of DAG and that to prevent this

there may be mechanisms for substrate channelling between enzymes of the TAG

biosynthetic pathway to prevent competitive interactions such as would be seen with

sn-1 LPA with PAP (Pearce and Slabas, 1998). The first plant PAP was cloned from A.

thaliana in 2001. It was putatively identified as a PAP based on its homology to both

mammalian and yeast PAP genes. Heterologous expression of the gene (AtLPP1 ) in

yeast and in vitro biochemical characterisation identified phosphatidic acid phosphatase

activity, confirming its identity (Pierrugues et al., 2001). An additional PAP-encoding

gene was reported in this study (AtLPP2 ), identified by its homology to AtLPP1,

which was found to have a different pattern of expression and a different substrate

preference for phosphatidic acid when compared to AtLPP1. Subsequently, additional

PAP homologues have been cloned in A. thaliana including plastid specific PAPs

(Nakamura et al., 2007).

1.2.4 TAG Production

The final step in the production of storage oil is the acylation of the sn-3 position of a

DAG molecule. This occurs through two broad routes, one of which utilises acyl chains

attached to CoA molecules, the other utilises acyl chains that are independent of CoA

molecules. The result is the same, a glycerol-derived molecule with acyl groups at all

three positions of its backbone (Figure 1.3).

Analysis of the acyl chains at each sn position of the TAG molecules from the seeds

of different oilseed crops revealed significantly different compositions of acyl chains,

both between the different oil seeds and within a TAG molecule (see Table 1.2). The

existence of acyl substrate selectivities of GPAT and LPAT enzymes was described

in the previous section. Table 1.2 describes the different compositions of acyl chains
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Table 1.2: Positional analysis of TAG acyl chains in different oil seeds. Analysis
reveals acyl chain heterogeneity between sn positions, plant species and plant varieties.

Fatty acids (%)

Species sn Position 16:0 18:0 18:1 18:2 18:3 20:1 22:1

B. napus (Rape) high erucic acid a 1 4 2 23 11 6 16 35

2 1 0 37 36 20 2 4

3 4 3 17 4 3 17 51

B. napus (Rape) low erucic acid b 1 6 2 65 16 7 2 1

2 Trace Trace 53 31 16 Trace Trace

3 8 2 71 10 5 3 1

Glycine max (Soya) c 1 14 6 23 48 9 - -

2 1 Trace 22 70 7 - -

3 13 6 28 45 8 - -

C. tinctorius (Safflower) d 1 9 2 8 81 - - -

2 0 0 8 92 - - -

3 4 1 7 88 - - -

a (Brockerhoff, 1971)
b (Kaplan et al., 1975)
c (Gunstone, 1979)
d (Ichihara and Noda, 1980)
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Figure 1.3: Structure of the triacylglycerol molecule. The R denotes acyl
side chains. The glycerol molecule does not have rotational symmetry, allowing the
individual carbon atoms of the glycerol backbone to be distinguished from one another.
Stereochemical numbering is denoted by sn.

present at the sn-3 position of TAG, indicating the range of selectivities of the enzymes

that catalyse sn-3 position acyl transfer. For example, 51% of the acyl groups esterified

to the sn-3 position of TAG in a HEAR variety of B. napus is erucic acid (C22:1)

(Brockerhoff, 1971), yet in a non-HEAR variety no erucic acid could be observed at all

(Kaplan et al., 1975). The relative roles of the two routes to TAG formation in plants

are described below.

1.2.4.1 Acyl-CoA Dependent Pathway

Diacylglycerol acyltransferase (DAGAT) catalyses the final stage in TAG formation,

acylating DAG to form TAG. It has been cloned in a diverse range of organisms

including A. thaliana (Hobbs et al., 1999) and R. communis (He et al., 2004). The

activity of B. napus DAGAT has been reduced through mutation, and under conditions

of high oil accumulation such as embryo development a significant build up of DAG

intermediates was reported (Katavic et al., 1995) indicating that the conversion of DAG
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Figure 1.4: Schematic of fatty acid biosynthesis and complex lipid assembly.
ACCase = acetyl-CoA carboxylase, ACS = acyl-CoA synthetase, Delta 9 DES = stearoyl-
ACP 49-desaturase, Delta 12 DES = 412-desaturase, Delta 15 DES = 415-desaturase,
DGAT = diacylglycerol acyltransferase, FA = fatty acid, FAS = fatty acid synthase,
G3P = glycerol-3-phosphate, GPAT = glycerol-3-phosphate acyltransferase, LPAT =
lysophosphatidic acid acyltransferase, TAG = triacylglycerol, TE = thioesterase, PC =
phosphatidylcholine. Figure adapted from Topfer et al (1995).
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to TAG is highly dependent on DAGAT activity in this plant. This is supported by a

study where seed specific over-expression of a DAGAT cDNA resulted in an increase in

oil deposition and average seed weight, which correlated with DAGAT transcript levels

(Jako et al., 2001). Further recent evidence suggests that, although there exists at

least one alternative route to DAG acylation in plants and yeast, the only quantitatively

important route to TAG formation in A. thaliana, olive and oil palm is through DAGAT

(Mhaske et al., 2005; St̊ahl et al., 2004; Ramli et al., 2005).

Characterisation of the oil palm DAGAT in microsomes identified substrate se-

lectivity for oleoyl CoA and palmitoyl CoA. Interestingly, the assays identified two

discreet peaks of activity which the authors suggested may be due to two isoforms

of DAGAT in oil palm (Oo et al., 1989). A new DAGAT gene family was identified

in the fungus Mortierella ramanniana (Lardizabal et al., 2001), subsequently named

DAGAT2 and identified in mouse (Cases et al., 1998) and S. cerevisiae (Sorger and

Daum, 2002). Kroon et al. (2006), of the laboratory of the author, cloned the DAGAT2

gene in R. communis. Studying its expression pattern they found that it is 18-fold

more highly expressed in developing seed than in leaf, and shows temporal specific

expression during seed development (Kroon et al., 2006). In the same year DAGAT2

was cloned from tung tree (Vernicia fordii) (Shockey et al., 2006), which accumulate

80% levels of unusual conjugated fatty acids in their seeds. Similar to the results of

Kroon et al. (2006) they identified DAGAT2 as the biochemically significant enzyme

in TAG production in seeds, compared to DAGAT1. Interestingly, they also found that

DAGAT1 and DAGAT2 localise to different subdomains within the ER. This suggests

there are distinct sites in the ER of V. fordii that are dedicated to TAG biosynthesis,

and raises the possibility that subdomains exist in other plants including R. communis.

Two lipid biosynthesis enzymes of close functional relationship were shown to have

close physical relationship in mouse. DAGAT2 and stearoyl CoA desaturase (SCD1)

were found to locate very closely to each other when studied with confocal microscopy,
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co-immunoprecipitation and fluorescence resonance energy transfer (Man et al., 2006).

Mice lacking SCD1 had a significant decrease in the tissue content of TAG, and the

authors hypothesised that substrate channelling occurs between SCD1 and DAGAT2.

It is possible that mouse DAGAT2 has a selectivity for monounsaturated acyl-CoAs,

and the co-localising SCD1 creates a local pool of monodesaturated CoAs for it to

use. A membrane subcompartment with enriched TAG biosynthetic activity has been

reported in B. napus (Lacey and Hills, 1999). Although the authors described a sub-

compartment that was ER derived rather than a subdomain within the ER, it supports

the model of enzyme distribution heterogeneity within membranes and the existence of

enzyme complexes. It is quite feasible that enzyme complexes and substrate channelling

mechanisms exist within the ER of R. communis which may play an important role in

obtaining high triricinolein content in transgenic crops.

1.2.4.2 Acyl-CoA Independent Pathway

Evidence of acyl-CoA independent routes to TAG formation was published in different

in papers in 2000. Fraser et al (2000) produced Helianthus annuus (sunflower) micro-

somal membranes with accumulated PA due to the inactivation of PAP in the presence

of EDTA. PAP requires Mg2+ and the metal chelator EDTA chelates free Mg2+ thus

inactivating PAP. As the incubated microsomal membranes contained inactivated PAP,

the usual conversion of PA to DAG was suppressed and so PA accumulated. When these

PA-rich microsomal membranes were washed and transferred into a buffer containing

Mg2+ (reactivating PAP and the conversion of PA to DAG) and either acyl-CoA or

no extraneous acyl-CoA molecules, they found no difference in the amount of TAG

produced. They proposed that enzymes other than acyl-CoA dependent DAGAT were

catalysing the formation of TAG, including a diacylglycerol:diacylglycerol transacylase.

They also suggested that acyl-CoA independent routes to TAG formation do have a

quantitatively important role in some plants (Fraser et al., 2000).
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Dahlqvist et al (2000) identified a new acyl-CoA independent route to TAG for-

mation, that uses PC as the acyl donor, and DAG as an acceptor. The enzyme

that catalyses the reaction, phospholipid:diacylglycerol acyltransferase (PDAT) was

identified in the microsomal preparation from three different oil seeds: H. annuus,

Crepis palaestina and R. communis. PDAT activity and the PDAT-encoding gene

LRO1 were identified in the budding yeast S. cerevisae which was shown to have

homology with animal lecithin : cholesterol acyltransferase (LCAT) (Dahlqvist et al.,

2000). PDAT was subsequently identified in A. thaliana by homology to the yeast

PDAT, sharing 28% identity (St̊ahl et al., 2004).

Dalhqvist et al (2000) incubated lyophilised microsomal preparations from H. an-

nuus, C. palaestina and R. communis with PC molecules synthesised to contain either

[14C]-oleoyl, [14C]-ricinoleoyl or [14C]-vernoloyl acyl residues at the sn-2 position. On

analysis of the neutral lipid fraction they found although radioactivity incorporation

into the neutral lipid fraction increased linearly over 4 hours for each plant species,

there were significant differences in the recovery of radio-label between the different

plant species and the different acyl residues.

The total amount of radiolabel recovered in the neutral lipid (i.e. removal of

labelled acyl residue from the sn-2 position of PC to free fatty acid, DAG or TAG)

was found to vary significantly between species. H. annuus and C. palaestina removed

similar total amounts of oleoyl, ricinoleoyl and vernoloyl acyl residues from PC to

the neutral lipid fraction (between 10 - 20% and 8 - 18% respectively) whilst R.

communis removed between 30% (microsomes incubated with [14C]-oleoyl-PC ) to 60%

(microsomes incubated with [14C]-ricinoleoyl PC) of labelled acyl residues to its neutral

lipid. This indicates more efficient mechanisms for fatty acid removal from PC in R.

communis than in H. annuus or C. palaestina.

The microsomes of H. annuus, a species that only has common fatty acids in its seed

oil, incorporated most of the label into DAG regardless of the type of acyl group on the
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PC in the incubation mixture (see Figure 1.5). A small amount of radioactivity was

recovered in the TAG from the ricinoleoyl PC and vernoloyl PC incubated sunflower

microsomes, indicating an acyl-CoA independent mechanism to TAG production is

utilised in the presence of these two unusual fatty acids in its PC fraction.

This pattern of radioactivity recovery was significantly different from that seen

with R. communis microsomes. Here, the greatest recovery of [14C]-acyl residues was

identified in the TAG fraction, with about 45% recovery of total radioactivity. There

was significant preference for the removal of both unusual fatty acids (ricinoleic and

vernolic acid) into TAG indicating an efficient acyl-CoA independent route to TAG

biosynthesis in this organism. Phospholipase activity was also significant in [14C]-

ricinoleic acid removal from the PC in R. communis, with ∼ 15% of total radioactivity

recovered in the FFA. Some recovery of [14C]-ricinoleic acid was identified in DAG,

indicating that R. communis microsomal CDP-choline:cholinephosphotransferase is

also able to use [14C]-ricinoleoyl PC as substrate.

This study indicates significant substrate selectivity differences of the phospholipase,

PDAT and cholinephosphotransferase enzymes in the microsomes of the different plant

species assayed. It also suggests a significant role for PDAT in R. communis and, along

with the phospholipase, make these enzymes likely useful components in engineering

high triricinoleate B. napus seed oil.

Recent evaluation of PDAT mutants in A. thaliana have found PDAT to be quan-

titatively insignificant to overall TAG production in this organism (Mhaske et al.,

2005). There appears to be some redundancy in the routes available for transiting

fatty acids out of PC. It is plausible that PDAT evolved as an enzyme capable of

nullifying the effects of potentially toxic unusual fatty acids by efficiently removing

them from membrane lipid into TAG; where unusual fatty acids conveyed benefits to

the plant, such as the emetic qualities of castor oil which would likely discourage animal

predation, the PDAT enzyme has become highly tuned to the transfer of the unusual
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Figure 1.5: Metabolism of 14C-labelled PC into FFA, DAG and TAG in
plant microsomes. Microsomes from sunflower, R. communis and C. palestina were
incubated with 14C-oleoyl PC, 14C-ricinoleoyl PC or 14C-vernoleoyl PC. After incubation,
the recovery of radioactivity in either free fatty acid (FFA), diacylglycerol (DAG) or
triacylglycerol (TAG) was quantified for each combination of microsome and labelled PC.
The data indicates significant differences in metabolism of unusual fatty acids in purified
microsomes from the different plant species. In R. communis an acyl-CoA independent
route to the removal of ricinoleic or vernoleic acid was quantitatively the most significant,
with 45% of radioactivity recovered in the TAG fraction. The action of phospholipase was
also significant in R. communis with ∼15% radioactivity recovered in FFA. Figure adapted
from Dhalqvist et al. (2000).
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fatty acid. The diversity of membrane lipid is likely to be greater in yeast cells that

can assimilate a range of fatty acids for food. The ability of a yeast cell to efficiently

transfer unusual and potentially toxic lipid species incorporated into its membrane from

the environment into neutral lipid stores by the action of PDAT would give it a distinct

evolutionary advantage.

An alternative acyl-CoA independent mechanism of TAG production is the for-

mation of TAG from two molecules of DAG in a DAG:DAG transacylation (Stobart

et al., 1997). The importance of DAG:DAG transacylation in the formation of TAG

in R. communis was evaluated by Dalhqvist et al. (2000). The group incubated R.

communis microsomes and an exogenous DAG molecule to act as an acceptor were

incubated with sn-1 oleoyl sn-2 [14C]-ricinoleoyl DAG and the formation of TAG

examined. The experiment was repeated but this time the microsomes and exogenous

DAG acceptor were incubated with sn-1 oleoyl sn-2 [14C]-ricinoleoyl PC. Microsomes

incubated with [14C]-PC produced a significantly higher amount of [14C]-TAG than

microsomes incubated with [14C]-DAG, indicating the likelihood that PC plays the

greater role in TAG formation via acyl-CoA independent routes.

1.3 Production of Unusual Seed Oils in Agronomic Plants

Attempts to engineer model or crop plants that produce triacylglycerols containing

unusual fatty acids at high levels have so far met only limited success. Divergent FAD2

(fatty acid desaturase) enzymes modify acyl groups attached to PC to produce unusual

fatty acids, and have been the focus of transgenic efforts to produce industrially valuable

oils in crop plants (reviewed in Cahoon and Kinney (2004)). FAD2 catalyses the

introduction of a second double bond at the 12-carbon position of oleoyl groups esterfied

to PC. Divergent enzymes have been identified in a variety of plants that catalyse

diverse reactions such as hydroxylation, epoxygenation and double bond conjugation
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(Cahoon and Kinney, 2005). Two examples of FAD2-derived enzymes are the oleate

412 hydroxylase , which introduces a hydroxyl group at the 12-carbon position of oleoyl

PC (Bafor et al., 1991) and was identified in the seed ER of R. communis (Maltman

et al., 2002), and a conjugase from pot marigold (Calendula officinalis).

The R. communis oleate 412 hydroxylase has been expressed in A. thaliana under

the control of a B. napus seed specific promoter (Broun and Somerville, 1997). This

resulted in the accumulation of 17% ricinoleic acid in the seed fatty acid along with

two novel hydroxy-fatty acids which were identified as lesquerolic (C20:1-OH) and

densipolic acid (C18:2-OH). Traces of auricolic acid (C20:2-OH) were also observed.

It was hypothesised that the presence of lesquerolic and densipolic acid along with

ricinoleic acid was either due to the action of oleate 412 hydroxylase on sn-2 oleoyl-

PC (18:1-PC) and sn-2 eicosenoyl-PC (20:1-PC), or it was due to the presence of an

elongase capable of using 18:1-OH as a substrate. Smith et al. (2003) were able to

confirm it was due to the action of an elongase by expressing R. communis oleate 412

hydroxylase in an A. thaliana knockout lacking FAE1, an A. thaliana elongase (Smith

et al., 2003). They found that lesquerolic acid (C20:1-OH) and auricolic acid (C20:2-

OH) were entirely absent from this plant, the only hydroxylated fatty acids present

were 18 carbon species. The ER resident desaturase FAD3 catalyses the desaturation

of C18:1(49) to C18:2(49,15) (Browse et al., 1992). Smith et al. (2003) expressed the R.

communis oleate412 hydroxylase gene in an A. thaliana dual mutant line lacking both

FAD3 desaturase and FAE1 elongase activity. This transformant produced ricinoleic

acid as the only hydroxy fatty acid, i.e. densipolic (18:2-OH) and auricolic (20:2-OH)

fatty acids were absent, but at only 7% of the total seed oil. The maximum amount of

total hydroxy fatty acids they obtained in the seed oil was 19.2%, of which 8.7% was

ricinoleic acid. The maximum amount of ricinoleic acid obtained was 16.2%, in a FAD3

knockout line producing a total of 18.7% hydroxy fatty acid in the seed oil. These levels

are far less that the 90% ricinoleic acid present in the seed oil of R. communis however.
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Broun and Somerville’s (1997) initial work in expressing the oleate412 hydroxylase

in A. thaliana raised an interesting observation: a dramatic increase in oleic acid and a

corresponding reduction in polyunsaturated fatty acids. The presence of the oleate412

hydroxylase seemed to have an inhibitory effect on the oleate 412 desaturase. They

were unable to find evidence of homology-dependent gene silencing as there was no

decrease in mRNA levels for oleate 412 desaturase in the transformed plants; this was

supported by extensive investigations reported in a further paper by the group (Singh

et al., 2001). They concluded that there is a post-translational inhibition of oleate 412

desaturase in oleate 412 hydroxylase transformants. Smith et al. (2003) also noted a

significant increase in oleic acid and a corresponding decrease of linoleic acid (C18:2)

in their R. communis oleate 412 hydroxylase transformed A. thaliana lines. They

identified a clear positive linear correlation between the percentage of hydroxylated

fatty acids and the percentage of oleic acid in the TAG. Conversely, a negative linear

correlation between the percentage of hydroxylated fatty acids and the percentage of

linoleic acid in TAG was reported. This indicates a relationship between sn-2 oleoyl-PC

modification by oleate 412 hydroxylase and oleate 4 desaturase, and transit of oleoyl

CoA to the TAG, either via the PC membrane fraction or through direct acylation. It

was hypothesised that the increase in oleic acid, decrease in FAD2-desaturated fatty

acids and low percentages of hydroxy fatty acids in the TAG of oleate 412 hydroxylase

transformants was due to the build up of unusual fatty acids in the PC membrane

fraction. If the transformed plant is unable to efficiently remove unusual fatty acids

from the PC, they may begin to accumulate resulting in reduced oleoyl-PC substrate

for FAD2 oleate4 desaturase. As the PC fraction becomes a bottleneck due to reduced

flux of hydroxy fatty acids out of the PC, the availability of PC substrate with free

sn-2 positions for the transfer of oleoyl CoA catalysed by lysophosphatidylcholine

acyltransferase (LPCAT) is reduced. Similarly, the PC −−⇀↽−− DAG transfer route

catalysed by reversible CDP-choline:cholinephosphotransferase route may be effected.
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This hypothesis is supported by an earlier analysis of A. thaliana expressing genes

encoding the divergent FAD2 enzymes Crepis alpine 412-acetylenase, a C. palaestina

linoleate 412 epoxygenase or L. fendleri oleate 412 hydroxylase. The transformants

were found to contain significant amounts of the unusual fatty acids (crepenynic,

vernolic and ricinoleic acid respectively) in their PC membrane lipid fractions during

TAG accumulation and 5-35 times less crepenynic, vernolic and ricinoleic acid in the

TAG of the A. thaliana transformants than is found in the natural sources of these

unusual fatty acids (Thomaeus et al., 2001). Further evidence for this hypothesis came

in a recent study where the FAD2 conjugase enzyme from C. officinalis was transferred

to G. max and A. thaliana , which were found to produce a seed oil containing up to 20%

unusual conjugated fatty acid calendic acid (C18:348trans,10trans,12cis) (Cahoon et al.,

2006). This compares to the 55% of calendic acid produced in the natural source, the

seed oil of C. officinalis. However, on quantification of the fatty acid components of the

PC membrane lipid fraction, they observed conjugated fatty acids that were at least

equal to those sequestered in the TAG fraction. Analysis of the PC fraction of the

seeds from 5 varieties of C. officinalis that naturally produce high calendic acid seed

oil, the percentage of conjugated fatty acids observed was less that 1.5% of total fatty

acids (Cahoon et al., 2006).

The known routes of fatty acid removal from PC are shown in Figure 1.6. Un-

derstanding the respective contributions of these enzymes (i.e. reversible LPCAT,

phospholipase A2, reversible cholinephosphotransferase and PDAT) to the flux of fatty

acids out of PC in R. communis and B. napus is likely to be a crucial step in the

pathway toward engineering a crop plant that produces high levels of ricinoleic acid in

its TAG.

Engineering a crop plant such as B. napus that is capable of first producing unusual

fatty acids and then removing them from the PC is unlikely to produce a seed oil

as high in the unusual fatty acid as the natural source of that oil. As discussed
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in Sections 1.2.3 and 1.2.4, the differing substrate selectivities of the plant Kennedy

pathway acyl transferase enzymes introduce significant heterogeneity of acyl groups

in TAG molecules. Understanding the contribution of the different R. communis

acyltransferase enzymes in catalysing the production of high triricinoleate castor oil and

transferring the appropriate complement of enzymes to the engineered plant is likely

to be crucial. This is highlighted in A. thaliana seeds expressing R. communis oleate

412 hydroxylase, which display futile cycling of ricinoleic acid through peroxisomal

β-oxidation (Moire et al., 2004). This is possibly caused by the build up of ricinoleoyl

CoA, due to a bottle neck in the flux of the unusual CoAs from the CoA pool to TAG.

1.4 Emerging Evidence of Lipid Biosynthesis Complexity

in Plants

There is growing evidence of significant lipid biosynthetic gene heterogeneity in plants.

Two potentially important enzymes in directing the transit of unusual fatty acids

from PC and into the acyl-CoA pool are phospholipase A2 and acyl-CoA synthetase

respectively. In a 2003 census of an A. thaliana EST database a large family of

phospholipase-encoding genes were identified (Beisson et al., 2003) and plants are

known to contain very large families of acyl-CoA synthetases (Shockey et al., 2002;

Shockey et al., 2003). Experimental evidence suggested A. thaliana has 5 isoforms of

LPAT (Kim et al., 2005). Based on homology searches, A. thaliana may contain up to

11 LPAT genes (Beisson et al., 2003). Post-genomic technologies such as microarrays or

proteomics allows the identification of transcribed or translated genes to be identified

in a particular tissue and at particular time points. Proteomic analysis of the ER of

the developing seed of R. communis and at the correct developing seed should allow

identification of the translated gene products involved in complex lipid biosynthesis, so

identifying the biochemically relevant enzymes. Another important method by which
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Figure 1.6: Potential pathways of hydroxy fatty acid flux from the PC to
TAG. Multiple routes exist for the removal of fatty acids from PC. An sn-2 ricinoleoyl
sn-1 oleoyl PC molecule is depicted at the left of the figure. Pathway (a) is catalysed by
reversible lysophosphatidylcholine acyltransferase (LPCAT) which transfers an acyl group
to CoA, producing acyl-CoA and lysophosphatidylcholine (LPC). Pathway (b) depicts
phospholipase A2, which releases free fatty acid (18:1-OH FFA) from PC substrates leaving
LPC. Free fatty acids such as 18:1-OH FFA can be activated by acyl-CoA synthetases
(ACS), denoted by (c) in the figure. Pathway (d) is catalysed by reversible CDP-
choline:cholinephosphotransferase which removes the phosphocholine group from PC to
yield DAG. Phosphatidylcholine acyltransferase (PDAT) catalyses the direct transfer of
a fatty acid from PC to DAG in an acyl-CoA independent route to TAG formation
(e). Reaction (f) is catalysed by the Kennedy pathway enzyme glycerol-3-phosphate
acyltransferase (GPAT), which utilises glycerol-3-phosphate (G3P) and an acyl-CoA to
form lysophosphatidic acid (LPA). A further acylation is catalysed by lysophosphatidic
acid acyltransferase (LPAT, (g)) which again uses acyl-CoA. The removal of the sn-3
phosphate group, catalyses by phosphatidic acid phosphatase (PAP, (h)) is required to form
diacylglycerol (DAG) which then serves as a substrate for acyl-CoA utilising diacylglycerol
acyltransferase (DAGAT, (i) or PDAT. Figure adapted from Cahoon et al. (2007)
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the most important isoforms of enzymes in triricinolein production can be identified is

by assay, which is discussed in the next section.

1.5 Strategies for identifying and validating the compo-

nents of high triricinolein production in R. communis

There are two distinct components of research presented in this thesis. The first

concerns the use of proteomics to identify components of lipid biosynthesis in R.

communis whilst the second concerns the development of methodologies for the yeast-

based in vivo assay of R. communis lipid biosynthesis components identified in the

proteomic component of the work. These two distinct components are described in more

detail in the following two sections (Sections 1.5.1 and 1.5.2), followed by an exploration

of the proteomic technologies used in the study (Section 1.6.1) and background to yeast

lipid biochemistry (Section 1.8).

1.5.1 The ER as the Target Organelle for Proteomic Analysis

As has been described in the preceeding section which reviewed the biochemistry of

lipid and triricinolein production in R. communis, all the components of hydroxylation

and complex lipid assembly are located in the endoplasmic reticulum of developing seed.

It is known that the developing seed is actively involved in storage oil production and

in R. communis key components of fatty acid and storage oil biosynthesis are at their

peak between 25 and 30 days after flowering (DAF)(Simcox et al., 1979; Kroon et al.,

2006). Therefore, by identifying the proteins of the developing seed ER at this optimum

stage (25-30 DAF) the secrets of triricinolein production may be unlocked. A dual

approach has been taken by the laboratory for the proteomic analysis of the developing

ER: one focused on the soluble fraction and utilising 2D electrophoresis (2DE) as the

primary analysis technology; the other focused on the membrane-bound components
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and utilising mass spectrometry (MS) approaches such as isotope coded affinity tags

(ICAT). The nature of the author’s industrial funding limited his investigation to the

2DE analysis of the ER and it is this analysis which is presented in Chapters 3 and 4.

Technologies relevant to the soluble proteomic analysis of this thesis are reviewed in

Section 1.6.1.

The majority of known complex lipid biosynthesis components are membrane bound

(for example, DAGAT2 (Kroon et al., 2006)) and thus are very unlikely to be soluble

in 2DE lysis buffer and present in a 2DE analysis. However, as a method of identifying

components of complex lipid biosynthesis, 2DE is still valid for two reasons: firstly, it

may identify previously unknown components of complex lipid biosynthesis which are

2DE buffer soluble. Secondly, there are already known components of complex lipid

biosynthesis which are only peripherally associated with the membrane (for example,

PAP (Pearce and Slabas, 1998)) and this and other peripherally associated components

may be identified on the 2DE gels.

1.5.2 Yarrowia lipolytica as a Potential R. communis Lipid Gene

Assay Vehicle

The previous section explored lipid biosynthesis in plants, with particular reference

to R. communis and the biosynthesis of high levels of triricinolein. It also reported

emerging evidence of problems with flux of unusual fatty acids out of the PC into TAG

in transformed agronomic plants and large heterogeneity of genes for a single lipid

biosynthesis enzymatic step. This points to the need for sophisticated tools to not just

identify the components of lipid biosynthesis in R. communis but also to understand the

set of proteins required to obtain high levels of triricinolein production in transformed

plant models. The ability to transform multiple R. communis genes into an in-vivo

model allows an iterative examination of their influence on lipid biosynthesis until

ultimately all the necessary components for high levels of ricinoleic acid biosynthesis
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have been built into the foreign host. Such an in vivo host might be a plant model,

for example A. thaliana or B. napus. Although this allows direct transformation of

R. communis genes into an appropriate agronomic organism (in this case, B. napus),

it has the disadvantage of an extended period of time between transformation and

evaluation of the effect of the transgene on the lipid profile (typically 2 to 3 months for

the development of mature seed). The use of microorganisms, such as yeast, provide

an attractive alternative. Yeast strains which produce large amounts of storage oil

(oleaginous yeasts) have similar lipid biosynthesis biochemistry to plants but have the

advantage that they are able to grow rapidly. Thus they may provide an invaluable

research tool for the assay of R. communis lipid biochemistry genes. Y. lipolytica was

identified as a potential yeast strain for this purpose.

Y. lipolytica is a dimorphic (that is, it exists in a unicellular yeast state or a multi-

cellular hyphae state) ascomycete. It is an obligate aerobe, providing an easy means for

its removal from foodstuffs (McKay, 1992), and is considered non-pathogenic, in part

because its growth temperature seldom exceeds 32-34 ◦C (Barth and Gaillardin, 1996).

It is oleaginous, making it a potential system for the assay of R. communis lipid genes as

it is well adapted to producing and storing lipid. It has the key requirements of having

well-established molecular biology tools in place and having its genome sequenced (Du-

jon et al., 2004) and publicly available. The molecular biology tools include a range of

auxotrophic strains available, and protocols for transformation (including homologous

recombination) (Barth and Gaillardin, 1996). The availability of the genome sequence

means it is possible to utilise homologous recomination to directly target R. communis

lipid genes into specific areas of the Y. lipolytica genome. This allows the researcher

to replace an existing gene with an equivalent R. communis transgene. It has a rapid

growth rate with strains reaching lipid-accumulating stationary phase within 20-30

hours of culture inoculation (Mlickova et al., 2004). It is able to grow on standard

media such as yeast nitrogen base (YNB) or yeast extract / peptone / dextrose (YPD)
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(Barth and Gaillardin, 1996). A significant lipid biochemistry research base exists for

the organism although this is mostly focused on its efficient lipid catabolism capability

(Waché et al., 2000; Waché et al., 2001; Waché et al., 2003; Fickers et al., 2005). It is

capable of growing on hydrophobic substrates, such as alkanes and fatty acids, including

ricinoleic acid.

Once the growth, lipid extraction and lipid analysis procedures are in place, the

components of the storage oil in wildtype cells can then be evaluated which can serve

as a baseline by which the TAG analyses of transformed strains can be compared. Such

analyses would be performed on Y. lipolytica cells fed on non-hydroxy (e.g. oleic acid)

or hydroxy (e.g. ricinoleic acid) lipid to understand the extent of which wildtype cells

can incorporate ricinoleic acid into their TAG.

A review of the literature concerning lipid biosynthesis in yeast and specifically Y.

lipolytica is presented in the Section 1.8.1.

1.6 Proteomic Analysis of the Soluble R. communis ER

1.6.1 Two dimensional Electrophoresis (2DE)

1.6.1.1 Sample preparation

No single method of sample preparation can be applied universally to biological samples

because of their diverse nature. However, the desired end result is generally the same:

a sample of solubilised peptides, at a concentration appropriate for proteomic analysis

and lacking molecular compounds that interfere with the 2DE process. It can be

thought of as a two step process, (1) biological material preparation and (2) sample

solubilisation. These processes may occur separately or at the same time.
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1.6.1.2 Biological material preparation

Soluble, aqueous samples such as serum, plasma or cerebrospinal fluid are often anal-

ysed with comparatively little pre-treatment. Soluble samples containing high con-

centrations of protein may be diluted with the appropriate solubilisation buffer (see

Section 1.6.1.3), but dilute samples may require concentrating through lyophilisation

or precipitation. Trichloroacetic acid with acetone is a precipitation method commonly

used for this purpose and is also useful in the inactivation of proteases and removal of

isoelectric focusing (IEF)-interfering compounds such as salts, lipids and nucleotides

(Görg et al., 1997).

Where protein needs to be solubilised from solid tissue, physical disruption of the

material is often required. Freezing samples, including at liquid N2 temperatures, often

aids this process. Freezing can disrupt the integrity of subcellular components, altering

the buoyant densities of organelles. Therefore, it is not a suitable option when intact

organelles are required, as is the case in this study.

Fractionation of biological material may be employed at this step. It can be useful in

reducing gel profile complexity, or in targeting the biologically relevant subsection of the

tissue or cells. The disadvantage of subcellular fractionation is you may selectively lose

biochemically important components or subfractions of an organelle and miss significant

cellular machinery by focusing on a subset proteome. Therefore, sample preparation

methodologies are a balance between reducing complexity of the resultant 2DE profile

and the risk of selective samples losses resulting in an incomplete organelle proteome.

1.6.1.3 Sample solubilisation

The aim of sample solubilisation is to break the inter- and intra-molecular hydrogen and

disulphide bonds in the protein sample, and to maintain these breakages through the

2DE process. Samples are solubilised in a combination of chaotropes, surfactants and

reducing agents. In the first description of the 2DE technique (O’Farrel, 1975), very
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high concentrations (9.5 M) of the chaotrope urea, combined with 4% (w/v) of the non-

ionic surfactant NP40, 2% (w/v) synthetic carrier ampholytes (SCA) and 1% (w/v) of

the thiol-containing reducing agent DTT were used. Urea overcomes hydrogen bonding

within the protein molecules leading to unfolding and denaturation. After denaturation

the hydrophobic domains of the amino acid monomers are exposed. This risks protein

loss through aggregation and adsorption (Molloy, 2000). The surfactant interacts

with the exposed hydrophobic domains and prevents this. DTT breaks the intra-

and intermolecular disulphide protein bonds and carrier ampholytes are beneficial in

reducing protein interactions within the IEF strip matrix. Improvements to this original

procedure were made with the replacement of the surfactant with 2% CHAPS (3-[(3-

Cholamidopropyl)dimethylammonio]-1-propanesulfonate), which was found to improve

membrane protein solubilisation compared to NP40 (Perdew et al., 1983; Santoni

et al., 2000), and the additional chaotrope thiourea at 2 M concentration (Rabilloud

et al., 1997; Molloy et al., 1998). Also crucial was the development of immobilised pH

gradients (IPGs) (Bjellqvist et al., 1982), which did not suffer the difficulties of SCAs in

tube gels such as cathodic drift resulting in pH gradient instability (see Section 1.6.1.4).

Problems with 2DE remain however. Certain proteins can be under-represented

on gels or refuse to solubilise in the urea buffer. The most elusive proteins in 2DE

gel analysis are membrane bound proteins. By their nature these proteins have very

hydrophobic domains and are either insoluble in 2DE lysis buffer or are lost during IEF.

This is of particular concern to the characterisation of ER proteins concerned with fatty

acid modification and the Kennedy pathway as the majority of the known proteins are

membrane bound. For proteomic projects in general, characterisation of membrane

proteins is of great biological and pharmacological importance as they represent the

‘doorbells and doorways’ of the cell (Molloy, 2000). The analysis of membrane proteins

can be aided by fractionation of the sample. Molloy et al. (1998) extracted E. coli

proteins sequentially, first highly soluble proteins were extracted in Tris-base, followed
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by extraction of more hydrophobic proteins using classical lysis buffer (8 M urea, 4%

CHAPS, DTT and carrier ampholytes ) and finally very hydrophobic proteins using

thiourea, tributyl phosphine and sulphobentaines. The protein sample was separated

across three gels revealing more proteins than is possible on a single gel using standard

lysis buffer. Although there was overlap across the three gels, the final gel revealed

several abundant protein spots that were absent on the single gel method, subsequent

identification revealing them to be integral outer membrane proteins (Molloy et al.,

1998). A further method for improving the solubilisation of membrane proteins for

2DE relies on the use of different detergents supplementing or replacing the typical

detergent CHAPS. Molloy et al. (2000) investigated the solubilisation of E. coli outer

membrane proteins (OMPs) with altered detergent lysis buffers. Sodium carbonate-

isolated membranes were solubilised with 7M urea, 2M thiourea, 1% w/v ASB14, 40

mM Tris, 2 mM tributyl phosphine and 2% ampholytes. On analysis of the resultant

2DE gel, 80% of the E. coli SWISSPROT database predicated OMPs were represented

on the gel. However, this group did not compare the modified ASB14 lysis buffer with

the standard 9 M urea, 2 M thiourea, 4% CHAPS lysis buffer so actual improvements in

the solubilisation of E. coli OMPs with this method could not be made. An alternative

lysis buffer containing the detergent C8Ø was found to effectively solubilise plant

plasma membrane proteins including H+-ATPase proteins and water channel proteins

(Chevallet et al., 1998). These proteins were not seen when they attempted to solubilise

the same preparation with a standard 9 M urea, 2 M thiourea and 4% CHAPS lysis

buffer.

As MS technologies have advanced and new methods of quantifying complex mix-

tures of proteins including membrane proteins have been developed, the requirement to

effectively solubilise and separate membrane proteins by 2DE has reduced (see Section

1.6.4).
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1.6.1.4 First dimension Isoelectric Focusing (IEF)

Isoelectric focusing is based on the principle that at a given peptide’s isoelectric point

(pI), whereby its net charge is zero, it ceases to migrate within an electric field. In

a heterogeneous protein sample, a range of isoelectric points will be represented, each

the sum of the charge profile of the peptides’ amino acid constituents.

Initial IEF procedures relied on small molecule synthetic carrier ampholytes (SCAs),

each molecule having a different pK value (O’Farrel, 1975). Carrier ampholytes were

added to an acrylamide mixture and after polymerisation subjected to a pre-IEF

separation to provide a linear distribution of SCAs within the acrylamide matrix.

However, this technique is prone to pH gradient instabilities as the SCAs readily migrate

by a process of electroendosmosis to the cathode (cathodic drift). A levelling off of pH

gradient linearity can also occur in the central region of the IEF strip (plateau effect).

These problems, combined with the batch to batch variability of SCAs, cause significant

problems in establishing reproducibility of gel profiles and the ability to compare

profiles between laboratories. An alternative procedure, termed non-equilibrium pH

gradient electrophoresis (NEPHGE), was developed to improve upon these difficulties

in the separation of basic proteins (O’Farrel et al., 1977). Reproducibility between gels

remains a significant problem however.

These difficulties were overcome with the development of pH buffering molecules

immobilised to the acrylamide matrix, termed Immobilised pH Gradients (IPGs) (Bjel-

lqvist et al., 1982). The technology has developed into the first choice for 2DE based

proteomic studies (Görg et al., 1998a; Görg et al., 2000). IPG IEF gels are prepared

using Immobilines (GE Healthcare, Bucks UK), acrylamide derived molecules with the

common formula:

CH2
−−CH−CO−NH−R

where the R group is either a carboxyl (weakly acidic) or one of 7 tertiary amino
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groups (basic). Immobilines are added to the IEF strip mixture in much the same way

as SCAs but are covalently attached to the polyacrylamide backbone. This linkage

prevents the effect of electroendosmosis. Strips are generally prepared upon an acetate

backing for ease of handling before being cut into thin strips. This method has allowed

the generation of broad, narrow and custom pH ranges (Görg et al., 2000) including

linear and non-linear pH distributions (Bjellqvist et al., 1993).

Choice of IPG strip is often influenced by the familiarity with the sample. Initial

proteomic investigations into a sample may favour a broad range (e.g. pH 3-10) IPG

strip allowing a wide examination of protein pI distribution. As broad range IPG strips

can reduce resolution of proteins, especially in the pH 4-7 range where many proteins’

pIs occur, if spots of interest do not fall outside this narrower range a pH 4-7 IPG

strip makes a more appropriate choice. Alternatively, ‘zoom gels’, multiple overlapping

gels of narrow pH ranges, can be used to allow maximum separation of protein and

help to overcome spatial limitations of broad range IPG strips with complex proteomes

(Wildgruber et al., 2000).

There are multiple methods of protein sample introduction into the IPG strip.

Paper bridge loading, whereby the protein sample is absorbed into the paper wick used

to connect the electrode arm to the IPG strip, allows the sample to be drawn from the

wick into the IPG strip when electrical current is passed through the strip (Sabounchi-

Schutt et al., 2000). Alternatively, a small plastic cup is placed upon the surface of

the IPG strip into which the protein sample, solubilised in lysis buffer, is pipetted. A

small window within the cup allows the passage of the protein sample into the IPG

strip when a current is passed across it (Görg et al., 1998b). A third method of sample

introduction is termed in-gel rehydration. With this method a desiccated IPG strip

is rehydrated with lysis buffer containing the protein sample. It has the advantage

of allowing much larger volumes of protein sample containing-lysis buffer to enter the

strip, useful for 2DE analysis of dilute protein samples. The alternative methods of cup
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/ paper bridge loading and in-gel rehydration are compared in the schematic diagram

Figure 1.7.

1.6.1.5 IPG Strip Equilibration

Following IEF, IPG strips must be equilibrated before second dimension electrophoresis

separation. Equilibration can be performed immediately following IEF or the IPG strips

can be frozen for up to 2 months. Equilibration is a two step process in which the IPG

strip is first incubated for 15 minutes in a buffer containing 50 mM Tris pH 8.8, 2%

(w/v) SDS, 30% (v/v) glycerol and 1% (w/v) DTT. The presence of the SDS is critical

in incorporating a charge to the pI separated proteins, allowing their migration through

the second dimension gel on application of an electric current. The glycerol reduces

electroendosmotic effects which would otherwise reduce transfer from the IPG strip into

the second dimension gel (Görg et al., 1998a). DTT is used to prevent re-oxidation of

cysteine residues and the formation of disulphide bonds. Following the first incubation

the IPG strip is incubated for a further 15 minutes in a new buffer identical to first

except it contains 4.8% iodoacetamide instead of DTT. Iodoacetamide alkylates any

remaining free DTT associated with the strip which otherwise leads to point streaking

in the second dimension (Dunn and Görg, 2001).

1.6.1.6 Second Dimension Electrophoresis

Strips are separated in the second dimension by sodium dodecyl sulphate polyacry-

lamide gel electrophoresis (SDS PAGE), utilising a discontinuous buffer system (Laemmli,

1970a). Gels that are either a single acrylamide concentration (for example, 12%) or

are either linear or non linear gradients, allow control of migration of proteins in the

second dimension.
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Figure 1.7: Principle of IEF and SDS PAGE separation of proteins. Two methods
of sample introduction are in-gel rehydration (A) and cup / paper bridge loading (B). On
application of a current across the IPG strip during IEF proteins migrate to their isoelectric
point (where they have no overall charge). The pattern of migration is dependent on where
the proteins were located prior to IEF. Following IEF proteins are separated by molecular
weight in an SDS PAGE gel (C), with smaller proteins travelling further through the
acrylamide matrix than larger proteins. Figure adapted from (Hall, 2004).
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1.6.1.7 Gel Visualisation

Perhaps the most widely used method in visualising proteins in gels is the silver stain.

This stain offers a high level of sensitivity of between 1-10 ng/SDS PAGE protein band

although it cannot offer accurate quantification. As a photographic stain it suffers

from saturation and also its linearity is protein dependent. Silver stain does offer a

protein concentration / spot volume linearity over a 40 - 50 fold concentration range

from 0.04 ng/mm2 to 2.0 ng/mm2. However, above this limit the intensity of stain

to protein abundance becomes non-linear as the staining reaches saturation (Righetti,

1990) and quantification breaks down. Silver stain is also incompatible with mass

spectrometry unless the procedure is modified by leaving out the protein cross-linker

glutaraldehyde (Shevchenko et al., 1996a). Unfortunately modified silver stains suffer

from reduced sensitivity. Silver staining is also more labour intensive than other stains,

requiring a number of solutions and hours. It also requires the presence of a skilled

person to monitor and finally stop the development of the stain. This can be especially

problematic with multiple gels. However, for a highly sensitive qualitative investigation

of a protein sample that can be visualised without the aid of transilluminators or laser

scanners it is still very useful.

Another classical and widely used visible stain is Commassie brilliant blue. This

stain is simple and quick to use and is compatible with down-stream mass spectrometry

analysis. It does however suffer from low sensitivity (between 30-100 ng/SDS PAGE

protein band). It should be noted that Tal et al. (1985) reported that the response

of the dye to protein abundance, although linear, is protein dependent governed by

the percentage of basic amino acids in the protein in question. The group published

protein/abundance curves showing significant variation depending on what protein had

been stained (Tal et al., 1985).

In recent years the use of fluorescent stains has become more widespread. This

has been aided by the development of more sensitive and easy-to-use stains such as
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SYPRO Ruby and the improvement of imaging technologies and software. Steinberg

et al. (1996a) first reported the development of the fluorescent SYPRO Red and

SYPRO Orange dyes. They described these new stains as having a level of sensitivity

comparable to silver stain (i.e. 1-10 ng/SDS PAGE protein band) but without the

lengthy staining procedure of silver stain or the incompatibilities of silver with mass

spectrometry (Steinberg et al., 1996a; Steinberg et al., 1996b). SYPRO Red and

SYPRO Orange fluorescent stains interact with the sodium dodecyl sulphate (SDS)-

protein complex and thus do not require prior fixing. This has the benefits of ease

of use and allows the visualisation of gels prior to Western blotting procedures. The

disadvantage of not having a fixing step is that after a period of time an image can no

longer be captured as the proteins, especially low molecular weight and less abundant

proteins, would diffuse out of the gel. SYPRO Ruby stain is a commercial metal-chelate

stain which offers a broad linear dynamic range not seen in silver or Coomassie stains

(Lopez et al., 2000). Unlike unmodified silver staining it is also compatible with mass

spectrometric analysis. A drawback of SYPRO Ruby was reported by Chevalier et

al. (2004) who observed precipitants collecting on the surface of SYPRO stained gels

leading to intense spikes of noise effecting quantification (Chevalier et al., 2004). Where

these spikes fall in the same region as a protein spot the contributing fluorescence of the

spike would be included in the spot abundance for that protein, thus overestimating

its actual abundance. Unlike SYPRO Red or Orange, SYPRO Ruby is compatible

with 40% (v/v) ethanol / 10% (v/v) acetic acid fixation suggesting the stain does not

interact with SDS in the same way that SYPRO Red or Orange does. This means

that SYPRO Ruby gels can be kept indefinitely, and can be restained if required. This

is important for preparative gels where lengthy analysis might have to be carried out

prior to being in a position to excise protein spots for mass spectrometry.

Deep Purple (GE Healthcare, Bucks, UK) commercialises the fluorescent dye epic-

occonone from the fungus Epicoccum nigrum. This dye was found to have a sensitivity
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down to 2 ng/SDS PAGE protein band (Bell and Karuso, 2003), a similar sensitivity

to SYPRO Ruby. Chevalier et al. (2004) examined Deep Purples application to

proteomics and found it to not suffer from the background noise of SYPRO Ruby

protein stains. They also investigated its sensitivity in comparison to silver, Coomassie

brilliant blue and SYPRO Ruby and found SYPRO Ruby, silver and Deep Purple to

have comparable sensitivity. They investigated the linearity of response of 1D band

volume to concentration for both a high abundance and low abundance band. They

found a linear relationship for Coomassie and SYPRO Ruby but as expected a high

propensity for saturation for the higher abundance spots with silver stain. They also

observed saturation with Deep Purple which was not present at that protein abundance

for Coomasie or SYPRO Ruby suggesting it has a smaller dynamic range than these

stains. This limited dynamic range of Deep Purple was observed again at the 2D level,

where more abundant protein spots were saturating before their equivalent partners

stained with Coomassie and SYPRO Ruby. In a real world example exposure times

or Photomultiplier Tube (PMT) voltages would be reduced until the point where

saturation was no longer observed, allowing quantification to still be accurate. This

could mean however a dropping off of low abundance protein spots as exposure or

voltage settings were altered to include all the spots without saturation.

1.6.2 Two dimensional In-Gel Electrophoresis (2D DIGE)

Fluorescence Two Dimensional In-Gel Electrophoresis (2D DIGE) is a development

of the conventional 2DE platform, utilising the pre-electrophoretic labelling of protein

samples with cyanine dyes (CyDyes) (Unlu et al., 1997; Tonge et al., 2001a). Three

spectrally distinct CyDye fluorophores exist, each have an NHS-ester reactive group,

which covalently attaches to the epsilon amino group of lysine residues within a protein.

