

Computational Chunking in Chess

By

Andrew Cook

A thesis submitted
to The University of Birmingham

for the degree of Doctor of Philosophy

School of Computer Science
The University of Birmingham

February 2011

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

ABSTRACT

Adriaan de Groot, the Dutch psychologist and chess Master, argued that “perception

and memory are more important differentiators of chess expertise than the ability to

look ahead in selecting a chess move” (Groot 1978). A component of expertise in

chess has been attributed to the expert having knowledge of „chunks‟ and this

knowledge gives the expert the ability to focus quickly on “good moves with only

moderate look-ahead search” (Gobet and Simon 1998). The effects of chunking in

chess are widely reported in the literature, however papers reporting the nature of

chunks are largely based on inference from psychological experimentation. This

thesis reports original work resulting from extensive data mining of a large number of

chessboard configurations to explore the nature of chunks within the game of chess

and the associated moves played by expert chess players. The research was

informed by work in the psychology of chess and explored with software engineering

techniques, employing large datasets consisting of transcripts from expert players

games. The thesis reports results from an analysis of chunks throughout the game of

chess, explores the properties of meaningful chunks and reports effects of the

application of chunk knowledge to move searching.

ACKNOWLEDGEMENTS

There are many people who have helped with this work but in particular I would like

to thank my supervisor, Dr. William Edmondson for his inspiration and guidance

through many relaxed and enjoyable meetings, Prof. John Barnden and Dr. Volker

Sorge as members of the thesis group for keeping me on-track, Dr. Allan White for

advice on statistical methods, my wife Lynda for her patience and encouragement

since starting this work, and to my father for showing that age does not put a limit on

positive thinking, determination and learning.

TABLE OF CONTENTS

1. INTRODUCTION .. 1

1.1. Chunking and other areas of artificial intelligence .. 4

2. THE QUESTION THIS STUDY AIMS TO ANSWER ... 6

3. AN INTRODUCTION TO CHUNKING IN CHESS ... 10

3.1. Literature review .. 10

3.2. Chapter conclusion .. 21

4. DEFINING A CHUNK ... 22

4.1. Chunks are learnt constellations .. 22

4.2. Chunks are frequently occurring configurations ... 23

4.3. Recall of chunks are separated by a two second boundary........................ 23

4.4. Chunks can be a tool to extend short-term memory 24

4.5. Chunks contain elements that are related to each other 25

4.6. Pieces are related by proximity .. 26

4.7. Pieces are related by attacking/defending relationships 26

4.8. Chunks are absolutely positioned .. 27

4.9. Experts have a larger chunk knowledge than the novice 29

4.10. The relationship between chunk definitions .. 30

4.11. Chapter conclusion .. 31

5. INVESTIGATING THE PROPERTIES OF CHUNKS .. 32

5.1. What a chunk looks like ... 34

5.2. Chunk statistics .. 36

5.2.1 Why are there so many chunks on a chessboard? 36

5.2.2 The frequency of chunks in relation to player skill 38

5.2.3 Removing the most common chunks .. 41

5.3. Testing the skill/chunk relationship using a Pearson Correlation 44

5.4. „Defensive‟ chunks ... 45

5.4.1 The occurrence of defensive chunks throughout a game 48

5.4.2 The persistence of defensive chunks with player skill 49

5.5. Chapter conclusion .. 50

6. THE DEVELOPMENT OF A PROGRAM TO INVESTIGATE CHUNKING IN
CHESS .. 51

6.1. CLAMP - „Chunk Learning And Move Prompting‟ 51

6.2. Building chunk libraries .. 53

6.3. Building chessboard collections ... 53

6.4. Move asymmetry: A case against Holding (1985) 59

6.5. Analysing chunks from collections ... 61

6.6. Chunk size and memory requirements ... 64

6.7. CLAMP design, data structures and processes .. 66

6.8. Combining „nodes‟ to build „lists‟. ... 68

6.9. Building „lists‟ from collections .. 71

6.10. The structure of a „Trie‟ .. 72

6.11. Combining „tries‟ to make a „library‟ .. 75

6.12. A graphical representation of a chunk .. 76

6.13. Hardware considerations ... 79

6.14. Chapter conclusion .. 80

7. USING ‘CLAMPANALYSER’ TO SUGGEST MOVES 82

7.1. An evaluation of scores for a move to a position. 84

7.2. A few large chunks or many small chunks?.. 88

7.3. Adjusting for „move rareness‟ ... 89

7.4. Changing the „success‟ threshold ... 91

7.5. The relationship between pieces within chunks .. 92

7.5.1 The number of chunks in a chunk library ... 94

7.5.2 The „effectiveness‟ of a chunk ... 94

7.5.3 Analysis of the whole board area. ... 95

7.5.4 Chunks and meaning .. 97

7.5.5 Analysis of chunks in small grouped areas on the chessboard 98

7.5.6 Analysis of chunks comprising of pieces in defensive relationships .. 102

7.6. Changing the „success‟ threshold with defensive chunks 106

7.7. An analysis of de Groot‟s Position „A‟ ... 108

7.8. The Bratko/Kopec tests .. 112

7.8.1. Bratko/Kopec Test 4 (best move: pawn lever) 113

7.8.2. Bratko/Kopec Test 5 (best move: tactical) ... 115

7.8.3. Bratko/Kopec Test 6 (best move: pawn lever) 117

7.8.4. Bratko/Kopec Test 7 (best move: tactical) ... 119

7.8.5. Bratko/Kopec Test 8 (best move: pawn lever) 121

7.8.6. Bratko/Kopec Test 9 (best move: pawn lever) 123

7.8.7. Bratko/Kopec Test 11 (best move: pawn lever) 125

7.8.8. Bratko/Kopec Test 13 (best move: pawn lever) 127

7.8.9. Bratko/Kopec Test 14 (best move: tactical) 128

7.8.10. Bratko/Kopec Test 15 (best move: tactical) 130

7.8.11. Bratko/Kopec Test 16 (best move: tactical) 132

7.8.12. Bratko/Kopec Test 20 (best move: pawn lever) 134

7.9. An analysis of the top moves ... 135

7.9.1. Using „Whole Board‟ chunk libraries .. 137

7.9.2. Using „Defensive‟ chunk libraries .. 139

7.9.3. Using small grouped area chunk libraries ... 141

7.10. Top move analysis and the number of boards scored 145

7.11. Using chunks to suggest a move: a design strategy 147

7.12. Chapter conclusion .. 149

8. AN EVALUATION OF PIECES MOVED FROM A POSITION 151

8.1. „Move From‟ scores by using „Move To‟ analysis 153

8.2. Combining the likelihood of a Move To with the Move From score 155

8.3. Chapter conclusion .. 158

9. AN APPLICATION OF CHUNKING TO A CHESS PLAYING PROGRAM 159

9.1. A brief look at the MINIMAX routine ... 159

9.2. Optimising the MINIMAX search with alpha-beta pruning......................... 162

9.3. Using CLAMP to optimise the alpha-beta search 165

9.4. Chapter conclusion .. 170

10. CLAMP AND CHUMP: A COMPARISON ... 171

10.1. The aims of the programs .. 171

10.2. Chunk acquisition... 171

10.2.1 Analysis of the whole board. ... 172

10.2.2 Analysis of local areas on the board ... 172

10.2.3 Analysis of pieces in „defensive‟ relationships to each other. 172

10.2.4 The „eye-movement-simulator‟. ... 173

10.2.5 Attack, defence and proximity relationships 173

10.3 Chunk repository .. 173

10.4 Chunk Size .. 174

10.5 Move proposals ... 174

10.6 The move start and end squares .. 175

10.7 The size of the learning set. ... 175

10.8 Test results from the Bratko-Kopec positions ... 175

10.9 Test results from de Groot‟s Position „A‟ .. 176

10.10 Conclusion ... 176

11. CONCLUSION .. 178

11.1 About chunking in chess .. 178

11.2 The question this thesis aims to answer ... 180

12. RECOMMENDATIONS FOR FURTHER WORK ... 183

13. APPENDICES ... 185

13.1. Appendix 1: Summary of results .. 185

13.2. Appendix 2: The key for the axis: „Move to piece/position‟. 187

13.3. Appendix 3: Supplementary media .. 188

13.4. CLAMPanalyser ... 188

13.4.1. The library naming convention for the CLAMPanalyser program 190

13.4.2. Counting the number of chunks in a chunk library 191
13.4.3 The LibraryComparator ... 192

13.4.4 The output from the LibraryComparator program 193

13.4.5 The „TopMovesComparator‟ program... 194

13.4.6 The output from the TopMovesComparator program 195

13.4.7 SourceCode ... 195

13.4.8 Collections_MoveTo .. 197

13.4.9 Collections_MoveFrom ... 198

14. BIBLIOGRAPHY ... 199

1

1. INTRODUCTION

The Russian mathematician Alexander Kronrod in 1965 described chess as the

“Drosophila of artificial intelligence” (McCarthy 1997). Drosophila is a genus of fruit

fly, one species of which is famously known for use in genetics experimentation. The

Drosophila has as a result become synonymous with scientific experiments. A

sentiment similar to Kronrod‟s was expressed by Saariluoma (1998) “Chess has

been, and to some extent still is, at the forefront of adversary problem-solving

research. It just happens to be a well-defined task environment, which nevertheless

provides information about complex problem-solving processes, and this is why it has

been used for decades as the fruit fly of thought psychology”. Saariluoma (op. cit.)

described chess as a “compact and easily controllable task environment” and the

game “a mental contest between two individuals with each move the result of careful

thought.” Saariluoma (1995) also describes chess as “a two player game with

perfect information and no chance moves. This means that a position in chess

contains all the information that is needed to make a correct choice of move.” Chess

therefore lends itself to studies in thinking and problem solving. For this reason chess

has frequently been a tool for psychological research into human thinking and

expertise (Charness 1981, Chase and Simon 1973a, 1973b, de Groot 1965, 1978,

1998, de Groot and Gobet 1996, Finkelstein and Markovitch 1998, McGregor and

Howes 2002, Gobet and Jansen 1994, Gobet et al. 2001, Jongman 1968, Reynolds

1992, Saariluoma 1998, 2001, Simon and Barenfield 1969, Simon and Gilmartin

1973).