The concentration of dye within the protein/dye reaction mixture is such that the

reaction is limiting. Approximately 1-2% of all available lysines are labelled, and of
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those residues only one lysine amino acid per protein molecule. This is important

as further labelling could affect quantification due to lysine rich proteins being over-

represented in the spot map. CyDyes carry a single positive charge, so their effect

on pI of labelled proteins and thus migration during IEF is minimal. Proteins labelled

with CyDye exhibit an increase in mass of approximately 500 Daltons, so the migration

of proteins in the second dimension SDS PAGE separation is not significantly altered

(Unlu et al., 1997; Tonge et al., 2001a). This means CyDye labelled spot maps can be

matched easily to spot maps of SYPRO stained sample. However, low molecular weight

proteins see slight molecular weight shifts when compared to SYPRO (an effect which

would be increased if extended labelling were allowed to occur). If the CyDye labelled

gel is to be picked to provide protein material for MS analysis, it can be post-stained

with SYRPO to ensure low molecular weight proteins are picked accurately.

Central to the technology is the existence of three spectrally distinct dyes allowing

different labelled samples to be run on a single gel. Detecting protein differences

with traditional 2DE methodology requires the comparison of images from at least

two gels. This introduces variations in the 2D pattern not necessarily due to sample

differences but to the intrinsic variation between 2D PAGE gels due to technological

and/or experimenter limitations. With CyDye technology the differential analysis is

performed on images from a single gel which is made possible by the distinct excitation

wavelengths of each of the CyDyes. A further advantage is that the inaccuracies in

quantification due to the effect of system (gel-to-gel) variation on spot abundance is

reduced as much as possible by normalising against the Cy2 internal standard.

A traditional 2D DIGE experiment would involve the labelling of a control, treated

and standard sample with a separate dye, each of which would then be run on a single

gel. This removes the effect of gel to gel variation meaning changes seen within the

resulting images have to be the result of sample variation.

A further advantage of this technology is the high level of sensitivity the dyes offer,
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comparable to disruptive silver staining.

1.6.3 2D Gel Analysis Technologies for the Quantification of Abun-

dance Change

The charting of physiological and pathological processes in biological systems is often

aided by measuring changes in gene expression. Quantifying changes at the DNA or

mRNA level cannot offer a complete picture as there is rarely a direct correlation

between levels of DNA transcription and the levels of protein in cells. This was shown

by Anderson and Seilhamer (1997) where they compared selected mRNAs and the

resulting protein abundances in human liver and found little correlation between the

two. Quantitative proteomic analysis measures the end product of protein synthesis

which can then take into account processes such as protein degradation and post-

translational modification (PTM).

1.6.4 Protein Identification Technologies

2DE techniques allows the separation and quantification of proteins within a mixture,

and to chart how these proteins may change in response to stimuli or over time.

Obtaining the identities of proteins of interest allows the assignment of the proteins’

functional status.

Rapidly accumulating genomic and protein sequence data available to researchers

in both public and private databases has revolutionised protein identification. To

capitalise on the abundance of sequence data, a new wave of developments were made

with the aim to provide reliable, accurate and high throughput protein identification

technologies. Mass spectrometry accurately measures the mass of a molecule. MS has

been adapted for the analysis of proteins. An MS system can only measure the mass

of ionised molecules transferred into a vacuum. The development of ‘soft’ ionisation

methods: electrospray ionisation (ESI) (Fenn et al., 1989) and matrix assisted laser
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Figure 1.8: Schematic of 2D DIGE process. 1. Protein extracts representing
for example control and treated samples, or time points at differing stages of plant
development, are labelled with Cy3 and Cy5 dyes. A pooled standard containing an equal
amount of each protein sample (control and treated) within the experiment is labelled
with Cy2. 2. Samples are mixed in equal amounts and 3. separated together by 2DE.
Gels are scanned by a fluorescent imager such as the Typhoon Variable Mode Imager (GE
Healthcare, Bucks UK). 4.The fluorescent images can then be overlayed and 5. subjected to
computational analysis to identify significant abundance changes between sample groups,
normalised against the Cy2 standard. Figure adapted from (Rowland, 2006)
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Figure 1.9: Cyanine dye structures used in minimal labelling
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desorption ionisation (MALDI) (Karas and Hillenkamp, 1988) have allowed ionisation

of large biopolymers, such as peptides and proteins, with minimal degradation. Mass

spectrometers measure the mass of ionisable molecules by measuring their mass to

charge (m/z ) ratio. There are a variety of MS permutations, but all can be described

as having three basic components: 1) an ionisation source, 2) a mass analyser and 3)

a detector. Two different methods of ionisation, MALDI and ESI, have already been

mentioned. Instruments utilising these ionisation methods are the most common in

proteomic applications, and are described in more detail in the following sections.

1.6.4.1 Matrix Assisted Laser Desorption Ionisation Time-of-Flight (MALDI

TOF)

With this MS method, molecules are ionised by MALDI and the m/z ratio of the ion

is measured in a time-of-flight mass analyser. The analytes of interest are mixed with

a low molecular weight matrix compound, usually α-cyano-4-hydroxy cinnamic acid

or 2,5-dihydroxybenzoic acid. The matrix is typically dissolved in an acidic organic

solvent. The matrix/solvent/analyte mixture is pipetted, often robotically if justified

by the number of samples, onto a metallic target plate. Evaporation of the solvent

in air results in the formation of analyte : matrix co-crystals (Patterson et al., 2001).

The matrix molecules have absorption maxima at the 337 nm wavelength of the mass

spectrometer’s UV laser (Beavis and Chait, 1989). On application of the UV laser to

the analyte / matrix on the plate, emission of the absorbed energy as heat results in

sublimation of matrix crystals and analyte into the gas phase, where ionisation occurs.

Ions are accelerated through the time-of-flight mass analyser, which is terminated by a

detector. The flight time of the ions is recorded by comparing the laser pulse time to the

time of the ion reaching the detector. As the velocity of ions is inversely proportional

to the m/z ratio, the arrival time of the ions allows the m/z ratio to be calculated

(Patterson et al., 2001).
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MALDI TOF MS typically employs peptide mass fingerprinting as a means of

protein identification. With this method protein and peptide molecules are first digested

with an amino acid specific protease such as trypsin which cleaves at the arginine (R)

and lysine (K) residues. The peptide fragments are then analysed by MS, giving a

profile of peaks (the peptide mass fingerprint). The peptide mass fingerprint (PMF)

data is then used to interrogate a database on theoretical in silico digested sequences.

A common PMF searching algorithm, Molecular Weight Search (MOWSE), provides

a confidence score alongside matched hits. The confidence score takes into account

the molecular weight range of the identified protein, the protease used for digestion

and the number of the peptides matched to the theoretical PMF (Pappin et al., 1993).

Multiple hits are often obtained, probably due to homology between different proteins,

and where this occurs the protein with the highest MOWSE score is generally assumed

to be the correct identification.

Limitations with PMF based MS exist. Where mixtures are present within a protein

sample, there is no way to discern which peptide peak is derived from which protein.

This may cause attempts at identification to fail, by the presence of extra peptide

peaks lowering the MOWSE score to below confidence limits, or may even cause a

confident but erroneous match. PMF requires the existence of a sequenced genome

with full length sequences. Databases of expressed sequence tags (ESTs) generally do

not suffice, as the EST is less likely to incorporate enough full stretches between lysine

and arginine-encoding codons to provide enough sequence coverage to obtain many

confident database matches. A further problem is the detection of peptide peaks which

do not match any corresponding entry in an available protein database. This may be

due to incomplete digestion resulting in peptides longer than an in-silico digest would

predict. The presence of post translational modifications alters the m/z ratios and

this information is not always known or conveyed in sequence databases. The dust

contaminant keratin can be ubiquitous in poorly handled samples and its abundance
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Figure 1.10: Schematic of MALDI TOF MS Instrument. Peptide / matrix co-
crystals are ionised by UV laser before their transferral into the evacuated field-free TOF
tube. The time-of-flight for each ion is measured by the detector and the m/z ratio
calculated. Figure adapted from Patterson, et al. (2001).

can mask the experimental protein sample (Jensen et al., 1997; Eriksson et al., 2000).

Many of these problems can be circumvented through the choice of suitable database

parameters, for example mass units equivalents to post translational modifications can

be removed from the peptide peaks before the database is interrogated.

1.6.4.2 MS/MS

For the purposes of identifying proteins in sequence databases, the use of actual se-

quence data provides a far more constraining approach than peptide mass fingerprinting

(Zubarev et al., 1996). Tandem MS/MS utilises the specific ion selection capabilities

and subsequent collision induced fragmentation of ions to yield overlapping small ion

products which can then be used to directly search protein sequence databases or build

sequence data. Tandem MS/MS typically employs triple quadrupole (TQ) (Lee et al.,

1998), ion trap (IT) (Davis and Lee, 1997) or quadrupole time-of-flight (QTOF) MS

(Borchers et al., 2000) instruments. Either ESI or MALDI may be used as an ion source.

The use of ESI triple quadrupole system for the purposes of amino acid sequencing will

now be described.

A schematic of a TQ MS instrument with ESI is shown in Figure 1.11. With ESI, a
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solution containing the analyte (peptide/proteins) is passed through a fine needle held

at high electrical potential (+1000 - 5000 V). The high potential causes the generation

of positively charged ions and the dispersal of the analyte solution as a fine spray of

highly charged droplets. The charged analyte solution is introduced into the evacuated

MS through an entry orifice, held at lower potential (+100-1000 V). On entry into

the MS, the analyte droplets are desolvated through the directed flow of inert, heated

gas until only highly charged ion species remain (Kerbarle and Peshke, 2000; Kerbarle,

2000). A quadrupole is a series of four parallel rods, connected electrically and carrying

DC and AC voltages of opposite polarity. It is through the fine control of quadrupole

voltages that ions of particular m/z ratios pass through the quadrupole-containing cell,

whilst ions having different m/z ratios are diverted from the flight path and are thus

removed from further analysis. Thus the quadrupoles can be described as ion gates.

As the name suggests, a triple quadrupole instrument contains three quadrupoles,

ordered so that ions may pass sequentially through each cell. Operational modes of

each quadrupole can be selected, allowing the instrument to carry different peptide

analysis functions (see Table 1.3). For example, varying voltage of the quadrupole over

time allows the selection of ions across the entire mass range of the instrument, in a

‘scanning’ operation mode. Alternatively, ions may be allowed to pass freely through

a quadrupole by operating it in radio frequency (RF) mode. In the tandem MS/MS

operating mode peptide ions are introduced into the first quadrupole (Q1) which selects

specific ions based on their m/z ratios. Selected ions are allowed to enter the second

quadrupole (Q2), in which collision with an inert gas such as argon causes collision

induced dissociation (CID). The masses of the collision products are then determined

by the third quadrupole (Q3) operating in scanning mode.
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Table 1.3: Different operating modes of a TQ MS. MS/MS mode is most commonly used in proteomic applications

Operation Cells Description

Mode Q1 Q2 Q3

1 MS RF RF a Scanning Measures unfragmented ion masses. Alternatively, Q1 could scan masses,

with Q3 in RF mode.

2 MS/MS Specified m/z CID Scanning The most common mode of operation in proteomic studies. Selected ions

are subjected to CID and the m/z of resultant fragment ions are determined

by scanning Q3. Resultant fragment ion mass spectrum is correlated to

the m/z of the parent ion selected in Q1.

3 Neutral loss scan Scanning CID Scanning b Q1 and Q3 scan in a synchronous fashion, but are offset by the

value a neutral fragment ion. Therefore, only ions which

have lost the fragment ion group are transmitted through to the detector.

4 Precursor ion scan Scanning CID Specified m/z Q3 identifies specific groups which are cleaved off by CID,

and act as reported ions. As the m/z of the parent ion is recorded,

the presence of a reporter ion can be correlated back to the parent ion.

a Q2 is used without collision gas in this mode
b Scanning is offset by the value of a neutral group of interest which is lost during CID. Eg. 50 m/z corresponding to the loss of

H3PO4 (Covey et al., 1991) allows identification of phosphorylated peptides.
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ESI ionisation typically produces multiply-charged ion species (M + nHn+). For

example, trypsin digested peptides give rise to species with charges at the N -terminus

of the peptide and the amino side chain of lysine or arginine residues, i.e. M + 2H2+

ions. These doubly-charged species are selected for fragmentation as both products are

detectable in the instrument. Fragmentation of singly charged species results in only

one fragmentation product carrying a charge, the uncharged species being undetectable

to the Q3 mass analyser. Fragmentation of peptide ions commonly occurs at peptide

bonds in a sequence-specific manner. Fragmentation products are classified by the type

of fragmentation that occurred. Where the positive charge of the peptide ion remains

on the N -terminus, the ion is termed a b series ion. A subscript following the b ion

indicator denotes the number of amino acid residues in the fragmentation product,

counting from the N -terminus. Where the fragmentation process has removed the N -

terminus, and the charge remains on the C -terminus, they are classified as y series ions

(Biemann, 1990). Similarly, a subscript number denotes the number of residues in the

fragmented ion species, counting from the C -terminus. Sequential fragmentation results

in the formation of b or y ions series, where the mass difference between successive peaks

allows the determination of the amino acid residues that have been lost from the parent

ion.

Non peptide-bond fragmentation results in the generation of other ion species. For

example, the removal of carbon monoxide groups from b-series ions (-28 mass units)

results in the formation of a series ions (see Figure 1.12). In addition, if a specific

peptide ion undergoes multiple fragmentation events (Loo et al., 1993) internal acyl

ions, containing 2 or more amino acids; or immonium ions, containing a single amino

acid R group, are generated. As immonium ions represent individual amino acids they

provide partial amino acid composition of the peptide.

The combination of the rich information generated from the fragmentation of a

selected parent ion and the spectra of the parent ion itself, constitute a peptide sequence
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Figure 1.11: Schematic of a Triple Quadrupole MS/MS Instrument. Ejection
of the peptide solution from a fine needle held at high voltage results in the formation of
highly charged ions dispersed in a fine spray. N2 gas desolvates the sample leaving peptide
ions. In MS/MS mode, ions are selected for collision in the Q1 mass analyser. CID by
argon gas in the Q2 cell, and the masses of peptide fragments are measured in the Q3 mass
analyser. Figure adapted from Hall, JJ (2004).

tag which can be used to search protein databases (Mann and Wilm, 1994). Automated

algorithms have been developed such as SEQUEST (Eng et al., 1994), although manual

interpretation is sometimes required where the parentage of a particular ion series is

unclear (Pardo et al., 2000). Algorithms for the automated identification of PTMs,

such as phosphorylation and glycosylation, have also been developed (Annan and

Carr, 1997). Together these technologies provide a highly sophisticated package for

the sequencing of proteins, identification of PTMs and identification of the proteins,

including to translated EST sequences, in protein databases.

1.7 Plant Organelle Research in the Post Genomic Era

The techniques and methodological developments in the areas of proteomics with

relevance to this research project, namely sample preparation, 2D gel-based technolo-

gies and MS, have been described and discussed (see Sections 1.6.1 to 1.6.4.2). The
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Figure 1.12: Fragment ion nomenclature (Biemann, 1990) for the N - and C -
terminal ions. y ions result from N -terminal deletions, b ions from C -terminal deletions.
a ions are the product of fragmentation of carbon monoxide from the peptide ion.

contribution of these technologies along with other proteomic techniques (i.e. blue

native polyacrylamide gel electrophoresis, blue native DIGE, ICAT, iTRAQ, MudPIT)

to the field of plant biology are discussed in this section.

Proteomics has been defined as the systematic analysis of the protein population in a

tissue, cell or subcellular compartment, and the systematic analysis of the protein com-

plement of the genome (Pandey and Mann, 2000; Patterson and Aebersold, 2003). The

term was first coined in a research article which described the use of 2D electrophoresis

to analyse the proteins extracted from Mycoplasma genitalium, the smallest known self-

replicating organism, followed by downstream MS and Edman sequencing to identify

proteins based on their amino acid sequence homology to known sequences from other

organisms (Wasinger et al., 1995b).

The exponential rise in genome sequencing projects, starting with the sequencing

of the first DNA-based genome (Sanger et al., 1977) through budding yeast (Goffeau

et al., 1996), Arabidopsis (Theologis et al., 2000; Lin et al., 1999; Salanoubat et al.,

2000; Mayer et al., 1999; Tabata et al., 2000), Homo sapiens (Lander et al., 2001; Venter

et al., 2001) and recently Castor bean (http://castorbean.tigr.org/), has provided the

genomic data to support a concomitant increase in proteomic projects. Proteomics,
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that is - the analysis of all proteins expressed by the genome, provides a significant

additional perspective into the functioning of biological systems. Unlike analyses at

the DNA level, it can provide information on protein localisation within the cell, the

temporal nature of gene expression, post-translational modifications, protein-protein

associations and accurate quantification of protein amounts. Although quantification

of gene expression is obtained with transcriptomic tools such as microarrays or real time

PCR, differences in rates of protein and mRNA turnover mean it is not always possible

to correlate quantification of mRNA transcripts to their respective protein products

(Gygi et al., 1999). Thus the various methods and technologies of proteomic analysis

have become significant components in a plant biologists experimental toolkit.

The technology traditionally associated with proteomic analysis is 2DE, initially

reported by O’Farrell in 1975 (O’Farrel, 1975) (Please see Section 1.6.1 for a discussion

on the historical development and limitations of this technology). The use of this

technology in the analysis of plant protein samples occurred soon after, with an attempt

to separate chloroplast membrane proteins (Novak-Hofer and Siegenthaler, 1977). Since

then and to the present day, 2DE has been applied to a diverse array of plant protein

samples. Different approaches have been taken, including analysing proteins extracted

from plant cell culture suspensions (Lei et al., 2005), whole tissues (Wan and Liu,

2008) and fractionated organelles (Maltman, 2002). More recently, pre-electrophoretic

labelled of protein samples rather than the use of post-stains has brought about high

sensitivity, greater reproducibility and enhanced quantitative accuracy. It has been

used in a diverse array of 2DE analyses including an investigation into the effects of

salinity and hyperosmotic stress on A. thaliana cell proteins (Ndimba et al., 2005). In

that study, a large total number of spots (2,949) were identified and 266 were found to

be significantly changed in the stressed cells. Identifying such a large number of spots

can itself present problems. 2DE proteomic analysis of subfractions rather than a total

cellular protein analysis provides a significant benefit of reducing spotmap complexity
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which can be a significant problem with many samples. It increases the likelihood of

a single spot feature being an individual spot and thus increases the accuracy of the

quantification of that spot and its subsequent analysis by MS. A greater benefit of

organellar analysis though, and one universal to all proteomic analysis techniques, is

it augments identification of unknown proteins because of their localisation within a

known organelle. As biochemical function is to some degree separated by organelles, it

gives potential clues to the identity and function of unknown or novel proteins. It also

helps in the search for homologous proteins involved in biochemical pathways of interest

and identified in other organisms. In the work by Maltman et al. (2002), the first

published proteomic analysis of plant ER, a combined SDS PAGE and 2DE approach

was taken to analyse soluble and membrane bound components of the R. communis

ER proteome. In this work, chaperones and folding proteins of the ER were identified,

along with the key ricinoleic acid biosynthetic enzyme oleate 412 hydroxylase. One

of the challenges of this method is in obtaining pure organelle fractions. Some degree

of confidence in a samples purity can be obtained by carrying out an initial survey

of the sample, assaying for marker enzymes of different potential organelle, membrane

and cystolic contaminants. A significant challenge to successful gel-based analysis of

the proteome is the separation of membrane located proteins. Membrane proteins

represent almost one-third of eukaryotic genomes, yet due to their poor solubility in

the non-detergent isoelectric focussing buffer they tend to precipitate at their isoelectric

point (Ephritikhine et al., 2004). Membrane proteins can be integral to the membrane,

that is they contain at least one hydrophobic stretch of amino acids which cross the

lipid layer of a membrane where they are resident, or membrane-associated where

the protein is associated to the lipid membrane or to another associated or integral

protein. Attempts to analyse membrane-associated proteins by 2D gels has met greater

success than integral membrane protein analyses due to their comparatively greater

hydrophilicity. The interaction of associated proteins can be selectively disrupted
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by NaCl washes which with differential centrifugation can generate a useful subset

of associated proteins for proteomic analysis. This technique was used by Maltman

et al. (2002) in an analysis of proteins associated with the endoplasmic reticulum

of germinating and developing R. communis endosperm. Sample complexity was re-

duced by separating the ER into lumenal, peripheral and membrane bound fractions.

Proteomic studies focussing specifically on analysis of associated proteins in plants

have been published. An analysis of rice plasma membrane associated proteins and

their response to the plasma membrane defence elicitors chitooligosaccharides has been

published which identified eight protein spots which were predicted to be membrane-

associated and were up or down-regulated in response to the elicitor treatment (Chen

et al., 2007). Attempts to identify membrane bound proteins using traditional 2DE

methodologies in early proteomic studies were problematic. Plasma membrane proteins

from A. thaliana were analysed by 2DE but on sequencing of spots the proteome was

found to be significantly enriched for plasma membrane-associated proteins with few

putative membrane proteins (Santoni et al., 1999). Alternative detergents such as C8Ø

(Chevallet et al., 1998) and UTC8 (Santoni et al., 1999) have been used to replace

CHAPS in the 2DE lysis buffer. These attempts met with some success, for example

in the case of UTC8 there was 40% spot difference in the protein profile of A. thaliana

plasma membrane proteins compared to the CHAPS 2DE lysis buffer control, and when

these new spots were sequenced water channel proteins and H+-ATPase were detected

(Santoni et al., 1999). Generally, the availability of alternative non-gel-based proteomic

technologies has superceded their use in the analysis of membrane proteins.

Whilst mass spectrometry has long been a central component in gel-based pro-

teomic studies, first complementing and then often displacing earlier Edman sequencing

technologies, it has recently developed the analytical and quantitative power to do

away with gel-based steps for the purposes of measuring amounts of and fractionat-

ing proteins. MudPIT (multidimensional protein identification technology) utilises a
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combination of liquid chromatography to provide multidimensional fractionation of a

complex peptide mixture and MS (LC-MS) to analyse and identify the fractionated

peptides (Washburn et al., 2001). The protein sample is first digested in the presence

of the protease enzyme trypsin (Han et al., 2001; Goshe et al., 2003) or chemically

with CNBr (Washburn et al., 2001) to yield a complex peptide mixture. The sample

is then collected on a strong cation exchange (SCX) column, and multiple washes of

increasingly concentrated salt solutions release successive peptide fractions, depending

on their pI. Each fraction enters a second chromatography column, this time a reverse

phase (RP) column, which provides a second dimension of separation. The RP column

elutes peptides by hydrophobicity, through a gradient of increasingly concentrated

organic solvent washes. Peptides then enter the tandem mass spectrometer for se-

quencing. MudPIT has been utilised in a number of plant proteomic studies including

a comparison of rice (Oryza sativa) leaf, root and seed tissue which, along with a

complimentary 2DE analysis, idenitified 2,528 non-redundant proteins (Koller et al.,

2002). This analysis concentrated on the soluble portions of the three tissue types

analysed, to allow a comparison of the effectiveness of 2DE and MudPIT. The MudPIT

analysis identified a significantly larger number of unique proteins than identified

via the 2DE method (2,363 versus 556). However, 165 non-redundant proteins were

identified via the 2DE method which were not identified by MudPIT, indicating the

complementary nature of the technologies in this study. Interestingly, this study

identified only minor overlap of proteins between the three analysed tissues, with only

189 proteins being common to each tissue type. This indicates the highly specialised

nature of each tissue type, and perhaps a relatively minor genetic commitment required

to support central metabolic processes in a cell (Whitelegge, 2002). Although this

Koller paper analysed soluble plant proteins, one of the most significant benefits to

a MudPIT approach is its ability to analyse membrane proteins. MudPIT has been

used to identify seed filling in soya bean endosperm, analysing five sequential stages of
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endosperm development (2, 3, 4, 5 and 6 weeks after flowering) (Agrawal et al., 2008).

Similarly to the Koller (2002) study, it utilised a complementary MudPIT and 2DE

approach. 478 non-redundant proteins were identified, slightly more by MudPIT than

by 2DE. Interestingly, just 70 proteins were common to both datasets, again indicating

the usefulness of a combination of 2DE and MudPIT analysis methods. The MudPIT

analysis was three-fold enriched for proteins predicted to be membrane resident due to

the presence of hydrophobic amino acid stretches (Agrawal et al., 2008).

The ability to quantify levels of different proteins in a tissue or cell type is crucial if

the researcher wants to compare the relative abundances of proteins within a proteome,

or understand how protein abundance changes over time, between different tissues or

in response to disease or treatment. Although highly sensitive quantification of gene

expression can be obtained by analysing mRNA levels through microarray techniques,

their abundances cannot confidently infer the abundances of their respective proteins.

Although high throughput identification of proteins in complex mixtures is possible with

MudPIT MS analysis, for quantification of proteins researchers were reliant on tradi-

tional 2DE proteomic techniques. As already discussed 2DE has inherent limitations

with respect to the analysis of membrane proteins and proteins of low abundance, low

molecular weight or extremes of pI. It is also labour intensive, often taking many days

if not weeks to complete the experimentation and analysis of the 2DE gels, with only

limited scope for automation. In the last ten years, techniques have become available

to quantify proteins amounts within complex mixtures by mass spectrometry. Isotope

coded affinity tags (ICAT) (Gygi et al., 2003) relies on a pair of cysteine-residue binding

tags, consisting of three elements: a thiol-specific reactive group, a biotin group, and a

central linker portion which either contains eight 1H atoms (the light reagent), or 8 2H

deuterium atoms (the heavy reagent, which is 8 Da heavier). Two protein samples to

be compared are incubated with either the light and heavy reagents. Proteins are then

enzymatically cleaved and those peptides with ICAT-tags (i.e. cysteine containing) are
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separated by a biotin-binding column, before LC-MS/MS analysis. Peptides common

to both samples co-elute into the mass spectrometer, as the two tags are chemically

identical. The peptides have separate m/z ratios due to the mass difference of their

tags, so their relative abundances can then be calculated from the mass spectra. A

significant limitation of ICAT is it excludes all proteins that do not contain cysteine

residues. Cysteine is not a particularly common amino acid, for example around

8% of proteins in Saccharomyces cerevisiae do not contain this residue (Gygi and

Aebersold, 2000). Also, with only two tags available only pairwise comparisons can

be made between samples. ICAT has been used in plant studies including a recent

analysis of the chloroplast proteome of A. thaliana, comparing wildtype and thylakoid

sorting protein mutant strains (Rutschow et al., 2008)). ICAT identified changes

in light harvesting complex composition and changes in the relative abundances of

photosystems I and II between the mutant and wildtype strains. The ICAT analysis

in the study was complemented by another MS-based quantitative proteomic analysis

technology, iTRAQ. iTRAQ (isobaric tag for relative and absolute quantification) (Ross

et al., 2004) is a conceptually similar to the ICAT technology. This method utilises four

isobaric (i.e. equal mass) tags which label the free amines of a digested complex protein

sample, thus unlike ICAT all peptides in a sample are labelled. The labelled peptide

samples are mixed and analysed by LC-MS/MS. As the tags are isobaric they affect

elution of common peptides equally. In tandem mass spectrometry mode (peptides

are isolated and fragmented, see Section 1.6.4.2) each iTRAQ tag generates a unique

reporter ion. By comparing the relative intensities of the reporter ion on the mass

spectra quantification is achieved. The four tags available and the complete labelling

of peptides provide significant advantages over ICAT.

Protein mass spectrometry of sufficient sensitivity can identify post translational

modifications to proteins, such as phosphorlyation or glycosylation. Ubiquitination, the

conjugation of a protein with ubiquitin, is important in protein abundance, localisation
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and activity regulation in cells. MudPIT was used in the first analysis of the plant

ubiquitinated protein sub-proteome (Maor et al., 2007). An ubiquitin-binding affinity

chromatography step captured ubiquitinated proteins from a total cellular protein

extract from A. thaliana. The separated ubiquitinated protein subset was then digested

with trypsin and analysed by a MudPIT system. 294 proteins were identified, 56 of

which contained ubiquitinated lysine residues. This analysis indicates the potential

to augment standard MudPIT or LC-MS chromatography separations to enrich a

complex protein mixture to focus in on areas of interest. Another example would

be to use immobilised antibodies to retain proteins of interest prior to MS analysis.

Under suitable protein sample preparation conditions, protein-protein interactions can

be retained to gain an understanding of protein complexes. Protein complexes are likely

to play a significant role in biochemistry through for example substrate channelling,

and thus proteomic methods conserving native protein interactions is desirable. Blue

native electrophoresis is one such technique (Schagger and von Jagow, 1991). It utilises

Coomassie Blue G-250 to provide a net negative charge to proteins in a first dimension

separation, following by an SDS-PAGE separation in the second dimension. It has been

successfully used to identify interacting components on the mitochondrial respiratory

chain (Heazlewood et al., 2003) and photosystems in chloroplasts (Heinemeyer et al.,

2004). It is possible that protein complexes play an important role in lipid biochem-

istry, and such a technique may be useful in identifying biochemically important lipid

biosynthesis isoforms or even novel enzymes.

1.8 Yeast and Yarrowia lipolytica Lipid Biochemistry

1.8.1 Lipid Substrate Utilisation

A number of yeasts, such as Candida maltosa (Mauersberger et al., 1996), Pichia

guilliermondii (Wickerham, 1966) and Yarrowia lipolytica (Barth and Gaillardin, 1996),
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are able to utilise hydrophobic substrates such as alkanes as a carbon source for growth.

The oleaginous yeast Y. lipolytica is able to readily utilise a diverse array of other

hydrophobic substrates including alkenes, fatty acids (including ricinoleic acid), fats

and oils (Daum et al., 2007). It can often be isolated from substrates rich in protein

and lipids such as dairy products, cheese and meats. Indeed, it is one of the predominant

species in Camembert and blue cheeses (Roostita and Fleet, 1996).

There are two hypothetical mechanisms by which hydrophobic substrates enter

yeast cells. The substrates can be emulsified through the secretion of surfactants

by the organism, in a process termed surfactant-mediated transport (Mauersberger

et al., 1996). Alternatively, there is a direct interaction between the hydrophobic

substrate and the cell wall, termed direct interfacial transport. There is evidence of

direct interfacial transport in Y. lipolytica. Cell surface protrusions have been reported

on cells growing on oleic acid, which are not present in cells growing on glucose media

(Mlickova et al., 2004). Interaction of hydrophobic substrate and the Y. lipolytica cell

surface has been found to correlate with a decrease in cell wall polarity (Kim et al.,

2000) and it is hypothesised that this may be linked to protrusion formation. There

is also evidence of surfactant mediated transport in Y. lipolytica, where the active

secretion of surfactants into the culture media has been reported from cells growing on

hydrophobic substrates (Kinjarde and Pant, 2002). It is possible that in Y. lipolytica,

the two mechanisms work in concert to cause the efficient utilisation of hydrophobic

substrates. The secretion of surfactants increases the surface area of accessible lipid

within the culture media through the formation of micelles. Protrusion formation

allows the formation of comparatively hydrophobic microenvironments at the surface

of the cells, potentially aided by protrusion-targeted proteins with a high density of

hydrophobic -R groups presenting at the cell surface. Electron micrograph (EM) figures

of Y. lipolytica growing on oleic acid reveal interaction between the protrusions and

the lipid micelles, and tantalisingly, transmission EM figures suggest a channel from
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the protrusions into the ER (Mlickova et al., 2004).

Y. lipolytica is capable of utilising TAG molecules as the sole carbon substrate,

through the secretion of extracellular and cell surface lipases (Barth and Gaillardin,

1996). The mechanism by which fatty acids, either free within the media or hydrolysed

from TAG, then enter the cells is controversial (Fickers et al., 2005) although there is

evidence that free diffusion of fatty acids into cells occurs when their concentration in

the media is ≥ 1µM (Kohlwein and Paltauf, 1984).

1.8.2 Storage Oil Production

De novo formation of the DAG precursor PA proceeds via the same step-wise acylation

of G3P in yeast as described in plants (see Section 1.2.4.1). An alternative route to

PA formation utilises dihydroxyacetone phosphate (DHAP) acyltransferase to acylate

DHAP and form 1-acyl DHAP. This molecule is subsequently reduced by the action of

1-acyl DHAP reductase to form lysophosphatidic acid, which can be acylated at the

sn-2 position of the glycerol backbone to form PA. PA can also be formed through the

action of phospholipase D, or by the phosphorylation of DAG by DAG kinase (Müllner

and Daum, 2004).

Dephosphorylation of PA yields DAG, the immediate precursor to TAG formation.

As in plants, there are two major routes to TAG formation: the esterification of fatty

acid from acyl-CoA (acyl-CoA dependent route) or the esterification of a fatty acid

from phospholipid (acyl-CoA independent route). Genes expressing enzymes critical to

both these routes have been identified in Y. lipolytica (Beopoulos et al., 2008).

1.8.2.1 Acyl-CoA Dependent Pathway

Acyl-CoA dependent formation of TAG is catalysed by DAGAT (Lehner and Kuksis,

1996), whose encoding gene, related to mammalian acyl-CoA : cholesterol acyl trans-

ferase (ACAT), has been cloned in a diverse range of organisms including humans
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(Oelkers et al., 1998), mice (Cases et al., 1998) and plants (Hobbs et al., 1999; Zou

et al., 1999). Although DAGAT activity had been localised to oil bodies in vitro in

S. cerevisiae as early as 1978 (Christiansen, 1978; Christiansen, 1979), the cloning of

a DAGAT gene in any yeast remained elusive. In 2001, two DAGAT genes unrelated

to the ACAT gene family were cloned from the oleaginous fungus M. ramanniana

(Lardizabal et al., 2001). Subsequently, homologues to the M. ramanniana DAGAT

genes were identified in a range of organisms, leading to a proposed new DAGAT gene

family, DAGAT2.

DAGAT2 has been identified in S. cerevisiae with 44% amino acid sequence homol-

ogy (Sorger and Daum, 2002). Localisation studies of the S. cerevisiae DAGAT enzyme

(termed Dga1p in this organism) using [14C] labelled DAG and acyl-CoA found 70-fold

enrichment of DAGAT activity in the oil bodies compared to crude homogenate, and a

2-3 fold enrichment in the microsomes (Sorger and Daum, 2002). S. cerevisiae Dga1p

activity was found to be strongly dependent on Mg2+ and K+. DAGAT activity in

the microsomes of a dga14 mutant strain was only slightly decreased compared to

wildtype control. However, DAGAT activity in the oil bodies was found to be just

5% of wildtype control. This indicates that Dga1p is likely the only or major DAGAT

in oil bodies, that Dga1p is also localised to the ER alongside other DAGAT activity

(Sorger and Daum, 2002). Despite the significant enrichment of DAGAT activity in

the oil bodies reported by Sorger and Daum (2002), in another study published in the

same year DAGAT activity was only identified in the ER (Oeklers et al., 2002).

DAGAT2 has been identified in Y. lipolytica as an oil body-resident enzyme (Athen-

staedt et al., 2006) in oil bodies extracted from cells growing on oleic acid but not

glucose. It has 33% amino acid homology with the S. cerervisiae DGAT2 (Beopoulos

et al., 2008).

Yeast DAGAT displayed significant substrate selectivity in vitro, with oleoyl CoA

and palmitoyl CoA the preferred substrates. Myristoyl CoA, stearoyl CoA, arachidinoyl
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CoA and linoleoyl CoA were used at a significantly lower rate (Oeklers et al., 2002).

1.8.2.2 Acyl-CoA Independent Pathway

In mammalian cells, the synthesis of cholesterol esters occurs mainly through the

transfer of acyl-CoAs by the DAGAT related enzyme ACAT (acyl-CoA cholesterol

acyltransferase). An alternative route to cholesterol ester formation occurs through

an acyl-CoA independent route, utilising acyl groups at the sn-2 position of PC, by

the mammalian blood enzyme LCAT (Glomset, 1968). The discovery of an acyl-CoA

independent route to TAG formation was reported for both plants and yeast in 2000

(Dahlqvist et al., 2000; Oeklers et al., 2000). Sequence homology between DAGAT

and LCAT raised the possibility that an LCAT related enzyme could be responsible for

PDAT activity observed in yeast microsomes (Dahlqvist et al., 2000). One S. cerevisiae

open reading frame (YNR008w) was identified by homology search, and was found to

share 27% overall identity with the human lecithin cholesterol acyltransfease (LCAT).

Now termed LRO1 (Lecithin Related Open reading frame), key catalytic residues are

conserved between the yeast PDAT and the mammalian LCAT. Ser181 and Asp345,

two members of the LCAT catalytic triads, are conserved in the yeast gene. As reported

for R. communis, C. palaestina and sunflower, PDAT in yeast utilises acyl groups at the

sn-2 position of PC and PE. Examination of a lro14 mutant strain found that PDAT

activity was removed, but no change in the production of TAG using acyl-CoA as a

substrate could be observed (Oeklers et al., 2000; Sorger and Daum, 2002), indicating

the existence of at least two distinct TAG formation pathways.

In vitro assays with yeast microsomes found that yeast PDAT incorporates sn-2

ricinoleoyl CoA into TAG with 2.5 times high efficiency compared to an oleoyl group at

the same position (Dahlqvist et al., 2000). In the study, no preference for sn-2 vernoloyl

groups over sn-2 oleoyl was identified. Diricinoleoyl DAG and divernoloyl DAG were

superior acyl acceptor molecules than dioleoyl DAG. Interestingly, despite its homology
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to human LCAT, yeast PDAT is unable to catalyse removal of ergosterol from PC.

Lro1p activity could not be detected in the oil bodies of S. cerevisiae, but was

localised exclusively to the ER (Dahlqvist et al., 2000; Oeklers et al., 2000). This

is opposite to what was observed for Dga1p, whose activity was found to be highly

enriched in the oil bodies (Sorger and Daum, 2002).

A Y. lipolytica orthologue to PDAT has been identified, which has 45% amino acid

homology (Beopoulos et al., 2008).

1.8.2.3 Temporal Separation of DAGAT and PDAT Activity

The relative contributions of Dga1p and Lro1p to TAG synthesis in S. cerevisiae were

studied in a dga14 and lro14mutant strains, and revealed distinct temporal separation

of Dga1p and Lro1p activity. Oeklers et al. (2002) compared TAG production at

exponential growth phases compared to the stationary growth phase of yeast, and found

a less pronounced decrease in TAG in exponentially growing cells than those grown to

stationary phase. This was confirmed Sandager et al. (2002) who compared dga14 and

lro14 mutant strains and found dga14 to be the only strain with significantly reduced

TAG levels at stationary phase (Sandager et al., 2002). Conversely, significant decreases

in TAG production in lro14 strains were only observed during exponential growth

phases (Oeklers et al., 2000). Dahlqvist et al. (2000) found that LRO1 expression was

slightly higher during exponential growth. Transcriptional upregulation has been found

to occur in S. cerevisiae entry into stationary phase (Gasch et al., 2000). Together the

expression data support the observations of TAG accumulation reported by Oeklers et

al. (2002) and Sandager et al. (2002).

Double knockout dga14/lro14 strains showed an 80% reduction in TAG when the

cells reached late logarithmic growth (Sorger and Daum, 2002). However, Oeklers

et al. (2002) reported a 97% decrease in TAG production throughout growth. The

discrepancies between the observations were though possibly due to the use of different
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background strains. Both observations indicate a) Lro1p and Dga1p are the major route

to TAG formation in S. cerevisiae and b) another, minor, route to TAG formation must

exist in this yeast.

It is possible that temporal separation of DAGAT and PDAT activity exists in Y.

lipolytica but there is currently no published literature to support this.

1.8.2.4 Minor DAGAT Activities of Are1p and Are2p

Mammalian DAGAT belongs to the same family as ACAT, which includes two mam-

malian ACATs (ACAT1 and ACAT2) and two yeast ACAT related enzymes (ARE1 and

ARE2 ) (Müllner and Daum, 2004). Are1p and Are2p both catalyse sterol esterification

(Yang et al., 1996; Yu et al., 1996). Their relationship to a gene family bearing close

homology to DAGAT led research efforts to investigate whether they are responsible

for the residual TAG formation reported in the dga14/lro14 double knockout strains

(Sorger and Daum, 2002; Oeklers et al., 2002). This was confirmed by comparing two

triple mutant S. cerevisiae strains: lro1/dga1/are1 and lro1/dga1/are2, one of which

expressed ARE1 and the other ARE2 (Sandager et al., 2002). Both strains, expressing

either ARE1 or ARE2, were found to have DAGAT activity, but at very low levels.

There is however some controversy as to the extent of the respective contribution of

Are1p and Are2p, as an earlier study ascribed DAGAT activity to Are1p solely, with

Are2p restricted to sterol metabolism (Sandager et al., 2000). The quadruple mutant

dga14/lro14/are14/are24 was devoid of all TAG however (Sandager et al., 2002).

In Y. lipolytica, only one steryl ester synthase (ARE ) has been identified, which

has 30% amino acid homology to Are2p of S. cerevisiae. Its identify was confirmed by

enzymatic analysis (Beopoulos et al., 2008).
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1.9 Aims

The overarching general hypothesis behind this study is as follows: The enzymatic

components key to high levels of triricinolein (TRO) production in R. communis can

be identified through the use of a proteomic analysis targeting the site of castor oil

biosynthesis (the developing seed) and the contribution of these enzymes to TRO

production can be rapidly assessed in yeast prior to transformation in a plant host.

Out of this general hypothesis came two core groups of aims. Firstly, to employ

state-of-the-art proteomic technology to characterise the differences between the en-

doplasmic reticulum of germinating and developing R. communis seed with a view to

identifying components of lipid biosynthesis in the developing tissue. Specifically:

• to establish the preparation procedures for R. communis cv. 99N89I and to assess

the reproducibility of the preparation method with this strain

• to establish the proteomic techniques for large format preparative and analytical

analysis of protein samples, and

• to perform a large-scale multi-replicate quantitative 2D DIGE analysis of ger-

minating versus developing R. communis ER and to obtain the identities of the

significantly elevated proteins by MALDI-TOF and MS/MS sequencing.

Secondly, with an aim of aiding the establishment of an in vivo lipid gene assay

system, to develop the protocols for the growth of the appropriate strains of the

oleagnious yeast Y. lipolytica on lipid media, the extraction of lipid from this organism

and the procedures for lipid analysis amenable to the lipid extracts. In particular,

• to establish growth of Y. lipolytica on a range of carbon substrates, to extract

lipid and identify the TAG component by TLC and GC

• to establish TLC and quantitative GC produces suitable for routine and rapid

analysis of lipid extracts from Y. lipolytica, including TRO.
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Chapter 2

Materials and Methods
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2.1 Materials

All chemicals used throughout this study, unless otherwise stated, were supplied by

Sigma Chemical Company Ltd., Fancy Road, Poole, Dorest BH17 7HN UK. Methyl

ricinoleate was supplied by Stearinerie Dubois, Rue du Dome, Boulogne, France.

2.2 Plant methods

2.2.1 Growth of R. communis

2.2.1.1 Developing seed

R. communis seed variety 99N89I was obtained from Arkema (Colombes, France). For

the production of fresh developing seed, seeds were first imbibed overnight in a Buchner

flask connected to running water. After imbibition seeds were planted in a 50:50 mixture

of sand and compost in 30 cm diameter pots measuring approximately 2 cm beneath

the surface of the compost. Pots were watered daily directly on to the compost surface.

Plants were grown in a Sanyo Gallenkamp (Leicestershire, UK) growth room with a 16

hour photoperiod. The temperature of the growth room was set to 23 ◦C in the light

and 18 ◦C in the dark. Developing R. communis seeds were harvested between 25 - 28

days after flowering.

2.2.1.2 Germinating seed

R. communis 99N89I was also used for production of germinating seed. Seeds were

imbibed overnight in a Buchner flask connected to running water before planting a tray

of moistened Vermiculite. Seeds were distributed across the surface of the moistened

Vermiculite with approximately 5 cm spacings between each seed, then covered to a

depth of 1 - 2 cm with more moistened Vermiculite. Seeds were germinated in a growth

room, in the dark, at 30 ◦C for 3 days.
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Table 2.1: Constituents of R. communis endosperm homogenisation buffer

Constituents Stock solution Volume Final Concentration

Sucrose 1 M 25 ml 500 mM
KCl 4 M 125 µl 10 mM
EDTA 0.5 M 100 µl 1 mM
MgCl2 1 M 50 µl 1 mM
DTT 1 M 100 µl 2 mM
Tricine/KOH pH 7.5 1 M 7.5 ml 150 mM
PMSF 1 M 5 µl 0.1 mM

2.2.2 Subcellular fractionation of R. communis endosperm

2.2.2.1 Developing seed

25 - 28 day after flowering seed pods were bisected with a clean razor blade to reveal

the white endosperm of the developing R. communis seed. A staging method of seed

development was used (Greenwood and Bewley, 1982) to select endosperm of similar

developmental age (Stage V, see 3.3.1.1). Endosperm was removed from the seed pods

with a small spatula and transferred to a glass Petri dish on ice, containing 30 ml of

homogenisation buffer (Table 2.1). After the collection of endosperm from typically 30

seed pods, they were homogenised for exactly 20 minutes with a new razor blade to

give a uniform endosperm ‘slurry’ (on ice). The homogenate was filtered through a 100

µm mesh into an F0650 centrifuge tube (Beckman Coulter, Fullerton, CA. USA). This

filtrate was then centrifuged (3000 x g, 4 ◦C, 20 minutes) to yield a pellet of unbroken

cells and cell debris and a supernatant containing liberated subcellular material. The

resultant fat pad floating on top of the supernatant was carefully removed with a spatula

and the supernatant tipped away from the pellet.

The supernatant was then layered upon a discontinuous sucrose gradient in a 38 ml

SW28 (Beckman Coulter, Fullerton, CA. USA) centrifuge tube, set up as follows: 7 ml

30% w/w sucrose (containing 1 mM EDTA, 0.1 mM PMSF), 15 ml 20% w/w sucrose
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(containing 1mM EDTA, trace PMSF), 13 ml endosperm preparation. All solutions and

tubes were kept on ice during this process. Balanced tubes were then ultracentrifuged

for 2 hours (100,000 x g, 2 ◦C). Following ultracentrifugation, a defined band of semi-

purified ER is visible at the interface between the 30% and 20% sucrose solutions. This

was removed by carefully piercing the wall of the centrifuge tube with a sterile needle

and syringe and sweeping through the interface region until the band is captured and

a clean interface is left. This was done for all tubes, the semi-purified ER samples

pooled and an equal volume of 60% w/v sucrose added. A second purification step was

then performed using floating centrifugation in a 3-step discontinous sucrose gradient.

15 ml SW41 (Beckman Coulter, Fullerton, CA. USA) tubes were used, containing the

following solutions: 4 ml 60% sucrose-mixed semi-purified ER, 3 ml 40% sucrose, 3

ml 30% sucrose, 2 ml 20% sucrose. All sucrose solutions contained 1mM EDTA and

trace PMSF. Balanced tubes were then ultracentrifuged for 22 hours (100,000 x g, 2

◦C) resulting in a band of purified ER collected at the 20% / 30% interface. As before,

this was removed with a sterile needle for each tube and the samples pooled. An equal

volume of ice-cold ddH2O was added and the purified ER sample pelleted at 100,000

x g for 1 hour. Finally, the supernatant was removed to leave a dark pellet of purified

ER. This was re-suspended in either 10% glycerol or a 2D-electrophoresis lysis buffer

(9M urea, 2M thiourea, 4% CHAPS) depending on the downstream intended usage of

the sample.

2.2.2.2 Germinating seed

After 3 days of germination, R. communis seeds were removed from the vermiculite

and the extent of germination assessed. Those seeds that had reached the ‘3 day’

development, characterised by the separated seed husk, intact endosperm and root

hairs, were selected for preparation (see 3.3.1.1). Their roots and seed husks were

removed before washing in ice-cold water (from this point all solutions were kept on
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ice). A razor blade was then used to bisect the endosperm allowing the cotyledon to

be removed and discarded. Endosperm halves were transferred to a Petri dish on ice,

containing 30 ml of homogenisation buffer (Table 2.1). The purification procedure was

then identical to the developing ER purification protocol above.

2.3 Proteomic methods

2.3.1 Bradford protein assay

The Bradford protein assay (Bradford, 1976) is a colourimetric assay based on the

absorbance shift of Coomassie dye to 595 nm on its binding to the protein. The

increase of absorbance at 595 nm is proportional to the amount of bound dye and

thus to the concentration of protein within a sample. Protein Assay Dye Reagent Con-

centrate (BioRad Laboratories, Hercules US) was used as the dye, as per manufacturers

instructions. Bovine Serum Albumin (BSA) was used as a protein standard from which

standard curves were created.