This thesis reports the use of the game of chess to look at an interesting

aspect of cognitive functionality. Miller (1956) proposes that the human short-term

memory has the capacity to remember seven, plus or minus two, items

simultaneously. The finding is intriguing when considering the capacity of long-term

2

memory and other capabilities of the human brain (Gilhooly and Logie 1998) and

Saariluoma (1998) describe the union of short term and long-term memory: “the small

capacity of the working memory can be circumvented by using long-term working

memory” (Ericsson and Kintsch, 1995). “This collaboration of the two main memory

systems is undoubtedly a very important mechanism” (Saariluoma op. cit.).

Furthermore, according to Miller (op. cit.), items are grouped in long-term memory in

„chunks‟, chunks being items that are grouped together by some common factor.

Miller (op. cit.) illustrates the above point as follows “A man just beginning to

learn radio telegraphic code hears each dit and dah as a separate chunk. Soon he is

able to organise these sounds into letters and then he can deal with the letters as

chunks. Then the letters organise themselves as words, which are still larger chunks,

and he begins to hear whole phrases… I am simply pointing to the obvious fact that

the dits and dahs are organised by learning into patterns and that as these larger

chunks emerge the amount of message that the operator can remember increases

correspondingly. In the terms I am proposing to use, the operator learns to increase

the bits per chunk.”

A person‟s learning and expertise, in this context, is therefore an exercise in

increasing chunk knowledge.

Chunking is not restricted to human cognition. Research on pigeons shows

evidence that pigeons have an ability to cluster five element lists into distinct groups

implying that the pigeon can „chunk‟ items in long term memory, albeit with a short

term memory limitation of five items (Chase 2000, Terrace 1987). The point is also

made by Terrace that chunking in this instance is being performed in a brain that is

void of „linguistic competence‟. Rats (Cohen et al. 2001, Fountain and Benson 2006)

and monkeys (Terrace 1987) also show evidence for chunking when learning.

3

Regarding human learning and expertise, chess has been used as the

experimental „fruit fly‟ for psychological study. As a medium for research chess has

advantages.

The chessboard consists of just sixty-four squares with a maximum of thirty-

two chess pieces comprising of six types, each type with defined rules on how the

piece can move and relate with other pieces. The starting point is always the same

and the objective is clearly defined: to checkmate the opposing king. “The rules of

chess are sufficiently simple that children can be taught them at a very young age

(four or five years old)” (Gobet and Charness, 2006), Yet despite the small number of

parameters that define the game, chess provides a hugely variable system with a

vast number of possible board configurations. The number of different games that

can be played has been estimated at about 10120. This number, known as the

„Shannon number‟ after Claude Shannon (1950) who first estimated it, is described

by Shannon as „conservative‟. This hugely variable output provides a „fine grained‟

system that can be precisely analysed by virtue of the small number of parameters

that define the game.

Data from chess games are easy to acquire. Many hundreds of thousands of

tournament games between experts, Masters and Grandmasters showing each move

played have been recorded and catalogued, and are easily downloadable from the

Internet in a standard file format. From this wealth of information it is possible to gain

a glimpse into some of the processes that craft human thought. Or put another way,

chess research provides “good empirical evidence on some issues including the

relation of memory and problem-solving which has very seldom, if at all, been

researched in other task environments” (Saariluoma 2001).

Chunking and the acquisition of expertise is an area of research that has been

explored in chess (Charness 1981, Chase and Simon 1973a, 1973b, de Groot 1978,

4

1965, de Groot and Gobet 1996, Gobet 1998, Gobet et al. 2001, Holding 1992,

Jongman 1968, Ross 2006, Saariluoma 1980, 1998, 2001, Simon and Barenfield

1969, Simon and Gilmartin 1973, McGregor and Howes 2002). The skill of players is

measured and documented in tournament games, and comparisons between players

is relatively simple. Experiments to look for evidence of chunking in chess are also

numerous. In addition there have been a number of computer programs that search

for chunks or simulate chess play with chunks (Berliner and Campbell 1984, Gobet

and Jansen 1994, Walczak 1992). There is however little detail about what actually

constitutes a chunk with respect to chess play.

1.1. Chunking and other areas of artificial intelligence

The term „chunking‟ is used in other areas of artificial intelligence research in relation

to machine learning, however the meaning of the term is not universal across all

areas. The program „Soar‟ for example, uses the term „chunking‟ for “a learning

mechanism that acquires rules from goal-based experience” with the “acquisition and

use of macro-operators” (Laird, Rosenbloom and Newell 1986). The use of the term

„chunking‟ in this context is referring to the linking together of rules. ‟Chunks‟ within

the context of Soar are solutions to sub-problems. Within Soar‟s operation “when

Soar does not have the knowledge to provide a solution it establishes a sub-problem

The solution to a sub-problem is saved as learned production, which can be termed

„a Soar chunk‟ (Kennedy and Trafton 2006). By grouping together rules chunking in

Soar “leads to performance improvements” (Laird, Rosenbloom and Newell 1984).

Soar takes a „top down‟ approach to problem solving. Sub-rules are added

only when there is an impasse and the higher production rules do not provide a

solution. CLAMP on the other hand, is bottom up, building relationships between

chunks and actions. In the context of chess chunks are configuration of chess pieces

5

on the chessboard which is different to chunks in Soar - which are the linking

together of production rules.

In other applications the term „Chunking‟ can be used in the context of

breaking up complex data in to smaller components, for example chunking within the

HTTP protocol refers to the process of breaking a large message into smaller

messages. Within the field of natural language processing the term „chunking‟ refers

to the breaking up of a sentence into short phrases for identification of parts of

speech. Chunking is sometimes referred to as „shallow parsing‟ as it can break up a

sentence, for example into noun phrases, locations and names, without constructing

a full parse tree (Bird, Klein and Loper 2009).

The term „Chunking‟ can therefore have various meanings, depending of the

application or area of research. In this thesis the term „chunking‟ refers to the process

whereby chess pieces are combined into groups. A „chunk‟ is simply a group of some

of the chess pieces that appear on a chessboard and the action of „chunking‟ is the

grouping together of chess pieces. The research reported in this thesis is based on

the analysis of the chess piece chunks.

6

2. THE QUESTION THIS STUDY AIMS TO ANSWER

“While current computers search for millions of positions a second, people hardly

ever generate more than a hundred. Nonetheless, the best human chess players are

still as good as the best computer programs. Although this model operates

excellently in computer programs, it has very little realism where human thinking is

concerned. It is probabilistic and in most task environments the generation of all

possibilities even to the depth of one „move‟ is unrealistic. In making an investment

decision, for example, one cannot normally generate all imaginable ways to invest

and heuristically select the best: there simply exist too many ways to make the

decision. This is why heuristic search models are too coarse to be realistic models of

the mind. Much more sophisticated analysis is required in order to explain human

problem-solving behaviour” (Saariluoma 1998).

The research reported within this thesis is a study of „chunking‟ in the constellations

of pieces on the board within the game of chess. Chase and Simon (1973b) link

expertise in a domain, including expertise in chess, with knowledge of chunks as a

mechanism employed by the human expert (as opposed to performing an evaluation

of all possible moves), however, the question whether chunking can be linked to

chess skill is open to debate. Holding (1985) argues against the notion that chunk

knowledge is linked to skill but maintains that master chess players are better at

chess because they are better at looking ahead. Holding‟s „SEEK‟ (Search, EvaluatE,

and Know) model attributes skill in chess to the player‟s ability to efficiently negotiate

search trees by using their knowledge of chess, and in their judgements in end

positions (Holding op. cit.). Holding rejects what he calls 'recognition-association'

theory as the basis of chess skill. On the other hand, Chase and Simon (1973b)

7

attribute knowledge of chunks as the major differentiator between the novice and the

expert players.

Much of the evidence for chunking in chess is taken from psychological

experiments such as de Groot‟s memory test on expert and novice players. In this

well-known experiment de Groot tested three classes of chess player: Grandmaster

plus Master, Expert and Class „A‟ player, (a „Class A player‟ is a good chess player,

but below expert level), by showing them a chessboard configuration from an

unfamiliar game with twenty-two pieces on average, for a few seconds (de Groot

1978). The subjects were then asked to reconstruct the configurations, either verbally

or on another board. The experiment was repeated by Chase and Simon (1973b) but

included a novice group. The results showed Masters scoring 81% correct, Class „A‟

players 49% and the novices 33%. But when the positions were randomised each

group only recalled only three or four pieces correctly. This dramatic result implies

that advanced chess players remember pieces in structured positions, and that

pieces are remembered as groups or chunks rather than the individual pieces

themselves.