2.3.2 Modified Bradford assay

A limitation of the standard Bradford protein assay is that it is incompatible with the

2DE lysis buffer due to the presence of thiol containing groups and carrier ampholytes

which interfere with the standard assay. A modified Bradford assay was developed to

circumvent this issue (Ramagli et al., 1985). This required the acidification of protein

samples before absorbance measurement and allowed a stable, linear relationship be-

tween protein and absorbance to be obtained. 1 ml reaction volumes were typically

used for the assay procedure, containing 25 µl of either 1 - 20 µg bovine serum albumin

(BSA) in 2DE lysis buffer or the unknown protein sample in a total volume of 25 µl 2DE

lysis buffer. To this was added 10 µl 0.1 M HCl and 65 µl ddH2O. Finally, 900 µl 25%

(v/v) Protein Assay Dye Reagent Concentrate (BioRad Laboratories, Hercules US) was
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added and the reaction mixture vortexed and incubated at room temperature for 10

minutes. Absorbances were measured immediately after incubation and unknown values

plotted against the known BSA standard curve to allow comparison to the standard.

2.3.3 1D SDS PAGE gels

Mini 1D SDS-PAGE was performed using the Laemmli tris-glycine buffer system (Laemmli,

1970b). Bio-Rad Mini-Protean II gel kit was used with a Bio-Rad PowerPac 300 power

supply (Bio-Rad Laboratories, Hercules, US).

2.3.3.1 1D SDS PAGE Sample preparation

For the purposes of 1D SDS PAGE, protein samples were solubilised in the presence

of 5x SDS loading buffer (10% (w/v) SDS, 5% (w/v) DTT, 0.05% (w/v) bromophenol

blue, 0.312 M Tris-HCl pH 6.8, 50% (v/v) glycerol) to give a final volume of 1% SDS

loading buffer.

2.3.3.2 Gel casting

For the purposes of 1D SDS PAGE 0.75 mm thick discontinuous acrylamide gels were

routinely poured, consisting of a 12% resolving gel and 5% stacking gel. Glass plates

were sprayed with 70% ethanol and allowed to air dry before gel cassettes were assem-

bled. The resolving solution consisted of 12% acrylamide (acrylamide:bis-acrylamide

37.5:1) (Bio-Rad Laboratories, Hercules, US), 375 mM Tris-HCl pH 8.8, 0.1% (w/v)

SDS, 0.05% (w/v) ammonium persulphate (Bio-Rad Laboratories, Hercules, US), and

0.2% (v/v) TEMED. Ammonium persulphate and TEMED were added just prior

to pipetting the 12% gel solution into the gel cassette. Water saturated butan-1-ol

was then pipetted on top of the 12% gel solution which facilitated the formation of

a smooth, horizontal gel surface on polymerisation. Following this step the butan-

1-ol was tipped away, the gel surface washed with ddH2O and dried with blotting
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paper. Layered upon the 12% resolving gel was poured a 5% stacking gel consisting

of 5% acrylamide (acrylamide:bis-acrylamide 37.5:1) (Bio-Rad Laboratories, Hercules,

US), 125 mM Tris-HCl pH 6.8, 0.1% (w/v) SDS, 0.05% (w/v) ammonium persulphate

(Bio-Rad Laboratories, Hercules, US), and 0.2% (v/v) TEMED and was prepared in

the same fashion as for the 12% solution. A 70% ethanol cleaned 0.75 mm comb was

inserted into the still-liquid stacking gel before leaving to set. Combs were then removed

gently under slowly running water and the gels used immediately or stored in moistened

tissue paper at 4 ◦C.

2.3.3.3 Tank set up and sample loading

Polymerised gels were clipped into the Bio-Rad (Bio-Rad Laboratories, Hercules, US)

tank frame and inserted into the gel tank. 800 ml of 1 x running buffer was then poured

into the tank. Running buffer was made as a 10 x stock containing 14.4% (w/v) glycine,

3.0% (w/v) tris, 1.0% SDS.

Samples solubilised in SDS loading buffer were loaded into wells with a tapered pipette

tip and care was taken not to draw air into the pipette tip when taking up samples to

be loaded onto the gel. Air in the pipette tip could potentially risk cross contamination

of sample wells as the bubbles rise up from well. Typically protein samples were run

alongside ‘SDS 7’ molecular weight standards, containing proteins of 66, 45, 36, 29, 24,

20.1, 14.2 kDa (Dalton Mark V11-L. Sigma).

2.3.3.4 Electrophoresis conditions

Initially 100V was applied to the gel to bring the samples through the stacking gel

and into the resolving gel, at which point the voltage was increased to 200V. When

the bromophenol blue dye-front reached within 1 mm of the end of the gel, the gel kit

was carefully dismantled and the gels removed. For protein visualisation Coomassie

Brillilant Blue R250, silver or SyproTM stains were used.
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2.3.4 Mini 2-dimensional SDS PAGE

2.3.4.1 Protein sample preparation

Protein samples for 2-dimensional SDS PAGE are solubilised in a highly concentrated

lysis buffer containing the chaotropic agent urea, alongside surfactants CHAPS and

thiourea (9 M urea, 2 M thiourea, 4% CHAPS). The high concentrations of the compo-

nents in the lysis buffer means solubilisation can take some time. This was quickened

by keeping the lysis buffer in a water bath heated to 30 ◦C by means of a heating plate

of a stirrer, with gentle mixing. It is critical that the temperature of the lysis buffer

does not rise above 35 ◦C as urea will decompose above this temperature.

2.3.4.2 Reswelling IPG strips

7 cm IPG strips were re-swelled with lysis buffer (9 M urea, 2 M thiourea, 4% CHAPS,

1% DTT (Melford Laboratories, Suffolk UK), 2% carrier ampholytes, bromophenol

blue) containing the protein sample. The pH range of the carrier ampholytes was

matched to the pH range of the IPG strip to be used. Lysis buffer containing the desired

amount of protein sample was diluted to a final volume of 125 µl. An ImmobilineTM

Drystrip re-swelling tray (GE Healthcare, Bucks UK) was used for the re-swelling

process, 125 µl sample pipetted into the IPG strip channel and with a pair of forceps

the plastic backing removed from an IPG strip before lowering onto the sample. To

keep the IPG strip on top of the sample, and to prevent the strip drying out, 2 ml

DryStrip Cover Fluid (GE Healthcare, Bucks UK) was pipetted over the strip. Strips

were re-swelled for at least 6 hours or overnight.

2.3.4.3 First-dimension isoelectric focussing (IEF)

Isoelectric focussing of mini (7 cm) strips was performed with a Multiphor II IEF unit

(GE Healthcare, Bucks UK). This unit contains a ceramic plate connected a circulating
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Table 2.2: IEF running conditions for 7 cm pH 3-10 IPG strips

Step Volts Current Power Time Volt Hours
(V) (µA / strip) (W) (Vh)

1 200 50 5 0:01 -
2 3500 50 5 - 2800
3 3500 50 5 - 3700

Total 6500

water bath (Grant Instruments Ltd., Cambridgeshire UK) set to 20 ◦C cooling the IPG

strip during focussing. IPG strips are secured in an electrode assembly consisting of a

support frame, two electrode arms, and an IPG strip alignment guide to ensure correct

placement of strips within the assembly. The electrode arms are connected to a power

source allowing current to pass through the strips when the Multiphor II is set up.

Re-swelled strips were removed from the re-swelling tray and gently rinsed with

ddH2O to remove surface DryStrip Cover Fluid. The plastic side of the strip was dried

with blotting paper and placed gel-side up on the alignment guide of the Multiphor II.

Approximately 5 ml of DryStrip Cover Fluid was poured between the ceramic plate and

the support frame, and the support frame and the alignment guide, to aid conductance

of heat away from the strips. Electrode wicks were dampened with ddH2O and blotted

to remove the excess, before laying upon the IPG strips. The electrode arms were then

attached to the support and the lid clipped in place. On closing the lid the circuit

incorporating the IPG strips is completed. A programmable power unit was used set

up with the programme described in Table 2.2, and the programme allowed to run to

completion.
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2.3.4.4 Equilibration

Equilibration of IPG strips is a two-step process and takes place between IEF and the

second dimension SDS PAGE separation. It serves to incorporate SDS into the strip in

preparation for the second dimension separation, as well as maintaining reducing condi-

tions (DTT) and alkylating thiol groups (iodoacetamide) to prevent their re-oxidation

during electrophoresis. Following IEF, strips are removed from the Multiphor II unit

and rinsed with ddH2O to remove surface DryStrip Cover Fluid. 2 ml of equilibration

buffer was pipetted into a channel of the equilibration tray (GE Healthcare, Bucks

UK). Equilibration buffer (30% (v/v) glycerol, 2% (w/v) SDS, 50mM Tris-HCl pH

8.8, 0.002% (w/v) bromophenol blue) was pre-made, stored at -20 ◦C, and on usage

either 1% (w/v) DTT or 4.8% iodoacetamide was added. Strips were incubated under

gentle agitation for 15 minutes at room temperature in 1% DTT equilibration buffer.

After this time, the strip was transferred to a channel containing 4.8% iodoacetamide

equilibration buffer and incubated under the same conditions for a further 15 minutes.

2.3.4.5 Second-dimension electrophoresis

Gels for mini 2-dimensional SDS PAGE were set up in a similar way to 1D SDS PAGE

except they did not contain a stacking gel section and were 1 mm in thickness (see

Chapter 2.3.3.2). 12% acrylamide gels were poured (12% acrylamide (acrylamide:bis-

acrylamide 37.5:1) (Bio-Rad Laboratories, Hercules, US), 375 mM Tris-HCl pH 8.8,

0.1% (w/v) SDS, 0.05% (w/v) ammonium persulphate (Bio-Rad Laboratories, Her-

cules, US), and 0.2% (v/v) TEMED) to approximately 0.8 mm from the top of the

glass cassette. Butan-1-ol was pipetted on to the gel solution surface to provide a

smooth horizontal surface. On polymerisation, butan-1-ol was tipped away and the gel

surface washed with ddH2O and dried with blotting paper. Further ddH2O was then

pipetted onto the gel up to the top of the glass cassette. The equilibrated IPG strip

could then be lowered down upon the gel surface, taking care so not to introduce air
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bubbles between the IPG strip and the acrylamide gel. Once the IPG strip was in

place, the water was then gently tipped away so as not to disturb the IPG strip or

introduce air bubbles. IPG strips were then sealed in place with molten agarose sealing

solution (1% (w/v) low melting point agarose, 0.002% (w/v) bromophenol blue in Tris-

glycine SDS electrophoresis buffer). This was then left to set before electrophoresis was

performed in the same manner as for mini 1D SDS PAGE (Chapter 2.3.3.4).

2.3.5 2-Dimensional in-Gel Electrophoresis

2-Dimensional in-Gel Electrophoresis (2D DIGE) is a fluorescence-based multiplexed

proteomics platform (Tonge et al., 2001b) commercialised by Amersham Bioscience

(now GE Healthcare). It allows for highly accurate quantitation of protein levels and

identification of statistically significant protein changes between control and treated

groups of sample. Although there are broad similarities in proteomic methodology be-

tween 2D DIGE and traditional 2DE, in the laboratory a number of pieces of apparatus

including IEF equipment and second dimension tanks are used specifically for 2D DIGE

and as such will be considered separately in this section.

2.3.5.1 Sample preparation for CyDye labelling

For the successful labelling of proteins the pH of the lysis buffer solubilised sample

should be between pH 8.0-9.0. Prior to labelling the pH of the protein sample was

tested by aliquoting a small volume (0.5-1.0 µl) of sample onto pH indicator strips

(pH 7-14). This was adjusted as required with 0.1M NaOH to bring the sample into

the region of pH 8.0-9.0. R. communis ER protein samples are dominated by highly

abundant acidic proteins so it was found that if adjustment was required the pH would

need to be increased through the addition of 0.1M NaOH. This is a critical stage of the

method, as the pH will strongly affect the success of CyDye labelling.
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2.3.5.2 Creation of CyDye stock solutions

CyDye reagent comes in 10 nmol batches for each dye. This needs to be reconstituted

in anhydrous N,N-dimethylformamide (DMF), 99.8% (Sigma Order No. 22705-6) to

create working stock solutions. As normal practice, new bottles of DMF were used with

each new batch of dye purchased. Two levels of CyDye stock solution were used: the

primary stock and working stock. Vials containing the dyes to be reconstituted were

removed from the freezer and incubated at room temperature for at least 5 minutes to

warm up. The vials were briefly centrifuged to bring the powder to the bottom before

opening. The contents of the vial was then resuspended in 10 µl of DMF to obtain the

primary stock, at a concentration of 1 nmol/µl (1 mM). The primary stock is stable for

a maximum of 2 months at -20 ◦C. The tubes were covered with parafilm, stored in a

bottle containing desiccant and then heat-sealed in a plastic bag to minimise moisture

exposure.

For the creation of working stocks, 2.4 µl of DMF was aliquoted into PCR tubes

labelled Cy2, Cy3 and Cy5. 1.6 µl of dye was pipetted into the appropriate labelled

tube to give a final volume of 4 µl and vortexed. This gave the working stock at a

dilution of 400 pmol/µl (0.04 mM).

2.3.5.3 CyDye labelling

Protein samples adjusted to the correct pH were quantified with the modified Bradford

procedure. 1 µl of working stock was added to 50 µg of protein sample at a minimum

concentration of 1 µg/µl.

2.3.6 Large format 2DE

Two separate large format 2DE systems were used in this study, either a Multiphor II

IEF unit and Hoefer Dalt second dimension electrophoresis tank or an IPGPhor IEF

unit and DaltTwelve second dimension tank.
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2.3.6.1 Sample loading and first dimension isoelectric focussing

For analytical gels cup loading is the recommended method of sample introduction.

18 cm pH 3-10 Immobiline DryStrips (GE Healthcare, Bucks UK) were re-swelled

overnight in 350 µl 2DE lysis buffer (9M urea, 2M thiourea, 4% CHAPS, 2% pH 3-

10 ampholytes (GE Healthcare, Bucks UK), 1% DTT, trace bromophenol blue). The

technical method for re-swelling strips is as described in Section 2.3.4.2 except the

re-swelling solution did not contain any protein sample.

After re-swelling strips, they were removed with forceps by gently peeling the strip

up from the re-swelling tray. The plastic back of the strip was wiped dry of cover oil

against blotting paper. The strip was then placed gel side-up in the ceramic IPG strip

holder of the IPGPhor IEF apparatus. Electrode wicks (GE Healthcare, Bucks UK)

were cut to 1.2 cm in length, submerged in ddH2O briefly and the excess blotted away

before being placed on each end of the strip, so that there was no revealing IPG at the

end of the strip. The sample loading cup was placed upon the IPG strip at the anodic

end. The cup features an invagination so that it sits tightly across the strip minimising

the chance of sample leakage. Care was taken to ensure the bottom of the cup was

true to the gel on the strip. The sample cup was then filled with 70 µl of DryStrip

cover oil (GE Healthcare, Bucks UK) and the level of oil within the cup was monitored

to ensure that there were no leaks. This is critical to minimise risk of sample loss. If

no leaks have occurred after 5 minutes, the protein sample is pipetted into the cup by

lowering the pipette tip beneath the surface of the oil. The sample displaces the oil

which in turn prevents the samples crystallisation. A further 4 ml of DryStrip cover oil

was then pipetted across the surface of IPG strip. Care was taken not to disturb the

sample loading cup with the force of oil by pipetting some distance away and allowing

the oil to run across the strip. Finally, electrode arms are clipped in place at the anode

and cathode connecting the terminals on the IPGPhor to the electrode wicks sitting

upon the gel, completing the circuit.
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Table 2.3: IEF running conditions for 18 cm pH 3-10
IPG strip on the IPGPhor IEF apparatus

Step Volts (V) Volt hours (Vh) Time a Current

1 500 41 00:10 Gradient

2 1000 1000 01:20 Gradient

3 4000 4166 01:40 Gradient

4 6500 65000 10:00 Step-n-Hold

5 1000 - 60:00 Step-n-Hold
a Time is in excess, run length determined by volt hours (run

complete at around 70,000Vh)

The IPGPhor was pre-programmed with the protocol for 18 cm pH 3-10 strips,

which is detailed in Table 2.3. The length of time for focussing was determined by volt

hours (Vh), the run being terminated after 65,000 - 70,000 Vh.

2.3.6.2 Large format gel casting

12% homogenous second dimension gels were cast using the Ettan Dalt gel casting

apparatus. The gel caster was cleaned with TeepolTM, rinsed thoroughly with ddH2O

to remove any polymerised acrylamide and dried. Glass plates were cleaned by 1)

scrubbing then soaking in 1% DeconTM (v/v) for 1 hour, 2) rinsing thoroughly in

ddH2O, 3) soaking in 1% HCl (v/v) for 1 hour, 4) thoroughly rinsing in ddH2O before

drying with lint-free Crew Wipes (Kimberley Clarke). Plate dimensions were 260 x 200

x 1 mm for low-fluorescent plates destined for imaging of CyDye fluors or 260 x 200 x

1.5 mm for preparative gels. Gel solutions were made up as per Table 2.4 without APS

and TEMED. The gel caster was assembled containing the required number of glass

cassettes and spacers and a plastic funnel was attached to the inlet of the gel casting

tank for gel solution introduction. Displacing solution (375mM Tris-HCl pH 8.8, 50%
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Table 2.4: Constituents of 12% homogenous large format
acrylamide gels

Constituent Volume (ml) Final Concentration

40% (v/v) acrylamide b 300 12%

10% (v/v) SDS 10 0.1%

1.5 M Tris-HCl pH 8.8 250 375 mM

ddH2O 434 -

10% APS a 5 0.05%

TEMED a 1 0.1%

TOTAL 1000
a APS and TEMED added just prior to casting to ensure polymerisation

doesn’t begin until gel solution has been poured
b Acrylamide:bis-acrylamide = 37:1

glycerol, 0.002% (w/v) bromophenol blue) was added to clear the tubing of gel solution

prior to polymerisation and water saturated butan-1-ol pipetted onto the surface of the

gel solution to give a smooth horizontal surface and to prevent drying of the gel. Gels

were left overnight to ensure the polymerisation reaction had completed.

2.3.6.3 Preparation of backed gels

Backed gels provided the advantage that the acrylamide gel remained adhered to the

glass plate surface allowing for much easier handling but still allowing the gel to be

stained post-electrophoretically when required and picked using an automated robot.

Gels were cast as normal except one side of the glass cassette to contain a backed

gel was smeared with 2-4 ml of Bind-Silane solution (80% (v/v) ethanol, 0.2% acetic

acid, 0.01% (v/v) Plus One Bind-Silane (GE Healthcare, Bucks UK) before cassette

assembly. An even distribution of the Bind-Silane solution was applied with a lint free
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Crew wipe (Kimberley Clarke), which also served to reduce incorporating dust into the

solution and on the plate.

2.3.6.4 Second dimension separation

Following focussing strips were equilibrated as described (Section 2.3.4.4) and separated

using two alternative second dimension systems, the Hoefer Dalt large format tank

or the Ettan DaltTwelve tank (GE Healthcare, Bucks UK). Equilibrated strips were

placed upon the polymerised gel surface and sealed in place with molten agarose (1%

(w/v) low melting point agarose, 0.002% (w/v) bromophenol blue in Tris-glycine SDS

electrophoresis buffer). ddH2O was pipetted onto the gel up to the top of the glass

cassette. The equilibrated IPG strip could then be lowered down upon the gel surface,

taking care not to introduce air bubbles between the IPG strip and the acrylamide gel.

Once the IPG strip was in place, the water was then gently tipped away so as not to

disturb the IPG strip or introduce air bubbles. Molten agarose was then pipetted onto

the IPG strip and this was left to set, sealing the IPG strip in place.

Second dimension electrophoresis in the Hoefer Dalt tank required 20 litres of 1x

SDS running buffer (14.4% (w/v) glycine, 3.0% (w/v) tris, 1.0% SDS). Temperature

was maintained at 25 ◦C by a circulating water bath connected to the tank’s cooling

frame, and gels were separated for approximately 15 hours at 20 mA per gel. For the

Ettan DaltTwelve tank, 7.5 litres of 1x SDS running buffer was required in the lower

chamber. Gels were inserted into the lower chamber before a further 2.5 litres of 2x

SDS running buffer was added. The temperature was maintained at 30 ◦C for 15 hour

separations at 2 W per gel, or 25 ◦C for shortened separations, requiring 5 W per gel

for 30 minutes followed by 17 W per gel for 4 hours. The electrophoresis separation

was halted when the bromophenol blue dye front had reached the bottom of the gel.
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Table 2.5: Composition of Coomassie Brilliant Blue R250 solutions

Substance Coomassie Destain
1 2 3

1.25% Coomassie Brilliant Blue Stock 2% 0.25% 0.25% -
Propan-2-ol 25% 10% - -
Glacial acetic acid 10% 10% 10% 10%
Glycerol - - - 10%

2.3.7 Protein stains

Gels were removed from glass plates taking care not to contaminate the gel surface

with dust which can cause staining artefacts and contamination of mass spectra. Large

format gels which had not been backed to the gel plate were handled with extreme

care due to their highly fragile nature. Where a gel was destined for picking and mass

spectrometry analysis transferral of gel to stain would be carried out in a laminar flow

hood to reduce the risk of keratin contamination. Staining vessels were thoroughly

cleaned before use.

2.3.7.1 Coomassie Brilliant Blue R250 stain

Gels were sequentially stained in solutions Coomassie I, Coomassie II and Coomassie

III, leaving the gels in each stain for 20 minutes or 2 minutes when the staining solutions

were heated in a microwave. Alternatively gels could be left overnight in Coomassie I.

After staining in Coomassie III solution gels were transferred to destain for a further

20 minutes or 2 minutes with microwave heating, which increased the contrast between

stained proteins and the gel background. Coomassie solutions were made up as follows:

A volume of 30 ml for each staining step was typically used for mini gels, or 200 ml

for large format gels.
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Table 2.6: Composition of disruptive silver stain solutions

Step Constituents Time

Fix 40% ethanol, 10% acetic acid 30 minutes
Sensitisation 30% ethanol, 6.8% sodium acetate,

0.13% glutaraldehyde, 0.2% sodium thiosulphate 30 minutes
Wash distilled water 3 x 5 minutes
Silver 0.1% silver nitrate, 0.008% formaldehyde 40 minutes
Wash distilled water 2 x 1 minutes
Development 2.5% sodium carbonate, 0.004% formaldehyde 5 - 15 minutes
Stop 1.46% EDTA 5 - 10 minutes
Wash distilled water 2 x 10 minutes

2.3.7.2 Disruptive silver stain

Disruptive silver staining was performed using a method adapted from Heukeshoven

and Dernik (Heukeshoven and Dernick, 1988). All solutions were made up as required

(Table 2.6). Formaldehyde and glutaraldehyde were added just before use. Staining

was carried out in glass tubs under gentle agitation on an orbital shaker, and extra care

was taken to ensure tubs were completely clean before use. Tubs were first scrubbed

with TeepolTM (Kent, UK), then rinsed with multiple changes of distilled water, before

washing with 70% ethanol and incubating the tub with 1% H2SO4 for 30 minutes.

Without rigourous cleaning staining efficiency was sometimes reduced through a likely

sequestering of stain components to the tub walls. Gels were incubated in the developing

solution until protein spots were stained but the background remained clear. As soon

as darkening of the gel background occurred the gel was transferred to stop solution

to quench the reaction. Gels were finally extensively washed in distilled water before

scanning and storage.
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Table 2.7: Composition of MS-compatible silver stain solutions

Step Constituents Time

Fix 1 40% (v/v) methanol, 10% (v/v) acetic acid 30 minutes
Fix 2 40% (v/v) methanol, 10% (v/v) acetic acid 30 minutes
Sensitisation 30% (v/v) methanol, 6.8% (w/v) sodium acetate,

0.2% (w/v) sodium thiosulphate 30 minutes
Wash distilled water 3 x 5 minutes
Silver 0.5% (w/v) silver nitrate 40 minutes
Wash distilled water 2 x 1 minutes
Development 2.5% (w/v) sodium carbonate,

0.008% (v/v) formaldehyde 5 - 15 minutes
Stop 1.46% EDTA (w/v) 5 - 10 minutes
Wash distilled water 2 x 10 minutes

2.3.7.3 MS-compatible silver stain

Where gels were destined for mass spectrometry analysis an alternative MS-compatible

silver stain was used which lacked the peptide cross-linking chemical glutaraldehyde.

Unlike with disruptive silver staining there are two fixing steps performed with fresh

methanol fixative and the silver incubation lacks formaldehyde but the developer con-

tains twice its concentration. Other than these deviations, the method is the same as

for disruptive silver staining. The method is similar to that of Shevchenko’s modified

silver stain (Shevchenko et al., 1996b).

2.3.7.4 SYPROTM Ruby stain

SYPROTM Ruby (Genomic Solutions Ltd., Cambridgeshire UK) is a commercial MS-

compatible fluorescent stain. The staining procedure is as follows: gels are first incu-

bated in fixative (40% methanol 10% acetic acid) for 30 minutes under gentle agitation

on an orbital shaker. They are then transferred to the SYPROTM staining solution,

which is pre-filtered before use to remove any crystallised dye. Gels were stained

overnight in light proof polycarbonate tubs under gentle agitation before rinsing in
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distilled water and incubating in a destain solution (10% (v/v) methanol, 6% (v/v)

acetic acid) for 2 hours. Gels were imaged as described (Chapter 2.3.8.1, 2.3.8.2) and

stored (Chapter 2.3.8.3).

2.3.8 Gel documentation

2.3.8.1 ProXPRESS

The ProXPRESS imaging system provides 16 bit 100 µm resolution images via a

cooled charge-coupled device (CCD) camera and allows imaging of fluorescent stains

(SYPROTM, CyDye), visible stains (Coomassie, silver) and chemiluminescence. The

imager collects a number of high resolution image sections before digitally ‘stitching’

the sections together to produce the final image. As a result the image can suffer from

uneven illumination at the interface of the sections. This is corrected with a field image

that is collected at regular intervals of ProXPRESS operation to account for drift in

the imagers illumination and image capture hardware. For the imaging of fluorescent

gels a flat field image was collected using a green acrylic flat field sheet, imaged at an

emission wavelength of 620 nm, an excitation wavelength of 480 nm and a resolution

of 100 µm. The exposure time was adjusted until a peak pixel value of the 40-50,000

pixels was obtained. The same imaging parameters were applied to the imaging of

fluorescent gels, with the exposure time being adjusted to ensure good use of dynamic

range without causing saturation to any part of the gel image.

For the imaging of visible stain gels a UV to white light converter plate was first

installed. A flat field image was collected from the red acrylic flat field sheet using

an emission wavelength of 530 nm and a resolution of 100 µm. This image was used

to correct gel images collected under the same parameters and using a exposure time

adjusted to ensure a peak pixel value between 40,000 to 50,000.

Gels were saved as .TIF files.
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2.3.8.2 Typhoon 9200 Variable Mode Imager

For the aquisition of fluorescent wavelength gel images, a Typhoon 9200 Variable Mode

imager was used. The scanner contains multiple emission filters and lasers for the

imaging of a range of CyDye and fluorescent post-stain wavelengths, including SYPRO,

and uses a photo multiplier tube (PMT) for image aquisition. The instrument was

switched on 30 minutes before use to allow the scanner to warm up, until the instrument

status light has changed from flashing to solid green. If Cy2 fluors were to be scanned

the separate blue laser unit was switched on prior to the Typhoon instrument. The

glass platen surface of the scanner was cleaned before scanning was performed to ensure

that no dirt or dust would effect the obtained image. Generally ddH2O and lint free

tissue was used, although a combination of 70% ethanol followed by ddH2O was used if

this was not sufficient. Analytical gels were scanned within their low fluorescent glass

plates minimising potential gel damage. Correct positioning of gels on the scanner was

aided by the front location bar and grippers of the gel alignment guides. One edge of

the dried glass cassette was placed against the front location bar, whilst the gripper was

used to gently lower the glass cassette down upon the platen. The location of the gel

cassette on the platen was noted by comparing against graduations on the platen edge,

and this was inputted into the Scanner Control Software. The focal plane of the scanner

could be set to 0 mm or 3 mm above the platen surface, allowing the scanning of loose

gels or gels within glass cassettes respectively. Within the Scanner Control Software the

image aquisition mode was set to fluoresence. Fluorescent scanning parameters were

set up depending on the gel stain / dye type, using the combination of emission filters

and lasers detailed in Table 2.3.8.2. For multiplex (CyDye) gels, multiple channel scans

would typically be used. This allowed the sequential automated imaging of a variety

of wavelengths to be performed from a single gel without further manual intervention.

Scans of new gels were initially obtained at 1000 µm. This low resolution scan

allowed for quick preview images to be obtained. PMT voltages were adjusted so that
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Table 2.8: Scanning parameters for the Typhoon Variable Mode Imager

Fluorophore Emission (nm) Laser

Cy2 520 BP 40 Blue2 (488)
Cy3 580 BP 30 Green (532)
Cy5 670 BP 30 Red (633)
SYPRO Ruby 610 BP 30 Blue1 (457)

the maximum pixel intensity on the preview image fell between 50,000 and 60,000 levels

of grey out of 100,000. Once PMT values were obtained for each fluor to be scanned

in a gel, a high resolution 100 µm scan could be carried out. Care was taken to ensure

no image saturation occured by checking the peak pixel value of the obtained image. If

saturation had occurred within the region of interest, the scan would be re-aquired with

a lower PMT value. Images were saved as .gel files, a modified .tif file format allowing

superior dynamic range, and cropped within the ImageQuant (GE Healthcare, Bucks

UK) software.

2.3.8.3 Archival of 2DE gels

For the longer term storage of mini 2DE gels, they were dried between two sheets of

pre-soaked cellophane in a frame positioned within an Easy BreezeTM (Hoefer Scientific

Instruments) drying chamber. Non-backed large format gels were bagged within heat

sealed transparent plastic bags containing 5-10 ml ddH2O.

2.3.9 Computational gel analysis

2.3.9.1 DeCyder

The DeCyder software allows the analysis of 2D DIGE datasets to identify statistically

signficant differences between differentially labelled images. It consists of a Differential

In-gel Analysis (DIA) module which performs the spot detection and quantitation of
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gel images from the same gel, the Biological Variance Analysis (BVA) module which

utilises the Cy2 standard to match images from different gels and performs statistical

analyses and the Batch Processor which automates the gel analysis pipeline.

Gels images were imported into the DIA module either manually or via the batch

processor. Spot detection was performed and for R. communis gels this was found to

be optimum with a predicted spot number of 5000. After the spots on all gels were

co-detected within the DIA module, normalisation and background subtraction were

performed. Abundances for each spot were quantified and a log volume ratio figure

calculated against the same spot on the Cy2 standard gel.

The DIA module was also used in isolation for the pairwise comparison of gel

images from two co-migrated Cy labelled protein samples, allowing normalised fold

change values to be produced for spots within a single gel.

For a complete 2D DIGE analysis, the BVA module was used for inter-gel matching,

and the statistical comparison of spot volume ratios across gels to identify spots of inter-

est. Spots maps and quantification data generated by the DIA module were imported

into the BVA module, either manually or automatically with the Batch Processor.

Spot maps within the experiment were assigned to different analysis groups, either

Germinating, Developing or Standard. The gel with the most spots was automatically

assigned the Master gel and the Cy2 standard spot maps of the other gels in the

experiment were matched to the spot map of the Master Cy2 gel. This was performed

with the automated BVA matching algorithm, after which every match was manually

confirmed for accuracy and adjusted where required. The ‘Split Spots’ and ‘Merge

Spots’ tools were used to achieve parity in the spot detection boundaries across the

gels. The volume ratios generated in the DIA module were then compared as log

volume ratios. An unpaired t-test analysis was used to identify those spots that were

significantly upregulated by 10% in the germinating and developing gel sets, with a

p=0.02 confidence value and the criteria that only those spots present in every gel were
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included. This created a subset of spots within the germinating and developing gel sets

that were signficantly different between the two states, allowing for their downstream

analysis.

2.3.9.2 Phoretix Evolution

Phoretix Evolution (Nonlinear Dynamics, Northumberland, UK) was used for the

routine analysis of 2DE gels that were not part of a complete 2D DIGE experiment.

It allowed the analysis of a variety of gel formats and stains and incorporated warping

algorithms to aid matching between different gels. Gels were imported into the software

and spots were detected with the Evolution detection algorithm. For multiple gel

analyses requiring matching across gels a reference spot map was created from the

spot map of the most populous gel within the experiment. Spots on each gel were first

matched to the reference spot map using the software’s automated matching algorithms

before assessment and manual adjustment as required. To improve the accuracy of

quantification and allow the comparison of spot values between gels, adjustments were

made to the spot volume data: background subtraction was performed with the ‘mode

of non-spot’ algorithm to reduce the effects of differential background levels on spot

volumes and spots were normalised using the total spot volume x 100 parameter. A

pre-matching warping procedure was used to increase effectiveness of matching gels

where standard matching had failed.

2.3.10 Spot excision

Protein spots were excised from 2DE gels using a ProPic spot picking robot (Genomic

Solutions, Cambridgeshire, UK). The robot utilises in-built gel imaging equipment

allowing spots to be selected within the robot’s software or for co-ordinates from an

existing analysis to be triangulated to the robot-generated image. The system was

initially primed with ddH2O for around 30 seconds until all air was removed from the
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water supply lines. The gel was either placed directly onto the low fluorescence glass

platen of the robot or if picking from a backed gel was affixed to the glass platen

by means of adhesive tabs. The gel was then imaged, selecting the correct robot

illumination mode for either fluorescent or white light gels. For picking more than

just a few spots, triangulation was employed. The gel to be picked was given external

triangulation landmark locations before its initial imaging on the Typhoon Variable

Mode imager. On imaging the gels within the ProPic robot, the triangulation markers

were easily identified, allowing them to be mapped to the same locations on the earlier

Typhoon image and for pre-assigned spot pick locations selected within the Phoretix

software to be automatically and accurately transposed.

2.4 Yeast methods

2.4.1 Growth and harvest of Y. lipolytica cells

The Yarrowia lipolytica yeast strain PO1G (MATa; leu2-270 ; xpr2-333 ; axp1-2 ) was

used throughout this experimentation. This strain is derived from the wildtype strain

W29 but is a leucine auxotroph. 100 ml starter cultures were initiated from plate and

grown on YPD complete media (10 g/litre yeast extract, 20 g/litre bactopeptone, 20

g/litre glucose) in 250 ml baffled conical flasks. Starter cultures were used to inoculate

500 ml experimental minimal media cultures in 2 litre baffled conical flasks. Minimal

media contained 1.7 g/litre yeast nitrogen base (without amino acids) (Difco, Detroit,

MI, USA), 5 g/litre NH4Cl, 1 g/litre yeast extract, 50mM phosphate buffer pH 6.8.

0.1g/litre Uracil and 0.3g/litre leucine was added after autoclaving by filter sterilisation.

Media were supplemented with either 2% glucose (from filter sterilised 20% w/v glucose

stock) or 1% fatty acid from the relevant fatty acid stock solution. Fatty acid stock

solutions were either 10% oleic acid, 10% methyl oleate or 10% methyl ricinoleate,

sonicated in the presence of 1% Tween 80 using a Soniprep 150 preparative sonicator
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(MSE Scientific Instruments, Crawley, UK) for 3x 1 minute at an amplitude of 22

microns on ice.

Cells were grown in an orbital shaker / incubator (Infors HT, Crewe UK) at 28◦C,

140 rpm rotation. Harvests of well mixed cells from Y. lipolytica cultures were taken at

2, 3, 5 and 10 hours by removal of 50 ml of culture media and centrifugation at 3000 g

in a Beckman JLite rotor. Following harvesting, cells grown in lipid media were gently

resuspended in 100ml 0.5% BSA solution to remove any lipid retained on the surfaces

of the cells or the centrifuge tubes. This step was repeated three times, followed by

a final wash in 100 ml 0.5% BSA and 0.9% NaCl. Cells were resuspended in 50 ml

ddH2O as a final wash and transferred to pre-weighed and labelled Falcon tubes prior

to pelleting in a Jouan bench top rotor (5 minutes, 3000 g, 4 ◦C), carefully pouring off

the supernatant and recording the wet weight of the cells. Cells grown in glucose media

were harvested in the same way accept they were washed once with ddH2O. Cells were

snap frozen in liquid nitrogen and stored at -20 ◦C so that lipid extractions could be

performed together.

2.4.2 Measurement of growth

Growth was recorded by measuring the optical density (OD) of the cell culture using

a spectrophotometer (GE Heathcare, Bucks, UK) at an absorbence of 600 nm. Cell

culture was diluted to ensure that the measurement reading was within the dynamic

range of the spectrophotometer (between 0-0.9). For the measurement of cell growth

in cultures containing fed lipid, samples were first washed with 3x 0.5% BSA and 1x

ddH2O.

2.4.3 Extraction of lipid from Y. lipolytica cells

Frozen pellets of Yarrowia harvested cells were thawed gently on ice before resuspension

in isopropanol to a concentration of 1g wet weight / 20 ml isopropanol. At this initial
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stage of lipid extraction 0.3 mg of the TAG standard triheptadecanoic acid was added so

that any losses of lipid could be accounted for and for quantification. An equal volume

of chloroform was added to the isopropanol in each sample before homogenisation with

a polytron (IKA, Staufen, Germany) for 10 seconds, followed by a 10 second rest

on ice (repeated 3 times). Homogenised samples were then filtered through Whatman

No. 1 (Whatman, Maidstone, UK) paper assembled within a Buchner funnel to remove

cellular debris from the homogenate. The filtrate for each sample was then split between

6 round-bottomed Corex tubes and dried down under a stream of N2 gas on a heating

block maintained at 60 ◦C until a dry residue was obtained. The residue was then

resuspended in 1 ml of 2:1 chloroform : methanol per tube and each sample type

pooled to give a total of 6 ml per lipid extraction sample. This was filtered once more

using Whatman No. 1 paper and a Buchner funnel and the final volume adjusted to 8

ml with more 2:1 chloroform : methanol. To this was added 2 ml of 0.88% KCl. The

sample was inverted 5 times and span in a Sigma benchtop centrifuge for 5 minutes

(2500 x g, room temperature) to obtain a phase partition, the upper being the aqueous

portion. This upper phase was carefully removed with a Pasteur pipette leaving the

organic lipid solvent. A further 1.4 ml of 0.88% KCl was added to the organic phase to

aid separation of any remaining aqueous soluble components. This was again inverted

5 times and centrifuged under the same conditions as the first partitioning spin prior

to removal of the upper aqueous phase.

2.4.4 Derivatisation of lipid samples

An aliquot of lipid sample was transferred to a clean glass tube and dried down

under N2 to obtain a pellet. The pellet was then resuspended in 250 µl pyridine.

To this was added 250 µl N,O -Bis(trimethylsilyl)trifluoroacetamide (BSTFA) and

12.5 µl trimethylchlorosilane (TMCS). The derivatisation mixture was then heated

for 30 minutes at 70 ◦C before cooling to room temperature and extracting silylated
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compounds from the derivitisation mixture by the addition of 4 ml hexane, 1 ml 0.9%

NaCl, 4 ml ddH2O. Samples were dried down under N2 and resuspended in hexane.

2.4.5 Thin layer chromatography of lipid samples

2.4.5.1 Basic thin layer chromatography method

Purified lipid was fractionated by thin layer chromatography (TLC) using Whatman

(Maidstone, Kent) silica gel TLC plates with fluorescent indicator. Lipid sample was

dotted onto the base of the plate, using typically 5 µl for analytical TLC plates and 50

µl for preparative TLC plates, drying the organic solvent away from the plate using a

hair dryer to contain the lipid spot on the plate. A neutral lipid standard was dotted on

to the plate containing triacylglycerol, monoacylglycerol and two diacylglycerol species.

Plates were transferred to a TLC tank containing 100 ml of developing solvent. A range

of TLC solvent systems were used in this study. The plates were removed from the

tank when the solvent front neared the top two inches of the plate and this position

was marked with a pencil. Analytical TLC plates were stained with phloxine B stain

(0.001% phloxine B in 50% ethanol) and visualised under UV light. Preparative TLC

plates were not stained with phloxine B but the TAG band was localised using iodine

under a stream of N2 gas. Where further gas chromatographic (GC) analysis of TAG

components was required the localised TAG band on the TLC plate was removed by

scraping the silica matrix away from the glass backing using a razor blade. Great care

was taken not to scrape away any adjacent lipid components present on the TLC plate

to minimise the risk of sample cross-contamination. The isolated TAG was extracted

from the silica matrix by the addition of 1ml 2:1 chloroform : methanol, vortexing and

removal of lipid containing solvent.
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2.4.6 Conversion of silylated TAG components to fatty acid methyl

esters

Following derivatisation of lipid samples, fractionation by preparative TLC, and re-

moval and extraction of TAG bands from the TLC matrix, the solvent was dried down

under N2 gas on a heating block to obtain a lipid residue. This lipid sample was re-

suspended in 1 ml 1% H2SO4 in methanol and heated overnight at 50 ◦C in an acid

catalysed trans-esterification reaction. Following this reaction the methyl esters were

extracted from the methylating reagent with the addition of 1 ml hexane and 0.5 ml

0.9 % NaCl. A phase partition was obtained and the upper lipid-containing organic

phase removed. Finally the sample was transferred to a GC vial and dried down to a

volume of 100 µl. Samples were immediately analysed by GC or stored at -20 ◦C in

the dark until required.

2.4.7 Gas chromatography analysis

GC analysis was performed with a Shimadzu GC-14 gas chromatograph and a Shimadzu

AOC-20s autosampler. The GC column was an Alltech Econo-Cap EC WAX 30 m x

0.25 mm x 0.25 µm column. The carrier gas used was nitrogen at a pressure of 1.0

kg/cm2. The column was pre-heated to 160 ◦c and the injector and detector heated to

250 ◦C and 270 ◦C respectively. After the GC components had reached their correct

operating temperatures a test run was performed by injecting 2 µl of hexane. This is

to test that the GC is functioning correctly and that the column is clean (i.e. no peaks

observed on the GC spectra). The GC was calibrated with a commercially available

standard, GC96 (Nu-Chek, Elysian MN, US) which contains a range of 20 standard

fatty acids incorporating myristic acid (C14:0) through palmitic (C16:0), palmitoleic

(C16:1), stearic (C18:0), oleic (C18:1), linoleic (C18:2), linolenic (C18:2) to methyl

nervonate (C24:1).

The identity of each peak was assigned by evaluating its percentage proportion
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compared to the whole GC spectra, and comparing this to the known percentage

proportion within the standard mixture as advised by the manufacturer. Further

confidence in assignations of standard identity was obtained by examining the retention

time and order of species as they came off the GC and again comparing this data to

the guidelines supplied by the manufacturer. Following calibration of the GC with the

GC96 standard experimental samples were analysed. 2 µl of each experimental sample

were injected into the GC. A batch process was set up to automate the injection, and

the GC96 standard re-acquired to measure any drift in retention time of the column

toward lipid species over time.
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Chapter 3

Establishment of growth,
preparation and proteomic
methodologies for the
characterisation of the
endoplasmic reticulum from
Ricininus communis cv. 99N89I
endosperm
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3.1 Introduction

Proteomics was conceived as the identification of all proteins expressed by the genome

in an organism, cell or tissue (Wasinger et al., 1995a) but is more accurately defined

as the identification of all proteins expressed by the genome in an organism, cell or

tissue at a given time point and under specified conditions. Improvements to 2DE

such as commercially available immobilised pH gradients overcame earlier technical

problems and allowed protein spot maps to be compared within and between lab-

oratories (Corbett et al., 1994) facilitating its deployment as a reliable analytical

procedure. The technology matured with the development of pre-electrophoretic CyDye

labelling of proteins (Tonge et al., 2001b) and the availability of the 2D DIGE platform.

Furthermore, improvements to downstream analysis procedures such as MALDI TOF

and MS/MS mass spectrometry alongside growing protein databases and improved

bioinformatic tools are allowing many more proteins to be identified.

Technical challenges remain however and analysing certain sample types by 2DE

can present challenges. It is important to evaluate 2DE experimental procedures with

the sample of interest as this can inform the selection of protocols most amenable to

a successful analysis. For example, membrane and total soluble samples are liable to

behave differently in a 2DE analysis and methodologies might need to be optimised to

account for this.

Described in this chapter is a comprehensive study of the proteomic conditions for

successful analysis of R. communis germinating and developing ER, with a view to

maximising the data obtained in a multi-replicate 2D DIGE differential analysis of the

two sample types.

103



3.2 Aims

The first aim of this Chapter was to establish routine growth, harvest and preparation

procedures to create a dependable reproducible source of germinating and developing R.

communis seed ER material. The second aim was to establish proteomic methodologies

for the analysis of R. communis seed ER proteins, specifically the evaluation of CyDye

labelling with seed ER and the establishment and evaluation of high loading gel picking

strategies.

3.3 Results

3.3.1 Establishment of growth, harvest and sample preparation proce-

dures with a view to creating a dependable, reproducible source

of germinating and developing R. communis seed ER material

3.3.1.1 Evaluation of the germination and seed development characteristics

of R. communis variety 99N891

A dependable supply of germinating and developing R. communis seed material was

essential to the success of this investigation as it is this seed material which will be used

to prepare ER samples; the ER being the location of TAG biosynthesis machinery in

the developing seed. Initial proteomic studies previously performed in the laboratory

utilised variety R. communis cv. Hale in which oleate 412 hydroxylase was identified

as a membrane bound component of the ER (Maltman et al., 2002). This seed

variety had become obsolete within the R. communis research community and was

becoming difficult to obtain in sufficient quantities. Limited growth room facilities

meant generation of large quantities of mature seed in-house was impractical, therefore

an alternative variety was required that was amenable to research purposes: that is,

was available in sufficient and reliable quantities and could be shipped on demand to
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Figure 3.1: Endosperm development in germinating and developing R.
communis seed. Figures A-D show germination at 0, 2, 3 and 5 days respectively.
At 2 days (B) the endosperm is hard and solid, the seed coat is generally still attached
and root growth is extensive but lacks the root hairs seen by Day 3. Day 3 of germination
was the stage selected for endosperm ER preparation from cv. Hale. The endosperm has
decreased in solidity from Day 2, but is still intact. The seed coat has generally been
shed at this point. Day 5 of germination is characterised by endosperm separation and the
emergence of an epicotyl hook (arrow EH) and cotyledons. The endosperm is thinner and
depleted compared to Days 2 and 3. Figures E-H show different stages of seed development
in R. communis. Figure E shows a sagittal section through a young fruit, at 5 DAF. By
10 DAF (Figure F) the seed coat is clearly visible but the seed lacks a defined endosperm
or cotyledon at this point. Figure G shows a seed at 28 DAF, the upper point at which
endosperm was harvested for ER preparations. At this stage a solid but wet endosperm
almost reaches the seed coat and the cotyledon bisects the endosperm across its full extent
(arrow CT). Figure H shows the mature seed. ES = endosperm, EH = epicotyl hook, CT
= cotyledon.

the laboratory, that the seed would germinate efficiently and in a predictable uniform

manner and that it would grow to produce new developing seed in a predictable pattern

analogous to the staging descriptions for R. communis cv. Hale given by Greenwood

and Bewley (Greenwood and Bewley, 1982). Critically, it must also be amenable to

established ER preparation procedures (Maltman et al., 2002) giving suitable yields for

downstream proteomic analysis.

R. communis cv. 99N89I was investigated as a potential replacement for cv. Hale.

This variety, supplied by the research programme’s industrial partner Arkema, was

available in suitable and reliable quantities for projected duration of the research

programme. The efficiency of R. communis cv. 99N89I seeds to germinate in growth
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room conditions was investigated. Seeds were germinated under the same conditions

as previously reported for cv. Hale (Maltman et al., 2002). Briefly, seeds were surface

sterilised with 10% (v/v) hypochlorite and washed overnight in running tap water

before planting in moistened vermiculite and transferred to a 30 ◦C growth room in

the dark.

Figure 3.1 shows seedling germination at 2, 3 and 5 days of growth. Day 3 seedlings

were characterised by an elongated but intact endosperm body that had not yet been

separated by the emerging epicotyl hook and dicotyledon seen by day 5. Seeds were

found to germinate with high efficiency and uniformity at 30 ◦C in vermiculite, with

88% of planted seeds reaching the same ‘3 day’ stage of growth at 72 hours (see Figure

3.2).