In this thesis the link between knowledge and use of chunks, and chess skill,

is investigated. Within the chess community, including the psychologists who study

chess play, a question remains: Do chunks in chess games differentiate categories of

player? The question is posed this way because experimentally this permits the

underlying question to be studied - at least in part: Do chess players use chunks in

their analysis of a chessboard? The alternative possibility is, of course, that chunking

is a by-product of chess play, and not in any sense a driver of good chess play which

is intentionally exploited by players. Whilst experimental differentiation of category of

player, on the basis of chunks, would not demonstrate the value of chunking for the

player it would offer the prospect that style of play could be shown to be linked to

8

chunking. This would be an indirect demonstration of the value of chunking in chess

play, without the need to claim that experts use chunking explicitly.

However, in a computational environment it is possible to go further. Large

numbers of chess games played by different categories of chess player can be

analysed computationally and chunks identified. The deployment of chunking in a

computational chess environment can be used to assess the value of chunking in

new games.

Experiments similar to the Chase and Simon (1973b) experiment have been

performed (and are described in the literature review section of this document) and

suggest an expert chess player is equipped with knowledge of chunks. Simon and

Gilmartin (1973) claim that an expert may know the order of 50,000 chunk patterns,

however, the parameters that define a chunk are largely unknown. CHUMP (a

„pattern-learning move generator‟) uses eye movement information inspired by the

gaze of chess players to extract configurations from a board based on pieces that are

located at the eye fixation points (Gobet and Jansen 1994). By scanning a corpus of

training games a number of eye fixation points can be compiled, with each fixation

point limiting the area of the board from which chunks can be built, and with the

chunks in turn being associated with a resulting move. Eye movements are simulated

so that a large number of games can be processed, counting the frequency of

occurrence of chunks associated with a move. CHUMP‟s extraction of chunks is

based on the eye movements of chess players, but the actual reasons for the eye

movements remain unknown.

Walcaz (1992) introduced a system called IAM which restricts the board view

to a subset of pieces in close proximity. An area of 4x4 or 5x5 pieces for example is

viewed and the frequently occurring chess pieces compiled to make a chunk library.

McGregor and Howes (2002) performed a series of experiments that suggest the

9

attack and defence relationships of pieces within chess play are more important than

proximity.

This thesis will attempt to add to existing research literature by looking at

chunking within a computational environment. The work reported in this thesis will:

 Look at chunks in chess play and attempt to define the properties of chunks

within chess.

 Investigate potential links between the use of chunks and a player‟s skill.

 Isolate effective chunks.

 Incorporate chunking as part of the move generation process within a chess

program.

The question this thesis will answer is:

Can the utilisation of chunks in a chess-playing program provide a plausible

model for the use of chunks by human players?

10


 
 
 
   
   
   
   



Figure 3.1: A typical chessboard

3. AN INTRODUCTION TO CHUNKING IN CHESS

3.1. Literature review

Mainstream computer chess programs use search trees with a very large number of

nodes, exploring every possible subsequent move and counter-move, several ply1

ahead of the current position in order to test the consequence of a proposed move.

This method, which is known as the MINIMAX routine was proposed by Claude

Shannon in the 1950s (Shannon 1950). The number of positions evaluated grows

rapidly with each move ahead. For example,

starting with the chessboard on the left of this

page,2 and looking ahead just four ply

(commercial chess programs would look ahead at

least eight ply) results in 2,080,734 nodes. Yet

despite employing optimisations (of which the

most significant is the alpha-beta search method

which is described in detail on page 159) the process requires several million-node

evaluations. Human chess players however can out-perform, or at least present a

serious challenge to even the most powerful chess computers. The chess computer

„Deep Blue‟ for example, which famously defeated the world chess champion Garry

Kasparov in 1997, was capable of searching up to 40 ply, working through a

potentially huge number of nodes (Campbell, Hoane and Hsiung-Hsu 2002). The

methods used by a human chess player are therefore of interest as the notion that

the player mentally evaluates millions of chess configurations is generally rejected.

Saariluoma (1998) maintains, when describing the heuristic search of all possible

1
 A „ply‟ is a move of one chess piece, either a white piece or the corresponding move of a black piece.

2
 The chessboard configuration shown in Figure 1 can be represented in Forsyth–Edwards Notation

(or „FEN‟) as: r1bqk2r/p1pp1p1p/1pn1p1pb/3nP3/P2P3P/1P4P1/2P2P2/RNBQKBNR w KQkq - 0 1

11

moves: “although the model operates excellently in computer programs it has very

little realism where human thinking is concerned”. Adriaan de Groot, the Dutch

psychologist and chess Master, argued that one of the most important aspects of skill

in playing chess is not in the thought processes, searching through a tree of possible

moves, but in the initial coding of relationships among the pieces on the chessboard.

“It is not easy to appreciate fully the enormous effect of the expert‟s reproductive

completion of the perceived situation, as his perceptual advantage might be called”

(de Groot 1978, pp. 307). He concluded “that perception and memory are more

important differentiators of chess expertise than the ability to look ahead in selecting

a chess move”.