Seeds grown to mature plants grew well under the conditions described (Chapter

2.2.1.1). At around 3 months all the plants had flowered with fruit appearing 5-10 days

after flowering (DAF). Based on experience with cv. Hale, seed pods were selected

for harvesting at 25-28 DAF. Pods were bisected to reveal the internal structure of

the seed. Extent of development was measured by examining seed endosperm volume,

liquidity, colour and the presence of the cotyledon. At 25-28 DAF cv. 99N89I seed

endosperm was found to be solid, moist and white, but had not quite reached its

full extent in making contact with the testa, equivalent to Stage V of Greenwood

and Bewley’s staging descriptions (Greenwood and Bewley, 1982) for cv. Hale. A

morphologically distinct cotyledon first appears at Stage V of R. communis cv. Hale

development allowing this to be a useful developmental marker. The development

of the cotyledon in cv. 99N89I was found to follow the same pattern, reaching its

full extent and fully bisecting the endosperm by 28-30 DAF (Figure 3.1, G). Studies

into the biochemical aspects of R. communis seed development found that at 25-30

DAF peak lipid biosynthesis occurs at this stage, accompanied by a 6-fold increase in

abundance of acetyl CoA carboxylase (Simcox et al., 1979). Evidence that optimal lipid
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biosynthesis occurs at the same stage in 99N89I is supported by expression data from

real time PCR experiments showing mRNA transcripts for the key Kennedy pathway

TAG biosynthetic acyl transferase DAGAT2 genes are at their highest at this stage in

this variety (Kroon et al., 2006). By 30 DAF endosperm fills the entire seed, described

by Greenwood and Bewley as Stage VI. This stage is just after the optimal time for

endosperm selection, i.e. when the endosperm has almost but not quite reached its full

extent within the seed coat.

In summary, 99N89I seeds were found to germinate with high efficiency and unifor-

mity. 99N89I seeds grown to mature plants produced developing fruit and examination

of the fruit’s endosperm found the pattern of developmental staging to closely follow

that published previously for cv. Hale (Greenwood and Bewley, 1982). With the knowl-

edge that raw endosperm material could be generated efficiently and predictably from

99N89I, the next question was whether endoplasmic reticulum could be purified from

both developmental stages using the experimental procedure previously established in

the laboratory.

3.3.1.2 Establishment of endosperm endoplasmic reticulum preparation

procedure with 99N89I

Different strategies exist to reduce the complexity of proteomic analyses, such as frac-

tionation of proteins into groups based on pI (Zuo and Speicher, 2002) or chromatography-

based fractionations (Righetti et al., 2005). In this analysis the aim was to achieve pro-

teome simplification through subcellular fractionation of the ER, purifying the compo-

nent of the cell whose function is of direct biochemical relevance. A method for the pu-

rification of the ER from R. communis endosperm was first published by Coughlan et al

(1996) in which a two-step density gradient fractionation of cell components was found

to enrich ER membranes (based on ER enzyme marker assays for antimycin-insensitive

NADH:cytochrome c reductase and CDPcholine:1,2-diacylglycerol choline phospho-
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Figure 3.2: Graph to show efficiency of germination. Variety 99N89I was found
to germinate efficiently in vermiculite at 30 ◦C. By 72 hours of growth, 88% of planted
seedlings had reached the same ‘Day 3’ extent of germination, based on the criteria
described in Figure 3.1. 8% of seeds did not germinate, 4% of seeds had germinated
but had not reached the ‘Day 3’ stage.

transferase) at a density of 1.12 g/cm3 (Coughlan et al., 1996). The preparation was de-

void of contaminating endomembranes based on marker assays for Golgi (latent IDPase,

glucan syntase I), mitochondria (fumarase, antimycin-sensitive NADH:cytochrome c

reductase), glyoxysomes (catalase) and plastids (triosephosphate isomerase). Crucially,

they employed an extended (24 hour) floatation centrifugation step to remove soluble

proteins found by SDS PAGE to contaminate the ER after the first density gradi-

ent purification step. The two-step sucrose density gradient purification method was

previously used in this laboratory to successfully isolate ER from R. communis cv.

Hale developing and germinating seed endosperm (Maltman et al., 2002). In that

study, the key ER-resident ricinoleic acid biosynthetic protein oleate 412 hydroxylase

was identified as a membrane component of the developing preparation. To test the

suitability of R. communis cv. 99N89I for ER purification germinating and developing

preparations were performed using the same sucrose density gradient fractionation

procedure but using the new seed variety. As well as the ability to generate purified
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ER, it was important that purified samples were of sufficient abundance for proteomic

analysis.

Briefly, 25-30 seeds of developing endosperm at late Stage V (see Chapter 3.3.1.1)

(Greenwood and Bewley, 1982) of development were chopped in homogenisation buffer

for 20 minutes to produce a crude homogenate. Gentle centrifugation of the homogenate

was performed to remove unbroken cells and a floating layer of fat which settled on the

supernatant surface. The clarified homogenate was then fractionated through a sucrose

step gradient by isopycnic centrifugation resulting in crude ER membranes visible as a

cloudy band at the 30% (w/w) / 20% (w/w) sucrose interface (Figure 3.3). The presence

of a cloudy band at this point was previously reported for preparations using the same

method but with R. communis cv. Hale (Maltman et al., 2002) suggesting at this point

that cv. 99N89I was yielding membranes to the homogenisation buffer with a similar

buoyant density to those released in a cv. Hale ER preparation. Collected membranes

were then removed with a syringe and subjected to an extended floatation centrifugation

step previously found to remove contaminating soluble proteins (Coughlan et al., 1996).

After the second centrifugation step a band was again collected from the 20% (w/w) /

30% (w/w) sucrose interface. This band was thinner than the band present at 2 hours of

centrifugation but was clearly present (result not shown). The band was removed with

a clean syringe, combined with an equal volume of ddH2O and centrifuged at 100,000

x g to yield a membrane pellet which, after removal of supernatant, was re-suspended

in 10% glycerol, snap frozen in liquid N2 and stored at -80 ◦C until required. The same

procedure was applied to germinating seed grown for 3 days in vermiculite at 30 ◦C in

the dark. 30 processed 3 day seeds (see Chapter 2.2.2.2) were homogenised in 30 ml of

homogenisation buffer, filtered and centrifuged to remove unbroken cells. A fat pad was

obtained at this point but this was significantly reduced compared to the developing

preparation fat pad, suggestive of the germinating seed’s catabolism of carbon storage

reserves. Bands were clearly visible at the 20% (w/w) / 30% (w/w) sucrose interfaces
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after 2 hour and 22 hour centrifugation steps.

Assessment of the germinating and developing membrane preparations was then per-

formed. To quantify the abundance of protein generated from the 99N89I endosperm,

the protein concentration of the preparations was assessed with the colourimetric

Bradford protein assay. Replicate aliquots of the membrane samples were assayed

and the protein concentration estimated from the average. Table 3.1 shows protein

concentration assay data of 3 germinating and 3 developing representative 99N89I

preparations. Typical 30 seed germinating preparations were found to give between

100-400 µg of protein, whereas developing preparations consisting of 25-30 seeds gave

higher protein yields of typically 400-800 µg. For proteomic analyses, a large format

preparative gel destined for spot picking and MS analysis ideally contains 200 µg to 1

mg of protein. A large format analytical gel visualised with post electrophoretic silver

or SYPROTM stain requires 50 µg, although this is reduced to 12.5 µg if the protein

sample has been fluorescently labelled with CyDye for visualisation. Pre-analysis of

samples including protein concentration assays, SDS PAGE and mini 2DE analysis

presents further demands on protein sample amounts. The protein yields of 99N89I

ER preparations are thus at the limits of suitability for proteomic studies with gel

based technologies, although the use of highly sensitive CyDye labelling will alleviate

this somewhat so the decision was made to continue evaluation of the variety.

To assess the protein profile of the purified R. communis germinating and developing

membrane samples, 5 µg aliquots were separated by SDS PAGE on 12% acrylamide

gels. Figure 3.4 shows an SDS PAGE gel of 3 cv. 99N89I germinating and developing

ER preparations, revealing a high level of reproducibility between both the germinating

and developing ER protein samples. It also reveals broad protein profile similarities

between the two developmental states. The figure also shows an SDS PAGE profile of

developing ER from the cv. Hale, as previously published (Maltman et al., 2002), with

permission. Similarities between the varieties are evident. Both the Hale and 99N89I
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Figure 3.3: Partially purified ER is collected from the 30% (w/w) 20%
(w/w) sucrose interface by isopycnic centrifugation. A band of cloudy white
membranes is clearly visible at the 20% (w/w) / 30% (w/w) sucrose interface after 2
hours of isopycnic centrifugation. The appearance of this band was previously reported
for cv. Hale (Maltman et al., 2002). A syringe was used to withdraw the membranes by
puncturing the polycarbonate wall of the centrifuge tube. Membranes were subjected to an
extended floatation centrifugation step to remove contaminating soluble proteins, before
purified membranes were pelleted and stored until required.
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Table 3.1: Bradford assay data of six representative R. communis cv. 99N89I
germinating and developing ER preparations solubilised in 2DE lysis buffer.
Two replicate assays were performed for each preparation to improve accuracy. Average
absorbance readings were then compared against a linear absorbance standard curve
generated from 1 - 20 µg BSA to give an estimation of protein concentration and thus
total protein amount in each preparation.

Preparation A595 Protein Total
Replicate 1 Replicate 2 Average µg/2 µl µg/µl

Germinating
16.03.04 0.192 0.248 0.220 5.00 2.50 375.0 µg
17.03.04 0.180 0.178 0.179 4.04 2.02 303.0 µg
20.03.05 0.099 0.091 0.095 2.15 1.075 161.0 µg

Developing
3.06.03 0.124 0.114 0.119 2.59 1.295 647.5 µg
11.08.03 0.095 0.081 0.088 1.91 0.955 477.5 µg
14.10.03 0.084 0.089 0.087 1.88 0.94 946.0 µg

profiles are dominated by three high molecular weight (around 60 kDa) band clusters

between 50 kDa and the top of the gel, marked by three arrows on the SDS PAGE

profiles. Further bands between 24 and 45 kDa display a similar distribution pattern in

the two developing variety types and the developing Hale sample. Both the Hale and

99N89I developing samples were separated on 12% acrylamide but were run separately

so extent of separation varies. M r marker positions are labelled for both gels.

In summary, when the previously established preparation procedure was applied to

99N89I endosperm, cloudy material floated at the 30% / 20% sucrose interfaces after 2

and 22 hour centrifugation steps as reported previously for cv. Hale (Maltman et al.,

2002). On completion of the purification step, the protein concentration of the samples

was found to be low, but suitable for proteomic methodologies, especially if 2D DIGE

is used. When the purified membrane samples were analysed by SDS PAGE they were

found to be broadly similar, to have significant similarities between the germinating

and developing samples, and similarities to an SDS PAGE profile published previously
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Figure 3.4: SDS PAGE profiles of developing and germinating endosperm
ER. 99N89I preparations are labelled (lanes 2-6) and show broad reproducibility between
themselves and similarities to each other. An SDS PAGE profile of R. communis cv.
Hale (lane 1) developing ER has been reproduced for the purposes of comparison with
the new variety, with permission (Maltman et al., 2002). Gels are both 12% acrylamide
but were run separately so extent of separation varies between the two gels, as indicated
by the M r markers. The cv. Hale preparation was made at the same 25 DAF stage of
seed development. Both gels were Coomassie stained. Arrows indicate 3 clusters of high
molecular weight proteins which appear to be common to all samples.

for cv. Hale. Therefore, there is evidence that ER can be generated from 99N89I

endosperm which is of sufficient concentration for proteomic analysis. Biochemical

marker assays were not performed on the 99N89I preparations used in this study.

However, the purification methodology replicated that previously reported to yield

ER free of mitochondrial, glyoxysomal, cytosolic, Golgi and plasma membrane enzyme

markers based on biochemical assay and soluble proteins based on SDS PAGE of sucrose

gradient fractions (Coughlan et al., 1996). It was also identical to the preparation

procedure used previously in the laboratory which identified the ER-resident enzyme

oleate 412 hydroxylase as component of the preparation membranes. Evidence that

the preparations used in the study are pure ER is supported by the proteomic analysis

described in Chapter 4.

More research was needed to ascertain reproducibility of ER samples from germi-

nating and developing endosperm.
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3.3.1.3 Evaluation of sample reproducibility by 1D SDS PAGE

A critical aspect of scientific study is the replication of an experiment to increase the

reseacher’s confidence in the data obtained. This is true of proteomics where multi-

biological replicate analyses are now expected.

To avoid any loss of sample from an additional precipitation step, ER pellets from

new preparations were solubilised directly into 2DE lysis buffer. 5 µg aliquots of lysis

buffer solubilised germinating and developing ER samples were then incubated with

SDS PAGE loading buffer and separated on 12% SDS PAGE gels before Coomassie

staining (Figure 3.5). Protein profiles of germinating and developing ER showed

good reproducibility, indicating both a reproducible preparation method, consistent

solubilisation of ER proteins in 2D lysis buffer and a reproducible separation method.

3.3.1.4 Evaluation of sample reproducibility by mini 2DE

Mini 2DE gels were used to critically assess reproducibility. A minimal 20 µg of lysis

buffer solubilised protein was used for mini 2DE experiments to minimise use of R.

communis sample. pH 3-10 IPG strips were used for the first dimension separation

with 12% acrylamide second dimension gels. After separation in the second dimension

protein gels were silver stained. Figure 3.6 shows three germinating and developing

mini 2DE gels showing extent of reproducibility of R. communis samples and revealing

differences between the germinating and developing states of endosperm ER. Reflecting

the pattern seen on SDS PAGE gels, the 2D profile of both sample types is dominated

by abundant proteins in the high molecular weight region of the gel, which were found

to have a low pI. The gels reveal that the both the germinating and developing ER

samples are broadly reproducible. Variability in the relative abundance of protein

spots was identified in the germinating samples, the most significant example of which

is indicated by an arrow in the figure. This might be reflective of active utilisation of

storage proteins in the germinating seed and the importance of selecting germinating
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Figure 3.5: Reproducibility of 2DE lysis buffer solubilised germinating and
developing R. communis ER proteins assessed by SDS PAGE. SDS PAGE analysis
reveals developing and germinating ER samples are broadly reproducible, indicating both
a reproducible preparation method and consistent solubilisation of ER proteins in the 2D
lysis buffer. The 12% acrylamide gels were stained with Coomassie, 5 µg protein per lane.
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endosperm closely matched in the size. Despite this variability, it was not deemed

significant enough to warrant adaptation of the preparation procedure or the growth

conditions for the germinating seed. Assessment of reproduciblity of ER samples by

mini 2DE was independently validated by a colleague before the protein sample was

approved for further analyses.

Mini 2DE is also useful for ascertaining the pI and molecular weight distribution

of a protein sample, allowing the selection of the most suitable pH range of IPG strip

and percentage of acrylamide gel. The gels show that R. communis endosperm ER

sample contains proteins whose isoelectric points lie in both low and high pH ranges,

indicating the requirement for broad range IPG strips with this sample type.

3.3.1.5 Summary

R. communis cv. 99N89I seed germinated with high efficiency and grew well under

growth room conditions producing developing seed. Evaluation of the endosperm from

germinating and developing seed found it to follow the staging descriptions published

elsewhere (Greenwood and Bewley, 1982). ER was prepared from germinating and

developing seed using an established procedure (Coughlan et al., 1996). The profile

of cv. 99N89I developing ER was found to be broadly similar to that of cv. Hale

developing ER published by the author’s laboratory (Maltman et al., 2002). Assay

of 99N89I ER sample protein yield revealed that protein amounts were suitable for

downstream proteomic analysis, but a single ER preparation would not provide enough

protein for more than one preparative and analytical gel. Therefore, care must be

taken to conserve ER material and the use of the highly sensitive 2DE technology

2D DIGE is preferred1. Reproducibility of ER samples solubilised in 2DE lysis buffer

was assessed by mini 1D gel and samples were found to be reproducible. Further
1A traditional quantitative analytical gel requires a minimum of 50 µg of protein when used

with post-electrophoretic stains. CyDyes employed in the pre-electrophoretic labelling of 2D DIGE
experiments provide high sensitivity protein visualisation with 12.5 µg of protein.
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Figure 3.6: Reproducibility of R. communis germinating and developing ER
preparations evaluated by mini 2DE. Evaluation of protein sample by mini 2DE
revealed that both germinating and developing samples were broadly reproducible. Gel
reproducibility was independently assessed by a colleague before samples were approved
for downstream analysis. The arrow on the germinating gels indicates a spot which is more
abundant in one sample than the others, but minor sample variability was tolerated. 7 cm
pH 3-10 IPG strips were used to separate protein samples that were solubilised directly
into 2DE lysis buffer. After focussing mini SDS PAGE was performed with 12% acrylamide
gels. Gels were stained with disruptive silver.
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evaluation of reproducibility by mini 2DE found samples to be broadly reproducible but

some variability in protein abundance was identified, especially with germinating ER.

Samples were not deemed to be sufficiently irreproducible to abandon the preparation

or growth procedures; however as a result of this variability, prior to differential analysis

of germinating and developing ER a thorough quantification of gel reproducibility will

be made.

Following this work, the next stage was to evaluate CyDye labelling of R. communis

ER samples and to establish and evaluate a preparative gel procedure that will maximise

the chance of identifying and picking proteins of interest on high loading preparative

gels.
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3.3.2 Evaluation of CyDye labelling of dilute R. communis seed ER

samples

Following the establishment a reproducible preparation procedure for R. communis

99N89I capable of producing enough purified ER for proteomic analyses, the next

stage of the research was to evaluate the effectiveness of 2D DIGE with the ER

samples. 2D DIGE (GE Healthcare, Bucks UK) is a sophisticated advancement of 2DE

technologies. It utilises pre-electrophoretic covalent labelling of the protein sample’s

lysine residues with fluorescent cyanine dyes (CyDyes) rather than post-electrophoretic

stains. Currently three spectrally distinct CyDyes exist, Cy3, Cy5 and Cy2, allowing for

multiplexing of protein samples within a single gel. At the most basic level, this makes

sample comparison simpler by removing 2DE profile variability introduced by gel-to-gel

rather that biological variation. The incorporation of a (typically Cy2) labelled internal

standard aids inter-gel matching and improves accuracy of quantitation by minimising

the impact of gel-to-gel variation on quantification. The methodological background to

the 2D DIGE process is described in Chapter 1.6.2 and the 2D DIGE protocols used

are described in Chapter 2.3.5.

Before a complete 2D DIGE analysis of endosperm ER could occur the technical

suitability of the recommended method, as set out in Ettan DIGE User Manual, to the

R. communis endosperm ER samples was assessed.

The first description of the use cyanine dyes for proteomic applications set out

the criteria for successful and reproducible labelling of proteins, requiring adherence

to correct pH, reaction volume, reaction time and temperature (Tonge et al., 2001b).

The methodology was developed in the commercialised Ettan DIGETM platform as

set out in the Ettan DIGE User Manual, where it stated that the pH of the sample

should fall between pH 8.0 and 9.0, that the working stock CyDye fluor stock solution

should be at a concentration of 400 ρmol/µl and that the ratio of protein to dye in

the labelling reaction should be maintained at 50 µg protein : 400 ρmol dye. It also
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stated that the concentration of the protein sample should be at least 1 mg/ml, so that

the labelling reaction occurs in a minimum 50 µl reaction volume for 50 µg protein.

Further to this it was recommended that the optimum final reaction volume be 20

µl, i.e. a protein concentration of 2.5 mg/ml (B. Bacher, GE Healthcare, personal

communication. February 2004).

R. communis samples destined for 2DE had been solubilised in 2DE lysis buffer

at the final stage of sample preparation as this method prevented any potential loss

of sample from a precipitation procedure and is compatible with both 1D SDS PAGE

and traditional 2DE. Samples were solubilised in a volume of 2D lysis buffer suitable

for in-gel rehydration of IPG strips followed by post-electrophoretic staining of gels.

Dependant on the physical size of the pellet yielded by the preparation procedure,

samples were solubilised in typically 200-400 µl of 2DE lysis buffer, generally giving

protein concentrations of between 0.5 to 1.5 mg/ml. This posed a problem as it meant

our ER protein stock was at a borderline level of concentration for the purposes of 2D

DIGE labelling. The restricted time window in which developing preparations could be

made, the large number of archived ER preparations and the time required to produce

a new preparation meant generating a new set of stocks of R. communis ER at the

recommended concentrations was undesirable. Instead, an experiment was designed to

investigate whether the protein concentrations of the existing sample stock could be

successfully labelled; without any effect on derivatisation of dye to protein sample.

To conserve ER protein, and to allow labelling at the optimal level of 2.5 mg/ml,

abundant A. thaliana cell culture total soluble protein (TSP) (kindly supplied by Dr.

S. Chivasa) was used in a comparison of CyDye labelling at (1) the recommended

concentration and (2) the ER-sample equivalent concentration. A. thaliana sample in

labelling buffer (pH adjusted 2DE lysis buffer, without DTT. See Chapter 2.3.5.1) was

diluted to the two levels of protein concentration: the ideal labelling concentration of

2.5 mg/ml, and the concentration of the most dilute R. communis ER sample in store,
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Table 3.2: Set up of ideal and non-ideal labelling conditions to investigate
effects of protein concentration on label derivitisation. 50 µg of the abundant A.
thaliana TSP sample was labelled under ideal (2.5 mg/ml, 1:20 dye volume : reaction
volume ratio) and non-ideal (0.59 mg/ml, 1:84.7 dye volume : reaction volume ratio)
concentrations, the non-ideal protein concentration replicating the lowest concentration
R. communis ER sample in store. Apart from the non-ideal reaction volume, labelling
conditions were performed normally (see Chapter 2.3.5).

Sample Protein Protein 400ρmol/µl Dye Dye Reaction Dye : Volume
concentration amount labelled dye stock amount volume ratio

Recommended 2.5 mg/ml 50 µg 1 µl 400ρmol Cy3 20 µl 1:20
ER-sample equivalent 0.59 mg/ml 50 µg 1 µl 400ρmol Cy5 84.7 µl 1:84.7

0.59 mg/ml. Dilutions were made with labelling buffer. Dye concentrations, protein

concentrations and labelling ratios used are presented in Table 3.2.

The two protein samples were then labelled with two spectrally distinct fluorophores

so they could be multiplexed (i.e. run together) in a single gel. Samples were run

under standard conditions: briefly, 12.5 µg of each sample was cup loaded onto a

single rehydrated IPG strip and focussing performed under standard IPGPhor (GE

Healthcare, Bucks UK) conditions for an 18 cm pH 3-10 Immobiline DryStrip (GE

Healthcare, Bucks UK). Focussed strips were equilibrated and separated in the second

dimension on a large format 1 mm 12% acylamide gel cast between low fluorescent glass

plates (see 2.3.5). After the second dimension run was complete, Cy3 and Cy5 images

were collected from the gel using the Typhoon variable mode imager (GE Healthcare,

Bucks UK). Photomultiplier tube (PMT) values were adjusted to ensure neither image

was saturated but made good use of the available dynamic range.

An initial visual check of the gels was made by overlaying the two profiles. As the

Cy3 and Cy5 samples co-migrated within a single gel, and because the two dyes are

charge and mass balanced, the location of identical proteins labelled with Cy3 and Cy5

on the gel are the same. Gel images were printed onto paper and transparency film

allowing their overlay. Cy3 (magenta) and Cy5 (cyan) spots gave a composite (black)

colouration when the print-out on the transparency (Cy3 gel image) and the print-out
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on paper (Cy5 gel image) were aligned. On visual examination of the overlay image,

no deviations from the composite colour of black could be seen (see Figure 3.7).

Although a simple overlay of the print-outs revealed no differences in the uniformity

of fluorescent labelling at the two levels of dilution, a quantitative examination of spot

abundances would allow a more rigourous assessment of any difference in derivatisation

of dye to protein at the two protein concentration levels. Both gel images were imported

into DeCyder DIA (GE Healthcare, Bucks UK) for a pair-wise analysis. The DIA

module is one component of the total DeCyder package, containing the spot detection

algorithm and the ability to quantify protein levels within a single gel (for multiple gel

analyses, DeCyder DIA is used in conjunction with DeCyder BVA). Gel images were

imported into the DIA module and spots detected using the co-detection algorithm

of the DeCyder software. Spot volumes were re-calculated following a background

subtraction and normalisation procedure. The normalised volumes of matched spots

(between the optimally labelled (Cy3) and dilute labelled (Cy5) gels) were expressed

as a ratio; spots with identical normalised abundances would have a ratio of 1. To

identify spots with different normalised abundances (potentially indicating a difference

in derivatisation of CyDye to protein between the two levels of protein dilution), spots

exhibiting a positive fold change of ≥ 1.1 were given the status ‘increased’. Conversely

those with a negative fold change of ≤ 1.1 were assigned the status ‘decreased’. Spot

volume ratios that were within a ±1.1 fold change were assigned the status ‘similar’. For

the purposes of visualisation on the gel, similar spots were coloured green, increased

spots were coloured red, and decreased spots blue. Figure 3.8 shows the gel images

optimally and dilute labelled gel images (left and right respectively). The gel images

show the spot outlines as detected by the DeCyder DIA software, coloured according

to whether the fold change value is ≥ 1.1 in the optimally labelled gel (i.e. red), ≤

1.1 in the optimally labelled gel (blue) or a fold change less than ±1.1 (green). This

analysis shows that the majority of the spots are green, i.e. their normalised abundances
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Figure 3.7: Overlay of optimal (Cy3) and dilute (Cy5) labelled A. thaliana
protein on a 2DE gel. Physical overlay of gels was performed as a swift analysis of
labelling, allowing significant differences to be revealed as deviations from the black overlay
colour obtained from the overlay of similar sized and intensity Cy3 and Cy5 spots. It
showed no visually obvious differences in labelling between the optimal and dilute labelled
samples.
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are similar (the abundance of the spots are within a fold change limit of ±1.1 in one

labelling state compared to the other). There are areas of the optimally labelled gel with

increased spot abundances compared to the dilute labelled gel image. By examining

the gels with the green (similar) spot outlines switched off (bottom half of the figure),

it is clear that all of these spots are noise or gel artefacts associated with the vertical

streak from the cup. A spot located within the vertical streak associated with the cup

was identified as increased in the optimally labelled gel, but its location within a gel

artefact meant this result was discounted (green arrow). There are a smaller number

of spots which are increased in abundance in the dilute labelled gel (blue outlines), but

again for all but one of these outlines they are not detections of protein spots but noise

or artefacts. The one incident where a spot does appear to be increased in abundance

between the two labelling states is indicated by a white arrow on the bottom two gels.

As this is the only example of a difference in abundance of a protein spot between the

two labelling states, and as this is increased in the dilute labelled sample, it was not

deemed a significant issue. In conclusion, with A. thaliana TSP, labelling 50 µg of

protein with 400 ρmol dye in a volume of 84.7 µl (the dilution requirement for protein

samples at 0.59 mg/ml) causes no reduction in derivitisation of dye to protein compared

to the optimal reaction volume of 50 µg of protein : 400 ρmol dye in 20 µl.

Although A. thaliana TSP is not the same as the R. communis ER samples, this

preliminary investigation gave evidence that labelling of CyDye to protein is unaffected

when the concentration of protein in the labelling mix is 0.59 mg/ml rather than the

recommended minimum or 1 mg/ml or the optimal concentration of 2.5 mg/ml. The

decision was made to use ER samples at concentrations down to a lower limit of 0.59

mg/ml where necessary. ER samples continued to be generated during the study and

efforts were made to keep their concentration above 1 mg/ml.
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Figure 3.8: DeCyder DIA analysis of optimal (A+B) v dilute (C+D) CyDye
labelled A. thaliana TSP. Spot outlines are shown in different colours to indicate
whether they are increased (+1.1 fold change, red), decreased (-1.1 fold change, blue), or
the same (< 1.1 fold change in either direction, green) in the gel of the optimally labelled
sample compared to the gel of the dilute labelled sample. Gels B + D show the optimal
and dilute gels with the green ‘similar ’ spot outlines switched off. All but one of the spots
increased or decreased in abundance on the gels are detection noise or artefacts. The green
arrows indicates a spot increased in the optimally labelled gel, but its presence within the
vertical streak associated with the cup means this resulted was discounted. The single real
spot which was identified as having a ≥1.1 fold change had increased in abundance in the
dilute labelled gel, not the optimally labelled gel. As a single incident it was not deemed
to reveal a significant deviation in labelling efficiency between the two states.
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Figure 3.9: Sources of variability which might contribute to difficulties in
matching between R. communis seed ER analytical and preparative gels.

3.3.3 Establishment of preparative gel procedure

Preparative gels are high loading gels for the purposes of MS analysis, run in addition to

the analytical gel set. They generally contain ≥ 200 µg of protein although to maximise

the number of protein spots giving MS data often between 400 µg and 1 mg of protein

is used. Spots of interest identified on analytical gels are matched to the preparative

gel before either manual or robotic excision followed by digestion and MS analysis. The

ability to confidently match protein spots between analytical gels and preparative gels

is of paramount importance in ensuring correct assignation of identity to analytical

quantitation data. Methodological differences between preparative and analytical gels

can affect the success of matching between the two gel types, for example spots can

appear absent from two gels containing the same sample due to differential staining or

labelling of proteins (Fey et al., 1997). This might be the case in a typical 2D DIGE

experiment with an external preparative gel, where the analytical gel set is visualised

with CyDye and the preparative gel visualised with a post-electrophoretic stain such as
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SYPRO or Coomassie. However, despite the additional potential for gel-to-gel variation

this brings, it is accepted as the alternative (labelling the preparative protein sample

with CyDye) is not feasible due to the expense of the dye. As a rule though, it is

preferable to remove unnecessary sources of technical variation wherever possible, for

example ensuring that preparative and analytical gels are of the same thickness and

that they are run together during second dimension electrophoresis.

In the case of the R. communis ER samples, another source of experimental vari-

ation was foreseen. The recommended 2D DIGE procedure for introducing labelled

protein sample into the IPG strip is through cup loading (Ettan DIGE User Manual).

However, the low concentration of the seed ER samples means the buffer volume

required to provide a suitable quantity of protein for a preparative gel is too large

for cup loading; instead the preparative gels have to be in-gel rehydrated. It was

hypothesised that this could contribute to profile variation and confound matching of

spots.

Potential sources of variation resulting from technical differences between analytical

and preparative gels are highlighted in Figure 3.9. Experimentation exploring the

contribution of these variables to 2D protein profile is presented in the following section.

3.3.3.1 Comparison of sample introduction methods with A. thaliana TSP

In 2DE there are two alternative methods for the introduction of protein sample into

an IPG strip. The first of these is termed in-gel rehydration. With this method the

Immobiline DryStrip is rehydrated with 2DE lysis buffer containing 1% DTT and 2%

ampholytes. For rehydration of an 18 cm (large format) strip 350 µl 2DE lysis buffer

is required, which is pipetted within a channel of an Immobiline DryStrip reswelling

tray before carefully laying the strip upon the surface of the 2DE lysis buffer. Protein

sample solubilised in 2DE lysis buffer makes up a proportion of the final 350 µl volume

and thus is incorporated into the strip matrix during the overnight rehydration step.
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After rehydration the IPG strip is ready for IEF (see Chapter 2.3.6).

The alternative method is termed anodic cup loading. In this method the IPG strip

is re-swelled as for in-gel rehydration, but without the addition of protein sample (i.e.

350 µl 2DE lysis buffer containing 1% DTT and 2% ampholytes for an 18 cm strip).

After rehydration the strip is set up for IEF in the same manner as in-gel rehydration

except a small plastic cup is clipped upon the surface of the IPG strip at the anodic

end of the strip. Up to 70 µl of protein sample solubilised in 2DE lysis buffer can be

introduced into the strip through this cup, which is added before the start of IEF. Cup

loading is the recommended method of sample introduction for CyDye labelled protein

samples as it gives superior separation of protein compared to in-gel rehydration (Ettan

DIGE User Manual). As stated, the cup method requires that the total volume of loaded

sample is 70 µl. As the sample must also include 2% DTT and 2% ampholytes, the

remaining volume available for the protein sample is 67.2 µl. The laboratory routinely

uses 12.5 µg per labelled sample on a single gel, i.e. a total of 37.5 µg of protein for

a typical analytical gel containing Cy2, Cy3 and Cy5-labelled protein samples. This

amount of protein allows the use of protein sample concentrations down to a lower

limit of 0.56 mg/ml. For preparative gels containing typically 200 - 400 µg of protein

for the purposes of downstream MS analyses, the use of cup loading requires a protein

concentration of 3.0 to 6.0 mg/ml respectively. This is achievable for abundant protein

sources. For the comparatively low yielding R. communis ER preparations described in

this study the small volumes required to achieve the necessary protein concentrations

would make physical dispersal and solubilisation of the pellet difficult. Furthermore it is

possible that at minimal volumes of 2DE lysis buffer, focussing issues caused by lipidic

and salt contaminants would be exacerbated. Therefore, for R. communis preparative

gels in-gel rehydration is the required method of sample introduction, but for analytical

gels the preferred method of cup loading can still be used. The problem here is that by

cup loading the analytical gel set and in-gel rehydrating the preparative gels this extra
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variable may introduce differences leading to difficulties in matching spots between the

analytical and preparative gels.

To investigate potential differences introduced by the new variable of in-gel rehydra-

tion on the preparative 2DE profile, compared to the standard method of cup loading

for both analytical and preparative gels, the following experiment was devised. A.

thaliana cell culture TSP (solubilised in 2DE lysis buffer) was used as a test sample due

to its abundance and the preparation’s high concentration which allowed preparative

cup loaded gels to be run. A preparative protein loading of 200 µg was introduced

into two 18 cm linear pH 4-7 IPG strips by the two loading methods: one using an

anodic cup and the other in-gel rehydration. The two strips were focussed together on

an IPGPhor (GE Healthcare, Bucks UK) using the standard 18 cm pH 4-7 IEF until

a total of 70,000 Vh. Strips were then equilibrated as normal and separated in the

second dimension for 17 hours at 2 W / gel in an Ettan Dalt (GE Healthcare, Bucks

UK) electrophoresis tank (see Chapter 2.3.5). After second dimension electrophoresis,

gels were fixed and stained overnight in the dark with SYPROTM Ruby, then imaged

using the Typhoon variable mode imager (GE Healthcare, Bucks UK).

On evaluation of the gels (Figure 3.10) spot resolution is generally good for both

methods. There are some low abundance spots visible in the lower pH and lower

molecular weight regions of the in-gel hydrated gel which are absent or poorly resolved

in the cup loaded gel. One dominant example of this is indicated by a red arrow on

Figure 3.10. Comparing its location to the cup loaded gel it appears to be at the site

of cup entry where there is a vertical streak associated with this point. Horizontal

streaking in the high molecular weight region is apparent in both gels and is especially

associated with trains of spots. This streaking is evidently worse in the in-gel rehydrated

gel, especially in the acidic regions of the gel, indicated by the blue arrow. Vertical

streaking is not an issue observed in either gel, except for a single incidence associated

with an abundant spot in the basic region of both gels (see the zoom-in boxes, lower
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Figure 3.10: Comparison of cup-loading (Gel ‘A’) vs in-gel rehydration (Gel
‘B’) on 200 µg A. thaliana preparative 2DE profiles. With 200 µg of protein,
profiles are broadly the same but the cup-loaded sample has superior resolution in the
high molecular weight basic region of the gel (indicated by zoom-in boxes). However, low
abundance, low pI spots have resolved less clearly on the cup-loaded gel, especially in
the area associated with the vertical cup-loading streak. A dominant example of this is
indicated by a red arrow on both gels. A blue arrow indicates an example of horizontal
streaking observed in high molecular spots, which was observed to be worse with the in-gel
rehydrated gel. Furthermore, protein spots appeared more abundant in the cup-loaded gel.
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centre). Protein spots are more cleanly resolved in the high molecular weight and basic

region of the cup-loaded gel as indicated by the zoom-in boxes of Figure 3.10.

To investigate whether the observations made for 200 µg gels were the same with

higher protein loadings, the experiment was replicated in an identical manner except

400 µg of A. thaliana TSP was used. To reduce the contribution of experimental

variation, the strips were focussed in the first dimension and separated in the second

dimension alongside the 200 µg samples. The horizontal streaking reported for the 200

µg samples is significantly improved in both cup loading and in-gel rehydrated 400 µg

gels (Figure 3.11). As observed for the 200 µg samples, spot resolution is improved in

the cup loaded sample but the difference between the two sample introduction methods

at this loading are negligible. A small amount of vertical streaking is observable on both

gels, effecting the same spot as in the 200 µg samples. It is slightly worse in the cup

loaded samples which might be due to the presence of slightly more abundant spots

with this loading method. Studying the gels for differences in resolution of protein

shows that they are broadly the same. The improvement in spot resolution in the

cup loaded sample highlighted for the 200 µg is still apparent at the higher loadings,

and again this is especially the case in the basic region of the gel (see zoom-in boxes,

Figure 3.11). The improved resolution of low abundance, low molecular weight acidic

spots seen in the in-gel rehydrated sample at 200 µg is not apparent here, but this

may be masked by the staining / imaging artefacts present on the gels (Figure 3.11).

As mentioned it appears that the cup loaded gel appears to contain a slightly higher

amount of protein compared to the in-gel rehydrated sample. It might be the case

that with the in-gel rehydation method there is a greater opportunity for protein loss

as the sample is spread thinly across the re-swelling tray before the IPG strip is laid

upon it, compared to the direct injection of protein sample for the cup loading method.

This wasn’t seen with the 200 µg samples however so experimental error cannot be

discounted.
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Figure 3.11: Comparison of cup-loading vs in-gel rehydration on 400 µg
preparative A. thaliana 2DE profiles. Gel ‘A’ is a cup loaded gel, gel ‘B’ is an
in-gel rehydrated gel. Zoom-in boxes highlight improved resolution of spots in the acidic
region of the cup loaded gel, as was seen for the 200 µg cup loading and in-gel rehydration
comparison (Figure 3.10).
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The results here suggest cup loaded gels do provide superior resolution of spots and

reduced streaking when compared to in-gel rehydrated gel spots, but with A. thaliana

TSP the difference is restricted to either basic protein spots or high molecular weight

proteins. Conversely, lower molecular weight (<36 kDa) and acidic proteins are more

cleanly resolved in the in-gel rehydrated gels. Although there are differences in the

gel profiles between the two sample introduction methods, they do not appear severe

enough to cause difficulties in identifying the same protein spot on the two gel types so

using both types of sample introduction method in a 2D DIGE experiment is unlikely

to cause significant problems. At 400 µg loading, the differences in the protein profiles

caused by the sample introduction methods are further reduced.

This information is important to a future proteomic analysis of R. communis seed

ER as there is now evidence that using the two different methods of sample introduction

in the same experiment does not alter the 2DE profile so much that they cannot be

compared. The experiment does not provide evidence on the effect of 12.5 µg protein

versus 400 µg protein on the 2DE profile, nor does it deal with actual R. communis

ER samples which could behave differently, especially as they are membrane samples.

The effect of sample introduction method on the protein profile of R. communis ER is

reported in the following section, and the influence of protein loading on the 2DE profile,

including the effect of 12.5 µg protein versus 400 µg protein, is reported in Section

3.3.3.3 (which also considers the use of CyDye labelled spikes run within preparative

gels as a ‘matching guide’).

3.3.3.2 Comparison of sample introduction methods on R. communis ER

2DE profiles

With A. thaliana TSP no significant differences are introduced between the two loading

methods, suggesting that matching between two gels will not be significantly more

difficult because one has been cup loaded and the other in-gel rehydrated. The gels did
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suggest that for the majority of spots cup loading provided superior resolution to in-gel

rehydration with this sample type. However, the effect of cup loading compared to in-

gel rehydration for R. communis membrane samples may differ from that found for A.

thaliana. If it were the case that there was no difference between cup loading and in-gel

rehydration, a more sensible approach might be to in-gel rehydrate the CyDye labelled

analytical ER samples as well as the preparative samples. This would remove the

issue of experimental variation caused by the use of two different sample introduction

methods, a deviation from the recommended protocol because of the nature of the R.

communis sample.

To investigate this question, a Cy2 labelled sample of germinating ER was used.

The high sensitivity of CyDye labelling allowed a 12.5 µg of R. communis sample to

be cup loaded but give sufficient protein to give a good quality 2D gel profile. 12.5

µg of the same sample was in-gel rehydrated and run alongside the cup loaded gel on

an IPGPhor (GE Healthcare, Bucks UK). After equilibration and second dimension

separation on a 12% acrylamide gel using the standard method (see Chapter 2.3.5),

gels were visualised within their cassettes on a Typhoon variable mode imager (GE

Healthcare, Bucks UK). Photo Multiplier Tube (PMT) values were adjusted to ensure

optimal usage of the scanners dynamic range in the outputted gel files. As stated, the

dilute nature of the R. communis ER samples means preparative amounts of protein

cannot be cup loaded so a direct repeat of the A. thaliana could not be done. Instead,

12.5 µg Cy2 labelled ER sample was used in comparison of cup loading versus in-

gel rehydration. This is still valid as it provides evidence on the effect of sample

introduction method with the ER samples.

The obtained gel profiles are presented in Figure 3.12. On examination of the

gel profiles although the general distribution of spots is the same it quickly becomes

apparent that the cup loaded gel has multiple incidences of significantly superior spot

resolution compared to the in-gel rehydrated gel. Throughout the cup loaded gel, spots
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Figure 3.12: Comparison of cup loading versus in-gel rehydration with an
identical Cy2 labelled 12.5 µg R. communis germinating ER sample. The cup
loaded gel gave superior resolution compared to the in-gel rehydrated gel. White arrows
indicate examples of the difference in spot resolution on the two gels. Migration of proteins
within the region of the cup can be effected (blue arrow).
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appear less diffuse than in the in-gel rehydrated gel. Some examples of these differences

in resolution are indicated by arrows on Figure 3.12. Although 12.5 µg of ER sample

was used for both loading methods, the cup loaded gel appears to contain a higher

number of protein spots. This may be due to the superior resolution allowing more

spots to be clearly identified, or it may be due to sample loss with the in-gel rehydrated

sample, an observation made for the comparison of sample introduction method with A.

thaliana. There is a large vertical streak present in the acidic region of the cup loaded

gel, corresponding to the site of cup entry and seen previously in the A. thaliana gel

(Chapter 3.10). Unlike in the A. thaliana gel there are no incidences of protein loss

associated with the cup, although one protein has behaved differently between the two

introduction methods (blue arrow).

The R. communis ER gels represented in Figure 3.12, and the A. thaliana TSP gels

represented in Figures 3.10 and 3.11 suggest cup loading gives superior spot resolution

to in-gel rehydration for the majority of spots on a 2D gel profile for both A. thaliana

and R. communis samples. However, the differences to a 2DE gel profile introduced by

the different sample loading methods does not appear to be so extensive that confidence

in matching spots between gels of the same sample but separated by the two methods

is significantly reduced.

Obtaining 2DE gels with the highest resolution and spot clarity is most critical for

the analytical samples in a 2DE or 2D DIGE experiment. Based on the observations

described here, cup loading is the method of choice for these gels. The observation that

sample might be lost during in-gel rehydration confirms this conclusion, as this could

adversely effect the inter-gel matching of different analytical samples and decrease the

rigour of quantitative data in the experiment.
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3.3.3.3 Evaluation of analytical spikes as preparative gel guides

Preparative samples are typically run on a separate gel to the analytical gels, which

can introduce gel-to-gel variation due to, for example, an alternative method of sample

introduction, different protein visualisation methods (e.g. CyDye and SYPROTM) and

different protein amounts. These factors combined can introduce differences between

the protein profiles of preparative and analytical gels, reducing confidence in matches

made between the gel types. For a 2D DIGE analysis of R. communis samples,

preparative gels needed to be in-gel rehydrated due to sample concentration constraints.

Cup loading is the recommended method of sample introduction for CyDye labelled

analytical samples (Ettan DIGE User Manual) and was found to provide superior

resolution to in-gel rehydration with a Cy2 labelled analytical loading of R. communis

germinating ER (Section 3.3.3.2). This provided evidence that cup loading is the

preferred method of sample introduction for an ER 2D DIGE experiment. In addition,

an investigation with A. thaliana into the gel profile differences caused by different

sample introduction methods found that although the profiles are generally similar,

differences to the profile are caused by the different sample introduction methods

(Section 3.3.3.1).

The use of CyDye labelled spikes was investigated as an aid to matching by acting as

a bridge between the analytical CyDye labelled gel set and the unlabelled high protein-

loading preparative gels. It was anticipated that in circumstances where experimental

variation between the analytical and preparative gels causes difficulty in confidently

matching spot pairs, the CyDye labelled spike sample could act as an intermediary. The

spike sample, being subjected to the same experimental variation as the preparative

gel, would allow it to act as a superimposable ‘map’ to the preparative gel and allow

differences to be traced. The CyDye labelled spike would be incorporated into the

strip alongside the preparative sample at the same amount used in the analytical gel.

Critically, the preparative gel, the CyDye labelled spike and one of the analytical gels
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in the 2D DIGE analysis, would be from a single protein preparation so all differences

can be ascribed to experimental variation rather than biological variation.

To test this method, 12.5 µg of Cy3 labelled A. thaliana TSP was combined

with an unlabelled 400 µg aliquot of the same protein from the same parent sample.

This was in-gel rehydrated overnight in a pH 4-7 linear 18 cm IPG strip. A 400 µg

replicate containing the same CyDye labelled sample was cup-loaded at the same time

to test whether labelled spike samples could be superimposed under different protein

introduction conditions. Both strips were focussed with the standard pH 4-7 protocol

on an IPGPhor, alongside a third strip analytical strip cup loaded with 12.5 µg of the

same Cy3 labelled A. thaliana protein as used for the CyDye spike (Table 3.3). On

completion of focussing, strips were separated in the second dimension with a 17 hour

2 W per gel programme. After the second dimension run, the two CyDye labelled spike

sample images and the CyDye analytical image were collected from the three gels with

the Typhoon Variable Mode Imager. These are shown in Figures 3.13 and 3.14 for the

400 µg in-gel rehydrated and cup loaded gels respectively, alongside their analytical

partner. The two preparative gels were then removed from their glass cassettes, fixed

and SYPROTM Ruby stained overnight (2.3.7.4). After the destain procedure, gels were

imaged once again on the Typhoon under the emission and excitation wavelengths for

the SYPROTM Ruby stain, this time collecting the fluorescently stained preparative

component of the gel, plus the contribution of 12.5 µg of protein in spike.

On comparison of the gel images it is clear that technically the inclusion of CyDye

labelled spike samples works well. Visualisation of CyDye samples run within prepara-

tive gels does not appear to be effected by the presence of substantially more unlabelled

sample (either in-gel rehydrated or cup loaded A. thaliana TSP). SYPROTM stained

spot maps were obtained after imaging showing that this post-electrophoretic stain can

still be used with Cy3 labelled samples.

Figure 3.13 shows the 12.5 µg Cy3 cup loaded analytical gel image alongside the 400
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Table 3.3: Gel configurations for investigation into the use of CyDye labelled
spikes in analytical and preparative gel matching

Gels Cy3 labelled Unlabelled Sample introduction b

A. thaliana TSP a A. thaliana TSP a Cup loaded In-gel rehydration

1 12.5 µg -
√

-

2 12.5 µg 400 µg
√

-

3 12.5 µg 400 µg -
√

a Cy3 and unlabelled samples both derived from same protein preparation
b pH 4-7 linear 18 cm Immobiline Drystrips (GE Healthcare, Bucks UK) were used for all samples

µg in-gel rehydrated image and 12.5 µg Cy3 spike image. Comparing the cup loaded

Cy3 analytical gel with the in-gel rehydrated 400 µg unlabelled preparative sample

reveals that although the protein profiles are broadly similar there are differences in

the protein profiles. This is especially true of low molecular weight, low abundance

proteins which are less clearly defined on the preparative gel compared to the analytical

gel. An arrow highlighting the poorly resolved low abundance protein spots has been

drawn on the preparative gel image. Without extra information matching these regions

confidently would prove difficult. However, the low molecular weight, low abundance

protein spots have resolved with much greater clarity on the CyDye labelled spike image.

This indicates their poor representation on the preparative sample is most likely due

to staining rather than absence of those spots from the gel. The CyDye spike image

can thus be used as a superimposable map to help identify the correct spots on the

preparative SYPROTM gel image.

Comparing the cup loaded Cy3 analytical gel with the cup loaded 400 µg preparative

SYPROTM stained gel, minor electrophoretic abnormalities have caused a wave effect

on the preparative gel profile (Figure 3.14, red arrow). Although the distortion is

not severe, it does decrease the confidence in matching spots in the effected regions
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between the preparative and analytical gels. Turning to the Cy3 labelled spike sample,

the protein profile is effected in the same area confirming it is a problem introduced

during IEF or second dimension electrophoresis, and not associated with labelling or

staining of protein. As the Cy3 spike and the Cy3 analytical images constitute the same

protein sample, the spike image can be used to deconvolute the protein profile. Another

difference introduced between the analytical and preparative gels is the presence of an

extra spot on the 400 µg preparative gel (Figure 3.14, white arrow) which appears to

be entirely absent on the analytical gel. With no further information available it would

not be possible to confidently say whether its presence on the preparative gel is due to

differential staining with SYPROTM or whether it is a vertical streaking artefact due

to the high loading of protein on the gel. If it is due to differential staining then its

absence from the analytical set would have implications for the comprehensiveness of

the analysis. Turning to the Cy3 labelled spike image shows the extra spot is present

on this gel also, meaning its absence cannot be ascribed to differential staining. There

is vertical streaking present in the effected area on both the analytical and spike images

suggesting this is the cause of the new spot and that it can be viewed as an artefact.

3.3.3.4 Development of a robotic spot picking procedure

Automated spot picking is highly desirable where you require more than a few spots

to be extracted from a gel for MS analysis. Robotic spot picking brings significant

advantages of speed and convenience over manual picking. It also has the advantage

that by minimising gel handling the risk of keratin contamination is reduced, something

which is critical in improving the quality of MS data obtained in an analysis. It also

allows rapid picking of spots from SYPROTM Ruby stained gels, something which would

otherwise require the undesirable use of a transilluminator for potentially extended

periods.

Spot picking was performed with a ProPicTM gel picking robot (Genomic Solutions
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Figure 3.13: A 12.5 µg Cy3 spike image aids matching between a 12.5 µg cup
loaded Cy3 analytical gel and an in-gel rehydrated 400 µg SYPROTM stained
preparative gel. The Cy3 spike image (bottom left) co-migrated with the preparative gel
(bottom right) and allowed differences between the preparative and analytical profile to be
traced. For example, an arrow indicates a region of reduced complexity in the preparative
gel compared to the analytical gel. However the Cy3 spike image has the same profile of
spots in this region as the analytical gel indicating their absence is more likely due to post
staining rather than electrophoretic differences. Gels are 12% acrylamide.
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Figure 3.14: A 12.5 µg Cy3 spike image aids matching between a 12.5 µg cup
loaded Cy3 analytical gel and a cup loaded 400 µg preparative gel. The Cy3
spike image (bottom left) co-migrated with the preparative gel (bottom right) and allowed
differences between the preparative and analytical profile to be traced. For example, the
white arrow indicates a spot present on the preparative gel but absent on the analytical
gel. Its presence on the CyDye spike image indicates it is a streaking artefact rather
than a protein unlabelled on the analytical gel. The red arrow indicates a region of the
preparative gel which has run poorly. The CyDye spike image has been affected in the
same way indicating it is a problem with electrophoresis rather than with the sample or
staining and helps de-convolute the affected area.
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Ltd. Cambridgeshire, UK) controlled by Phoretix Evolution software (Nonlinear Dy-

namics Ltd., Northumberland, UK). The ProPicTM is currently incompatible with the

DeCyder 2D DIGE analysis platform; a technology that has become the method of

choice for quantitative gel based proteomics. As pick lists cannot be directly exported

from DeCyder to the ProPicTM, spots to be picked need to be re-selected in Phoretix

Evolution which generates a list of co-ordinates which are exported to the picking robot.

For a small number of spots (sensibly, less than 15) the preparative gel to be picked is

imaged by the ProPic robot, and spots of interest mapped to this image before picking.

During this process, the gel remains in situ. As the process of mapping spots of interest

to the gel image can be a lengthy process especially where an experiment has hundreds

of spots to be picked, it is preferable for the preparative gel to remain in fixative during

this process. This prevents drying and warping of the gel which could lead to picking

inaccuracies. With the ProPic/Phoretix Evolution system, once the picking locations

have been assigned to the gel image, the preparative gel is re-positioned in the ProPic

robot and a secondary image captured. Spots are then triangulated from the gel image

with the spots of interest assigned to the new secondary image. Co-ordinates are

generated based on this triangulation and exported to the ProPic robot to initiate

picking. Three or more distinct outlying spots are required to act as triangulation

landmarks and these must be identifiable on both images for triangulation to occur.

A significant problem identified was the identification of suitable triangulation land-

marks. As triangulation only occurs within the boundaries denoted by the landmarks,

they had to be spots outlying all those to be picked. In addition they also had to be clear

enough to be visualised on the low resolution images produced by the ProPicTM robot.

If triangulation landmarks were inaccurately identified this would cause misalignment

of picking across the gel. Furthermore, speed is an important factor because whilst

picking landmarks are being identified and vectors adjusted, the gel is drying out and

shrinking exacerbating pick misalignment.
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To improve upon this, new triangulation methodologies were developed. The prob-

lem of landmark selection was circumvented by the addition of artificial landmarks to

the gel. Three artificial landmark methods were tried. Firstly, adhesive white paper

tabs were placed upon the gel at locations outside of the spots to be picked. The

tabs were first marked with cross hairs to act as targets for triangulation. Although

it proved that paper tabs could be visualised on scanning with the Typhoon imager

and the ProPicTM robot camera, the method was discarded when some adhesive tabs

came away from the gel surface whilst the gel was sitting in ddH2O in its tub. The next

method attempted involved boring out small holes within the gel at locations outside of

the spots to be picked and pipetting SYPROTM Ruby stain into the holes, the idea being

that these concentrated dots of stain would clearly fluoresce both under Typhoon and

ProPicTM imaging. In practice the staining solution did not fluoresce clearly enough to

act as an easily identifiable landmark (result not shown). The permanence of the holes

made in the gel was an improvement over the adhesive tabs and was combined with the

use of white paper inserts that were found to be clearly identifiable both with Typhoon

and ProPicTM scanning. It is important to note that within the Phoretix software

locations identified as triangulation markers are added to the pick list and are picked by

the robot alongside other spots. To avoid damage to the robot’s picking head, the paper

markers should be removed before the picking run is initiated. An alternative method

is to manually edit the picking co-ordinate file and deleting the entries corresponding

to the triangulation markers. This has the advantage of not having empty ‘samples’

amongst the picked spots, and avoids wasting time and reagents in the downstream

digestion and MS analysis. The process of linking 2D DIGE-based analysis in DeCyder

to ProPic/Phoretix Evolution picking and the use of external triangulation markers is

depicted in Figure 3.3.3.4.

It was found that in extended picking runs the accuracy of picking decreased the

longer the picking run continued. On examination of the gel during the course of picking
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Figure 3.15: DeCyder to ProPic picking schema. The DeCyder analysis generates
a list of spots of interest, to be picked from the external preparative gel. The external
preparative gel is imaged with triangulation markers in place. In Phoretix Evolution spots
of interest from an analytical gel are matched to the preparative gel. Once this is complete,
the preparative gel is placed in the ProPic robot with triangulation markers in place, imaged
once again, and spots to be picked triangulated to the new image.
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it was found that slight movements to the gel could occur by the impact of the picking

head into the gel surface. Furthermore gel drying and shrinkage during longer runs

increased the deviation of predicted spot co-ordinates from actual spot locations. This

was overcome by adhering one side of the gel to a glass plate by applying Bind Silane

(γ-methacryloxypropyltrimethoxysilane, GE Healthcare, Bucks UK) to the gel cassette

before casting. A firmware update to the robot was made by Genomic Solutions,

allowing the robot’s picking head to move not just on the vertical axis but also slightly

on the horizontal axis in a movement termed a ‘pick shift’. When picking the gel in

pick shift mode, the picking head enters the gel at the dictated location but then moves

horizontally for 0.7 mm breaking the adhesion and allowing excision of the gel plug from

the gel. Over extended runs, accuracy of picking was maintained with this adjustment.

A preparative gel alongside an image of the same gel post-picking is presented in Figure

3.16 and shows accuracy of pick targeting.

In summary, a combination of fluorescent markers included in the gel, the use of

Bind Silane to fix the gel to a glass plate and the upgraded robot firmware allowing

pick shifts has allowed highly accurate picking of multiple spots to be made over an

extended period of time, with a decreased requirement for human involvement in the

picking process.

3.4 Discussion

3.4.1 Development of a sample preparation methodology

The results presented here detail the assessment of R. communis cv. 99N89I as a

variety suitable for laboratory research through the evaluation of its growth character-

istics, the establishment of sample preparation procedures and the evaluation of the

reproducibility of the ER protein sample.

99N89I was grown successfully from seed in the laboratory to produce 3 day ger-
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Figure 3.16: Optimisation of spot excision methodology. An example of a
developing ER preparative pick gel with fluorescent triangulation markers, imaged on the
Typhoon Variable Mode imager, is shown (A). The identification of clear external picking
markers, along with Bind Silane backed acrylamide gels and a pick-shift enabled robot,
allowed extended picking runs to excise spots with greater accuracy. (B) shows the same
developing ER preparative gel post-pick with all spots picked within their boundaries.
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minating seedlings and mature plants from which developing seed was obtained. Ger-

mination was found to be efficient for this variety allowing maximisation of seed in

germinating preparations. The morphological characteristics of seed development were

consistent with those published for cv. Hale (Greenwood and Bewley, 1982), allowing

the harvesting of developing endosperm material of the stage shown to have peak mRNA

levels of the Kennedy pathway enzyme DAGAT2 (Kroon et al., 2006) in this variety and

peak abundance of the fatty acid biosynthetic enzyme ACCase (Simcox et al., 1979).

Preparation of this variety to yield purified ER using previously published protocols

(Coughlan et al., 1996; Maltman et al., 2002) gave clearly defined bands at the 20%

(w/w) / 30% (w/w) sucrose interface (density = 1.12 g/cm3) after 2 hour and 22 hour

centrifugation. On analysis of protein yields from the preparation it was found that

the quantities obtainable were amenable to proteomic analyses, especially with the

increased sensitivity offered by CyDye technology.

SDS PAGE analysis of germinating and developing 99N89I endosperm membrane

samples suspended in 10% glycerol and solubilised in SDS PAGE running buffer showed

high levels of reproducibility. On comparison of the developing sample with an SDS

PAGE gel of developing ER from cv. Hale (Maltman et al., 2002) broad similarities were

identified between the two profiles, with characteristic high abundant bands aligning

with the same distribution pattern. In this earlier work with cv. Hale, the ER

resident ricinoleic acid biosynthesis enzyme oleate 412 hydroxylase was identified. The

similarity of the Hale and 99N89I developing ER SDS PAGE profiles, along with the

marker assay evidence of ER purity with samples generated by the same preparation

methodology, gives strong evidence that the preparations described are endoplasmic

reticulum.
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3.4.2 Establishment of analytical procedures for 2D DIGE

A. thaliana protein labelled with CyDye under optimal reaction conditions of 50 µg

protein : 400 ρmol of dye in reaction volume of 20 µl (i.e. 2.5 mg/ml) was compared

to the same protein sample labelled at the same ratio of 50 µg protein : 400 ρmol

of dye but in a reaction volume of 84.7 µl (0.59 mg/ml). The dilute reaction volume

mimicked the lowest concentration of R. communis ER sample in store. On evaluation

of 2DE gels of the two samples by simple overlay the profiles were found to be complete

superimposable, indicating that the same complement of proteins were labelled at both

levels of dilution. Also, there was no discernible deviation from the composite black

colour of the overlaid blue/red images, indicating no significant difference in degree of

labelling between the two dilution states.

The gels were also quantitatively analysed by the DIA component of the 2D DIGE

software, which identified a single protein spot that had a ≥ 1.1 fold increase in

abundance on the non-optimally labelled gel. All other spots were within a ± 1.1

fold change and were deemed similar.

3.4.3 Evaluation of preparative procedures to improve spot matching

The ability to confidently match the same spots on analytical gels and a preparative

partner is of paramount importance to 2DE proteomic analyses using MS to obtain

IDs. To reduce potential variation between the preparative and analytical gel profiles,

variables between the two gel types should be minimised wherever possible. Ideally, the

preparative gel would contain the same protein sample as an analytical gel, so biological

variation cannot contribute to difficulties in matching between the two gels. Similarly,

technical variables would be minimised where possible, for example the sample intro-

duction method would be kept consistent between the analytical and preparative gels so

this could not contribute to any variations between the protein profiles. As described in

section 3.3.2, the comparatively dilute concentration of R. communis ER samples and
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their pre-solubilisation in 2DE lysis buffer required adaptations to the ideal protocol for

CyDye labelling of protein samples. The dilute nature of the R. communis ER samples

also means preparative size (200 µg to 1 mg) protein samples cannot be introduced

into an IPG strip with the same preferred method for analytical gels: cup loading. So

the potential for variation in protein profile caused by different sample introduction

methods could be understood before committing valuable R. communis ER material

to a large scale proteomic study, a pre-evaluation with A. thaliana TSP was performed.

Cup loading was found to give an improved resolution of basic spots, but a slightly

inferior resolution of low abundant acidic spots on the gel profile compared to in-gel

rehydration, whether at 200 µg or 400 µg loadings. Also, in-gel rehydrated samples

seemed more prone to horizontal streaking in the basic region of the gel, but this

was alleviated somewhat at the higher protein loading. Overall, with A. thaliana

TSP, the protein profiles were similar and although based on these observations cup

loading would remain the method of choice for preparative gels, there was no significant

profile differences introduced by in-gel rehydration that disqualified it as a technique.

With R. communis sample superior resolution was again found for the cup loaded

gel. The comparison of sample introduction method was made with CyDye labelled

ER at analytical loadings. If no difference had been observed between analytical

R. communis samples, the most suitable choice would have been to in-gel rehydrate

both the analytical and preparative gel, as this would remove the sample introduction

technical variable. As the resolution is superior for cup loading at analytical protein

amounts the best choice would be to cup load the analytical gels and in-gel rehydrate

the preparative gel.

The use of a small spike of CyDye labelled analytical sample run alongside the

unlabelled preparative sample was investigated using A. thaliana TSP protein. Imaging

of the spike sample before post-electrophoretic staining of the preparative sample was

possible, giving a clear 2DE gel profile without interference from the unlabelled spots.
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The CyDye spike image can be thought of as a map of gel-to-gel variation between the

preparative and analytical gels. Thus, where the same sample is used for the analytical

gel, the CyDye spike image and the preparative gel, it allows variation caused by

preparative methodological differences such as protein staining and higher loadings

to be identified. This may inform picking strategies where a key protein has not

stained effectively with SYPROTM stain but is known to be present on the gel by

its visualisation on the CyDye spike image. The use of triangulation would allow the

picking of this ‘absent’ spot.

3.4.4 Development of a new spot excision methodology

A new method for accurate and rapid spot excision from preparative gels has been

developed. This method utilises external triangulation landmarks which are easy to

locate and always encompass the entire spot map. This offers substantial improvements

over the standard method of triangulation as it was often difficult to find appropriate

internal landmarks that met the criteria of both lying outside all spots to be picked

and being sufficiently abundant to be identified on the low resolution images produced

by the ProPicTM camera. When the use of external landmarks was coupled with Bind

Silane backed gels and the use of the firmware-upgraded ProPic that allows the pick

head to move horizontally as well as vertically, highly accurate picking was obtained

over extended picking runs.

3.5 Concluding remarks

R. communis cv. 99N89I has been established as a suitable variety for proteomics-based

experimental research, allowing the routine growth, harvest and preparation of seed

material for the purposes of endosperm ER purification. Methodological developments

have been made to sample preparation techniques which provide the best combination

151



of sample preservation and 2DE compatibility.

Constraints specific to the R. communis samples imposed deviations from standard

2D DIGE proteomic methodology, specifically with regards to the labelling protocol and

the preparative gel. Investigations were made using A. thaliana TSP and R. communis

endosperm ER and the potential for problems caused by these deviations are now well

understood. A thorough and rigourous experimental method is now in place, from plant

material generation to spot picking, allowing R. communis endosperm ER samples to

be committed to an extensive 2D DIGE analysis.
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Chapter 4

A differential proteomic analysis
of germinating and developing
seed ER from Ricinus communis
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4.1 Introduction

The process of endosperm development during seed formation induces temporally and

spatially distinct stages of carbon deposition (Emes et al., 2003) whereby carbon sources

are laid down to support the seedling on germination. Ricinus communis endosperm

development is similarly concerned with high level carbon storage, including significant

establishment of lipid reserves through plastidal fatty acid biosynthesis and subsequent

esterification of fatty acids into TAG storage molecules in the ER. TAG molecules

comprise up to 50% of R. communis seed weight and uniquely over 90% of this oil is

comprised of ricinoleic acid (McKeon et al., 1997). Ricinoleic acid formation occurs in

the ER, where oleolyl CoA is esterified to phosphatidyl choline and hydroxylated at

its 12-carbon position. The reaction is catalysed by oleate 412 hydroxylase (FAH12),

an NAD(P)H dependent enzyme cloned from R. communis (van de Loo et al., 1995).

Expression of the gene encoding this enzyme in Arabidopsis thaliana resulted in a

range of hydroxy fatty acid profiles in the seed lipid, however the maximum amount of

hydroxy fatty acids in the TAG of any transformant was just 19.2% (Smith et al., 2003).

One reason for this might be the substrate specificities of the acyl transferase enzymes

involved in construction of TAG molecules from fatty acid precursors. For example,

it is not unreasonable to expect A. thaliana to have evolved acyl transferases that

efficiently incorporate its wildtype complement of acyl CoAs (specifically, 16:0-CoA,

18:0-CoA, 18:1-CoA, 18:2-CoA, 18:3-CoA, 20:0-CoA and 20:1-CoA) but that are less

able to catalyse the transfer of unfamiliar hydroxy fatty acyl CoAs such as ricinoleoyl

(18:1-OH) CoA. Conversely R. communis acyl transferase enzymes are likely to be well

adapted at catalysing esterification of ricinoleoyl CoA into TAG molecules. Through

the identification of further components of lipid biosynthesis in R. communis endosperm

such as its complement of acyl transferase enzymes a clearer picture of the biosynthetic

pathway can be constructed. As the key proteins involved in high ricinoleate TAG
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production are identified, their respective genes can be cloned and transgenic studies in

model organisms such as yeast and A. thaliana performed, moving toward the ultimate

aim of the project : production of high triricinoleate-yielding transgenic crops.

With a view to identifying components of TAG biosynthesis in R. communis en-

dosperm, developing and germinating seed ER was purified and used in a differential

proteomic screen of urea soluble ER. 2-dimensional in-gel electrophoresis (2D DIGE)

was employed whereby proteins were labelled with fluorescent CyDyes. This method

offered significant advantages over traditional 2D electrophoresis (2DE) techniques,

such as multiplexing of samples and experimental design centred around multireplicate

statistical analysis. Where protein spots were significantly elevated in one develop-

mental state compared to the other, they were robotically-picked from a high loading

preparative gel, digested with trypsin and analysed by MALDI TOF MS and MS/MS.

This investigation confirmed the previously reported presence of abundant chaperones

and folding-proteins in this compartment (Maltman et al., 2002), added further insight

into the processing and importance of storage proteins in the ER but did not reveal

the presence of lipid biosynthesis enzymes in the urea-soluble fraction.

4.2 Aims

There were two aims of the work described in this chapter. Firstly to identify and

quantify statistically significant differences between the urea-soluble fractions of germi-

nating and developing seed ER by means of a differential proteomic analysis. Secondly

to obtain identities of these significant differences by MALDI TOF PMF and MS/MS

sequencing, with a view to locating components of lipid biosynthesis pathways in the

2DE lysis buffer soluble fraction.
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4.3 Results

4.3.1 Sample preparation and experimental conditions for 2D DIGE

The establishment of reproducible ER preparations from R. communis endosperm and

the perfection of 2D electrophoresis techniques facilitated a large scale differential

analysis of germinating and developing seed ER. New developing and germinating

preparations were made for this purpose. Purified ER membranes were centrifuged

to yield a pellet which was then re-suspended into lysis buffer for 2DE. A minimal

volume of lysis buffer was used (typically 100-400 µl depending on pellet size). It

is recommended that for CyDye labelling the protein concentration should be ideally

2.5 mg / ml and not less than 1 mg / ml as this may effect the reaction kinetics

of the dyes derivatisation to protein. Although there was no clear evidence that

derivatisation of dye to protein was effected with protein concentrations less that 1

mg / ml with A. thaliana TSP (3.3.2), sample quantity constraints meant this was not

tested with R. communis ER samples. The generation of new ER preparations meant

that samples could be made at concentrations above the recommended minimum 1 mg

/ ml concentration.

The concentration of protein within the ER samples was assayed using the detergent-

compatible modified Bradford protein assay. The quantification of protein amount

ensured all the samples were sufficiently concentrated for CyDye labelling and that

the total amount of protein was enough for a 2D DIGE experiment. The assay was

performed as described (Chapter 2.3.2) comparing the absorbances of ER samples to

that of a standard curve (Figure 4.1, B) generated separately for the developing and

germinating preparations. Figure 4.1 (C) shows the results of the modified Bradford

assay of 8 new preparations destined for 2D DIGE analysis. All preparations were at

a protein concentration > 1 mg / ml, meaning they were able to be labelled under the

recommended reaction conditions for 2D DIGE. Germinating sample G2 and developing
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samples D2, D3 and D4, all contained greater than the minimum 500 µg of total protein

required to provide 400 µg of protein for preparative gels in addition to the required

75 µg protein for the analytical gels (50 µg for the Cy3 / Cy5 analytical gel, 25 µg

contribution to the Cy2 internal standard) and 25 µg for protein quantification, SDS

PAGE validation and excess volume to prevent pipetting error.

Before committing CyDye label to our ER preparations it was critical to confirm

sample reproducibility. 5 µg aliquots were taken from four germinating and four devel-

oping samples and separated by 1D SDS PAGE (Figure 4.1, A). All four germinating

and developing samples displayed good preparation reproducibility and were prepared

for labelling with CyDyes.

50 µg of protein from each sample was labelled with 400 pmol of CyDye at a

concentration of 1 mg/ml (see Chapter 2.3.5). The 200 µg pooled standard sample was

labelled with 1600 pmol of Cy2 (Table 4.1). The four germinating samples were labelled

with Cy3 dye and the four developing samples were labelled with the spectrally distinct

Cy5 dye. 25 µg from each germinating and developing sample were pooled and labelled

with Cy2 to generate the internal standard. The success of the labelling reaction was

tested by separation of 5 µg of each labelled protein sample (samples G1 to G4, D1

to D4 and Std) by 1D SDS PAGE. The gel was then visualised with the Typhoon

9200 Variable Mode Imager and total intensity for each protein lane checked with

ImageQuant (GE Healthcare, Bucks UK) (Fig. 4.2). This provides an initial check for

labelling failures by identifying significant differences in fluorescent intensity between

samples and by comparing protein profiles. Germinating and developing sample types

gave comparable protein profiles and figures for pixel intensity indicating that the

efficiency of labelling was conserved across the 9 separate reactions (Fig. 4.2).

Following labelling, samples were prepared for large format 2D electrophoresis. 12.5

µg of a single germinating sample was paired to 12.5 µg of a single developing sample

in the order described in Table 4.1. To each of these paired samples a further 12.5
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Figure 4.1: Protein concentration measured by modified Bradford assay.
Absorbances of germinating and developing samples were assayed independently against
a BSA standard linear regression (1 - 20µg) (B). Assay data is shown in the table (C),
which reveals all samples are at a concentration > 1 mg / ml. Preparations were examined
by 1D SDS PAGE on a 12% gel (A) to assess sample consistency, which were found to be
highly reproducible.
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Table 4.1: Set up of labelling reactions and multiplex gel configurations for 2D
DIGE study

Sample Sample Dye Protein Gels

ID Type concentration (µg/µl) a amount (µg)

G1 Germinating Cy3 1.55 50 1

G2 Germinating Cy3 2.21 50 2

G3 Germinating Cy3 1.38 50 3

G4 Germinating Cy3 1.20 50 4

D1 Developing Cy5 2.17 50 1

D2 Developing Cy5 3.39 50 2

D3 Developing Cy5 1.36 50 3

D4 Developing Cy5 1.78 50 4

Std Internal Standard b Cy2 1.88 200 1 to 4
a Protein concentration > 1 mg/ml to ensure kinetics of labelling reaction are optimal.
b Internal standard sample comprised of 25 µg from samples 1 to 8 to give a total of 200 µg and

containing equal representation of all germinating and developing spots in the analysis.
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Figure 4.2: 1D SDS-PAGE gel of CyDye labelled protein samples. Labelling
efficiency was compared for each protein lane using ImageQuant software to compare
protein profiles and intensity, which revealed effective labelling of each sample.

µg of the Cy2 labelled internal standard was added. Finally, lysis buffer was added

to a total volume of 70 µl containing 1% DTT and 2% pH 3-10 carrier ampholytes.

Samples were cup-loaded at the anodic end of a re-swelled 18 cm pH 3-10 IEF strips

and isoelectric focussing was performed for a total of 70 kVh (see Chapter 2.3.5).

Strips were then equilibrated and proteins separated by their molecular weight on large

format 12% acrylamide gels. Imaging of the gels was carried out immediately after

the second dimension dye front had reached the bottom 2 mm of the gels. Gels were

visualised using a Typhoon 9200 variable wavelength scanner, capable of imaging the

Cy2, Cy3 and Cy5 fluors in an automated 3 phase scan. It was critical that the peak

pixel intensity for each scanned image did not exceed 100,000 (on a scale of 0-100,000

greys). Above this value the image is at least partially saturated and cannot accurately

be quantified. So as to make good use of the dynamic range of the extended 16-bit

file format, PMT values were adjusted until a maximum pixel value of ∼70,000 was
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Figure 4.3: Representative image of 2D DIGE gel. Four replicates of germinating
and developing seed ER were labelled with CyDyes and separated by 2D Electrophoresis.
Imaging of the CyDyes was performed using the Typhoon Variable Mode Imager. Triple
overlay image consists of Cy3 (developing ER, green), Cy5 (germinating ER, red), Cy2
(pooled standard, blue).

achieved. A 2DE gel is depicted in Figure 4.3. This is gel 1 (see Table 4.1 for gel list)

containing the germinating seed ER sample G1, the developing seed ER sample D1 and

the internal standard (Table 4.1). It is a representative triple overlay of each CyDye

fluor.

4.3.2 Assessment of gel reproducibility

Before analysis of the analytical datasets to identify protein spots of interest, as-

sessments were made of the reproducibility of the gels. As the sample preparation

method utilised sucrose-gradient based subcellular fractionation of plant material rather

than whole cell lysates (total soluble protein) the potential for differences between

samples is increased. This is because to obtain ER of sufficient purity whole cell
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extracts are fractionated through two separate sucrose gradients in a 36 hour process

with a large degree of technical involvement; thus there is an increased potential for

variability through sample losses, human error or sample degradation. Although sample

reproducibility was good on 1D SDS PAGE gels and CyDye labelling was successful,

problems with the IPG strip, focussing and sample entry into the second dimension

can all effect the 2DE profile and reduce the quality of the data obtained. Therefore

it was important to ensure that the protein samples had resolved well across the

four germinating and developing gel sets. On visual examination of the gel images

they appeared broadly reproducible and the protein spots had resolved well across the

gels. However using the sophisticated gel analysis packages available a quantification

of variance was made.

After collection of gel images with the Typhoon Variable Mode Imager the four

developing ER gel files were imported into Phoretix Evolution gel analysis software.

Spot features were detected with an automated detection algorithm and manually

adjusted where required (see Chapter 2.3.9.2).

The first step in quantifying the reproducibility between the gels was in identifying

the total number of unique spot features present on the 4 developing gels. This was

done within Phoretix Evolution by creating a virtual reference gel from the spot map

with the greatest number of spots. Where spots were present on the remaining three

gels that were not already on the reference map they were manually added until the

reference map was a complete composite of all 4 developing gels. All of the spot features

present on each of the 4 developing gels could then be matched to the reference map.

This then allowed the calculation of match frequency for every spot present across the

developing gels. By counting how many spots on the reference map were able to match

spots in all 4 of the developing gels a figure was obtained of the number of spots common

to every gel in the developing set. Similarly, figures were obtained for the number of

spots common to 3 of the 4 gels, 2 of the 4 gels and in just 1 gel. The numbers for each
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Table 4.2: Reproducibility of the germinating and developing analytical gels
assessed by Phoretix Evolution. The total number of unique spot features across all
four gels in each developmental state was identified by the creation of a composite reference
map. The number of these unique spot features found in every gel, in 3 / 4 gels, in 2 / 4
gels and just a single gel was then calculated. It was found that for the developing samples,
89% of all the identified spot features were present in each gel. In the germinating samples,
83% of spot features are common to every gel.

Developing gels
Spots common to x / 4 gels 4/4 3/4 2/4 1/4 Total

No. of spots 348 26 10 5 389
Percentage of total 89% 7% 3% 1% 100%

Germinating gels
Spots common to x / 4 gels 4/4 3/4 2/4 1/4 Total

No. of spots 261 28 20 6 315
Percentage of total 83% 8% 7% 6% 100%

of these categories could then be expressed as a percentage against the total number of

spots on the reference gel. The composite reference gel was found to contain 389 spot

features. Of these 389 distinct spots 348 were present in every gel, equivalent to 89%

commonality (represented by arrows on Figure 4.4). 26 spots were identified across 3

gels (7% of total), 10 spots were identified across 2 gels (3% of total) and 5 spots were

present in just a single gel (1% of total). The analysis procedure was repeated for the

germinating dataset, where a total of 315 distinct spot features were identified. 83% of

these spot features were found to be present in all 4 of the gel images, which represents

261 out 315 spots. 28 spots were found to be common to 3 out of the 4 gels (8% of

total), 20 spots were identified in just 2 of the gel images (6%) and 6 spots (2%) were

found to be present in just a single gel image (Table 4.2).

When analysing gels by the DeCyder 2D DIGE software one of the criteria com-

monly used for identifying statistically significant spots is that they are present in every

gel. Therefore, to maximise the amount of data to be assessed in a statistically rigourous
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Figure 4.4: Assessment of 2D DIGE gel reproducibility using Phoretix
Evolution (Nonlinear Dynamics, Northumbria, UK). Arrows indicate spots
common to all gels. Gel A, top, is a germinating gel, arrows indicate 83% of spot features
that are common to all germinating gels. Gel B, bottom, is a developing gel, arrows indicate
89% of spots common to all 4 gels
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differential analysis, it is important to ensure the highest level of reproducibility between

samples is obtained. The identification of 89% of spots common to developing gels and

83% of spots common to germinating gels was considered sufficiently reproducible to

continue to a DeCyder analysis for the differential analysis of germinating and devel-

oping ER seed profiles. The analysis proved a useful tool in evaluating reproducibility

within a sample set (i.e. the germinating or developing gels) and gave confidence in the

quality of the dataset by quantifying the degree of commonality across the gels, before

committing gels to DeCyder differential and downstream MS analysis.

4.3.3 Identification of differential protein levels between germinating

and developing samples

Having made an assessment of the reproducibility of four germinating and developing

seed ER preparations by 1D SDS PAGE and large format 2DE, gel images were

analysed by DeCyder 2D DIGE software version 5.00.08 (GE Healthcare, Bucks, UK).

The analysis was performed as described in Chapter 2.3.9. Briefly, spot detection,

quantification of spot abundance and normalisation of these abundances were performed

by the DeCyder DIA module. The DeCyder BVA module then attempted to match the

spot features across the gels and the Batch Processor module was used to automate the

process during an overnight run. Each automated match made by DeCyder BVA was

validated manually and adjusted as required across all gels before being confirmed as an

accurate match. The data at this stage consisted of normalised mean spot abundances

for each spot matched across the developing, germinating and internal standard gel

images. This data was then interrogated to identify differential protein levels between

the germinating and developing seed ER samples. For each spot feature the mean spot

intensity was compared between the two sample groups against the abundance of the

same spot on the standard gel, giving a value of fold change. A subset of spot features

was identified with fold change values of ±10% and a t-test analysis was used to give
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a confidence value on whether the differences in average intensities were a result of

chance. Spot features that were present in each biological replicate and gave a p value

of ≤0.02 (i.e. 98% likelihood that the observed fold change was not random) were

selected for picking and analysis by mass spectrometry.

Following this differential analysis of germinating and developing seed ER, a total of

91 spots were identified as significantly elevated in the developing samples and 15 spots

as significantly elevated in the germinating samples. Figure 4.5 depicts a germinating

and developing sample gel showing the location of spots that are at different levels in

the two sample types. A developing gel is shown (B) with spots that are elevated in

the developing ER circled green and those elevated in the germinating ER circled red.

Similarly for a germinating gel (A), those spots elevated in the germinating state are

circled red and those elevated in the developing state are circled green.

4.3.4 Identification and excision of spots of interest on preparative

gels

Spots identified as having a ±10% change between the germinating and developing seed

ER gels, by the criteria of a t-test analysis (p=0.02) and their presence in every gel,

were deemed significant changes and picked for MS analysis. A preparative loading

gel containing 400 µg of protein was run for both the germinating and developing

samples. To the 400 µg of protein sample was added a 12.5 µg aliquot of the same

sample but from the CyDye labelled analytical stocks. The protein samples were made

up to a final volume of 350 µl with lysis buffer containing 1% DTT and 2% pH 3-10

carrier ampholytes. The 2D electrophoresis procedure was carried out under the same

conditions as used for the analytical 2D DIGE study (Chapter 4.3.1) apart from the

IEF strips were rehydrated with lysis buffer containing the protein sample rather than

loading the sample through an anodic cup. Bind-silane was used to bond the acrylamide

gel to the low-fluorescence glass plate to prevent warping and gel movement during the

166



Figure 4.5: Identification of significant differences between germinating and
developing ER samples. 2D DIGE analysis was performed identifying significant
differences (≥10% elevation, p value of ≤0.02) between the germinating and developing
developmental states of endosperm ER. A germinating gel (A, top) is shown with 15 spots
found to significantly elevated circled in red. Spots elevated in the developing state by the
same criteria are depicted in green. Similarly a developing gel (B, bottom) has 91 spots
found to significantly elevated in the developing state circled in green, those circled in red
represent the positions of spots significantly elevated in the germinating state.
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picking process. The CyDye labelled spike images were collected prior to SYPROTM

staining for the preparative gel image. Also, triangulation markers were incorporated

into the preparative gels prior to scanning the SYPROTM image as described previously

(Chapter 3.3.3.4).

The inclusion of CyDye labelled spikes was to facilitate matching between the

preparative SYPROTM stained gels and the CyDye labelled analytical set from the 2D

DIGE analysis. As described in Chapter 3.3.3.1 the process of matching spots between

preparative and analytical gels can be complicated by the use of in-gel hydration of

protein sample into the IEF strip rather than the preferred technique of cup-loading

for analytical size samples. It was found that the presence of a CyDye labelled spike of

the same sample can aid in the matching of spots between analytical and preparative

gels. Figure 4.6 shows the comparison between the CyDye spike image (top left, A)

and the SYPROTM stained image (top right, B) of the preparative developing gel. The

gel labelled C (bottom) is the original analytical gel from the 2D DIGE analysis. The

CyDye labelled spike thus mediates between the analytical gel and the high-loading

preparative gel. Examples of its usefulness are apparent in this figure. A large spot

indicated by an arrow (1) shows a spot clearly visible in the CyDye labelled protein

gels (A + C) but apparently absent from the SYPROTM gel. In an instance of a non-

spiked preparative gel, you might postulate that the spot had not entered the gel. Its

presence in the CyDye labelled spike indicates a likely differential staining effect between

SYPROTM and CyDye. When this occurs for a spot of interest, the co-migration of

the CyDye labelled spike aids its localisation for picking and downstream MS analysis.

In this experiment the preparative gels were run alongside the analytical set which

means gel-to-gel variation was reduced. Where this cannot be done the presence of a

CyDye labelled spike is desirable in minimising gel-to-gel variability problems.

The 91 developing and 15 germinating spots of interest from the 2D DIGE analysis

were then picked with the ProPicTM (Genomic Solutions Ltd. Cambridgeshire, UK)
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Figure 4.6: Cy spikes aid matching between analytical and preparative gels. The
use of CyDye labelled sample spikes alongside a preparative gel can aid in spot matching
between two separate gels, in this case the preparative gel and the analytical data gel.
(A) shows the CyDye spike image generated from the sample incorporated into the (B)
SYPROTM Ruby stained preparative gel. These images were obtained from a single gel so
differences found cannot be ascribed to gel-to-gel variation. Arrow (1) indicates is use in
identifying differential staining problems.

169



robot after triangulation within a Phoretix Evolution (Nonlinear Dynamics, Northum-

bria, UK) experiment (see Chapter 3.3.3.4, 2.3.10). Developing and germinating gel

images annotated with spots of interest are shown in Figures 4.7 and 4.8. All spots

were picked into a 96-well microtitre plate and trypsin digestion was performed using

a Progest autodigestion robot (Genomic Solutions Ltd. Cambridgeshire, UK).

4.3.5 Protein identification by mass spectrometry

Tryptic-digested peptides were analysed by MALDI-ToF MS and MS/MS. Resultant

PMF spectra and sequence data were initially used to interrogate the NCBI public

database. This data is presented in Section 4.3.5.1 and published in Maltman et al.

(2007). Subsequent to this publication, The Institute for Genomic Research (TIGR)

released the complete genomic database for R. communis. The MALDI-TOF MS

spectra and MS/MS sequence data were re-analysed against the complete TIGR genome

database. This re-analysis is presented in Section 4.3.5.2.

4.3.5.1 Matches against the public NCBI protein database

Tryptic-digested peptides were analysed by MALDI-ToF MS and MS/MS. MALDI-

ToF MS analysis generated PMF spectra which were used in a MASCOT database

search (Perkins et al., 1999) of the National Centre for Biotechnology Information

non-redundant (NCBInr) database, interrogating all Viridiplantae sequences available.

Matches with a Molecular Weight Search (MOWSE) score of >58 were considered

statistically significant. The identity of spots of interest for developing gels is shown

(Table 4.3). Figure 4.7 shows the location of each of these spots on the developing gel,

annotated by a number which equates to the Spot ID number in Table 4.3. Table 4.4

lists the spots of interest from the germinating sample and Figure 4.8 is an annotated

germinating gel showing the locations of these spots of interest. The exception to this

for both the developing and germinating gels are 5 major spots that are labelled by
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name on the gel images and the table, rather than an ID number.

For the MALDI-TOF analysis, out of the 91 developing spots 25 gave confident

matches (27%) with the public database. Proteins belonging to the following families

were observed: protein folding or chaperones, ricin and agglutinin, 2S albumin and

legumin (Table 4.3). A PMF matching the P. communis (pear) H+ exporting ATPase

catalytic subunit was also identified, with a MOWSE score of 99 and its protein spot

exhibiting similar M r and pI values to the predicted values from the database entry.
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Figure 4.7: Analytical developing ER gel. The significant spots are annotated,
numbers referring to those of Table 4.3. M r and pI information is indicated. Spots
identified in the NCBInr database as seed storage proteins are coloured: ricin and RCA,
red; legumin, blue; 2S albumin, green. Previously identified chaperones are annotated by
name (Maltman et al., 2002).
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Table 4.3: 2D DIGE and MS-based identification of spots significantly elevated (p=0.02, 4 change > 10%) in 2D

gels of ER from developing endosperm. NI = not identified by MS

Spot Accession Protein ID Identification Fold t-

Test

M r pI M r pI MOWSE No. differ-

ent

Sequence Matching MS/MS peptides

no. no. MALDI MS/MS 4 p

value

pred pred gel gel score matching coverage

(%

peptides combined)

Protein folding and chaperones

BiP gi|19813 Luminal binding protein (BiP)

[Nicotiana tabacum]

Y 2.5 0.021 73870 5.08 65757 5.17 202 31 48%

gi|729623 Luminal-binding protein 5 pre-

cursor [Nicotiana tabacum]

Y 73744 5.08 144 10 17% DYFDGKEPNK

FEELNNDLFR

EAEEFAEEDKK

NQIDEIVLVGGSTR

DAVVTVPAYFNDAQR

EVEAVCNPIITAVYQR

IKDAVVTVPAYFNDAQR

VEIESLFDGVDFSEPLTR

LKEVEAVCNPIITAVYQR

GVNPDEAVAYGAAVQGGIL

Hsp90 gi|23477636 Grp94 (Xerophyta viscosa)

Hsp90 homologue

Y 3.34 0.031 94148 4.92 72790 4.9 116 26 32%

PDI gi|11133775 Protein disulphide isomerase

precursor (PDI) [Ricinus com-

munis]

Y 7.55 0.001 55811 4.95 55446 4.64 343 35 71%

PDI Ho-

mologue

gi|4678297 Protein disulphide-isomerase

homologue protein [Arabidopsis

thaliana]

Y 2.96 0.013 62735 4.72 72089 4.36 97 3 8 VIVGNNFDEIVLDESK

AMGFPTLLFFPELK

FSDPLTVDTDR

Continued on Next Page. . .
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Spot Accession Protein ID Identification Fold t-

Test

M r pI M r pI MOWSE No. differ-

ent

Sequence Matching MS/MS peptides

no. no. MALDI MS/MS 4 p

value

pred pred gel gel score matching coverage

(%

peptides combined)

Calreticulin gi|11131745 Calreticulin precursor [Ricinus

communis]

Y 1.34 <0.02 47721 4.38 54449 4.09 182 23 53%

32 gi|1134968 Protein disulphide isomerase

[Ricinus communis]

Y 4.42 0.0079 55560 4.95 55580 5.31 174 18 35%

33 gi|1134968 Protein disulphide isomerase

[Ricinus communis]

Y 3.17 0.0078 55560 4.95 55850 5.41 91 14 30%

Y 55560 4.95 234 10 22% FFNSPDAK

GYPTVYFR

SDADIVIAK

QSGPASVEIK

IFIVGVFPK

SHDIPVVLAK

SDYEFGHTLDAK

SDYEFGHTLDAKK

LDATANDIPSDTFDVR

VDANEEANKELATQYDIK

1 gi|50912043 Putative growth regulator

[Oryza sativa] (Hsp70 domains)

Y 5 0.0094 99370 5.29 77048 5.66 105 3 2% SGIISLDR

LQEFLGR

ANLHFSLSR

61 gi|21593230 Unknown [Arabidopsis thaliana]

(DnaJ domains)

Y 2.94 3.30E-

05

39199 5.93 43689 6.46 110 2 4% YGEEGLK

SYYDVLQVPK

gi|34897648 Hypothetical protein [Oryza

sativa] (DnaJ domains)

Y 39276 6.43 110 2 4%

Ricin and agglutinin

10 gi|251808 Agglutinin I, proRCA I

[Ricinus communis]

Y 15.56 0.00083 60168 7.6 61751 6.08 74 9 20%

11 gi|2914589 Ricin A-chain (recombinant)

[Ricinus communis]

Y 3.21 0.0013 29430 6.91 61559 6.21 102 9 46%

Continued on Next Page. . .
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Spot Accession Protein ID Identification Fold t-

Test

M r pI M r pI MOWSE No. differ-

ent

Sequence Matching MS/MS peptides

no. no. MALDI MS/MS 4 p

value

pred pred gel gel score matching coverage

(%

peptides combined)

13 gi|251808 Agglutinin I, proRCA I

[Ricinus communis]

Y 6.07 1.20E-

05

60168 7.6 63953 6.31 74 11 24%

17 gi|21085 Pre-propolypeptide [Ricinus

communis]

Y 25.85 1.70E-

08

64090 6.34 61674 6.41 142 19 41%

18 gi|251808 Agglutinin I, proRCA I

[Ricinus communis]

Y 53.77 3.90E-

06

60168 7.6 62575 6.52 77 12 30%

19 gi|251808 Agglutinin I, proRCA [Ricinus

communis] I

Y 44.95 6.70E-

05

60168 7.6 63953 6.68 84 15 33%

gi|113504 Agglutinin precursor [Ricinus

communis] (RCA)

Y 62851 6.66 382 8 12% CLTISK

gi|251808 Agglutinin precursor [Ricinus

communis]

Y 60168 7.6 382 8 13% + Carbamidomethyl(C)

VGLPISQR

LEQLGGLR

HEIPVLPNR

FQYIEGEMR

ILSCGPASSGQR

+ Carbamidomethyl(C)

DNCLTTDANIK

+ Carbamidomethyl(C)

(38) VWLEDCTSEK

+ Carbamidomethyl(C)

22 gi|113504 Agglutinin precursor [Ricinus

communis] (RCA)

Y 8.23 0.00064 62851 6.66 61228 6.83 173 4 8% LEQLGGLR

gi|251808 Agglutinin precursor [Ricinus

communis]

60168 7.6 173 4 8% FQYIEGEMR

ILSCGPASSGQR

+ Carbamidomethyl(C)

DNCLTTDANIK

+ Carbamidomethyl(C)

Continued on Next Page. . .
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Spot Accession Protein ID Identification Fold t-

Test

M r pI M r pI MOWSE No. differ-

ent

Sequence Matching MS/MS peptides

no. no. MALDI MS/MS 4 p

value

pred pred gel gel score matching coverage

(%

peptides combined)

25 gi|21085 Pre-propolypeptide [Ricinus

communis]

Y 9.94 7.70E-

05

64090 6.34 61525 7.4 123 14 32%

26 gi|21085 Pre-propolypeptide [Ricinus

communis]

Y 8.13 0.0015 64090 6.34 61973 7.55 117 14 32%

27 gi|21085 Pre-propolypeptide [Ricinus

communis]

Y 10.01 0.00087 64090 6.34 62048 7.91 126 17 38%

29 gi|113504 Agglutinin precursor (RCA)

[Ricinus communis]

Y 12 0.0033 62851 6.66 62273 8.26 79 3 7% LEQLGGLR

ILSCGPASSGQR

gi|251808 Agglutinin I; proRCA I

[Ricinus communis]

60168 7.6 79 3 7% + Carbamidomethyl(C)

LSTAIQESNQGAFASPIQLQR

2S Albumin

75 gi|21068 2S Albumin precursor [Ricinus

communis]

Y 61.55 2.10E-

05

29289 6.73 34593 6.21 240 20 70%

76 gi|21068 2S Albumin precursor [Ricinus

communis]

Y 18.23 9.10E-

07

29289 6.73 34509 6.4 119 11 44%

77 gi|21068 2S Albumin precursor [Ricinus

communis]

Y 5.38 0.00021 29289 6.73 33039 6.55 95 3 13% AGEIVSSCGVR

+ Carbamidomethyl(C)

GQIQEQQNLR

TTITTIEIDESKGER

Legumin

39 gi|7269954 Putative protein [A thaliana] Y 8.49 0.0063 28385 5.46 50698 6.56 58 1 3% EILFEIVDR

gi|7269956 Putative protein [A thaliana] 28224 5.35 58 1 3%

gi|21555885 Unknown [A thaliana] 28125 5.35 58 1 3%

gi|21593315 Defense-related protein [A

thaliana]

28427 5.46 58 1 3%

gi|23505821 At4g30550/F17I23 110 [A

thaliana]

28300 5.35 58 1 3%

Continued on Next Page. . .
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Spot Accession Protein ID Identification Fold t-

Test

M r pI M r pI MOWSE No. differ-

ent

Sequence Matching MS/MS peptides

no. no. MALDI MS/MS 4 p

value

pred pred gel gel score matching coverage

(%

peptides combined)

gi|600108 Legumin A precursor [Vicia

narbonensis]

Y 54667 7 49 1 1% LDALEPDNR

gi|8118510 Legumin-like [Ricinus commu-

nis]

Y 53668 8.65 46 2 3% ENIADPSR

SDVFVPEVGR

42 gi|8118510 Legumin-like [Ricinus commu-

nis]

Y 4.45 0.012 53668 8.65 53147 6.78 68 2 1% VSIEEAR

VSIEEARR

43 gi|8118512 Seed storage protein [Ricinus

communis]

- Y 6.5 0.00048 40099 9.29 54317 6.83 352 10 36% INQLAGR

YLQLSIQK

DFFLAGNPQR

QEVTLLSPGSR

ASNEGLEWVSFK

VTSVNSHNLPILR

VIAESFNINTDLAR

GIIVSVEHDLEMLAPQR

VQIVNENGDSVFDGQVQR

SMPEEVVANAFQVSVEDAR

48 gi|8118512 Seed storage protein [Ricinus

communis]

Y 5.11 0.00033 40099 9.29 55917 7.03 127 14 42%

gi|8118512 Seed storage protein [Ricinus

communis]

Y 40099 9.29 201 6 18% INQLAGR

YLQLSIQK

DFFLAGNPQR

QEVTLLSPGSR

VTSVNSHNLPILR

(42) VQIVNENGDSVFDGQVQR

50 gi|8118512 Seed storage protein [Ricinus

communis]

Y 22.22 1.40E-

05

40099 9.29 54383 7.34 149 19 69%

Continued on Next Page. . .
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Spot Accession Protein ID Identification Fold t-

Test

M r pI M r pI MOWSE No. differ-

ent

Sequence Matching MS/MS peptides

no. no. MALDI MS/MS 4 p

value

pred pred gel gel score matching coverage

(%

peptides combined)

gi|8118512 Seed storage protein [Ricinus

communis]

Y 40099 9.29 452 12 35% INQLAGR

YLQLSIQK

LRGENDLR

EVQSQRGER

DFFLAGNPQR

QEVTLLSPGSR

50 VTSVNSHNLPILR

DNRQEVTLLSPGSR

HNINKPSEADIYNPR

VQIVNENGDSVFDGQVQR

STSTGSAHDNSGNVFSGMDER

(74) RSTSTGSAHDNSGNVFSGMDER

51 gi|8118512 Seed storage protein [Ricinus

communis]

Y 7.02 0.0001 40099 9.29 56053 7.32 211 23 77%

52 gi|8118510 Legumin-like protein [Ricinus

communis]

Y 6.28 0.0016 53668 8.65 52445 7.53 99 3 3% ENIADPSR

FEYVAFK

MKENIADPSR

53 gi|8118512 Seed storage protein [Ricinus

communis]

Y 15.54 0.00038 40099 9.29 54383 7.84 227 26 81%

54 gi|8118510 Legumin-like protein [Ricinus

communis]

Y 5.62 0.00025 53668 8.65 50271 8.34 139 15 31%

Other Proteins

8 gi|60592632 H+ exporting ATPase catalytic

subunit [Pyrus communis]

Y 6.07 0.0035 68757 5.43 63953 5.49 99 13 23%

86 gi|4960154 Putative progesterone-binding

protein [Arabidopsis thaliana]

Y 1.67 0.0011 28228 8.58 36440 3.9 46 2 9%

gi|7576227 Putative progesterone-binding

protein homologue Atmp2

[Arabidopsis thaliana]

Y 25382 4.56 46 2 10% GQIYDVSQSR

Continued on Next Page. . .
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Spot Accession Protein ID Identification Fold t-

Test

M r pI M r pI MOWSE No. differ-

ent

Sequence Matching MS/MS peptides

no. no. MALDI MS/MS 4 p

value

pred pred gel gel score matching coverage

(%

peptides combined)

MFYGPGGPYALFAGK

84 gi|28555917 NBS-LRR disease resistance

protein [Hordeum vulgare]

Y 2.92 0.0012 160871 6.56 19100 7.71 54 2 1% GLELVANK

LSSLKELR

85 gi|28555917 NBS-LRR disease resistance

protein [Hordeum vulgare]

Y 7.29 0.0012 160871 6.56 19100 7.92 49 2 1% GLELVANK

LSSLKELR

3 gi|10177672 Glucosidase II alpha subunit

[Arabidopsis thaliana]

Y 9.52 7.00E-

05

104274 5.86 75116 5.31 73 2 1% FVFSK

gi|34906342 Unnamed protein product

[Oryza sativa]

Y AGTIIPR

2 gi|34906342 Unnamed protein product

[Oryza sativa]

Y 3.27 0.062 61904 7.16 76030 6.04 53 2 2% LATGEPLR

LATGEPLRLVSK

23 gi|51535322 hypothetical protein [Oryza

sativa]

Y 13.26 8.00E-

05

20855 11.7 61154 6.97 62 2 6% LGPLVPR

EIAMRR

73 gi|54660800 Ribulose-1,5-bisphosphate car-

boxylase/oxygenase large sub-

unit [Cremastosperma sp. Pirie

71 ]

Y 9.19 0.00011 50518 6.46 32999 6.02 49 2 2% QGWEIIR

DLARQGTEIIR

Unidentified Proteins

4 NI 3.4 0.0031 69773 5.74

5 NI 2.4 0.017 69857 5.83

6 NI 2.27 0.018 69942 5.89

7 NI 5.91 0.0019 63953 5.4

9 NI 3.56 0.0059 63876 5.57

12 NI 28.43 3.30E-

06

62500 6.32

Continued on Next Page. . .
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Spot Accession Protein ID Identification Fold t-

Test

M r pI M r pI MOWSE No. differ-

ent

Sequence Matching MS/MS peptides

no. no. MALDI MS/MS 4 p

value

pred pred gel gel score matching coverage

(%

peptides combined)

14 NI 11.52 0.00025 63260 6.41

15 NI 5.21 3.60E-

05

58195 6.62

16 NI 4.29 0.00046 58548 6.7

20 NI 39.44 4.20E-

05

63337 6.76

21 NI 11.64 0.00015 63108 6.86

24 NI 10.16 6.30E-

05

66638 6.69

28 NI 4.9 0.0061 66477 7.91

30 NI 15.44 0.0065 62273 8.47

31 NI 4.53 0.0082 66719 8.15

34 NI 1.63 0.012 58195 5.54

35 NI 2.22 0.00059 54647 5.79

36 NI 3.48 0.00041 55850 6.04

37 NI 4.05 0.0023 56257 6.24

38 NI 3.99 0.015 50576 6.45

40 NI 5.74 0.0065 53019 6.66

41 NI 3.39 0.0069 51564 6.81

44 NI 3.73 0.00052 53147 6.94

45 NI 15.27 0.00017 54252 7.02

46 NI 5.14 0.00056 52891 7.01

47 NI 4.39 0.013 51377 6.97

49 NI 6.4 0.0009 52827 7.13

55 NI 2.81 0.0041 48656 5.23

56 NI 3.4 0.00032 46526 5.2

57 NI 2.9 0.02 43637 5.22

58 NI 1.9 0.013 46470 5.31

59 NI 1.96 0.003 46413 5.56

60 NI 3.37 0.0026 43112 6.15

Continued on Next Page. . .
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Spot Accession Protein ID Identification Fold t-

Test

M r pI M r pI MOWSE No. differ-

ent

Sequence Matching MS/MS peptides

no. no. MALDI MS/MS 4 p

value

pred pred gel gel score matching coverage

(%

peptides combined)

62 NI 2.61 0.00026 43637 6.62

63 NI 7.75 0.007 40142 5.38

64 NI 6.27 0.0033 39983 5.48

65 NI 4.11 0.00073 40239 5.64

66 NI 2.56 0.0029 40191 5.78

67 NI 3.02 0.0027 39997 5.85

68 NI 2.53 0.0006 39900 6.12

69 NI 3.4 0.00013 39468 6.19

70 NI 3.04 0.012 37786 6.21

71 NI 3.86 0.0072 37017 5.83

72 NI 15.28 0.00097 34718 5.9

74 NI 13.54 0.00059 32999 6.2

78 NI 51.83 1.10E-

05

34551 6.55

79 NI 4.6 0.0067 34760 6.88

80 NI 2.68 0.0031 41727 8.42

81 NI 1.93 0.0073 27925 6.76

82 NI 1.86 0.0076 16722 5.31

83 NI 9.63 0.00061 18985 7.22
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From the germinating gel only a single protein was identified by MALDI TOF MS

PMF, this being spot no. 15: malate synthase, matching a R. communis database

entry (Table 4.4).