Jongman (1968) suggested that master chess players retained the names of

familiar piece configurations in „short term memory‟ whilst remembering the piece

configurations, or „chunks‟, in „long term memory‟. The estimate for short-term

memory span of seven, plus or minus two items (Miller op. cit.) is however arguably

too generous, as the span of short-term memory is dependent on the type of material

being remembered (Cowan 2001). Other research suggests that even Cowan‟s

estimate of a maximum of four chunks being held in short term memory could be “an

overestimate” (Gobet and Clarkson 2004). In any case, chunking provides a

mechanism where a limitation, be it seven or less, can be compensated by

remembering groups of items in long term memory thereby increasing the short term

memory capacity from seven items to “seven groups of items” by “grouping primitive

stimuli into larger conceptual groups” Gobet et al. (2001). The application of this

technique is apparent when grouping letters into words, or even words into

sentences, the memory limit of seven letters is thereby expanded considerably. With

respect to chess, chunking theoretically expands the ability to remember

configurations of a few pieces on the chessboard to a few groups of pieces. The

12

groups in this case being recognised configurations that occur frequently within the

game.

Gobet et al. (2001) describes the cognitive function of chunking as one of the

“key mechanisms of human cognition, linking the external environment and internal

cognitive processes”. Chunking, despite constant cognitive limitations, explains how

greater knowledge can lead to an increased ability to extract information from the

environment. Expertise in the visual recognition of features in x-ray imagery has also

been attributed to chunking with claims that "a chess master performs in the same

manner as does a radiologist" (Wood 2009). Experiments in chunking have included

non-human animals suggesting that chunking is a cognitive process that is not limited

to humans. Tests on pigeons by Terrance (1987) show that lists can be memorised

by pigeons with the aid of chunking, giving evidence for the association between the

chunked items. Similarly rats negotiating a maze show evidence for chunking when

presented with recognisable sequences (as markings on the floor) within a maze

(Cohen et al. 2001). Experiments with fourteen-month-old infants show chunking as a

cognitive technique for extending memory at a young age in human development

(Feigenson and Helberda 2004).

A significant contribution to the debate on chunking and chess was made by

de Groot (1978) and Chase and Simon (1973) with experiments involving the

memory performance of chess players of varying skills. Chase and Simon claim a link

between knowledge of chunks and the chess players‟ skill. The more skilful players

are believed to have memorised a larger number of chunks.

In one experiment de Groot tested three classes of chess player: Grandmaster

plus Master, Expert and Class „A‟ player, by showing them a chessboard

configuration from an unfamiliar game with twenty-two pieces, for a few seconds (de

13

Groot 1978). The subjects were then asked to reconstruct the configurations, either

verbally or on another board. The results were as follows:

Master/Grandmaster: 93% Correct

Experts 72% Correct

Class „A‟ Players 51% Correct

Table 3.1: de Groot’s recall test.

Chase and Simon (1973b) repeated the experiment, but with the addition of a novice

group and their test results were as follows:

Master 81% Correct

„A‟ Class Player 49% Correct

Novice 33% Correct

Table 3.2: Chase and Simon’s test using game piece placements

But when the positions were randomised each group recalled only three or four

pieces correctly. The conclusion of this experiment is that expert chess players

remember groups of chess pieces in structured positions.

In another experiment, Gobet and Simon (1996a) compare the recall ability

between chess Masters and weaker players by presenting a chessboard to each for

just a few seconds. Briefly presented positions are remembered better by chess

Masters compared with weaker players when the positions are meaningful. If the

chess positions are random then Masters, to a large degree, loose their advantage.

The small advantage that strong chess players show when remembering random

boards can be attributed to small chunks appearing in the random patterns. Further

investigation by Gobet and Simon (2000) reinforced this suggestion by simulating the

14

experiment using a large chunk database acquired by the CHREST (an acronym for

“Chunk Hierarchy and REtrieval STructures”) program (Gobet et al. 2001). Three

groups of player (Class „A‟ player, Expert and Master) were simulated and the results

obtained correlated with human players, indicating that chunks are present within

random data. In this experiment, the size of the chunk database varied with the

expertise of the chess player, 500 chunks for a class „A‟ player, 10,000 for the expert

and 300,000 for the Master.

Chase and Simon (1973a) investigated chunking within a chess configuration

with another experiment. The subject was asked to reconstruct a chessboard layout

copying from one board to another. The head movements and pieces placed were

recorded. It was noted that if a piece had links to other pieces (a piece being under

attack from another piece would link the two pieces together for example) then the

piece would be placed without delaying. If the piece being placed started a new

group, then there would be a small latency before placing. A larger than normal

latency was given as an indication of a chunk boundary. The suggestion from this

experiment was that the subject was using his chunk knowledge to remember groups

of pieces and therefore the subject possessed chunk knowledge.