27% of spots giving data for the developing set and 7% of spots for the germinating

set are low if we compare to 2D DIGE investigations by other groups (Rowland et al.,

2007; Chivasa et al., 2006). This was due in part to the lack of a publicly available

complete genomic database for R. communis at the time of the analysis. The entries

that were in the Viridiplantae NCBInr database were limited for this organism (320

R. communis NCBInr database entries at the time of the analysis) so the potential for

PMF-based identification is restricted. To obtain extra information from this proteomic

study a further MS analysis was employed. LC-MS/MS analysis of the trypsin digested

peptides was performed with an Applied Biosystems QSTAR PULSARiTM. This

instrument can select ions for fragmentation and peptide sequencing giving actual amino

acid sequences for peptides successfully analysed. Having amino acid sequence data for

a peptide is a major benefit over PMF-based MS and helps overcome the limitation of

not having a complete genome database for R. communis. It can allow the putative

identification of proteins based on their homology to other sequenced organisms (for

example, the model plant A. thaliana whose genome database is available within the

NCBInr database). Having partial sequence data for a protein can also aid in the

cloning of its gene.

The MS/MS analysis resulted in 21 individual spots giving identities after the anal-

ysis was submitted to the NCBInr Viridiplantae database (matches with a MOWSE

score of >43 were significant). Out of these 21 spots, 6 had given confident matches

to database entries when their peptides were analysed by MALDI TOF MS (see Table

4.3). In all of these cases the identity obtained was the same. 15 spots which failed

to give an identity by MALDI TOF MS gave positive hits after MS/MS sequencing.

These included homologous peptide matches to protein families already observed in
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the MALDI TOF study but from other organisms e.g. the chaperone-family protein

disulphide isomerase homologue from A. thaliana (gi|4678297), or spot 39: the legumin-

family homologue from A. thaliana (gi|7269954). It also included matches with proteins

already observed by MALDI-TOF but from another near-by spot e.g. spot 22 : Ag-

glutinin precursor RCA from R. communis (gi|113504) or spot 52 : the legumin-like

protein from R. communis (gi|8118510). This observation reveals different sensitivities

of the two MS technologies.

A number of proteins that don’t fall into the category of storage proteins, chaperones

or folding proteins gave hits by homology but had MOWSE scores close to the statistical

cut off. These are listed under ‘Other Proteins’ in Table 4.4 and discussed in Chapter

4.4.4. They include matches to NBS-LRR disease resistance protein from H. vulgare

(spot 84, 85), glucosidase II alpha subunit from A. thaliana (spot 3) and ribulose-1,5-

bisphosphate carboxylase/oxygenase subunit fom Cremastosperma sp. Piriie 71 (spot

73).

In some cases more than one database entry gave a significant match to the MS/MS

sequence data. For example, spot no. 19 gave a confident hit for Agglutinin I, proRCA

- gi|251808 (R. communis) but also its precursor protein Agglutinin precursor (RCA)

- gi|113504 (R. communis). This is to be expected where a protein is present in

unprocessed and processed forms in the Viridiplantae database as the amino acid

sequences will be the same for part of the protein.

The MS/MS analysis gave hits for a further 4 spots from the germinating gel (see

Table 4.4). Spot 12 gave the highest-confidence MOWSE score (116) with a match to

porin from P. sativum (gi|396819). No identification was made for the MALDI TOF

MS identified malate synthase when analysed by MS/MS.
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Figure 4.8: Analytical germinating ER gel. Significant spots are annotated, numbers
referring to those of Table 4.4. M r and pI information is indicated. Previously identified
chaperones are annotated by name (Maltman et al., 2002).
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Table 4.4: 2D DIGE and MS-based identification of spots significantly elevated (p=0.02, 4 change > 10%) in 2D

gels of ER from germinating endosperm. NI = not identified by MS.

Spot Accession Protein ID Identification Fold t-

Test

M r pI M r pI MOWSE No. differ-

ent

Sequence Matching MS/MS peptides

no. no. MALDI MS/MS 4 p

value

pred pred gel gel score matching coverage

(%

peptides combined)

3 gi|61104883 Strictosidine synthase family

protein [Arabidopsis thaliana]

Y 2.4 0.011 46653 6.55 46526 7.15 74 1 2% GPYTGLADGR

4 gi|61104883 Strictosidine synthase family

protein [Arabidopsis thaliana]

Y 2.64 0.015 46653 6.55 46639 7.45 50 1 2% GPYTGLADGR

5 gi|37779748 NADH dehydrogenase subunit

F [Halodule wrightii]

Y 3.61 0.0068 76908 8.1 47026 7.61 49 1 1% XNNQLLKR

12 gi|396819 Porin [Pisum sativum] Y 5.15 0.0023 29596 9.11 36325 8.24 116 4 8% DLLYK

NITTDIK

GPGLYTDIGK

GPGLYTDIGKK

15 gi|21076 Unnamed protein product

[Ricinus communis] malate

synthase

Y 5.19 0.0022 64262 8.53 58690 8.67 181 30 50%

1 NI 2.27 0.019 61302 5.88

2 NI 1.95 0.015 61302 5.97

6 NI 1.54 0.011 33159 6.76

7 NI 2.19 0.009 35698 7.3

8 NI 2.28 0.0068 34426 7.39

9 NI 3.67 0.004 35698 7.52

10 NI 3.37 0.008 34218 7.96

11 NI 2.71 0.0069 35569 8.01

13 NI 1.82 0.0097 27925 6.96

14 NI 7.35 0.00028 15197 7.31
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4.3.5.2 Re-analysis of MS data against a complete R. communis protein

database

The availability of a complete R. communis genomic database, published by The

Institute for Genomic Research, gave an opportunity for the MALDI-TOF and MS/MS

data to be re-analysed to see if any new identities could be assigned to the dataset. The

86 spots with a number ID on the developing gel were re-analysed. For the MALDI-

TOF data, 54 developing spots gave confident hits to the TIGR database (59%). This

is a significant increase on the 27% of developing spots giving hits against the NCBI

database in the original analysis. The MS/MS data was also analysed, and this provided

a further 2 confident hits against the database. This data is presented in Table 4.5.

Spots which previously gave identities have their Spot ID numbers in bold. Those spots

that are suffixed with an asterisk have given a different identify in the TIGR analysis

than in the original NCBI analysis.

The same broad protein families that were identified in the original analysis were

identified in the TIGR re-analysis: protein folding and chaperones, ricin and agglutinin,

2S albumin and legumin. 16 proteins identified did not belong to these groups and are

listed under ‘Other Proteins’. 6 of these proteins previously gave matches to the NCBI

database, however 3 of the TIGR hits are different types of protein to those published

previously. For each of these 3 different proteins, they previously had low MOWSE

scores (53, 62, 49). They are described in Section 4.4.4.

The MS data generated from the germinating spots was also re-analysed. A total

of 10 spots gave positive hits (67%), again a significant increase on the 33% of total

hits obtained in the original analysis, see Table 4.6. Spots ID numbers are in bold and

asterisked as for the developing table. 5 spots identified in the TIGR analysis previously

gave confident matches to the NCBI database; one of these spots has subsequently

matched a different type of protein in the TIGR analysis (Spot 5, putative strictosidine

synthase).
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Table 4.5: Re-analysis of developing MS data against the TIGR R. communis database. Bold ID Numbers = Previously

matched an entry in the NCBI database. Asterisk = Different identity obtained from TIGR analysis than identified in NCBI analysis

Spot Accession Protein ID Identification MOWSE No. differ-

ent

Matching

no. no. MALDI MS/MS score matching MS/MS

peptides peptides

Protein folding and chaperones

1 29724.m000869 Heat shock 70 kDa protein (putative) Y 221 32

32 29908.m006121 Protein disulfide isomerase (putative) Y 174 19

33 29908.m006121 Protein disulfide isomerase (putative) Y 143 16

57 30128.m008894 Protein disulfide isomerase (putative) Y 58 9

61 30076.m004681 Chaperone protein dnaJ (putative) Y 79 1 FAEINNAYEVLSDSEKR

64 30128.m008894 Protein disulfide isomerase (putative) Y 54 7

65 30128.m008894 Protein disulfide isomerase (putative) Y 80 9

66 30128.m008894 Protein disulfide isomerase (putative) Y 62 7

68 30128.m008894 Protein disulfide isomerase (putative) Y 106 12

69 30128.m008894 Protein disulfide isomerase (putative) Y 56 7

71 30128.m008894 Protein disulfide isomerase (putative) Y 95 10

Ricin and agglutinin

10 28274.m00033 Agglutinin precursor (RCA) [contains: Agglutinin A chain] Y 81 11

11 59679.m000011 Ricin precursor [Contains: Ricin A chain] (putative) Y 80 9

13 28274.m00033 Agglutinin precursor (RCA) [contains: Agglutinin A chain] Y 101 14

17 59679.m000011 Ricin precursor [Contains: Ricin A chain] (putative) Y 118 16

18 28274.m00033 Agglutinin precursor (RCA) [contains: Agglutinin A chain] Y 92 14

19 28274.m00033 Agglutinin precursor (RCA) [contains: Agglutinin A chain] Y 126 20

28274.m00033 Agglutinin precursor (RCA) [contains: Agglutinin A chain] Y 462 11 CLTISK

+ Carbamidomethyl (C)

VGLPISQR

LEQLGGLR

SHLTTGGDVR

Continued on Next Page. . .
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Spot Accession Protein ID Identification MOWSE No. differ-

ent

Matching

no. no. MALDI MS/MS score matching MS/MS

peptides peptides

FQYIEGEMR

ILSCGPASSGQR

+ Carbamidomethyl (C)

DNCLTTDANIK

+ Carbamidomethyl (C)

VWLEDCTSEK

+ Carbamidomethyl (C)

TIINPTSGLVLAATSGNSGTK

AEQQWALYADGSIRPQQNR

LSTAIQESNQGAFASPIQLQR

22 29844.m003250 Vicilin GC72-A precursor (putative) Y 189 25

29844.m003250 Vicilin GC72-A precursor (putative) Y 444 24 GIENYR

NFLAGQR

GQAPLNLR

CTISYVLR

+ Carbamidomethyl (C)

FSESSELLR

NQQPLYSNR

QKGQAPLNLR

CEEEPIKER

+ Carbamidomethyl (C)

GSLMVPHYNSR

NNPYYFHAQR

VSYNLETGDVIK

VEMACPHVASQK

+ Carbamidomethyl (C)

ESHFVAGPQQGQR

ELSFNVPAELIEK

25 59679.m000011 Ricin precursor [Contains: Ricin A chain] (putative) Y 119 13

26 59679.m000011 Ricin precursor [Contains: Ricin A chain] (putative) Y 102 12

27 59679.m000011 Ricin precursor [Contains: Ricin A chain] (putative) Y 126 16

Continued on Next Page. . .
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Spot Accession Protein ID Identification MOWSE No. differ-

ent

Matching

no. no. MALDI MS/MS score matching MS/MS

peptides peptides

2S Albumin

72 28166.m001081 Sweet protein mabinlin-1 Chain A Y 30 3

73* 28166.m001079 2S albumin precursor [contains 2S albumin small chain; 2S

albumin large chain]

Y 122 16

74 28166.m001079 2S albumin precursor [contains 2S albumin small chain; 2S

albumin large chain]

Y 144 16

75 28166.m001081 Sweet protein mabinlin-1 Chain A Y 232 20

76 28166.m001081 Sweet protein mabinlin-1 Chain A Y 125 11

77 28166.m001081 Sweet protein mabinlin-1 Chain A Y 77 9

78 28166.m001081 Sweet protein mabinlin-1 Chain A Y 240 18

79 28166.m001081 Sweet protein mabinlin-1 Chain A Y 191 22

82 28166.m001083 2S sulphur-rich seed storage protein precursor (Allergen Ber e

1)

Y 50 5

Legumin

39 29611.m000223 Legumin A precursor (Beta-globulin) (LEGA-C94) [Contains:

Legumin A acidic chain; Legumin A basic chain]

Y 177 23

29611.m000223 Legumin A precursor (Beta-globulin) (LEGA-C94) [Contains:

Legumin A acidic chain; Legumin A basic chain]

Y 418 11 VFDGNVK

QETILTR

LDALEPDNR

NLFCGIDTR

+ Carbamidomethyl (C)

VSTVNSNNLR

ADVYVPEVGR

IKENIADPSR

IQVVDENGNR

NFHLAGNPENEFQK

Continued on Next Page. . .
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Spot Accession Protein ID Identification MOWSE No. differ-

ent

Matching

no. no. MALDI MS/MS score matching MS/MS

peptides peptides

EGQVLTVPQNFVVVK

LLQLSASHVSLSNGAIR

41 29611.m000223 Legumin A precursor (Beta-globulin) (LEGA-C94) [Contains:

Legumin A acidic chain; Legumin A basic chain]

Y 191 21

42 30005.m001288 Legumin A precursor (Beta-globulin) (LEGA-C94) [Contains:

Legumin A acidic chain; Legumin A basic chain]

Y 285 27

43 30005.m001290 Legumin A precursor (Beta-globulin) (LEGA-C94) [Contains:

Legumin A acidic chain; Legumin A basic chain]

Y 245 24

48 29200.m000169 Glutelin type-A 3 precursor Y 216 21

50 29200.m000169 Glutelin type-A 3 precursor Y 205 26

29200.m000169 Glutelin type-A 3 precursor Y 337 7 INQLAGR

YLQLSIQK

GQQDQCQLNR

+ Carbamidomethyl (C)

GLLLPQYVNGPK

VTSVNSHNLPILR

ARFNGLEETFCTAR

+ Carbamidomethyl (C)

STSTGSAHDNSGNVFSGMDER

51 29200.m000169 Glutelin type-A 3 precursor Y 297 31

52 30005.m001290 Legumin A precursor (Beta-globulin) (LEGA-C94) [Contains:

Legumin A acidic chain; Legumin A basic chain]

Y 239 27

30005.m001290 Legumin A precursor (Beta-globulin) (LEGA-C94) [Contains:

Legumin A acidic chain; Legumin A basic chain]

Y 291 8 QESTFGR

YSLSGDSER

LNAFEPDNR

ADLFVPEVGR

MKENIADPSR

AESDRFEYVAFK

MSTVNSHNLPILR

LIAEAFNINEQLAR

Continued on Next Page. . .
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Spot Accession Protein ID Identification MOWSE No. differ-

ent

Matching

no. no. MALDI MS/MS score matching MS/MS

peptides peptides

53 29200.m000169 Glutelin type-A 3 precursor Y 313 34

29200.m000169 Glutelin type-A 3 precursor Y 403 INQLAGR

YLQLSIQK

QEVTLLSPGSR

GQQDQCQLNR

+ Carbamidomethyl (C)

GLLLPQYVNGPK

VTSVNSHNLPILR

VQIVNENGDSVFDGQVQR

STSTGSAHDNSGNVFSGMDER

54 29600.m000565 Legumin type B precursor Y 141 15

Other proteins

2* 30221.m002257 strictosidine synthase (putative) Y 159 20

3 29687.m000597 neutral alpha-glucosidase ab precursor (putative) Y 205 32

4 28333.m000566 oligopeptidase A (putative) Y 57 10

8 30169.m006261 ATP synthase alpha subunit vacuolar (putative) Y 172 18

15 29864.m001501 9-cis-epoxycarotenoid dioxygenase (putative) Y 177 21

16 29864.m001501 9-cis-epoxycarotenoid dioxygenase (putative) Y 80 10

20 29703.m001491 nucleolar protein nop56 (putative) Y 154 18

23* 29703.m001491 nucleolar protein nop56 (putative) Y 319 35

24 29667.m000347 Cycloartenol synthase (putative) Y 87 13

31 29751.m001894 sorting and assembly machinery (sam50) protein (putative) Y 210 24

44 30170.m013972 cytochrome P450 (putative) Y 73 8

55 30128.m008712 subtilisin inhibitor-like 1 Y 118 14

83 29994.m000460 conserved hypothetical protein Y 44 14

84* 29994.m000460 conserved hypothetical protein Y 137 14

85* 29994.m000460 conserved hypothetical protein Y 138 3 VGDQSLGTK

SISIGLLSR

EAEVQPLLTGGASNAEFLK

Continued on Next Page. . .
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Spot Accession Protein ID Identification MOWSE No. differ-

ent

Matching

no. no. MALDI MS/MS score matching MS/MS

peptides peptides

86 30147.m013761 steroid binding protein (putative) Y 55 9

Table 4.6: Re-analysis of germinating MALDI data against the TIGR R. communis database. Bold ID Numbers =

Previously matched an entry in the NCBI database. Asterisk = Different identity obtained from TIGR analysis than identified in

NCBI analysis

Spot Accession Protein ID Identification MOWSE No. differ-

ent

Matching

no. no. MALDI MS/MS score matching MS/MS

peptides peptides

1 30186.m001314 Protein SEY1 (Putative) Y 96 19

2 30186.m001314 Protein SEY1 (Putative) Y 85 20

3 30221.m002257 Strictosidine synthase (Putative) Y 217 17

4 30221.m002257 Strictosidine synthase (Putative) Y 181 22

5* 30221.m002257 Strictosidine synthase (putative) Y 177 20

10 29822.m003473 Voltage-dependent anion-selective channel (Putative) Y 180 14

12 29736.m002034 Voltage-dependent anion-selective channel (Putative) Y 136 13

13 29929.m004802 Cytochrome P450 (Putative) Y 85 7

14 30190.m010843 Nucleoside diphosphate kinase (Putative) Y 60 6

15 30147.m013773 maltate synthase (Putative) Y 201 27
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4.3.6 Accurate assignment of M r and pI values

Quantification of the molecular weight and pI of proteins on a 2D gel provides useful

information to aid in the identification of proteins. It can give confidence to an MS

identification when the predicted M r and pI values match closely to those observed on

a 2D gel. Deviations from the predicted values might indicate the presence of post-

translational modifications. They are also commonly used in the comparison of spots

between gels, allowing the localisation of the same area on different gels.

For the accurate identification of M r and pI values 20 µg of commercially available

M r + pI markers (product code: M3411, Sigma-Aldrich) were labelled with Cy3 dye

and separated by 2DE alongside a Cy2 standard (see Chapter 2.3.5). The purpose

of labelling and running the markers within the same gel as the Cy2 standard is to

increase the accuracy of M r and pI assignations by utilising the co-migration benefits

that CyDye labelled protein allows. The Cy2 (internal standard) sample was used

because it contains both germinating and developing spots, allowing assignations of

M r and pI values to both samples types. After imaging, spot maps were imported into

DeCyder DIA and M r / pI values assigned to the visualised spots on the marker gel.

The software was then able to assign accurate pI and M r values to all spot features

in the Cy2 gel by calibration based on the migration of the markers, using a linear

regression algorithm for pI and log-linear regression for the M r values.

Figure 4.9 depicts an overlay image of the Cy3 labelled M r / pI standards and the

Cy2 labelled R. communis seed ER sample. The protein spots of the Cy3 labelled

M r / pI standards (annotated 1-5) are clearly visible in red contrasting against the

green-coloured Cy2 R. communis internal standard spot map. M r / pI standards are

amyloglucosidase (89 kDa and 70 kDa, 1 and 2 respectively), ovalbumin (45 kDa, 3),

carbonic anhydrase (29 kDa, 4), horse heart myoglobin (17 kDa, 5).
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Figure 4.9: Multiplex M r / pI and Cy2 R. communis gel. Protein spots belong
to the commercial M r / pI standard (red) have co-migrated with the Cy2 ER sample
(green), allowing highly accurate calibration of M r / pI values. M r / pI standards are
amyloglucosidase (89 kDa and 70 kDa, 1 and 2 respectively), ovalbumin (45 kDa, 3),
carbonic anhydrase (29 kDa, 4), horse heart myoglobin (17 kDa, 5).
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4.4 Discussion

4.4.1 Components of lipid biosynthesis were not identified in the urea-

soluble fraction of ER

One of the major aims of this study was to obtain identities of developing ER proteins,

significantly elevated in this developmental state, by MS. This is with a view to locating

components of lipid biosynthesis pathways in the urea soluble fraction. Based on the

hypothesis that lipid biosynthesis machinery is elevated in the developing seed ER

compared to the germinating seed ER, the germinating proteome was used as a screen

to reduce the number of targets for picking. Furthermore, with the advent of the

2D DIGE system the differential screen was supported by multiple replicate statistical

criteria, giving a figure of confidence that the elevation in protein amount between the

two states is real. 91 separate spots present across the developing set of gels were found

to be significantly elevated compared to the germinating set. Of these, 40 spots gave

MS data (either by MALDI TOF MS, MS/MS or both). No single peptide matched a

database entry for a protein involved in lipid biosynthesis or metabolism, either in the

NCBInr or TIGR databases.

NCBInr database entries for R. communis lipid metabolism proteins are limited.

Database searches of the entire Viridiplantae database were made but for MALDI

TOF MS the specific nature of PMF based MS searches and the sequence variability

between different plant species means this technique is less likely to generate confident

hits to non-R. communis entries. The sequence data generated by MS/MS allows for

matches to be based on homology rather than just peptide mass, alleviating this issue

to a degree. However, sequence coverage and similarity needs to be sufficiently high

to obtain a confident match. Table 4.7 illustrates the limited nature of R. communis

lipid metabolism related entries in the public protein database (current as of February

2009). Subcellular localisation information is shown and evidently the subset of ER lipid
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metabolism proteins is restricted. The limited number of ER-resident lipid metabolism

protein entries in the NCBInr database might be a reason for not identifying any

proteins of this type in the study. However, the MS data was re-analysed against a

complete R. communis TIGR database and no lipid metabolism protein matches were

made.

For those R. communis lipid metabolism related proteins present in the NCBInr

database and with known ER localisation, predicted molecular weight and pI informa-

tion is shown. High molecular weight proteins (∼200 kDa), proteins with a pH close

to or outside the pH 3 limit of the 3-10 IPG strip, or basic (pI >8) proteins (Yarmush

and Jayaraman, 2002) are likely to be lost due to precipitation during focussing. The

predicted M r values suggest that molecular weights should not present a problem during

focussing or IPG strip to gel transfer, although the very low molecular weight of acyl

CoA binding proteins (gi|1938239) would be at risk of running off the bottom of the

gel. pI values indicate a high pH for the DAGAT, FAD12, LPAT and FAH12 proteins

(Table 4.7) although they should be resolvable as a pH 3-10 IPG strip was used.

A significant limitation of 2DE-based analyses is the poor solubility of hydrophobic

proteins, especially membrane bound proteins, in 2D lysis buffer (Yarmush and Jayara-

man, 2002). Where membrane bound proteins do solubilise, they can precipitate during

the IEF stage of 2DE are lost from the analysis. This is likely to be the most significant

reason as to why complex lipid biosynthesis enzymes were not identified in the analysis.

Oleate 412 hydroxylase was previously identified by SDS PAGE on NaCl and Na2CO3

treated R. communis ER preparations (Maltman et al., 2002), a treatment that causes

extraction of associated and lumenal proteins and allows the separation of membranes

and their integral proteins. Its localisation in this fraction confirms its membrane

nature and suggests it is unlikely to be soluble in 2D lysis buffer. Furthermore as

this report used the same ER purification technique as described here, it suggests that

at least some components of lipid biosynthesis are present in the purified developing
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ER samples. A comprehensive 2DE-based analysis of the whole developing seed of B.

napus identified storage proteins as the dominant protein type within the developing

seed (Hajduch et al., 2006). This study similarly utilised a combined MALDI-TOF

and MS/MS approach. MS data were searched against the NCBInr database and a B.

napus tentative consensus database from The Institute of Genomic Research (TIGR),

but not against a complete genomic database. Although some proteins related to lipid

metabolism and fatty acid biosynthesis were identified, no complex lipid biosynthesis

enzymes were found (full data at http://oilseedproteomics.missouri.edu). An earlier

study examined changes of protein profiles during seed development in G. max by

means of 2DE (Hajduch et al., 2005). Again, this study did not reveal any complex

lipid biosynthesis enzymes. Assuming homology between R. communis, B. napus

and G. max complex lipid biosynthesis genes1, these studies support the hypothesis

that complex lipid biosynthesis enzymes are not soluble in 2DE lysis buffer. Certain

components of complex lipid biosynthesis such as phosphatidic acid phosphatase (PAP)

are however known to be non-hydrophobic (Pearce and Slabas, 1998) and would be

expected to be urea 2DE lysis buffer soluble, but were not seen in this study. It is

possible that as associated proteins they were lost during subcellular fractionation.

Hydrophobicity plots are reported for four R. communis ER-resident enzymes in-

volved in complex lipid biosynthesis or lipid modification (Figure 4.10). These enzymes

were the only R. communis complex lipid biosynthesis database entries in the NCBInr

database at the time of the original analysis (Maltman et al., 2007) and thus provide

supporting evidence as to why no proteins of this type were identified. Hydropho-

bicity analysis has been performed using the Kyte and Doolittle algorithm (Kyte and

Doolittle, 1982). Hydrophobic regions are those with a K-D value > 0. Prediction of

transmembrane domains was performed with the TMPred software at The Eukaryotic

Linear Motif resource (http://elm.eu.org) and are boxed in red. These plots and
1R. communis and B. napus oleate 412 desaturase have 73% homology based on a ClustalW

(Chenna et al., 2003) pairwise alignment

197

http://oilseedproteomics.missouri.edu
http://elm.eu.org/


sequence motif predictions indicate the hydrophobic and membrane bound nature of

the complex lipid biosynthesis enzymes in the NCBI database. This underlines the first

point regarding solubility of complex lipid biosynthesis proteins in 2D lysis buffer being

the likely cause of their absence from the analysis.

In summary, it is likely that the membrane bound nature of complex lipid biosynthe-

sis proteins has prevented their solubilisation in 2DE lysis buffer and appearance in this

analysis. Evidence of hydrophobicity and predicted transmembrane sites is presented

for some of the components of R. communis complex lipid biosynthesis. Similar 2DE-

based studies of developing seed which also had access to complete databases failed to

identify complex lipid biosynthesis components. Although techniques exist to increase

solubility of membrane proteins on 2DE gels such as alternative detergents (Rabilloud

and Chevallet, 2000) a non-gel based proteomic analysis such as quantitative MS of

integral membrane proteins will provide a more focussed analysis of the membrane

fraction.
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Figure 4.10: Hydrophobicity plots and predicted transmembrane domains
of R. communis complex lipid biosynthesis proteins in the NCBI database.
Hydrophobicity plots produced with the Kyte and Doolittle algorithm (Kyte and Doolittle,
1982). Predicted transmembrane domains boxed in red. This indicates these proteins are
unlikely to be soluble in 2D lysis buffer or are likely to precipitate during IEF.
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Table 4.7: NCBInr R. communis database entries related to lipid metabolism (September 2007). Non-referenced

”submission name + date” items were directly submitted to the NCBI database. Localisation information is shown with relevant

references.

GI number Submission Shorthand Full name MR pI Localisation

author + date name Pred. Pred.

ER localised protens:

GI|114848908 Kroon 2006 (Kroon et al., 2006) DGAT2 Diacylglycerol acyltransferase 38704 8.94 ER

GI|38146080 McKeon 2003 DGAT Diacylglycerol acyltransferase 59894 8.39 ER

GI|117957296 Lu 2007 (Lu et al., 2007) FAD2 oleate desaturase 43953 8.32 ER (Dyer and Mullen, 2001)

GI|1698844 Wang 1996 (Xu et al., 1996b) phospholipase D 91992 5.44 vacuole, ER associated (Xu et al., 1996a)

GI|1938236 Erber 1997 (Erber et al., 1997) acyl-CoA-binding protein 10051 5.83 endomembranes incl. ER (Li and Chye, 2003)

GI|1581593 Van de Loo 1995 (van de Loo et al., 1995) FAH12 oleate 12-hydroxylase 44409 8.95 ER

GI|183211900 Fernandez-Garcia 2008 LPAT 1-acyl-sn-glycerol-3-phosphate acyltransferase 42696 8.92 ER

Non-ER localised protens:

GI|1345969 Van de Loo 1994 (van de Loo and Somerville, 1994) omega-3 fatty acid desaturase plastid

GI|90110365 Liu 2006 LipRC1p lipase OB

GI|117957294 Lu 2007 (Lu et al., 2007) acidic triacylglycerol lipase 2 OB

GI|118138597 Guy 2006 (Guy et al., 2006) Stearoyl ACP Desaturase plastid

GI|148791251 Sanchez-Garcia 2007 KASIII 3-keto-acyl-ACP synthase III plastid

GI|148791249 Sanchez-Garcia 2007 KASI 3-keto-acyl-ACP synthase I plastid

GI|148645269 Sanchez-Garcia 2007 KASII 3-keto-acyl-ACP synthase II plastid

GI|294668 Genez 1993 KAS β-ketoacyl ACP synthase precursor plastid

GI|83320527 He 2005 ACS4 Acyl-Coenzyme A Synthetase 4 plastid

GI|83320525 He 2005 ACS2 Acyl-Coenzyme A Synthetase 2 plastid

GI|157417724 He 2005 ACS1 Acyl-Coenzyme A Synthetase 1 plastid

GI|170676820 He 2005 ACS1 Acyl-Coenzyme A Synthetase 1 plastid

GI|83320523 Burgal 2008 ACS4 Long chain ACS4 plastid

GI|62866924 Eastmond 2005 (castor endosperm) lipase OB

Continued on Next Page. . .
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GI number Submission Shorthand Full name MR pI Localisation

author + date name Pred. Pred.

GI|1938236 Erber 1997 (Erber et al., 1997) acyl-CoA-binding protein endomembranes

incl. ER (Li and Chye, 2003)

GI|55831356 Eastmond 2004 germinating oil-body associated lipase OB

GI|38259660 (Eastmond, 2004) Eastmond 2004 acid lipase OB

GI|218023 Tsuboi 1991 (Tsuboi et al., 1991) non specific lipid transfer protein-C glyoxysomes,

cytoplasm (cotyledons) (Weig and Komor, 1992)

GI|414732 Van de Loo 1993 (van de Loo and Somerville, 1994) plastidial linoleoyl desaturase plastid

GI|169711 Weig 1992 lipid transfer protein glyoxysomes,

cytoplasm (cotyledons) (Weig and Komor, 1992)

GI|169709 Weig 1992 (Weig and Komor, 1992) lipid transfer protein glyoxysomes,

cytoplasm (cotyledons) (Weig and Komor, 1992)

GI|128380 Takishima 1988 (Takishima et al., 1988) PLTP Phospholipid transfer protein microsomes, plastids (Dubacq et al., 1984)

GI|3334112 Erber 2005 Acyl-CoA-binding protein

GI|128378 Takishima 1986 (Takishima et al., 1986) PLTP Phospholipid transfer protein microsomes, plastids (Dubacq et al., 1984)

GI|224909 Takishima 1986 (Takishima et al., 1986) Non-specific lipid transfer protein glyoxysomes,

cytoplasm (cotyledons) (Weig and Komor, 1992)
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4.4.2 Chaperones and folding proteins dominate the soluble ER pro-

teome

The proteomic study of R. communis seed ER described here and in Maltman et al.

(2007) found chaperones and folding proteins to be the major component of the urea

soluble ER in both germinating and developing seed (Figure 4.7, 4.8). BiP (the ER

resident Hsp70), Hsp90, PDI, a PDI homologue and calreticulin were identified by

MALDI TOF MS and MS/MS analysis. Chaperones and folding proteins are proteins

that transiently interact with nascent proteins to catalyse the protein folding events

and to prevent aggregates of partially formed proteins from occurring, or aid the re-

folding of damaged mature proteins (Gething and Sambrook, 1992). As the ER is the

site of processing for all proteins of the secretory pathway, the cell surface and the

assistant proteins of the endo- and exocytic pathways, there are substantial demands

on protein folding and chaperone activity. Indeed, these components combined contain

one third of the cellular protein in yeast (Ghaemmaghami et al., 2003). The ER thus

has very specific protein folding demands and a high concentration of folding proteins

and chaperones to assist this function.

4.4.2.1 BiP (Hsp70), DnaJ (Hsp40) proteins

BiP (Hsp70), so called because it was first identified in mammalian cells as a protein

that ‘Binds Immunoglobulin G Protein’ (Hendershot et al., 1987) was identified by its

PMF spectra matching the N. tabacum luminal binding protein (BiP). It was found to

be elevated in the developing seed by 2.5 fold. A second protein (spot 1) was found to

contain 3 peptides that were absolutely conserved with an O. sativa putative growth

regulator with predicted Hsp70 domains, and matched Hsp70 in the TIGR database.

This protein was elevated 5-fold in the developing seed. BiPs are known to bind short

hydrophobic sequences of nascent amino acid chains that in the folded state would

form the hydrophobic interiors of β-strands (Flynn et al., 1991) in a reversible ATP-
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dependent manner. This binding by BiP prevents the nascent amino acid chain binding

to itself or other hydrophobic components during translation.

Peptides generated from the 2.94 fold elevated developing spot 61 were sequenced

by MS/MS and 2 peptides matched a hypothetical protein O. sativa containing DnaJ

domains and a putative DnaJ in the TIGR database. The match had a good MOWSE

score of 110 even though the sequence coverage was just 4% as the two peptides

(YGEEGLK and SYYDVLQ) were absolutely conserved between the R. communis

protein and the O. sativa hypothetical protein (Table 4.3). DnaJ domain-containing

proteins belong to the Hsp40 family of chaperones and are known to aid BiP function

by increasing its ability to hydrolyse ATP and thus bind to peptide chains (Bukau

and Horwich, 1998). The degree of elevation of this protein in the developing state

is comparable to BiP (2.944 compared to 2.54 for BiP) perhaps suggestive of their

elevation in concert and its role as a co-chaperone.

4.4.2.2 GRP94 (Hsp90)

The final heat shock protein (Hsp) observed in this proteomic study is GRP-94, an ER

resident member of the Hsp90 family. It is elevated 3.34 fold in the developing seed

and was identified by MALDI TOF MS. Its presence in the ER has been previously

reported (Melnick et al., 1994), indeed it is the only Hsp90 family member reported

in this organelle. Like BiP it is a peptide binding protein, but thought to have a

different subset of binding-peptides perhaps signalling an involvement in later stages

of protein folding. Hsp90 is one of the most abundant proteins in the ER lumen of

mammals (Koch et al., 1986) but is absent in yeast (Argon and Simen, 1999). It was

first identified in plants by Walther-Larsen et al. (1993) as a highly elevated mRNA

transcript during infection of H. vulgare by powdery mildew fungus (Walther-Larsen

et al., 1993).
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4.4.2.3 Protein disulphide isomerase

PDI and a PDI homologue were observed in the germinating and developing seed ER.

PDI is a major component of the ER network of protein folding and chaperone enzymes.

The strongly oxidising environment of the ER encourages the formation of disulphide

bonds between the cysteine residues of nascent proteins (Hwang et al., 1992), providing

stability and directing folding conformation of the growing protein. Although the

formation of disulphide bonds can occur without the aid of protein catalysts PDI can

alter disulphide arrangements to ensure the correct native state is achieved (Kainuma

et al., 1995). PDI was identified in this study as the dominant gel spot (Figures 4.7 and

4.8) which was found to be up-regulated 7.55 fold in the developing seed (Table 4.3).

The PDI homologue has a higher M r than PDI and was identified by homology to a PDI

homologue in A. thaliana. Its M r was close to the predicted values for the A. thaliana

protein. Three peptides were sequenced, of which one (VIVGNNFDEIVLDESK) was

an absolute match with the other two exhibiting homology. Spots 32 and 33, exhibiting

fold change values of 4.42 and 3.17 respectively, were also identified as PDI but were

much less dominant within the profile than the major PDI and PDI homologue. These

spots both matched the same database entry (gi|1134968, protein disulphide isomerase

from R. communis) with good sequence coverage and MOWSE scores and may point

to the post translationally modified PDI forms. On re-analysis of the MS data with

the TIGR database, a further 7 spots were identified as PDI. The significant elevation

and number of the PDI and PDI homologue proteins is indicative of the protein folding

demands of the ER during seed development.

4.4.2.4 Glucosidase II

Glucosidase II alpha subunit was identified as a developing up-regulated high molecular

weight protein by MS/MS sequencing (Spot 3 on Figure 4.7). Although sequence

coverage was just 1% the MOWSE score is a reasonable 73 because the two sequenced
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peptides are absolutely conserved with the A. thaliana protein. Furthermore it is a

known resident ER enzyme (Saint-Jore-Dupas et al., 2006) and a Kyte and Doolittle

hydropathy plot (Kyte and Doolittle, 1982) alongside TMPred transmembrane domain

prediction (http://elm.eu.org/) of the alpha subunit suggests the A. thaliana protein is

not membrane bound and thus is likely to be soluble in urea lysis buffer (Figure 4.11).

Its identity was confirmed in the TIGR re-analysis where it was identified as a putative

neutral alpha-glucosidase ab precursor with a MOWSE score of 205.

Glucosidase II removes the second and third glucose moieties from the N -glycans

(Kornfeld and Kornfeld, 1985) added to asparagine (N ) residues of nascent polypeptide

chains by oligosaccharyltransferase, which forms part of the ER translocon complex

(Johnson and van Waes, 1999). After the removal of the primary glucose it is the

action of glucosidase II and its removal of the second glucose moiety which makes the N -

glycosylated protein a substrate for the lectin class of chaperones (such as calreticulin)

that target monoglucosylated glycoproteins (van Leeuwen and Kearse, 1996). Thus

this is an essential enzyme in the activation of glycoproteins for chaperone action and

further underlines the central role R. communis ER plays in ensuring correct protein

folding.

4.4.2.5 Calreticulin

Calreticulin is a lectin chaperone identified as a major component of the developing

and germinating urea soluble ER. This protein had a mean fold change value of 1.34

in the developing seed compared to the germinating seed but statistically the p-value

for this change did not meet the 0.02 cut off, i.e. it cannot be confidently stated that

this protein is increasing in developing gels. Its presence in the urea soluble fraction of

the ER is expected as its mammalian equivalent is a lumenal protein (Peterson et al.,

1995). Calreticulin forms one of a pair of lectin chaperones in mammals, the other

being calnexin (Watanabe et al., 1994). Calnexin has been identified in R. communis
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Figure 4.11: Kyte and Doolittle (Kyte and Doolittle, 1982) hydrophobicity plot
of glucosidase II alpha subunit. TMPred analysis (http://elm.eu.org/) did not predict
the presence of likely transmembrane domains within the sequence, indicating solubility of
enzyme.

by immunoblot (Coughlan et al., 1997) but it is not present in the NCBInr database

at the time of writing. Although structurally and functionally broadly homologous to

calreticulin, calnexin is a membrane anchored protein and this may explain why it was

not identified by MS/MS-derived sequence homology in this study. Although originally

thought to be primarily a Ca2+ binding ER protein (Michalak et al., 1992) it is now

clear that calreticulin functions as a chaperone of specifically monoglucosylated lectins

(Thomson and Williams, 2005). It’s location in the ER is rationalised then as unlike

the substrates for folding proteins outside the ER maturing secretory proteins are most

often glycosylated (van Anken and Braakman, 2005). The observation that there is

no confident decrease in the level of calreticulin in the germinating seed when other

chaperones and folding proteins are seen to decrease may indicate its secondary role in

Ca2+ binding (Meldolesi and Pozzan, 1998). The ER lumen has a Ca2+ concentration

significantly higher than the cytosol and its abundance is attributed to a combination

of sarcoplasmic / endoplasmic reticulum Ca2+ ATPase (SERCA) pumps and the large
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amount of Ca2+ binding proteins in this compartment (Koch, 2005). Assuming that

Ca2+ concentration is maintained in both germinating and developing ER you would

expect the presence of Ca2+ binding proteins to be similar.

4.4.3 Seed storage proteins are highly elevated in the ER of develop-

ing seed

23 of the 40 spots giving matches to the NCBInr database and 29 of the 56 spots giving

matches to the TIGR database were seed storage proteins. This class of protein, a

non-enzymatic store of amino acids, nitrogen and carbon for the germinating seedling,

contributes the majority of the 10-50% protein that seeds of the major crop plants

contain (Shotwell and Larkins, 1989). They are represented in this analysis by members

of the 11S globulin and 2S albumin families.

4.4.3.1 11S Legumin

11S globulins are the major protein storage reserve in legumes and are well documented

in the literature (Nielsen et al., 1989; Jain, 2004). They form large hexamer structures

of 350 to 400 kDa, made up of six subunit pairs, each pair consisting of a basic 20 kDa

polypeptide and an acidic 40 kDa polypeptide. The subunit pair is typically synthesised

as a 60 kDa precursor protein, containing the N -terminal signal sequence, the acidic

subunit, a linker peptide and the basic subunit. The typically 20-30 amino acid long

signal peptide is removed co-translationally in the ER before possible glycosylation

(Walburg and Larkins, 1983) . Further proteolytic processing occurs in protein bodies

away from the ER. In soya glycinin a linker peptide is removed in at least three of the

five known isoforms (Dickinson et al., 1989), although in other species including pea

(Lycett et al., 1984) there is a single cleavage event, to give rise to the acidic and basic

subunits link by a disulphide bond (Figure 4.12).

In this study, 10 individual spots were identified as belonging to the 11S legumin
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class of seed storage proteins (9 in the NCBInr analysis), which belong to the 11S

globulin family (11S globulins are often given different trivial names depending on the

plant species, whereas in R. communis and pea (P. sativum) they are called legumins, in

soya bean (G. max ) the 11S globulins are termed glycinins and in rapeseed (B. napus)

they are termed cruciferins.) They were found to be elevated in the developing seed

between 3.39 and 22.22-fold, and identified by both MALDI TOF MS and MS/MS

sequencing. All but one of the spots identified as likely legumin storage proteins

in the NCBInr database matched either entry gi|8118510 R. communis legumin-like

protein, or database entry gi|8118512 R. communis seed storage protein. The single

spot which did not match these two R. communis entries gave MS/MS sequence data

that matched with low confidence (MOWSE score of 58) to an A. thaliana putative

protein (gi|7269954) of presently unknown function. This sequence also matched a

legumin precursor from Mediterranean grain V. narbonensis (gi|600108) but with a

MOWSE score of 49 it is not considered significant. On re-analysis with the TIGR

database this spot was identified as a legumin A precursor, with a MOWSE score from

the MS/MS peptides of 418 confirming its tentative identity from A. thaliana homology.