In another paper Chase and Simon (1973b) conducted a number of

experiments where the eye movements of the players were monitored. Similarly,

Charness et al. (2001) compared the eye movements between a group of twelve

intermediate skilled chess players with twelve experts, and twelve novices. When

shown a board, the experts made half the number of fixations on pieces as the

intermediate group. These findings were consistent with de Groot and Gobet (1996)

however the experiment showed that the expert group focused on the salient pieces

more quickly (compared with the intermediate group). The inference here is that the

expert recognises chunks and quickly focuses on the salient moves. Recognition of

15

chunks therefore act as a trigger for an action, or as a focus to direct attention to a

particular area of the board. The novice however may come up with the same move

but only after examining all of the pieces, thereby taking a lot longer to work out his

move.

Charness et al.(2001) explored the visual span of chess players measured on

structured (not random) board configurations. The experts used a considerably larger

visual span of the board. When testing for a check condition the experts made fewer

fixations on the board compared to the novice, and reported a higher fixation

between pieces. The suggestion with this experiment was that the expert player

employs a complex perceptual encoding in his view of the board. This suggestion is

consistent with theories about chunking, although this experiment implies chunking

within the visual cognitive process.

Saariluoma (1991) conducted a number of experiments with blindfold chess

playing. Blindfold chess is a game of chess normally conducted with the player with

his back to the board and without any visual reference to the game, communicating

only verbally. The player must keep track of and evaluate moves without any external

reference whatsoever. Even harder than this is where the player conducts two or

more games simultaneously. The record, which was set in 1985, for the number of

simultaneous games (the „blindfold player‟ must win 50% of the games to be

considered to be playing the games) is over fifty. One experiment in particular, which

used blindfolded chess players involved three groups of players, master, medium

and novice. The experiment was to read five real but unknown chess games, and five

randomised games, where the moves do not even follow the laws of chess. After

reading all of the games the groups would recall them. The master group recalled the

real games with high accuracy and better than the other groups but in the random

games all groups performed the same with players unable to remember a single

16

position. Saariluoma argues this result is evidence for chunking mechanisms within

memory as ordered games can be remembered easily by the experts (although not

by the novice group), but unordered games could not be remembered by any group.

Experiments on recall of several boards by Grandmaster players show that, as

the number of boards presented to the Grandmaster increases there is a percentage

decrease in the number of pieces recalled (Gobet and Simon 1996). This is

consistent with chunking theory as the effect of the limit of short-term memory. The

result however does not exactly fit the chunking prediction but shows a slightly better

recall than expected. The experimenter presented boards to the Grandmaster,

gradually increasing the number in the experiment to nine boards and for as long as

he can recall with 70% accuracy. Skilled players recalled more pieces than predicted

by Chase and Simon‟s chunking theory. The improvement in recall is attributed to a

phenomenon named „templates‟. Templates are attributed to a faster than expected

ability to store information in long-term memory. Experiments with five-second

presentation times, which are considered too brief for storage in long-term memory,

provide evidence for a memory process in addition to chunking (Gobet and Simon

1996). The accepted time for transfer of a chunk to long-term memory is eight

seconds and about a minute for seven chunks. Experts in a particular domain can

store patterns related to their domain into long-term memory with a very short

exposure time, whereas the novice requires more time (Gobet and Jackson 2002).

Templates are described as having a „core‟ pattern, which remains unchanged, with

a set of „slots‟, whose values can be rapidly altered. Chunks can evolve into

templates through extensive experience (Gobet and Simon 1996). In the chess

domain, the chessboard or a section of it can be the basis for a template. Pieces

positioned on the board form patterns that are quickly encoded and stored.

17

The literature also reports research arguing against chunking theory. Holding

(1985) argues that chess skill is not attributed to the chess player‟s knowledge of

chunks but linked to the player‟s “evaluative judgments throughout the forward

search”. Holding conducted an experiment where sixteen chess players, consisting of

eight strong and eight weak players, evaluated a board giving a score to the stronger

side. Binary trees were constructed for six plies ahead from the current position and

a piece was moved following each path on the search tree, evaluating each possible

move. Not surprisingly the stronger players performed more accurate evaluations at

the starting positions and were more consistent with the evaluations as the moves

are made. However, the reasons for the skilled players performance in making good

forward evaluations were not discussed by Holding.

The discussion so far in this chapter has considered chess skill from a

psychological perspective. Chase and Simon‟s work is heavily cited in the literature

on chunking. The reason for this is due to the fact that Chase and Simon‟s theory has

greatly motivated research in the field. However, the dominance of their work can

also “indicate a lack of originality in the field of chess research” (de Groot and Gobet

1996, pp 115). The advent of high power computers however has enabled new

branches in chunking research, for example papers by Campitelli et al. (2005, 2007)

report the use of fMRI brain scanning equipment to investigate brain activity,

comparing Master players and the novice when viewing chess positions. Research

into chunking has also included computer programs that simulate chunking.