On examination of the database amino acid sequences, gi|8118510 is 123 amino acids

longer than gi|8118512. An alignment of the sequences with the MultiAlign sequence

alignment package (Corpet, 1988) is shown (Figure 4.13). It is clear that gi|811510 has

a 119 amino acid stretch at the N -terminal before alignment with gi|8118512 begins.

Disulphide bonds link the acidic and basic subunits and are formed between specific

cysteine residues (Staswick et al., 1981). These cysteine residues were shown to be

conserved across the five glycinin isoforms (Nielsen et al., 1989) and also between soya

glycinin and peanut arachnin (Jain, 2004). On alignment of the five glycinin subunits

with the R. comminus 11S legumin database entries matching peptides sequenced in

this study it is clear the cysteine residues located within the basic subunit are conserved

between soya glycinin and both R. comminus legumins (Figure 4.14). The known
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Figure 4.12: Processing of legumin precursor protein. Legumin is synthesised as
an approx. 60 kDa two-subunit preprolegumin precursor protein including a N -terminal
signal peptide (shaded grey) and linker peptide (black). The signal peptide is removed
by a signal peptidase and a disulphide bridge is formed by PDI in the ER. Export of the
prolegumin to protein bodies then occurs where the linker peptide is cleaved.
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Figure 4.13: Alignment of gi|811510 and gi|8118512 R. communis legumin
sequences. MS data generated from 8 significantly elevated developing spots matched
either the gi|811510 or gi|8118512 sequences. The alignment shows that gi|8118512 to be
123 amino acids shorter than gi|811510. Boxes indicate matching peptides from the MS
analysis.
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disulphide bond-forming cysteine residue of the acidic subunit and two further cysteine

residues identified as possibly involved in interchain linkages are also conserved between

the glycinins and the gi|811510 476 amino acid database entry. In the short gi|8118512

sequence there are no cysteine residues present within the acidic subunit as this stretch

of amino acid sequence is absent. This suggests that the sequence for this database entry

is not full length and this is supported by the observation that the known N -terminal

signal peptide is absent in gi|8118512. The observed M r is similar to the predicted

value for gi|811510 (for example Spot 42 the observed M r is 53147 daltons, compared

to a predicted value of 53668 daltons and for Spot 52 the observed M r is 52445 daltons).

Spot 54 also matched gi|811510 by MALDI MS, but the observed M r for this spot is

50271 daltons. This may be explained by the presence of a legumin after removal of

the signal peptide (20 amino acids each of an average of 110 daltons would give an

M r of 2310Da). For those spots giving sequence data matching gi|811512 the observed

M r is greater than is predicted (for example Spot 53, observed is 54383 daltons to a

predicted mass of 40099 daltons). This is further evidence that the gi|8118512 database

is curtailed. Unfortunately, no peptides were sequenced which did not fall within the

gi|8118512 NCBInr database entry which would have provided firm evidence that the

sequence is not full length.

Another potential reason for the differences between observed and predicted molecu-

lar weight is post-translational modification. This is known to occur in the 7S globulins

such as conglycinin in soya but thought to be less common in 11S globulins (Hurkman

and Beevers, 1982). Classic glycosylation signals (triplets arginine-x-serine or arginine-

x-threonine) have been seen in the peanut arachnin (Jain, 2004) however they are

not seen in the two R. communis legumin sequences. Known cleavage points for the

removal of the linker peptide are conserved across all the glycinins and the R. communis

legumins. This linker peptide region is known to be a region of hypervariability as can

be seen in Figure 4.14. This variability is also present between the two R. communis
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legumins.

4.4.3.2 2S Albumin

Spots 75, 76 and 77 are developing seed ER proteins elevated up to 60-fold, identified

in the NCBInr database as 2S albumin precursors by both MALDI TOF MS and

MS/MS sequencing. A further six spots were identified as belonging to the 2S albumin

family after re-analysis against the TIGR database; in this database the sequence is

assigned the name ‘Sweet Protein Mabinlin-1 Chain A’ but the sequence is identical

to the gi|21068 entry. Spot 73 gave a confident hit to the TIGR 2S albumin precursor

with a MOWSE score of 122. In the original analysis this gave a low confident match

to RUBISCO based on MS/MS sequence homology; this underlines the caution that is

required in making assignations based on homology where sequence coverage percentage

and MOWSE scores are low.

The 2S albumins form the major allergen in R. communis (Thorpe et al., 1988)

and were the first identified storage proteins in this organism (Youle and Huang, 1978).

The sequence of 2S albumin was partly characterised by N -terminal sequencing and

was shown to exist as a large (7kDa) and small (4kDa) subunit linked by a disulphide

bond (Sharief and Li, 1982). This early effort allowed the cloning of the full length

cDNA for a 29.3kDa precursor (Irwin et al., 1990). They confirmed the presence of

Sharief and Li’s 4 and 7kDa subunits but also proposed regions encoding a second

large and small subunit within the precursor, similarly glutamine-rich and displaying a

similar distribution of cysteine residues. At the N -terminus of the preproprotein they

identified a signal peptide and gave a presumptive signal cleavage site. A schematic

of the preproprotein structure is shown (Figure 4.15). Small and large subunits 2

(SS2, LS2) correspond to the sequences published by Sharief and Li (1982), and each

subunit is separated by proposed intervening peptides. Processing of the preproprotein

occurs in the vacuole after targeting of precursors to this compartment via precursor
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Figure 4.14: Alignment of soya glycinins (G1 to G5) and R. communis legumin
(gi|8118512, gi|811510) sequences. * = site of disulphide bond formation in soya
sequences. ∧ = conserved residues possibly involved with disulphide bond formation
(Nielsen et al., 1989). Note homology with R. communis sequences in the acidic subunit,
and to sequence gi|811510. There are no possible sites for disulphide linkage in the basic
subunit of gi|811512 indicating it is likely a curtailed sequence. Underlined amino acids
at residues 20/22 and 311 indicate likely cleavage sites for the signal peptide and acidic
subunit respectively (Staswick et al., 1984). Note also the lack of signal peptide for sequence
gi|8118512. 213



Figure 4.15: R. communis 2S albumin structure and MS sequence coverage.
(A) Structure of the 2S albumin preproprotein. Small and large subunits are labelled SS
and LS respectively and designated 1 or 2 referring to the two 2S albumins of the mature
protein. The signal peptide (blue) is co-translationally removed during entry into the ER
lumen by a signal peptidase, the black arrow denoting the predicted cleavage location.
(B) Amino acid sequence of R. communis 2S albumin preproprotein (gi|21068). Sequence
coverage obtained in this study is indicated (solid underscore = MS/MS matches, dashed
underscore = MALDI TOF MS). Adapted from Maltman et al. (2007)

accumulating vesicles (Hara-Nishimura et al., 1998; Brown et al., 2003). Three digested

peptides from spot 77 were sequenced by MS/MS and their regions of alignment to the

database entry gi|21068 are shown in Figure 4.15 (solid underlines). This shows that

in our purified ER fractions the 2S albumin is present as a precursor supporting the

hypothesis of vacuolar processing. Further evidence is given by the MS/MS peptide

sequence starting TTIT which encompasses both a region of interchain linkage and the

small subunit 1 (SS1) previously identified in the vacuole by N-terminal sequencing as

a sequence beginning ESK.
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4.4.3.3 Ricin and agglutinin

11 spots elevated in the developing ER gels were identified as either agglutinin or ricin.

The fold change values compared to the germinating ER ranged from 3.21 (spot 11)

to 53.77 (spot 18). The M r values were all around 61-63kDa and the pI values ranged

from 6-8. Ricin and agglutinin (RCA) are lectins with very similar amino acid sequences

(Roberts et al., 1985), however ricin is cytotoxic and RCA relatively non-toxic. Both

ricin and RCA are synthesised as preproproteins, ricin being a heterodimer composed

of an A chain and B chain linked by a short linkage peptide. RCA is a tetramer

consisting of two duplicated ricin-like A and B chains, indicating a duplication event at

some point in its evolution. Processing of the preproprotein occurs in the ER, where

the nascent protein’s signal peptide is removed co-translationally after directing the

translated sequence to the ER lumen. After PDI-catalysed disulphide bond formation

in the ER the proricin is exported to protein storage vacuoles where final processing

occurs; removing the interchain linkage to give the mature ricin. Figure 4.16 shows the

amino acid sequence of database entry gi|21085 and the extent of sequence coverage by

the MS analysis is shown. As the observed peptides include extents of the preproprotein

covering the A-chain and B-chain; and the observed M r value agrees with the predicted

M r for the complete preproprotein, it supports the observation that the mature ricin

is synthesised outside of the ER. Assuming this is the case, it is encouraging that

the abundance of these proteins in this study is not contamination from abundant

developing seed protein storage vacuoles.

A significant heterogeneity of ricin has been reported in studies utilising SDS-PAGE,

IEF and purification (Hedge and Podder, 1992). More recent work using advanced mass

spectrometry analyses has identified glycosylation to be a major contributor to the

heterogeneity seen, giving a pattern corresponding to successive additions of mannose

sugar residues to the ricin lectin (McDonnell et al., 2000). In the analysis reported here

glycosylated forms of ricin or RCA were not detected in the peptides analysed but it
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Figure 4.16: Processing of pre-proricinin and MS sequence coverage. Initial
processing of the pre-proprotein occurs in the ER (part A of figure). The ricin signal
peptide (SP) is bound by the signal recognition particle (SRP) and targeted to the ER
where the SP is removed co-translationally. A disulphide bridge is formed by PDI, linking
the two ricin subunits on final processing. On export the proricin is processed further to
yield mature ricin consisting of A and B subunits. Pre-proricin sequence gi|21085 is shown
(part B of figure), sequence coverage obtained in this analysis is underlined (MALDI TOF
coverage shown with dashed lines, MS/MS with solid lines). Arrow indicates theoretical
site of action for the signal peptidase. Sections of sequence shown in bold italic refer to
the propeptides (between the signal peptide and the A chain, and between the A and B
chains). This confirms that the ricin spots on the developing ER gel are of the proricin
variety. Figure adapted from Maltman et al. (2007)
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provides a likely hypothesis for the multiple ricin and RCA spots on the developing gel.

It has previously been reported that ricin is degraded by hydrolysis during the

first few days after germination (McDonnell et al., 2000) and this is supported by the

observation of a significant decrease in ricin in the germinating seed reported here and

in Maltman et al. (2007).

4.4.4 Other identified proteins

16 elevated developing protein spots gave matches to TIGR database entries for pro-

teins that do not fall into the other categories of folding proteins, chaperones and

storage proteins (eight in the NCBInr screen). Spot 8, a 6-fold elevated protein,

gave a match in the NCBInr database with reasonable confidence (MOWSE score

of 99) to H+ exporting ATPase. Interestingly, the TIGR analysis identified this as

an ATP synthase alpha subunit (MOWSE score of 172) indicating sequence similarity

between the two enzymes due to their similar (but reversed) biochemical function.

Acidification of secretory pathway organelles through ATP catalysing enzymes has

previously been identified, including in the ER (Okorokov et al., 2001). Spot 86

matched a putative progesterone binding protein from A. thaliana with both MALDI-

TOF and MS/MS data. Further evidence for this assignation came from the TIGR

database where the spot matched a putative steroid binding protein. Although not

well characterised in plants they have been localised to the ER in mammalian systems

(Falkenstein et al., 1998; Sakamotoa et al., 2004). Spots 84 and 85 were elevated 2.92

and 7.29-fold respectively and matched an NBS-LRR disease resistance protein from

H. vulgare. NBS-LRR proteins are the largest group disease resistance proteins in

plants, are ubiquitous in dicots and contain a characteristic nucleotide binding site and

leucine rich repeats. A recent genome analysis in A. thaliana identified over 14 NBS-

LRR disease resistance genes, the majority of which encode sequences homologous to

known R (resistance) genes although they stated that there’s limited evidence for their
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involvment in other aspects of plant biology, such as development (Tan et al., 2007).

In the TIGR re-analysis both of these protein spots matched a ‘conserved hypothetical

protein’ suggesting the evidence for this protein being an NBS-LRR protein is not yet

conclusive in R. communis. Spot 2 matched the key terpenoid biosynthesis enzyme

strictosidine synthase. Terpenoids are ubiquitous in nature and play essential roles

in membrane fluidity, electron transport, glycosylation of proteins and the regulation

of cellular development (McCaskill and Croteau, 1998). A putative oligopeptidase A

protein was identified in the TIGR database; upregulated 3.4 fold in the developing seed.

Oligopeptidase B has been identified as a protein involved in protein mobilisation in the

germinating wheat seedling (Tsuji et al., 2004) and it is possible the oligopeptidase here

performs a similar function, perhaps in protein quality control associated with the high

levels of protein translation and modification in this development state. It should be

noted though that the MOWSE score for this assignation is low (57). Two spots were

identified in the TIGR database analysis as putative 9-cis-epoxycarotenoid dioxygenase

enzmyes (Spots 15+16, MOWSE scores of 177 and 80 respectively). This is a key

regulatory enzyme in abscisic acid biosythesis. Both spots are modestly elevated in the

developing seed (5.21 and 4.29 fold respectively). Abscisic acid, in the context of the

developing seed, is important in controlling seed dormancy and preventing precocious

germination. It has previously been shown to inhibit the synthesis of germinating

specific proteins and allow the continued accumulation of seed storage proteins (Karssen

et al., 1983; Vernieri et al., 1989). It is also important in regulating TAG biosynthesis

(Rodriguez-Sotres and Black, 1993; Pacheco-Moises et al., 1997). Two spots (20 and

23) gave confident matches to the TIGR database entry ‘nucleolar protein nop56’,

with MOWSE scores of 154 and 319 respectively. Nop56 is known to form part of

the small nucleolar ribonucleoprotein complex the C/D box; through its action of

methylating ribosomal RNA it is important in ribosomal maturation and ultimately

protein translation (Matera et al., 2007). Thus its presence in the ER and especially
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the developing ER is easy to rationalise. It has been identified in diverse kingdoms of

life including Planta (Barneche et al., 2001; Minglin et al., 2005).

The key sterol biosynthethic enzyme cycloarternol synthase was identified in the

TIGR screen. This enzyme catalyses the conversion of 2,3-oxidosqualene to cycloarter-

nol. It was first identified in A. thaliana microsomes (Corey et al., 1993). Plant sterols

are critical in plant development (Clouse, 2002; Lindsey et al., 2003).

Sorting and assembly machinery protein 50 (Sam50) was identified from a protein

spot elevated 4.53-fold in the developing ER, with a significant MOWSE score of 210

and 24 matching peptides. Sam50 is known to be a mitochondrial outer membrane

protein and is involved in protein import into the mitochondria (Becker et al., 2008).

The protein can be characterised by its transmembrane beta-barrels, a conformation

common in bacteria but also chloroplasts and mitochondria due to the endosymbiotic

origins of these organelles. It is possible that its presence in the developing ER sample is

due to the stable interactions which occur between mitochondria and the ER (Filippin

et al., 2003). Its elevation in the developing state might be due to temporal alterations

in mitochondrial / ER interaction. Alternatively, a related protein, porin, is known to

readily translocate from the mitochondria to the ER (Sakaguchi et al., 1992), and this

may be example of the same process for Sam50.

Cytochrome P450 is an ER-resident membrane protein (Szczesna-Skorupa et al.,

1998) involved in electron transport and catalysing monooxygenase reactions. A Kyte

and Doolittle plot of the hydrophobicity of A. thaliana protein sequence predicted one

possible transmembrane domain (result not shown) (Kyte and Doolittle, 1982). This

provides confirmation that some membrane bound proteins are separable in a 2DE

system.
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4.4.5 35 developing proteins gave no identity

35 protein spots elevated on the developing gel were sequenced but gave no identities

after searching both NCBInr and TIGR databases. The majority of these gave very

weak MALDI spectra. It is possible that if peptides digested from a higher loading

preparative gel were re-sequenced more data would be obtained.

4.4.6 Proteins identified as significantly increased in germinating seed

Fifteen spots were found to be significantly elevated in the germinating seed ER

compared to the developing seed. Only one of these spots, number 15 (Table 4.4)

gave an identity by MALDI TOF MS in the original NCBInr analysis. This 5.19-fold

elevated spot gave a significant (MOWSE score = 181, 50% sequence coverage, 30

matching peptides) hit to the R. communis malate synthase enzyme (gi|21076). In the

subsequent TIGR analysis it was identified again as malate synthase, with a MOWSE

score of 201. Malate synthase is an enzyme of the glyoxylate cycle, responsible for the

condensation of acetyl CoA and glyoxylate to form malate before subsequent conversion

to oxaloacetate and potentially glucose. Seedlings utilise the glyoxylate cycle for the

conversion of stored lipid to sugar compounds during germination so its presence in

this stage in an oilseed such as R. communis is not unexpected. As a peripherally-

associated glyoxysomal enzyme (Huang and Beevers, 1973) it was initially a surprise

to identify it within our ER preparations. However its association with the ER is

well documented (Gonzalez and Beevers, 1976; Gonzalez, 1982; Bowden and Lord,

1976a). Gonzalez (1982) found that malate synthase activity overlapped that of the ER

marker enzyme NADH-cytochrome c reductase when 3-day homogenised germinating

R. communis seeds were fractionated through a continuous sucrose gradient (Gonzalez,

1982). It was also found that malate synthase activity remained associated with the

ER in preparations made without MgCl2, causing ribosome dissociation from the ER

gradiant thus giving the organelle a reduced buoyant density, further suggesting linkage
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between the ER and malate synthase activity. It was hypothesised that glyoxysomes

emerge directly from dilated cisternae of ER and in early germinating seedlings there

remains an association between these two organelles. This is supported by findings

such as highly similar phospholipid profiles between the ER and the glyoxysomal

membrances (Donaldson and Beevers, 1977), the morphological similarities between

the two compartments (Vigil, 1973), and similarities in the polypeptide composition

between the two compartments (Bowden and Lord, 1976b). The presence of malate

synthase within our germinating preparations support these earlier observations.

MS/MS sequencing identified two spots in the NCBInr database with a peptide

sequence matching that of strictosidine synthase enzyme from A. thaliana. These spots

were modestly elevated in germinating seed (2.4 and 2.64-fold) and displayed similar

M r and pI values to the A. thaliana predicted figures. These spots plus an additional

spot residing in the same streak (previously identified as NADH dehydrogenase in

the NCBInr database) were also identified in TIGR re-analysis by PMF. Strictosidine

synthase is a key enzyme in the biosynthetic pathway of terpenoid indole alkaloids

and has been well-researched in Catharanthus roseus (Madagascan periwinkle) and

Rauvolfia serpentina where the alkaloids have significant medicinal value as anti-tumour

drugs. An enzyme immediately downstream of strictosidine synthase, strictosidine

β-D-glucosidase, has been localised to the ER (Geerlings et al., 2000) and the data

presented here provides further information of the cellular location of this pathway in

R. communis.

4 peptides from a 5.15-fold elevated germinating spot (spot 12) matched pea (P.

sativum) porin (gi|396819). Further evidence of its identity came from the TIGR

analysis, where this spot and another adjacent spot were identified as putative voltage-

dependent anion-selective channels. Porins are ubiquitous voltage-gated diffusion pores

found in all eukaryotic kingdoms and first identified in plants in 1994 (Fischer et al.,

1994). There is close interaction between the mitochondria and ER in eukaryotic cells
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responsible for mediating protein transport, Ca2+ signalling, ATP and cell death signals

(Szabadkai et al., 2006). It has previously been shown that mitochondrial porin readily

translocates across ER membranes in vitro (Sakaguchi et al., 1992) and it’s proposed

that the intracellular transport of proteins, Ca2+, ATP and other metabolites occurs

via ER localised porins in rat cerebellum (Shoshan-Barmatz et al., 1994).

4.4.7 Concluding remarks

A differential proteomic analysis of germinating and developing R. communis seed ER

has been performed. Levels of protein were accurately quantified allowing statistically

significant differences between the two developmental states to be identified and anal-

ysed further. On analysis of these significant differences, developing up-regulated spots

were found to be dominated by folding proteins, chaperones and storage proteins.

The identification of folding proteins and chaperones as the major component of the

R. communis seed urea-soluble ER indicates the major role protein folding and thus

protein production has in this compartment. Major known lumenal protein folding

families of BiP, Hsp90, PDI, Hsp40 and calreticulin were represented revealing the

extensive protein folding functionality of the R. communis ER. All of these identified

proteins were at higher levels in the developing seed with the exception of calreticulin,

indicating the role of protein synthesis in the developing ER. This is consistent with

the storage reserve production activities of the developing seed, which includes storage

proteins.

Proteins involved in complex lipid biosynthesis were not identified in the 2DE

lysis buffer soluble fraction. The likely reasons for this have been discussed. The

study presented here is currently being extended by an analysis of the germinating

and developing R. communis ER integral membrane by iTRAQ. This component of

the proteomic investigation was outside the remit of my industrial funding, but will

hopefully overcome the limitations of 2DE and complement the work presented here.
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Chapter 5

Establishment of the growth,
harvest and lipid analysis
methodologies for the use of
Yarrowia lipolytica as an in vivo
tool for the assay of Ricinus
communis complex lipid
biosynthesis genes.
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5.1 Introduction

The previous two chapters examined the results of a differential 2D DIGE based

screen of developing and germinating ER and the development of rigourous proteomic

methodologies for its successful execution. This soluble proteomic analysis formed

one component of the two pronged proteomic approaches to the discovery of lipid

biosynthesis machinery in R. communis developing seed (the others being the mass

spectrometry-based analysis of the ER membrane). Although no components of lipid

biosynthesis were identified in the soluble proteomic study (Chapter 4), an in-house

EST database has generated interesting candidates (for example, the first DAGAT2 in

R. communis (Kroon et al., 2006)).

The ability to test the effects of these candidate enzymes on oil quality is crucial,

to both validate their function and to quantitatively assess their contribution to high

levels of triricinolein production in new plant vehicles. Although in vitro assays are

useful for validating function, model organisms are used to assess the influence of a

gene product within the physiological and biochemical context of the whole organism.

A distinct disadvantage of plant models such as A. thaliana organisms is the time

required to produce stable transformant lines and the long period of time (around 3

months) between planting new genetically modified seed and being able to analyse

the lipid content of the storage oil in the transgenic developing seed. The ability to

circumvent this with a model system capable of producing analysable lipid within just

24 hours of starting growth is thus highly desirable. Yarrowia lipolytica is a non-

pathogenic yeast with strains available that are suitable for genetic experimentation

(reviewed in Chapter 1). Crucially, it produces significant storage lipid when in the

stationary phase of growth. This chapter details the methodological development of

growth, harvest and lipid analysis methodologies required to use Y. lipolytica as a rapid

lipid gene assay vehicle.
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For the investigation of hydroxy-lipid incorporation, methyl ricinoleate was used in

all analyses rather than ricinoleic acid. This is because high purity methyl ricinoleate

was available in quantities sufficient for routine large scale growth: critical for gen-

eration of enough lipid material for analysis. The choice of methyl ricinoleate over

alternatives is discussed in Section 5.4.4.

5.2 Aims

The characteristics of Y. lipolytica, that is, its capability of utilising hydrophobic

substrates such as fatty acid methyl esters and its production of large quantities of

triacylglycerol, make it a potential useful candidate for in vivo assay of R. communis

lipid biosynthesis genes. The degree to which an untransformed strain of Y. lipolytica

incorporates ricinoleoyl CoA into its storage oil compared to a strain transformed

with a R. communis acyl transferase may provide useful evidence in identifying the

importance of the R. communis enzyme in oil quality. Different combinations of R.

communis lipid biosynthesis genes can be transformed to identify a strain with the

highest level of triricinolein production, and thus this set of R. communis genes becomes

a first choice for evaluation in A. thaliana. Prior to the stage whereby transformed and

untransformed strains can be compared, rigourous methodology must be established

so that experimental procedures are well understood and confidence can be had in

the quantification data obtained. Therefore, the aim of this chapter is to establish

the growth conditions, cell harvest method, lipid extraction methodologies and lipid

analysis procedures needed to ultimately quantify the components of the triacylglycerol

in Y. lipolytica when fed on hydrophobic substrates including methyl ricinoleate in both

transformed and untransformed strains.
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5.3 Results

5.3.1 Maintenance of yeast stocks

The Y. lipolytica variety P01G (MATa; leu2-270 ; xpr2-333 ; axp1-2 ) was kindly re-

ceived from Prof. JM Nicaud, Laboratoire de Génétique des Micro-Organismes, Thiverval-

Grignon, France. Replicate cultures of the strain were initially grown on selective media

with the addition of leucine to account for auxotrophy. The culture of Y. lipolytica was

grown to exponential phase, at which point aliquots were archived in glycerol protected

media at -80 ◦C (see Materials and Methods, Chapter 2.4, for information on liquid

culture media, culture plates and glycerols). Culture plates were made with selective

media containing leucine. All liquid cultures of Y. lipolytica or S. cerevisiae used in

this study were initiated from plates as this allowed selection of single parent colonies

and reduced the possibility of maintaining contaminants within growth media.

5.3.2 Evaluation of the growth characteristics of Y. lipolytica PO1G

The pattern of growth of the Y. lipolytica auxotrophic strain P01G on 2% glucose

was evaluated, so that the timings of the different stages (i.e. lag phase, exponential

phase, stationary phase) of growth in this Y. lipolytica strain could be determined.

For comparison, the auxotrophic S. cerevisiae strain Y00000 (MATa; his341; leu240 ;

met1540 ; ura340 ) (Brachmann et al., 1998) was used. Cells were grown separately

in two 250 ml baffled conical flasks containing 50 ml YNB (minimal media) and 2%

glucose, 1.7% yeast nitrogen base, 0.5% NH4Cl and 50 mM phosphate buffer pH 6.8.

Leucine, uracil, histidine and methionine were added as required. The two flasks were

inoculated with Y. lipolytica and S. cerevisiae cells respectively to an initial OD of

0.1. Inoculations were made from a liquid YNB parent culture that was in exponential

growth phase. Two independent replicates of Y. lipolytica and S. cerevisiae cells were

grown and measured, and two aliquots of well mixed culture were removed from the
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Figure 5.1: Growth curve of S. cerevisiae Y00000 versus Y. lipolytica P01G
on minimal YNB media containing 2% glucose. The growth of two independent
replicates for each yeast were measured, and for each replicate two OD readings were
taken (the average ODs with standard deviations are plotted). Y. lipolytica P01G was
found to grow more efficiently than S. cerevisiae Y00000 on YPD.
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flasks at each time point. Growth was measured by recording the absorbance of the

culture media at 600 nm in a spectrophotometer, which was blanked with fresh YNB

from the same batch used for the growth of the cells. As spectrophotometers are unable

to accurately measure absorbance of cultures above an OD of 1.5, culture media (and

the respective blank sample) was diluted with ddH2O to keep the absorbance reading

below 1.00, and multiplied by the dilution factor to obtain the correct reading.

The average of the two pipetted aliquots from a single culture was plotted against

time with standard deviation error bars. Two biological replicates were analysed for

both yeasts (labelled as First Replicate and Second Replicate for Y. lipolytica and S.

cerevisiae in the figure). Figure 5.1.

Y. lipolytica P01G grew faster than S. cerevisiae Y00000 on YNB containing 2%

glucose. Both yeasts were in lag phase at the 6 hour time point, and by 10 hours, the

early exponential growth phase. However, both the early exponential growth phase and

the exponential growth component of the curve was steeper for Y. lipolytica than S.

cerevisiae indicating a more efficient conversion of carbon substrate and other nutrients

into new biomass. Between 13 and 18 hours the Y. lipolytica curve began to plateau

indicating the entry of growth into a late exponential or early stationary phase. By 18

hours the Y. lipolytica culture had entered stationary phase, with an OD of 9.5 - 10.5.

The two Y. lipolytica independent replicates displayed essentially identical patterns of

growth, until the final time point at 22 hours where the OD of one of the replicates was

decreased compared to the other. This may indicate the beginnings of cell senescence

however the error bars indicate greater variance of spectrophotometer reading at this

and the previous time point. This may suggest the difference between the readings is

due to pipetting errors or increasing culture heterogeneity as the cells enter stationary

phase; Y. lipolytica is a dimorphic yeast and the yeast state to hyphae transition is

known to be effected by reduction in nutrient sources (Ruiz-Herrera and Sentandreu,

2002; Szabo, 1999). S. cerevisiae Y00000 had entered stationary phase by the 18 hour
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Figure 5.2: Comparison of the Growth Curve of Y. lipolytica P01G Growing on
Methyl Ricinoleate or Oleic Acid. Cells were grown on YNB minimal media containing
the carbon substrate and the required drop-in nutrient leucine to account for auxotrophy.
The growth of two independent replicates for each carbon substrate were measured, and
for each replicate two OD readings were taken (the average ODs with standard deviations
are plotted). Duration of growth stages (i.e. lag phase, exponential phase) were similar
on both media, but the total rate and biomass produced was higher on oleic acid media
compared to methyl ricinoleate.

time point, with an OD of ∼ 6.0, a substantially lower total biomass than Y. lipolytica

at the same stage of growth. It is likely that the auxotrophic nature of the yeasts

analysed influenced the rate and final amount of biomass produced.

5.3.3 Growth of Y. lipolytica on methyl ricinoleate

The growth pattern of Y. lipolytica P01G growing on 1% oleic acid or 1% methyl

ricinoleate was compared. A single parent culture of Y. lipolytica grown on 2% glucose

YNB minimal media was used to inoculate 50 ml YNB cultures in 250 ml baffled conical

flasks, containing either oleic acid or methyl ricinoleate emulsified by sonication in the
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presence of Tween 80 (see Chapter 2.4.1). Tween 80 is a surfactant and emulsifier

derived from oleic acid and commonly used in the creation of lipid stocks for Y.

lipolytica feeding experiments. It has previously been reported that its presence in the

culture media at 10% (w/v) has negligible affect on cell growth and lipid accumulation

(Papanikolaou et al., 2003). Culture media also contained leucine to account for the

auxotrophic nature of the P01G strain. Cultures were inoculated to a starting OD

of 0.1, and cells were washed with ddH2O between transferral from the 2% glucose

parent culture to the 1% lipid growth curve cultures. Although transferring from

one carbon source type (glucose) to another (lipid) will be accompanied by metabolic

changes in the yeast and possibly an increased lag phase, this method was used for

all further experiments where Y. lipolytica is grown on lipid, so the growth phase

timings are still valid. Cells were grown and the growth measured as described (Chapter

2.4.2). The presence of lipid in the media prevented accurate reading of OD by the

spectrophotometer, so three washes of 0.5% (w/v) solution of the lipid sequestering

protein BSA and a final wash of ddH2O were employed (Mĺıcková et al., 2004).

Cultures remained in lag phase at 2 and 4 hours after inoculation. By 11 hours of

growth the oleic acid cultures had reached an OD of ∼ 3.0 and the methyl ricinoleate

cultures an OD of ∼ 2.0. Measurements of growth between 11 and 19 hours showed

an exponential pattern in both oleic acid and methyl ricinoleate cultures, although the

rate of growth was depressed in the methyl ricinoleate culture during the exponential

phase. Between 21 and 23 hours both cultures exhibited a stationary pattern of growth

with a total OD value for oleic acid fed cells between ∼ 13.5 - 14.8. In contrast the

total amount of biomass for methyl ricinoleate fed cells is lower, with an OD value

of between ∼ 7.5 to 8.0. Therefore, the timing of growth is similar for cells grown

on both carbon substrates, however the rate and total biomass produced is lower in

cells growing on methyl ricinoleate than oleic acid. This observation has been reported

previously (Ratledge, 1984) and was hypothesised to relate to the direct cytotoxicity

230



of ricinoleic acid or the cytotoxicity of a product of its metabolism (see Discussion).

Although the rate of growth and total conversion of nutrients to biomass was depressed

in cells growing on methyl ricinoleate compared to oleic acid, the times of growth stage

transition were the same for the cells growing on either carbon substrate. This is

important as it simplifies harvest timings in experiments comparing oleic and methyl

ricinoleate grown cells at a desired growth phase.

5.3.4 Characterisation of Y. lipolytica P01G auxotrophy

Y. lipolytica P01G is auxotrophic for the essential amino acid leucine, that is, it is

unable to produce leucine itself and requires the external addition of the amino acid

to the media. Auxotrophic strains are useful tools in microbial molecular biology.

By growing cells transformed with vectors containing the absent metabolic gene in a

minimal media (i.e. without supplementation) they are selected over those cells that do

not contain the vector and additional genes. Auxotrophy can also be used to validate

untransformed yeast strains.

To characterise the auxotrophic status of Y. lipolytica P01G, cells were streaked

on minimal media agar plates containing either (1) no supplements : -/-, (2) uracil:

U/-, (3) leucine : -/L, or (4) leucine and uracil: U/L. The agar media also contained

a carbon substrate, either 1% (w/v) oleic acid or 2% (w/v) glucose. Cells were grown

for 3 days at 28 ◦C in the dark, and the extent of growth evaluated for each plate.

Examining the 4 glucose plates (Figure 5.3), growth is clearly seen on plates con-

taining uracil and leucine or just leucine. Where leucine was absent (i.e. -/-, or U/-) no

growth was seen. The same pattern is seen on the oleic acid plates, although the overall

extent of growth was less. This confirms that Y. lipolytica is dependent on leucine for

growth, and that Y. lipolytica P01G is capable of utilising both glucose and oleic acid

for its growth.
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Figure 5.3: Characterisation of Y. lipolytica P01G (MATa; leu2-270)
auxotrophy. Minimal media agar plates supplemented with: U/L = media contains
uracil and leucine, U/- = media contains uracil, -/L = media contains leucine, -/- = no
drop-in supplements. Plates confirm that P01G is leucine dependent.
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5.3.5 Evaluation of derivatisation on the migration of ricinoleate-

containing TAG on thin layer chromatography (TLC)

A common method for the separation of lipid extracts is thin layer chromatography

(TLC). Using TLC and different solvent combinations, neutral lipids can be fractionated

and identified based on their discreet migrations. Fractionated lipid can be removed

from the TLC plate for further analysis, for example to identify the fatty acid compo-

nents of triacylgycerol by gas chromatography (GC).

Migration of lipid species within a TLC plate is effected by the lipid’s chemical

properties. The polar nature of the free hydroxyl groups of triricinolein (3-OH TAG)

and other hydroxy fatty acid-containing molecules such as ricinoleic acid or methyl

ricinoleate results in a greater interaction between the lipid molecule and the TLC

plate matrix, retarding their migration through the TLC plate compared to their non-

hydroxy equivalents. If a mixture containing 3-OH TAG molecules and non-hydroxy

TAG molecules are separated by TLC, the 3-OH TAG and non-hydroxy TAG will have

separate positions on the TLC plate due to their different chemical properties. If the

lipid mixture also contains monoricinolein diolein (1-OH TAG) and 2-OH TAG these

will also have different migratory characteristics and thus different positions on the

TLC plate. The presence of other hydroxy lipid molecules, such as hydroxy DAG or

MAG molecules, further increases complexity. Although this might be an advantage for

qualitative analyses to identify a broad range of molecules quickly, it makes quantifying

total TAG in a sample problematic. The development of a lipid analysis procedure that

will allow quantification of triricinolein production in Y. lipolytica cells fed on hydroxy

fatty acid is of central importance to this chapter’s aim.

To overcome the retardation of hydroxy-TAG on TLC plates, the use of silylating

reagents was investigated as a means to convert the polar hydroxyl group into a non-

polar functional group, thus conferring on the hydroxy-TAG molecule the same migra-

tion characteristics as non-hydroxy TAG molecules such as triolein. Silylation occurs
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Figure 5.4: Evaluation of the effects of lipid concentration and reaction time
on the derivatisation of castor oil and its migration on TLC.
500 µg - 100mg Castor oil samples were derivatised for either 5, 15 or 30 minutes at 70 ◦C.
Following derivatisation reaction sample concentrations were equalised and evaluated by
TLC. 500 µg and 1 mg quantities of castor oil were not effectively derivatised within
5 minutes, with clear spots aligning to the triricinolein (3-OH TAG) and diricinolein
monoolein (2-OH TAG) positions of the underivatised sample (ND) and no spot aligning
to the triolein (TAG) standard. Castor oil quantities ≥ 10 mg had derivatised even within
5 minutes, although residual 2-OH TAG is visible within some of the samples and required
further derivatisation for its full conversion. NLS=neutral lipid standard, ND = not
derivatised, B = zoom-in of lower region of whole TLC plate (A, above) to
show underivatised spots.
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through a nucleophilic attack, and reacts preferentially with water and alcohols. Thus

to ensure the effectiveness of the silylating reagents it is critical to keep them moisture

free. For this reason reagent bottles were stored in sealed containers containing desic-

cant. A combination of the silylating reagents N,O -Bis(trimethylsilyl)trifluoroacetamide

(BSTFA) (Stalling et al., 1968) and trimethylchlorosilane (TMCS) was investigated,

with the lipid sample solubilised in the aprotic (i.e. no available protons that would re-

act with the silylating reagent) solvent pyridine. To investigate the extent of conversion

of hydroxy-TAG molecules to their silylated equivalents, castor oil (containing ∼90% 3-

OH TAG) was used. The effect of derivatisation reaction time on extent of derivatisation

was investigated by terminating the reaction after either 5, 15 or 30 minutes at 70 ◦C.

This was to ensure that full derivatisation of 3-OH TAG had occurred by 30 minutes

in the castor oil. Also, a range of concentrations of castor oil were derivatised - either

500 µg, 1 mg, 10 mg, 50 mg or 100 mg, to investigate whether this influences extent

of derivatisation. Following derivatisation, equal loadings of the derivatised castor oil

samples were aliquoted on to Whatman Silica G TLC plates and separated in a hexane

: diethyl ether : acetic acid (70:30:1) solvent system. The plate was then visualised

with phloxine B. See Figure 5.4.

On evaluation of the TLC plates, it appears that derivatisation of hydroxy TAG

compounds has not occurred effectively after 5 minutes of reaction time for the 500 µg

and 1 mg samples (See Figure 5.4, right most plate). There is no visible non-hydroxy

TAG spot for either of these 5 minutes samples, when compared to the TAG standard

within the neutral lipid standard (NLS) marker. In the 500 µg and 1 mg samples, there

are still two clear spots aligning to both the 3-OH TAG and 2-OH TAG positions of

the underivatised castor oil sample (ND). A close-up of this region of the TLC plate

is shown in section B of the figure. At concentrations of 10 mg, 50 mg and 100 mg,

derivatisation has occurred by 5 minutes, with a strong TAG band aligning to the

TAG standard in the NLS. There is not a significant difference in the size of TAG
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band between 5, 15 and 30 minutes, and there is no 3-OH TAG specie visible in these

samples either, indicating that the conversion of 3-OH TAG to its silylated equivalent

has progressed to completion even after 5 minutes. Conversion of 2-OH TAG appears

to occur more slowly than 3-OH TAG, and there is evidence of a minor amount of

residual 2-OH TAG in the 10 mg and 50 mg samples. Thus in the Y. lipolytica lipid

extracts fed on hydroxy fatty acid molecules, special attention must be paid to ensure

no spots align to the 2-OH TAG position as this could indicate residual underivatised

hydroxy fatty acid species that would result in an under-representation of hydroxy

fatty acid in the TAG. However, derivatisation with TMCS and BSTFA in pyridine

appears to be an effective way of altering migration of a range of concentrations of

hydroxy TAG species on TLC plates, ensuring the reaction is carried out for at least 15

minutes and the TLC plate is critically analysed to ensure derivatisation has occurred

effectively. As silylation reagents are highly moisture sensitive and their effectiveness

can degrade, it is always important to check TLC plates before further analysis to

ensure the derivatisation reaction has gone to completion.

5.3.6 Establishment of a lipid extraction procedure

The Folch procedure was employed to extract lipids from frozen Y. lipolytica cell

pellets. Briefly, pellets were removed from -20 ◦C storage and thawed gently on ice.

When thawed, cells were resuspended in 1:1 isopropanol and chloroform. At this

initial stage triheptadecanoic acid was added to each sample undergoing extraction.

Triheptadecanoic acid is a triacylglycerol molecule with three 17-carbon long fatty

acid molecules esterified to the glycerol backbone. Heptadecanoic acid does not occur

naturally thus the assumption can be made that its presence at the analysis stage is a

result of its addition during the lipid extraction process. By adding the triheptadecanoic

acid in a known amount it can serve as an internal standard allowing the quantification

of other lipid species of unknown abundance against the known heptadecanoic acid.
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Also, by adding triheptadecanoic acid at the most initial stage of extraction, any losses

during the extraction procedure will effect the internal standard and Y. lipolytica lipid

equally, and improve the accuracy of quantification.

Cells were disrupted with a Polytron probe in a 1:1 mixture of chilled chloroform :

isopropanol on ice. Cell debris was separated from the solubilised contents by filtration

and the filtrate dried down to a dry residue before re-suspension in 2 : 1 chloroform

: methanol. It is on addition of a dilute salt solution (in this case, 0.88% KCl)

that biphasic separation occurs; the mixture forming a lighter ‘aqueous’ upper phase

(comprising chloroform : methanol : water in the proportions of 3 : 48 : 47) and a

heavier ‘organic’ phase (chloroform : methanol : water in the proportions of 86 : 14 :

1). The hydrophobic property of lipids means they are readily soluble in the non-polar

organic solvent.

The biphasic nature of the extraction method means that the aqueous upper phase

is easily removed with a Pasteur pipette. This was discarded, before a second addition

of 0.88% KCl to 20% total volume, phase separation and aqueous-phase removal. The

remaining organic phase was then dried down under a stream of nitrogen at 50 ◦C to

yield a total lipid sample. Finally this was re-suspended in a small volume of hexane

which could either be stored at -20 ◦C or analysed.

To test the success of the extraction procedure on Y. lipolytica cells grown on

either 2% glucose, 1% oleic acid and 1% methyl ricinoleate, 10 µl aliquots of total lipid

extract were silylated (see Chapters 5.3.5, 2.4.4) and applied to Whatman Silica G

TLC plates and separated in a hexane : diethyl ether : acetic acid (70:30:1) solvent

system. Double replicate extractions were performed to evaluate reproducibility of

the extraction procedure and extracts were made at different time points (2, 3, 5 and

10 hours of growth). Samples were run alongside a neutral lipid standard containing

DAG and TAG molecules so the presence of these species could be identified in the Y.

lipolytica extracts. When the solvent front reached the top quarter of the TLC plate,
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Figure 5.5: Evaluation of lipid extraction procedure by TLC. TLC separation of
lipid extracted from Y. lipolytica P01G reveals species aligning to neutral lipid standards
(NLS) DAG (4 & 5) and TAG (2). Species aligning to free fatty acid (3) and steryl ester
(1) standards were also identified. Replicate extracts were ostensibly broadly reproducible,
although some variability in the abundance of free fatty acid in the lipid samples is present
in some of the time points. O = origin, SF = solvent front. MR1+2, O1+2, G1+2 = two
biological replicates of 1% methyl ricinoleate, 1% oleic acid and 2% glucose grown cells
respectively. Solvent system = hexane:diethyl ether:acetic acid (70:30:1)
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plates were removed from the solvent tank and the solvent allowed to evaporate. Plates

were immersed briefly in phloxine B dye, and then visualised under UV light to identify

the presence of lipid spots (see Figure 5.5).

The TLC plates revealed that neutral lipid was extracted from frozen Y. lipolytica

cells grown on the different carbon substrates and at 2, 3, 5 and 10 hour time points.

TAG molecules are present in each of the samples analysed, and their abundance is

comparable within each replicate sample. Spots aligning to either one or both of the

DAG isoforms in the standard are also present on the plates. There appears to be a

greater abundance of DAG in the lipid extracts from cells grown on methyl ricinoleate

than on glucose or oleic acid at 2, 3 and 5 hours of growth, but this difference is not

noticable at 10 hours. Free fatty acid is also present within each of the lipid extracts,

and is most abundant in the oleic acid fed samples. As Y. lipolytica is an oleaginous

yeast the presence of a free fatty acid pool is expected. Its abundance in the oleic acid

fed cells is also easy to rationalise as the cells were growing (and thus importing) free

fatty acid. Spots aligning to a steryl ester standard were also present in each of the

extracts analysed by TLC. There are spots visible at the sample origin point which will

contain polar lipid molecules immobile in the hydrophobic solvent used (for example

phosphatidylethanolamine and phosphatidylcholine).

The replicate extract lipid profiles are broadly reproducible. There is some variabil-

ity in the abundance of the free fatty acid spots in the oleic acid extracts at 2 hours, but

this decreases with subsequent time points and on the 10 hour TLC plate intensity of

fatty acid spots are ostensibly the same for both oleic acid fed extracts. Furthermore,

this apparent fatty acid variability was not observed in the methyl ricinoleate or glucose

extracts; thus it was not deemed a significant indicator of an irreproducible preparation

method.

239



Figure 5.6: 2 L baffled conical flasks containing 500 ml of 1% lipid YNB media

5.3.7 Analysis into the effects of carbon source on the composition of

storage oils in Y. lipolytica P01G

Y. lipolytica cells were grown in 2 litre baffled conical flasks in 500 ml YNB (minimal)

media containing either 2% glucose or 1% fatty acid / fatty acid methyl ester and

supplemented with 0.03% leucine to account for strain P01G’s auxotrophic status

(see Chapter 2.4.1, Figure 5.6). Fatty acids and FAMEs were added from a 10%

stock emulsified in the presence of Tween 80 by sonication with a preparative probe

sonicator. Cells were inoculated from a 2% glucose YNB parent culture that had

reached exponential but not stationary phase, to form a new culture with a starting

OD of 0.5. Prior to inoculation, cells were washed once with ddH2O to remove any

extrinsic carbon substrate from the cell surface. Cells were grown in the dark at 28 ◦C

under rotation (140 rpm), harvested and washed. See Chapter 2.4 for yeast methods

including cell harvest and washing procedure.
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Lipid was extracted from gently thawed cells as described (Chapter 5.3.6) and

derivatised for 30 minutes at 70 ◦C (Chapter 5.3.5) to convert any hydroxy lipid species

to their silylated equivalents, which have the same migratory behaviour on TLC as non-

hydroxy lipids. This was so the entire TAG pool could be analysed from a single spot

on the TLC plate. Although the primary interest of an analysis of Y. lipolytica strains

transformed with R. communis lipid biosynthesis genes is to quantify the amount of

triricinolein production compared to an untransformed strain, it provides a simpler

route to analysis and quantification as all the fatty acid components of the TAG are

derived from a single spot and are compared to a single quantification standard (for

example, triheptadecanoic acid).

Following derivatisation of lipid samples the neutral lipids were separated by prepar-

ative TLC and the TAG band identified by comparison with a neutral lipid standard

and iodine staining. The volume of derivatised lipid sample loaded was adjusted to

account for abundance observed by analytical TLC and contained between 50 µl and

140 µl of sample. Plates were developed in hexane : diethyl ether : acetic acid (70:30:1)

solvent until the solvent front reached the top two centimetres of the TLC plate. The

hexane : diethyl ether : acetic acid (70:30:1) solvent system was chosen as it provides

good separation of TAG (including derivatised TAG) away from DAG, MAG and free

fatty acid species.

TAG bands were identified on the TLC plate by iodine staining, which appear as

contrasting yellow against the white background of the TLC plate allowing localisation

of the region of interest. The TAG band was carefully scraped away from the glass

backing of the TLC plate with a clean razor blade. The scratched plate could then be

stained with Phloxine B and imaged on a transilluminator to check accuracy of TAG

removal. Lipid was eluted from the scratched silica with 2:1 chloroform : methanol

before being dried down and re-suspended in 1 ml 1% H2SO4 in CH3OH. Samples were

then kept on a heating block set to 50 ◦C overnight. This acid-catalysed methylation
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step causes the transesterification of fatty acids and creation of fatty acid methyl esters,

a volatile derivative suitable for GC analysis.

Following conversion of silylated triacylglycerols to fatty acid methyl esters (FAMEs)

the next step was to investigate the fatty acid composition of the extracted TAG

from each feeding type and time point. This was so the proportions and identities of

different fatty acids within the TAG could be identified including potentially ricinoleic

acid. During the most initial stage of lipid extraction the neutral lipid standard

triheptadeconic acid (triacylglycerol of C17:0) was added at a known amount. By

identifying the GC peak for the methyl ester of C17:0 the intensity was calibrated to

that initial known amount. By assuming equal losses of lipid throughout the extraction,

derivatisation and TLC fractionation process, and by assuming equal conversion of TAG

to methyl esters, all identified peaks within the spectra had their areas compared to

the C17:0 peak area. This allowed an estimation of actual amounts of different fatty

acids within the TAG in the different feeding types and time points.

A Shimadzu GC-14 with an EC-Wax column was initially calibrated with a com-

mercially available range of fatty acid standards - GC96 (Nucheck-Prep. MN, USA) and

a methyl ricinoleate standard. Each fatty acid gave a peak on the GC at a particular

retention time.

Once the standard data has been collected the GC spectra of the FAMEs from

the feeding experiment samples were collected. The retention time, peak intensity and

percentage proportion of each peak area compared to the total peak area was recorded

for every run. Identities were assigned by comparing retention times to the standards’

retention times.

5.3.7.1 Glucose and oleic acid

GC analysis of the TAG fraction of glucose fed Y. lipolytica identified C16:0 (palmitic

acid), C16:1 (palmitoleic acid), C18:0 (stearic acid), C18:1 (oleic acid) and C18:2
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Figure 5.7: Percentage and µg abundance (per g cells, wet weight) of observed
fatty acids in the TAG of 2% glucose fed Y. lipolytica . A general pattern of µg
abundance increase is observed for all fatty acids with a significant increase in oleic acid
abundance between 5 and 10 hours. This equates to a generally increasing pattern in the
percentage proportion of oleic acid between 2 and 5 hours and a concomitant decrease in
the percentage of palmitic and stearic acid between 2 and 5 hours.
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Table 5.1: GC analysis data of TAG from Y. lipolytica fed on either 2%
glucose or 1% oleic acid

Time 16:0 16:1 18:0 18:1 18:2 Total

point % µg % µg % µg % µg % µg (µg)

Glucose

2h 31.0 24.8 - - 21.2 16.9 40.0 31.9 7.8 6.3 79.9

3h 26.7 26.0 - - 15.1 14.7 39.1 38.1 19.1 18.7 97.5

5h 15.0 53.6 7.6 27.0 5.0 17.7 41.7 149.2 30.7 110.0 357.5

10h 17.1 156.0 4.5 40.8 6.3 57.2 52.7 479.7 19.4 177.1 910.8

Oleic Acid

2h 22.7 9.3 - - 14.8 6.1 62.5 25.7 - - 41.1

3h 31.6 8.2 - - 19.4 5.1 49.0 12.7 - - 26.0

5h 28.8 3.1 - - 24.9 2.7 46.3 5.0 - - 10.8

10h 8.0 20.1 3.5 8.6 2.2 5.6 80.9 202.6 5.4 13.5 250.4

(linoleic acid) as the TAG fatty acid components (Table 5.1). All fatty acid components

were present at each growth stage examined except C16:1 which was only present in 5

and 10 hour samples. With the exception of C18:0, a pattern of increasing abundance

for each constituent fatty acid is observed with increasing growth time; the most

significant increase being for oleic acid which increased from 149 µg / g to 480 µg

/ g cells (wet weight) at 10 hours. The second most dominant fatty acid component is

linoleic acid, comprising 177 µg / g (wet weight) cells in the TAG fraction at 10 hours

of growth. A graph depicting the µg quantities of observed fatty acids displays the

pattern of increase for each fatty acid component (with the exception of C18:0) in the

TAG (see Figure 5.7, lower). The percentage proportions of the observed fatty acid

components were also calculated, and their values are described in Table 5.1 and in

Figure 5.7 (upper). These values indicate that oleic acid is the dominant constituent

of the TAG at each time point analysed, and that its proportion increases between 5

and 10 hours of growth to 52.7% of the TAG.

The analysis of TAG purified from lipid extracts of oleic acid grown Y. lipolytica
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Figure 5.8: Percentage and µg abundance (per g cells, wet weight) of fatty acid
observed in the TAG of Y. lipolytica P01G fed on 1% oleic acid (emulsified in
0.1% Tween 80). Lipid extracts were made from cells harvested at 2, 3, 5 and 10 hours
of growth in oleic acid containing minimal media. The dominant fatty acid species in the
TAG at each time point analysed was identified as oleic acid, although it was characterised
by a very significant increase in abundance between 5 and 10 hours of growth. Linoleic
acid was only identified at 10 hours of growth, indicating a delayed desaturation of oleic
acid and a very different pattern of lipid accumulation compared to cells fed on glucose.

245



Table 5.2: GC analysis data of TAG extracted from Y. lipolytica cells fed on
either 1% methyl ricinoleate or 1% methyl oleate. Highly abundant oleic acid or
ricinoleic acid peaks were observed in the TAG from methyl oleate and methyl ricinoleate fed
cultures respectively.

Time 16:0 16:1 18:0 18:1 18:2 18:1-OH Total

point % µg % µg % µg % µg % µg % µg (µg)

Methyl Ricinoleate

2h 1.4 34.9 - - 1.5 38.8 3.9 100.3 4.1 106.2 89.1 2287.4 2567.6

3h 2.9 12.6 - - 2.6 11.2 5.0 21.5 5.5 23.3 84.0 360.1 428.7

5h 8.1 3.0 - - 7.7 2.9 7.9 3.0 - - 76.3 28.7 37.6

10h 14.5 7.7 5.5 2.9 6.4 3.4 67.7 35.5 5.9 3.1 - - 52.6

Methyl Oleate

2 h 1.0 25.6 - - - - 96.0 2369.9 3.0 72.9 - - 2468.4

3 h - - - - - - 78.0 141.1 22.0 39.8 - - 180.9

5 h - - - - - - 87.1 141.4 12.9 20.9 - - 162.3

P01G cells identified oleic acid as the dominant component of this fraction at each time

point analysed. The pattern of TAG abundance was different from that of glucose fed

cells, where an increase in TAG quantity with increasing growth time was identified.

With oleic acid fed cells the total amount of TAG decreased from 41.1 µg to 10.8 µg /

g cells (wet weight) between 2 and 5 hours. Between 5 and 10 hours TAG accumulated

significantly; reaching its maximum quantity of 250.4 µg / g cells (wet weight). The

maximum quantity of oleic acid produced in the TAG was at 10 hours, where it

represented 202.6 µg / g cells (wet weight), equivalent to 80.9% of the TAG. Other

fatty acid components identified followed the same pattern of decreasing abundance

between 2 and 5 hours, followed by an increase at 10 hours. Stearic acid drops from

just under 25% of TAG to 2.2% between 5 and 10 hours, which coincides with an

increase in the percentage abundance of oleic acid.
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Figure 5.9: Percentage and µg values of observed fatty acids in the TAG of 1%
methyl ricinoleate-fed Y. lipolytica . A very significant peak of with the same retention
time as the C18:1-OH standard was identified at 2 hours of growth, which represented
89% of the total observed fatty acids at the TAG position of the TLC plate. This was
efficiently reduced between 3 and 5 hours, and was not observed at 10 hours of growth.
Other fatty acids observed at the TAG position were palmitic acid (C16:0), palmitoleic
acid (C16:1), stearic acid (C18:0), oleic acid (C18:1) and linoleic acid (C18:2). Oleic acid
was the dominant fatty acid at 10 hours, although its total abundance was less than at 2
hours of growth.
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Figure 5.10: Percentage and µg values of observed fatty acids in the TAG of
1% methyl oleate-fed Y. lipolytica . A simple profile of fatty acids were observed
at the TAG TLC position of methyl oleate-fed Y. lipolytica lipid extracts. Oleic acid
was identified as the most abundant peak, where it represented 96% of the TAG with an
abundance of 2369.9 µg/g cells (wet weight) at 2 hours. The amount of observed oleic acid
was significantly reduced between 2 and 3 hours of growth.
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5.3.7.2 FAMEs of ricinoleic and oleic acid

For cells growing on 1% FAME as the carbon source, the TAG profile is characterised by

a significant peak on the GC of the fed lipid molecule (i.e. either methyl ricinoleate or

methyl oleate), followed by its rapid reduction in abundance after 2 hours. For example

a significant peak on the GC, aligning to the methyl ricinoleate standard, was found to

comprise 89% of the TAG fraction with 2287.4 µg / g cells (wet weight) at 2 hours of

growth. By 3 hours, this peak had reduced to 360.1 µg / g cells (wet weight), by 5 hours

28.7 µg / g cells (wet weight) and by 10 hours it was not identified on the GC trace.

The percentage proportion of the peak aligning with the methyl ricinoleate standard

within the TLC’s TAG band was ∼ 80% at each time point in which it was identified,

indicating no specific catabolism of hydroxy lipids present at the TAG position of the

TLC plate. Other components identified include palmitic (C16:0), palmitoleic (C16:1),

stearic (C18:0), oleic (C18:1) and linoleic (C18:2) acid. By 10 hours of growth, oleic acid

was identified as the dominant fatty acid component of the TAG, where it comprised

67.7% of the observed fatty acids. However, although its abundance was increased from

3 and 5 hour time points, it was just over a third of that measured at 2 hours of growth.

A very similar quantity of oleic acid to that observed for ricinoleic acid was identified

in the TAG band of Y. lipolytica cells fed on 1% methyl oleate at 2 hours (2369.9 µg

compared to 2287.4 µg / g cells). Under these feeding conditions oleic acid represented

96% of the TAG band. Between 2 and 3 hours of growth a very significant decrease in

the total amount of oleic acid observed, and thus the total amount of lipid analysed at

the TAG band position of the TLC plate. Oleic and linoleic acid were the only fatty

acids observed in the TAG profile at the 3 and 5 hour time points analysed.

The constituent fatty acid profiles of TAG from Y. lipolytica cells growing on oleic

acid (Table 5.1) and methyl oleate (Table 5.9) are signficantly different, with a far

greater abundance of an oleic acid-aligning peak present in the TAG fraction of methyl

oleate fed cells at 2 hours of growth. Both analyses then show a pattern of breakdown
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Figure 5.11: Similar migrations of TAG and FAME in the hexane : diethyl
ether : acetic acid (70:30:1) solvent system. FAME molecules (i.e. derivatised
methyl ricinoleate (MR) and the FAME of oleic acid (MO)) were found to have a similar
migration to TAG in this solvent system, and thus are free to contaminate the TAG
analysis should they be carried over from harvesting into lipid extraction or be present in
the lipid extraction due to internalised FAME pools.

of lipid until the 5 hour time point.

Evidence emerged that the presence of abundant C18:1-OH and C18:1 in the TAG

at 2 hours of growth may be an experimental artefact. This is explored in the following

section.
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5.3.8 Co-migration of methyl fatty acids and triacylglycerols on TLC

with the hexane : diethyl ether : acetic acid (70:30:1) TLC

solvent system

The evidence that cells growing on FAMEs preferentially incorporate fatty acids into

their TAG stores over those growing on non-methylated fatty acid raised the possi-

bility that FAMEs have a different fate to non-methylated fatty acids in Y. lipolytica

cells. For example, the rate of substrate utilisation may be different between the two

molecules, perhaps related to differences in polarity conferred by the different head

groups. However, evidence emerged that it may be an experimental artefact: FAME

molecules (FAMEs without hydroxyl groups retarding their migration, e.g. methyl

oleate or silylated methyl ricinoleate) were found to have a similar migratory pattern to

TAG molecules (TAGs without hydroxyl groups retarding their migration, e.g. triolein

or silylated triricinolein) in the hexane:diethyl ether:acetic acid (70:30:1) solvent system

(see Figure 5.11). The TLC plate compares the migration of FAME (fourth and fifth

lanes from left, derivatised methyl ricinoleate (MR) and methyl oleate (MO)) to TAG

(third and sixth lanes from left, derivatised castor oil and TAG standard). Although

the migrations of FAME and TAG are different, they are close enough that they may

merge, especially with preparative loadings of lipid. Therefore, any FAMEs within

the lipid extract may contaminate and thus contribute to the observed lipids in the

analysed TAG band, and would be indistinguishable from the fatty acid components of

the TAG. As the lipid samples were derivatised, methyl ricinoleate is also a potential

contaminant of the TAG band in methyl ricinoleate fed Y. lipolytica samples. Cells were

routinely washed with multiple BSA and BSA/NaCl solutions previously reported to

remove extrinsic media lipid from the surface of Y. lipolytica cells growing on oleic

acid (Mĺıcková et al., 2004). Despite this, any extrinsic lipid which may remain on

the surface of the cells would be carried through to the GC analysis. Even if no

extrinsic FAMEs remained, it would be impossible to differentiate between lipid species
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from TAG molecules and lipid species of internalised FAME pools. Because of this,

alternative solvent systems were evaluated.

5.3.9 Evaluation of alternative TLC suitable for separation of triacyl-

glycerol and fatty acid methyl ester molecules

5.3.9.1 Petroleum ether : diethyl ether : acetic acid (90:10:1)

New solvent systems capable of separating FAMEs from TAG were evaluated, as hexane

: diethyl ether : acetic acid (H:D:A) 70:30:1 was found to be unsuitable in this

regard. An examination of the literature identified petroleum ether : diethyl ether

: acetic acid (PE:D:A) in the proportions 90:10:1 (Hamilton and Hamilton, 1992)

as a potential alternative, giving significant separation of FAMEs (retention factor

(Rf ) = 0.65) and TAG (Rf = 0.35) with no other lipid components reported as

migrating close to the TAG position. The suitability of the system with our TLC

plates and solvents was assessed through the separation of a range of derivatised and

underivatised lipid standards (see Figure 5.12). Non-hydroxy FAME molecules (i.e.

methyl oleate) were found to have significantly greater Rf values than TAG (0.44

versus 0.25 respectively in our laboratory), confirming their reported separation in

the literature. The highly apolar nature of the solvent system meant that polar lipid

species or those containing polar functional groups such as triricinolein (present in

the castor oil standard) and underivatised methyl ricinoleate remained at or near the

origin. Derivatisation altered the migratory behaviour of those lipid species containing

hydroxy functional groups, although ‘trailing’ was observed for each of the derivatised

species, indicating some remaining interaction between the derivatised species and the

polar TLC substrate. The derivatised methyl ricinoleate (labelled MR d on Figure

5.12) presented significant trailing in a uniform pattern of spots stretching back to the

origin. The experiment was repeated with new batches of methyl ricinoleate and castor

oil to discount degradation of the lipid stocks, but the pattern of trailing spots was
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still present in the derivatised samples (result not shown). Such incomplete migration

of derivatised hydroxy lipid on the TLC plate could pose a potential contaminant risk

due to derivatised methyl ricinoleate trailing through the positions of other lipid species

including TAG. Alternative TLC systems were investigated.

5.3.9.2 Hexane : diethyl ether : acetic acid (90:10:1)

To evaluate whether the derivatised methyl ricinoleate trailing pattern was peculiar to

the petroleum ether system, an equivalently apolar solvent system of hexane : diethyl

ether : acetic acid (90:10:1) was investigated. This gave a comparable pattern of lipid

distribution and as with petroleum ether the derivatised methyl ricinoleate lipid suffered

from trailing (Figure 5.13).

5.3.9.3 Hexane : diethyl ether : acetic acid (80:20:1)

Increasing the polarity of the solvent solution by increasing the ratio of diethyl ether to

hexane (H:D:A 80:20:1) gave a TLC profile with good separation between the FAME

and TAG positions. The derivatised methyl ricinoleate (MRD) spot still suffered from

the trailing effect but its extent was less severe than in less polar solvents, with the

minor trailing components having an increased migration and ‘bunching up’ behind the

parent MR spot (Figure 5.14). However, the trailing effect was severe enough to merge

with the TAG position and as such this solvent system was rejected.

5.3.9.4 Hexane : diethyl ether : acetic acid (75:25:1)

Similarly, H:D:A (75:25:1) suffered the same problem of derivatised MR trailing and

had the additional problem of near-localisation of TAG and FAME bands. See Figure

5.15.
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Figure 5.12: Comparison of the petroleum ether : diethyl ether : acetic acid (90:10:1)
solvent system with hexane : diethyl ether : acetic acid (70:30:1) solvent system reveals
increased separation of FAME and TAG lipid species. However, increased interaction
between hydroxy lipids ricinoleic acid and methyl ricinoleate including their silyl derivatives
in the highly apolar PE:D:A 90:10:1 solvent system causes a trailing effect which may
present a contamination risk. This was most pronounced for the derivatised methyl
ricinoleate sample (MR d). MO = methyl oleate, FFA = free fatty acid, TAG =
triacylglycerol, FAME = fatty acid methyl ester, SF = solvent front, o = origin ; d and nd
suffixes = derivatised and non-derivatised respectively.
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Figure 5.13: Effect of solvent ratios on lipid migration: Hexane : Diethyl
Ether : Acetic Acid (90:10:1).With this solvent system good separation is obtained for
FAME and TAG molecules; trailing is still observed from the derivatised methyl ricinoleate
standard which may cause contamination of the TAG position. SF = solvent front, TAG
= position of triolein migration on TLC / TAG standard, O = origin, NLS =
neutral lipid standard (containing MAG, DAG, TAG standards), MR = methyl
ricinoleate, MRD = derivatised methyl ricinoleate, MO = methyl oleate, OH-
FAME = position of methyl ricinoleate migration on TLC, FAME = position
of non-hydroxy FAME migration on TLC.
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Figure 5.14: Effect of solvent ratios on lipid migration: Hexane : diethyl ether
: acetic acid (80:20:1). With this solvent system although there’s good separation
of TAG and OH-FAME positions, trailing of the derivatised methyl ricinoleate standard
contaminates the TAG position. SF = solvent front, TAG = position of triolein
migration on TLC / TAG standard, O = origin, NLS = neutral lipid standard
(containing MAG, DAG, TAG standards), MR = methyl ricinoleate, MRD =
derivatised methyl ricinoleate, MO = methyl oleate, OH-FAME = position of
methyl ricinoleate migration on TLC, FAME = position of non-hydroxy FAME
migration on TLC.
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Figure 5.15: Effect of solvent ratios on lipid migration: Hexane : diethyl
ether : acetic Acid (75:25:1). With this solvent system, migrations of TAG and
derivatised methyl ricinoleate (OH-FAME) are too similar to allow confident separation
and analysis. SF = solvent front, TAG = position of triolein migration on TLC
/ TAG standard, O = origin, NLS = neutral lipid standard (containing MAG,
DAG, TAG standards), MR = methyl ricinoleate, MRD = derivatised methyl
ricinoleate, MO = methyl oleate, OH-FAME = position of methyl ricinoleate
migration on TLC, FAME = position of non-hydroxy FAME migration on TLC.
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5.3.9.5 Hexane : diethyl ether : acetic acid (50:50:1)

Increasing the polarity of the solvent with a H:D:A (50:50:1) system resulted in a

pattern of increased migration of all lipid species, whether polar or apolar, but with

little alteration to the relative migration of TAG and FAME so again is unsuitable. See

Figure 5.16.

5.3.9.6 Evidence of TMCS-ester degradation when silylated samples are

separated by TLC

Altering the ratios of the apolar and polar solvents (hexane and diethyl ether respec-

tively) altered the relative migration of the analysed lipid standards. In more apolar

solvents, a trailing effect was observed for the derivatised methyl ricinoleate sample

(MRD) which is a potential contaminant risk through the TLC plate. This could be

reduced or nullified by increasing the polarity of the solvent, and was not observed in

either H:D:A (70:30:1) or (50:50:1). However, in these solvent systems the migration

of FAME and TAG was very similar and thus could not be used.

The presence of a trail of spots behind the derivatised MR position, revealed in the

evaluation of new TLC systems, was a new concern. The trailing effect was not noted

with hexane : diethyl ether : acetic (70:30:1) and this appears to be because with this

solvent system the migrations of the trailing components are the same as the parent

derivatised MR species, and thus they form a single spot. The fact that there was

no evidence of trailing observed in the non-derivatised MR standard indicates it may

be an artefact of the derivatisation procedure, with the derivatised FAME degrading

either before or during TLC separation. It has previously been reported than the silyl

esters formed by the silylating reagent trimethylchlorosilane (TMCS) are unstable and

will hydrolyse slowly on TLC adsorbents (Christie, 1982). This was confirmed in a

personal communication with Dr. W. Christie (July, 2007), who stated ‘TMCS esters

are notoriously unstable and hydrolyse rapidly unless they are stored in the silylating
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Figure 5.16: Effect of solvent ratios on lipid migration: Hexane : diethyl ether
: acetic acid (50:50:1). The increased polarity of this solvent has significantly increased
the migration of the analysed lipid samples, however the relative migrations of TAG and
derivatised methyl ricinoleate (OH-FAME) make it unsuitable. SF = solvent front,
TAG = position of triolein migration on TLC / TAG standard, O = origin,
NLS = neutral lipid standard (containing MAG, DAG, TAG standards), MR
= methyl ricinoleate, MRD = derivatised methyl ricinoleate, MO = methyl
oleate, OH-FAME = position of methyl ricinoleate migration on TLC, FAME
= position of non-hydroxy FAME migration on TLC.
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solution. They cannot reliably be subjected to TLC or any other form of adsorption

chromatography’.

If derivatised lipid species are degrading prior to their extraction from the TLC

plate, it would likely lead to quantitative inaccuracies due to a selective under-representation

of the silylated lipid classes. Degradation products may also cause contamination of

other lipid species on the TLC plate which is highly undesirable. Without changing the

main lipid separation technology, this presented two options: (1) to find an alternative

derivatisation procedure which does not suffer from instability on TLC, or (2) to analyse

the underivatised lipid extracts, requiring a solvent system and analysis procedure

which effectively separates underivatised hydroxy fatty acids and allows the accurate

quantification of hydroxy TAG components.

Alternative hydroxyl group derivatisation systems exist. Trifluoroacetate specifi-

cally derivatises lipid compounds with free hydroxyl groups (including monoacylglyc-

erol), and are sufficiently temperature stable to be subjected to GC analysis (Christie,

1982). However, even when stored in inert solvents such as hexane they are reported to

hydrolyse rapidly, and can cause selective losses of unsaturated lipid molecules (Wood

and Snyder, 1966). Acetylation is an alternative procedure through which the polar

hydroxyl group can be converted to a non-polar derivative to improve its chromato-

graphic qualities. A disadvantage of this method is the overnight reaction time required

for acetylation (Renkonen, 1966) which combined with the lipid extraction procedure

and preferred overnight methylation step would result in undesirable extended sample

handling times.

TLC-based separation and quantification of underivatised lipid extracts containing

hydroxy lipids has been reported previously (Smith et al., 2003). The authors reported

the use of a 70:140:3 hexane : diethyl ether : acetic acid solvent system in the separation

of a range of hydroxy and non-hydroxy lipid species. The use of this TLC solvent system

in our laboratory was investigated.
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5.3.10 Development of alternative TLC solvent systems for the sep-

aration of non-derivatised total lipid extractions from methyl

fatty acid fed Y. lipolytica

It has been reported that not a single solvent system will completely separate all

naturally occurring neutral lipid classes in a single development (Henderson and Tocher,

1992). Where a range of hydroxy lipid species are present, each with their own Rf

values, in addition to the normal range of non-hydroxy neutral lipid species, their

distinct separation becomes a significant challenge.

However, TLC separations of the underivatised seed oil from A. thaliana trans-

formants expressing R. communis oleate 412 hydroxylase and producing a range of

hydroxy lipids has previously been reported (Smith et al., 2003). This group used two

separate solvent systems and silica G60 TLC plates. The first of these was hexane :

diethyl ether : acetic acid (70:30:1), previously used in this report for the separation

of derivatised lipid and found to be unsuitable due to the co-migration of FAME and

TAG species. A second analysis used hexane : diethyl ether : acetic acid (70:140:3),

which was reported to give clean separations of MAG, OH-MAG, 1-OH DAG, 2-OH

DAG , 1-OH TAG, 2-OH TAG, 3-OH TAG, OH-FFA, MAG, DAG, TAG and free fatty

acid (FFA). No information was given for the localisation of FAME or OH-FAME as

this was not relevant to their investigation.

To investigate whether the same separation of hydroxy and non-hydroxy lipid

species could be achieved in our laboratory, and to localise the migration of FAME

and OH-FAME with this system, the experiment was repeated with a range of lipid

standards. It is known that purity of solvents, TLC plate manufacturer, TLC plate

batch, degree of hydration of TLC adsorbant particles and atmospheric pressure can

all effect the migration of lipid species, so it is important to assess exactly how these

combined factors influence migration within a particular laboratory. The TLC tank

system was set up as described previously (Chapter 2.4.5.1) with hexane : diethyl ether
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: acetic acid (70:140:3) as the solvent. Triricinolein (3-OH TAG, RRR), diricinolein

monoolein (2-OH TAG, RRO), monoricinolein diolein (1-OH TAG, ROO), ricinoleic

acid (OH-FFA, R), oleic acid (FFA, O), methyl ricinoleate (OH-FAME, MR), methyl

oleate (FAME, MO) and castor oil were used as lipid standards alongside a neutral

lipid standard containing MAG, 1,2-DAG, 1,3-DAG and TAG. Aliquots of equal loading

were spotted on to a TLC plate and separated in the TLC tank until the solvent front

neared the top of the plate. The plate was then removed and the solvent front position

marked. The TLC plate was allowed to air dry before visualising with the fluorescent

lipid-binding stain phloxine B (see Figure 5.17).

In this comparatively polar solvent system, polar lipid species such as triricinolein

and methyl ricinoleate have significantly enhanced Rf values compared to, for example,

H:D:A (70:30:1). A good separation of 3-OH TAG, 2-OH TAG and 1-OH TAG was

achieved. Non hydroxy FAME and TAG are separated with this TLC system although

their migration is similar so care would need to be taken with high loading samples so

that their positions do not overlap. One of the non-hydroxy DAG isoforms (1,3-DAG)

has a very similar Rf value to OH-FAME. However a more significant problem with

regard to an evaluation of triricinolein production appears to be the co-migration of

3-OH TAG and OH-FFA. The presence of abundant FFA in the lipid extracts of Y.

lipolytica cells grown on oleic acid has been reported previously (Mĺıcková et al., 2004)

and was also identified in this study for cells growing on methyl ricinoleate, oleic acid,

methyl oleate and glucose (see Section 5.3.6). It is conceivable that in Y. lipolytica

cells grown on methyl ricinoleate, free fatty acid molecules containing hydroxyl groups

would be present in the lipid extracts. In this solvent system such hydroxy free fatty acid

species would co-migrate with any triricinolein present in the lipid extract. This would

make it impossible to quantify triricinolein production with this TLC system, as the

relative contributing effects of hydroxy free fatty acid and triricinolein are impossible

to separate. In the Smith et al. (2003) report, triricinolein and hydroxy free fatty
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Figure 5.17: Evaluation of hexane : diethyl ether : acetic acid (70:140:3)
as a solvent system capable of separating of hydroxy and non-hydroxy lipid
species. The solvent system was previously reported to separate 3-OH TAG (RRR)
from other lipid components (Smith et al., 2003) but in this laboratory 3-OH TAG co-
migrated with OH-FFA. Clockwise from top: TAG = triacylglycerol, FAME =
fatty acid methyl ester, OH-FAME = hydroxy fatty acid methyl ester (i.e.
methyl ricinoleate), DAG = diacylgylcerol, 3-OH TAG (RRR) = triricinolein,
MAG = monoacylglycerol, RRR = triricinolein standard, NLS = neutral lipid
standard (containing MAG, DAG, TAG), MR = methyl ricinoleate standard,
MO = methyl oleate standard, R = ricinoleic acid standard, O = oleic acid
standard, ROO = monoricinolein diolein, RRO = diricinolein monoolein, OH-
FFA = hydroxy free fatty acid, 2-OH TAG (RRO) = diricinolein monoolein,
FFA = free fatty acid, 1-OH TAG (ROO) = monoricinolein diolein, SF =
solvent front.
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acid are adjacent to each other but there is clear separation. This meant that the

combination of the H:D:A 70:140:3 solvent system and Whatman Silica G TLC plates

were incompatible with the lipid analysis requirements of the project, and were rejected.

As stated, interlaboratory reproducibility of TLC plates can be effected by a number

of variables including those related to solvents, TLC plates and atmospheric pressure.

An alternative silica gel 60 TLC plate from Merck (Whitehouse Station, NJ. USA)

(serial number : 1.05553.0001) was investigated. A neutral lipid standard containing

MAG, 1,3-DAG, 1,2-DAG and TAG was separated alongside Castor oil, ricinoleic acid

(OH-FFA) and methyl ricinoleate (OH-FAME) in the same solvent system: hexane :

diethyl ether : acetic acid (70:140:3) (Figure 5.18). On evaluation, this TLC plate gave

a clear separation of the ricinoleic acid and triricinolein positions. This was repeated in

triplicate and was the case for each plate. Therefore, this TLC plate and solvent system

combination can be used to analyse triricinolein production without contamination from

other hydroxy- and non-hydroxy lipid molecules.

5.4 Discussion

5.4.1 Growth characteristics

Y. lipolytica P01G was found to grow more efficiently than S. cerevisiae on minimal me-

dia containing 2% glucose. The growth rates measured for Y. lipolytica P01G reflected

those published elsewhere (Mĺıcková et al., 2004). The growth rates of both types of

yeast are likely to be influenced by their auxotrophic status. Also, it is not a completely

accurate comparison as the growth of S. cerevisiae is almost certainly reduced due to it

growing at the preferred temperature of Y. lipolytica, 28 ◦C. Previously, a reduction in

growth rate for S. cerevisiae growing at 27.5 ◦C compared to 30 ◦C has been described

(Richards, 1928). The primary purpose of the exercise was to characterise the growth

pattern of Y. lipolytica on 2% glucose and this has been achieved.
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Figure 5.18: Triplicate evaluation of separation of triricinolein from ricinoleic
acid in the hexane : diethyl ether : acetic acid solvent system and with Merck
silica gel 60 TLC plates. Triricinolein was found to co-migrate with ricinoleic acid in
the H:D:A 70:140:3 solvent system when used with Whatman Silica G 60 plates. The lipid
samples analysed in triplicate here have been separated with the same solvent system
but with Merck Silica Gel 60 plates and give distinct separation of triricinolein from
ricinoleic. Therefore, this TLC plate and solvent system combination can be used to analyse
triricinolein production without contamination from other hydroxy- and non-hydroxy lipid
molecules.
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The growth of Y. lipolytica P01G was found to be perturbed when growing on

1% methyl ricinoleate compared to 1% methyl oleate. This observation has been

reported previously (Ratledge, 1984). It is hypothesised that ricinoleic acid readily

incorporates into cell membranes leading to the formation of ‘pores’. This may lead

to depressed growth through perturbed membrane biochemistry leading to non-viable

cells. Alternatively, γ-decalactone, an intermediate product of the β-oxidation of

hydroxy fatty acids in certain yeasts including Y. lipolytica , is known to be cytotoxic

(Dufossé et al., 1999; Feron et al., 1997). Although the rate of growth and total

conversion of nutrients to biomass was depressed in cells growing on methyl ricinoleate

compared to oleic acid, the times of growth stage transition were the same for the cells

growing on either carbon substrate. This is important as it simplifies harvest timings

in experiments comparing oleic and methyl ricinoleate grown cells.

Experimental evidence supported the auxotrophic status of Y. lipolytica strain

P01G, and this was found to be a useful way of validating the strain used in this

study.

5.4.2 Lipid accumulation in glucose and oleic acid fed cells

The analysis of the fatty acid profile of TAG from glucose-grown cells revealed an

increase in TAG abundance between 2 and 10 hours of growth, with oleic acid (C18:1)

being the dominant fatty acid at the final time point where it contributed 52.7% of

the total TAG. Palmitic acid (C16:0) and linoleic acid (C18:2) contributed around 17%

and 19% respectively at 10 hours, and palmitoleic (C16:1) and stearic acid (C18:0)

were minor components contributing 4.5% and 6.3% respectively. A recent analysis of

the fatty acid components of the lipid bodies from Y. lipolytica W29 (wildtype strain)

grown 2% glucose YPD for 24 hours reported similar proportions of fatty acids, despite

the differences in various aspects of the experimentation (Athenstaedt et al., 2006). In

the Athenstaedt study (2006) oleic acid was identified as the dominant component at
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24 hours, where it was reported to contribute 52.5% of the fatty acids. The general

pattern of higher proportions of palmitic (C16:0) and linoleic (C18:2) and the lower

proportions of palmitoleic (C16:1) and stearic acid (C18:0) described here for 10 hours

were also reported for the analysis of oil bodies at 24 hours. The observation of the

near identical contribution of oleic acid (C18:1) suggests that for this fatty acid it may

reach its maximum proportion in the TAG by 10 hours for cells grown of 2% glucose.

Also, the significant (almost 20%) proportion of linoleic acid observed in cells grown

on 2% glucose supports a previous report that δ-9 desaturase is strongly expressed in

glucose grown cells (Meesters and Eggink, 1996). Crucially, the similar fatty acid profile

validates the concept of using TAG isolated by TLC as a method of quickly gaining

insight into the lipid constituents on the lipid bodies, without requiring the extended

purification procedures to isolate that organelle.

Oleic acid was identified as the dominant fatty acid species of the TAG in oleic acid

grown Y. lipolytica P01G at 10 hours of growth, where it contributed 80.9% of the

TAG. Oleic acid was reported as contributing 77.0% of the fatty acids from isolated

lipid in 1% oleic acid-grown Y. lipolytica W29 at 24 hours of growth (Athenstaedt et al.,

2006). C16:0, C16:1, C18:0 and C18:2 were also identified as minor components of the

TAG in both studies, although the relative proportions of these minor components

varied. As with the analysis of glucose-grown cells, this provides evidence of the 10

hours time point (mid-exponential) becoming representative of the stationary profile

and again validating the analysis of the TLC-plate fractionated TAG as an alternative

to analysing harvested lipid bodies.

Steryl esters are another resident neutral lipid component of yeast lipid bodies

(Daum et al., 2007) which would contribute to the fatty acid profile reported in the

Athenstaedt et al. (2006) paper but not the fatty acid profile reported here. However

the similarities of the figures, despite the differences in the time points, support the

literature base which states that steryl esters are minor components (around 5%) of
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the Y. lipolytica oil body (Ratledge, 1982).

5.4.3 Technological development of analysis procedures compatible

with hydroxy and non-hydroxy lipids

The use of TLC plates is a well established method for the separation of diverse

lipid species. By altering the hydrophobicity of the TLC sovent, the migration of

different lipid classes can be manipulated. In an initial analysis of total lipid extractions

from Y. lipolytica P01G a combination a Whatman G TLC plates were used with a

hexane : diethyl ether : acetic acid solvent system. The H:D:A (70:30:1) solvent

system has been previously reported to provide good separation of neutral lipid classes

including monoacylglycerols, diacylglycerols and triacylglycerol (Smith et al., 2003).

Lipid extracted from Y. lipolytica P01G fed on glucose, oleic acid, methyl oleate and

methyl ricinoleate was separated in this solvent system and the fatty acid methyl esters

(methyl oleate and ricinoleate) were found to co-migrate with TAG, preventing the

analysis of pure storage oil in this system where FAMEs may be present in the lipid

extract. Alternative TLC solvent systems were investigated which allowed separation

of FAMEs from TAG.

When silyl derivatives were separated in solvent systems other than H:D:A (70:30:1)

there was evidence of trailing, which was hypothesised to be due to degradation of the

derivative during or before TLC separation. A personal communication from Dr. W.

Christie (July, 2007) confirmed an early report (Christie, 1982) that TMCS esters are

unstable and hydrolyse readily if not kept in the silylating solution.

As degradation of lipid compounds would cause inaccuracies in quantification and

potentially contamination of the TLC plate with breakdown products, alternative meth-

ods were investigated which negated the need for derivatisation to achieve successful

identification and quantification of hydroxy lipid species. Hexane : diethyl ether : acetic

acid (70:140:3) has previously been reported to effectively separate a range of hydroxy-
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and non-hydroxy lipid species (Smith et al., 2003). After investigation with a range

of relevant standards and Whatman Silica G TLC plates, the critical location of 3-OH

TAG was found to migrate very closely to OH-FFA. An alternative Merck Silica Gel 60

TLC plate was found to allow distinct separation of OH-FFA and 3-OH TAG. 1,2-DAG

and 2-OH TAG were found to have similar migratory characteristics with this solvent

system and TLC plate combination however. The method described here provides the

foundation to a triricinolein analysis platform for Y. lipolytica. Quantification can be

achieved on a GC by adding a known amount of standard to the triricinolein sample

after the spot has been scraped from the TLC plate. The disadvantage of this method

compared to adding a standard such as triheptadecanoic acid prior to lipid extraction is

it cannot account for losses during lipid extraction and separation. One way to increase

accuracy of quantification would be to use triheptadecanoic acid (C17:0) added prior

to lipid extraction as a standard for non-hydroxy TAG quantification. A secondary

standard (e.g. C17:1) can then be added to every sample including the non-hydroxy

TAG standard post TLC separation. The C17:1 peak can then be normalised against

the C17:0 peak.

5.4.4 Use of methyl ricinoleate over alternatives

The problems addressed in this Chapter (co-migration of FAMEs with TAG, degra-

dation of derivatised methyl ricinoleate when separated by TLC) could have been

circumvented by using ricinoleic acid as the free fatty acid rather than its FAME-

derivative. Derivatised ricinoleic acid would have remained close to the origin of the

TLC plate due to the interaction of its comparatively polar carboxyl group (compared

to the methyl group of the FAME molecule) with the TLC plate matrix. Although

a number of alternative TLC systems were identified which separated FAMEs and

TAG molecules, the additional problem of derivatised methyl ricinoleate degradation

was encountered (it was due to this degradation of derivatised molecules that non-
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derivatised lipid extracts were evaluated and this led to identifying a solvent system /

TLC plate combination which allowed analysis of triricinolein production in FAME-fed

cells). The reason that alternative methyl ricinoleate-compatible TLC systems and use

of non-derivatised extracts were evaluated, rather than changing to ricinoleic acid was

that the cost of the alternative would have prohibited the technique’s use for routine

lipid analyses. To ensure sufficient lipid is generated for lipid analyses, it is desirable to

use a large culture size so as to harvest sufficient cell mass. This is especially important

in the analysis of cells at an early stage of growth. For culture media containing 1% lipid

substrate, a 500 ml culture fed on ricinoleic acid would require 5 g of the lipid molecule.

At the time of experimentation, 5 g of ricinoleic acid from the Sigma Chemical Company

cost ∼ 400 UKP. Therefore to perform replicate lipid analyses on multiple transformed

strains of Y. lipolytica would incur considerable cost to the laboratory and would make

alternative assay systems (e.g. in vitro assay or small scale feeding followed by HPLC

analysis of lipid) a more sensible choice. However, Stearinerie Dubois (a specialist

chemical company which supplies the cosmetic industry with a range of ricinoleic acid-

derived products) was able to supply methyl ricinoleate at a significantly lower cost, and

in sufficient quantities for multiple future analyses. Unfortunately, they did not stock

ricinoleic acid as the free fatty acid. For this reason, development of methyl ricinoleate-

compatible methodology was pursued. Although alternative fractionation techniques

such as HPLC may have provided another analysis solution, lack of experimental time

meant these could not be evaluated.

5.4.5 Concluding Remarks

In this chapter, the conditions for growth and lipid extraction were established for

the oleaginous yeast Y. lipolytica. In the development of lipid analysis procedures,

difficulties were encountered relating to the co-migration of lipid species by TLC and

evidence of degradation of derivatised hydroxy-lipid species affecting the validity of
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initial analysis attempts of methyl ricinoleate and methyl oleate fed cells. An alternative

TLC / solvent system combination has been established which separates a range of lipid

species including hydroxy lipid species and gives a clear separation of non-hydroxy TAG

and triricinolein from other potential contaminants.

This chapter has provided a protocol for the growth and harvest of Y. lipolytica

on different carbon substrates including methyl esters of ricinoleic acid, and the lipid

extraction and analysis procedures capable of identifying and quantifying triricinolein

production in this organism. Used with transformed and untransformed strains, it may

provide a rapid method for the assay of R. communis lipid biosynthesis genes on the

production of triricinolein.

271



Chapter 6

Final Discussion
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The general hypothesis of this thesis is that the enzymatic components key to high

levels of triricinolein (TRO) production in R. communis can be identified through the

use of a proteomic analysis targeting the site of castor oil biosynthesis (the developing

seed) and the contribution of these enzymes to TRO production can be rapidly assessed

in yeast prior to transformations in a plant host.

To this end, a differential screen of developing and germinating R. communis

seed ER was performed, with a view to identifying components of lipid biosynthesis

which may be crucial to the production of high levels of TRO. This focussed on those

proteins which are soluble in lysis buffer and separable by 2DE. 91 spots were identified

as elevated in developing compared to germinating seed and thus became targets

for MS analysis. A limited NCBInr database comprised of independent submissions

and a complete R. communis database were searched but no components of lipid

biosynthesis were identified (a large number of storage proteins, proteins involved

in protein translation, hypothetical proteins and sterol biosynthesis enzymes were,

however). It is possible that key proteins involved in TRO biosynthesis were present in

the 35 spots (38%) which gave no identity in the proteomic screen. However, analysis of

hydrophobicity and prediction of transmembrane domains for GPAT, LPAT and oleate

412 hydroxylase indicate they are not present on the gels due to their poor solubility

in 2DE lysis buffer or are lost due to precipitation during IEF. An alternative approach

focussing on the membrane-bound components of the developing ER is utilising iTRAQ

labelling and MS/MS to quantify and identify the resident proteins. This will not

suffer from the 2DE limitation with membrane proteins and thus is much more likely

to identify candidate proteins. Unfortunately, this work was beyond the scope of the

author’s industrial funding.

Y. lipolytica was hypothesised to be a suitable yeast for the rapid assay of candidates

for the production of high TRO levels, due to its oleaginous nature, its ability to grow

on hydrophobic substrates including ricinoleic acid (methyl ricinoleate was used in
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this study) and the availability of mature genomic tools for its transformation. The

central question asked was: can Y. lipolytica make TRO, and if so can the addition

of R. communis complex lipid biosynthesis genes increase its production; if it can’t,

can the addition of these genes cause it to make it and if so by how much? Prior

to answering this question, methodologies for growing the yeast, extracting its lipid

and separating its storage oil through TLC had to be established. A time-course

analysis of TAG composition through the exponential phase of growth of Y. lipolytica

growing on glucose and a variety of hydrophobic substrates including methyl ricinoleate

was performed. New data was obtained for glucose and oleic acid grown cells which

complemented the analysis of stationary phase TAG composition in glucose and oleic

acid fed Y. lipolytica published previously (Athenstaedt et al., 2006). Large peaks were

identified for ricinoleic and oleic acid in the TAG of methyl ricinoleate and methyl oleate

respectively; this was identified as an artefact due to co-migration of lipid species on the

TLC plate and alternative solvent systems were investigated. An unforeseen problem as

a result of this was evidence of degradation of silylated methyl ricinoleate on the TLC

plate. Alternative solvent combinations were unable to identify a solvent system which

prevented the silylated methyl ricinoleate degradation products running at multiple

positions through the plate and clearly separated TAG from other lipid species. An

alternative approach of not silylating the lipid extract and using a combination of high

performance TLC plate and a solvent system previously shown to separate a wide range

of hydroxy- and non-hydroxy complex lipids (Smith et al., 2003) was found to allow a

clear separation of TRO from other lipid species.

6.1 Future Directions

As stated, the use of MS-based proteomic procedures which are capable of identifying

membrane-bound components will complement the soluble 2DE analysis presented here
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and potentially identify key TRO producing enzymes absent from this analysis.

There is increasing evidence of the importance of substrate channelling and spe-

cialised sub-domains and these may prove to have a quantitatively important role

in high levels of TRO production. Blue Native gels have previously been used to

dissect complexes important in mitochondria (Schagger, 2001) and may provide very

interesting results in an analysis of developing ER membrane .

The protocols are now in place for the analysis of TRO production in Y. lipolytica,

both for untransformed strains and strains expressing R. communis lipid biosynthesis

genes. A large body of work has been published concerning Y. lipolytica’s ability

to efficiently break down hydroxy fatty acids including ricinoleic acid and methyl

ricinoleate through β-oxidation. Knockout lines incapable of breaking down lipid may

provide a useful background for R. communis lipid gene transformation experiments as

the anabolic effects of the transgene on storage oil production can be assessed without

the opposing catabolic process of lipid breakdown; a process known to continue into

stationary phase and to act upon TAG stores (Beopoulos et al., 2008). Strains exist

which have each of the known acyl CoA oxidase encoding genes knocked out, for

example JMY1233 (Smit et al., 2005). Also, Y. lipolytica strains expressing oleate

412 hydroxylase and capable of making ricinoleoyl CoA may provide a very useful tool

for investigating the role of enzymes such as PDAT and phospholipase in the flux of

ricinoleic acid out of the PC and made available for TAG biosynthesis.
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Dufossé, L., Souchon, I., Feron, G., Latrasse, A., and Spinnler, H. (1999). In
situ detoxification of the fermentation medium during γ-decalactone production
production with the yeast Spordiobolus salmonicolor. Biotechnol. Prog., 15:135–
139.

Dujon, B., Sherman, D., Fischer, G., Durrens, P., Casaregola, S., Lafontaine, I.,
de Montigny, J., Marck, C., Neuveglise, C., Talla, E., Gofford, N., Frangeul,
L., Aigle, M., Anthouard, V., Babour, A., Barbe, V., Barnay, S., Blanchin, S.,
Beckerich, J.-M., Beyne, E., Bleykasten, C., Boiramie, A., Boyer, J., Cattolico,
L., Confanioleri, F., de Daruvar, A., Despons, L., Fabre, E., Fairhead, C., Ferry-
Dumazet, H., Groppi, A., Hantraye, F., Hennequin, C., Jauniaux, N., Joyet, P.,
Kachouri, R., Kerrest, A., Koszul, R., Lemaire, M., Lesur, I., Ma, L., Muller,
H., Nicaud, J.-M., Nikolski, M., Oztas, S., Ozier-Kalogeropoulos, O., Pellenz, S.,
Potier, S., Richard, G.-F., Straub, M.-L., Suleau, A., Swennene, D., Tekaia, F.,
Welsolowski-Louvel, M., and Westhof, E. (2004). Genome evolution in yeasts.
Nature, 430(6995):35–44.

Dunn, M. and Görg, A. (2001). Two-dimensional polyacrylamide gel electrophoresis
for proteome analysis. In Dunn, M. and Pennington, S., editors, Proteomics. From
protein sequence to function, number ISBN 1-85996-296-3. Bios Scientific.

Dyer, J. and Mullen, R. (2001). Immunocytological localization of two plant fatty acid
desaturases in the endoplasmic reticulum. FEBS Lett., 494(1-2):44–47.

Eastmond, P. (2004). Cloning and characterization of the acid lipase from castor beans.
J. Biol. Chem., 279(44):45540–45545.

Elmore, A. (2007). Final report on the safety assessment of Ricinus communis
(Castor) seed oil, hydrogenated castor oil, glyceryl ricinoleate SE, ricinoleic
acid, potassium ricinoleate, sodium ricinoleate, zinc ricinoleate, cetyl ricinoleate,
ethyl ricinoleate, glycol ricinoleate, isopropyl ricinoleate, methyl ricinoleate, and
octyldodecyl ricinoleate. Int. J. Toxicol., 26(3):31–77.

Emes, M., Bowsher, C., Hedley, C., Burrell, M., Scrase-Field, E., and Tetlow, I. (2003).
Starch synthesis and carbon partitioning in developing endosperm. J. Exp. Bot.,
54(382):569–575.

281



Eng, J., McCormack, A., and Yates, J. (1994). An approach to correlate tandem mass
spectral data of peptides with amino acid sequences in a protein database. J. Am.
Soc. Mass Spectrom., 5:976–989.

Ephritikhine, G., Ferro, M., and Rolland, N. (2004). Plant membrane proteomics. Plant
Physiol. Biochem., 42(12):943–962.

Erber, A., Horstmann, C., and Schobert, C. (1997). A cDNA clone for acyl-CoA-binding
protein from castor bean. Plant Physiol., 114(1):396.

Eriksson, J., Chait, B., and Fenyo, D. (2000). A statistical basis for testing the
significance of mass spectrometric protein identification results. Anal. Chem.,
72(5):999–1005.

Falkenstein, E., Schmieding, K., Lange, A., Meyer, C., Gerdes, D., Welsch, U., and
Wehling, M. (1998). Localization of a putative progesterone membrane binding
protein in porcine hepatocytes. Cell Mol. Biol., 44(4):571–578.

Fenn, J., Mann, M., Meng, C., Wong, S., and Whitehouse, C. (1989). Electrospray
ionization for mass spectrometry of large biomolecules. Science, 246(4926):64–71.
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