Feigenbaum and Simon (1984) developed a computer program for building chunks

from random input data. EPAM (Elementary Perceiver And Memoriser) is a self-

organising computer model that categorises and stores information. EPAM consists

of a set of nodes (or chunks), connected by branches, forming a tree-like structure.

The nodes contain tests which can check features of the input (or „stimulus‟), the

18

outcome of which determines which branch will be taken below the node, or if a new

branch (to a new node) is to be created. If the stimulus contains additional

information to what is held in the node then the additional information is added to the

node. If the stimulus fails to exhibit aspects of the information within the node then a

new node below the node in question is added. The discrimination net therefore

grows dynamically in response to the input.

EPAM is not specialised to any one source of data but is a general-purpose

tool for building a network of related information and is better known for work on

associating words and spelling within words. CHREST is an enhancement of EPAM

(Gobet 1998). The main difference between EPAM and CHREST is CHREST‟s ability

to create lateral links between nodes. CHREST‟s enhancements make it perform

better at self-organising and adaptation to complex data. CHREST was first applied

to chunk analysis in chess programs, although is not limited to that domain. It has in

addition an implementation of template processing. CHUMP (Gobet and Jansen

1994) is a chess-playing program, which plays only from pattern recognition. It is

termed “a pattern learning move generator” based on the program CHREST with

knowledge only of patterns of chess positions and no instruction on moves, goals or

values of positions. CHUMP learns about moves and when to make them. The

program builds two discrimination nets; one for the chunks found on the chessboard

and another for the move that was made. A link between the two nets allows CHUMP

to analyse a chessboard to look for chunks and then find an associated move in the

„moves‟ discrimination net. CHUMP‟s initial learning set consisted of three hundred

games played by Mikhail Tal (a former world champion), however, this experience of

games is small compared to the database a chess Master would acquire assuming

the time needed to become expert in any domain, including chess, which is said to

be “a decade of human practice for high skill in any non-trivial domain” (Simon 1981).

19

CHUMP is built from the following components: (1) An eye movement

simulator, which is modelled on the eye movements of a human chess player. This

gives focused attention to specific squares on the chessboard. It is intended that this

filtering of pieces help generate chunks that are relevant to the configuration. (2) A

data structure based on the EPAM memory and perception model. This structure is a

„net‟ rather than the „tree‟ structure of EPAM. When learning, if the object is new (i.e.

it does not match an existing chunk) then a node is added to the database. If an

object is found then CHUMP extends the net with the new elements. (3) A database

of moves taken by the chess player in the training data. Chunks in the net (or

„discrimination net‟) are linked to the database of moves so that chunks on a

chessboard can be associated with moves.

The results produced by CHUMP are however rather unconvincing,

presumably because of the small learning set of games. An estimate of the number

of chunks memorised totalled 6710 achieving a 2.8% success rate in selecting the

correct move, or 11.2% success in selecting the correct top four move suggestions.

This success figure is actually not much better than choosing a move from a random

selection of possible legal moves (cf. page 136), despite the fact that the training and

testing data were taken from games by the same Grandmaster. This would have

helped raise the success rate, as it is normal for players to stick to the same opening

moves in most games. Further tests using the Bratko-Kopec positions3 showed

CHUMP performing better at positional than tactical moves (Gobet and Jansen,

1994). This result is consistent with explanations of chunking because tactical moves

are generally unique, whereas the same positional moves frequently occur when the

3
 The Bratko-Kopec tests are described on page 99.

20

chessboard has a similar layout, and would therefore be captured in the chunk

building process.

„Tactical‟ moves can be defined as “short term manoeuvres which have

specific goals”, whereas „Positional‟ moves are “more to do with moving pieces into

advantageous positions than with direct attacks or winning of material” 4.

Another program named „Chunker‟ (Berliner and Campbell 1984) uses chunk

knowledge to improve performance of the endgame. The program is limited to a

subset of king and pawn endings. A library of chunks of all possible pawn

configurations is used, each chunk having a property list, including the number of

moves required to queen a pawn and the theoretical game value of the chunk. By

using chunking it is claimed that the program plays with an equivalent power of a 45-

ply search.

Another notable chess program that can play a complete game of chess is

PARADISE (Wilkins 1980). PARADISE uses a set of about two hundred production

rules to eliminate pieces from the configuration. The program narrows the search to

just a few pieces and is then able to perform a deep search. PARADISE does not

have knowledge of chunks but is an example of a program that uses knowledge to

narrow the search tree. Another example of the use of production rules is the

Capyblanca program, (Linhares 2008). Capyblanca is claimed to be a model of

cognitive function and uses production rules to narrow the attention to an area of the

chessboard when selecting a move to make. Despite the fact that PARADISE or

Capyblanca do not use chunking the programs are relevant to this thesis because

they use a combination of techniques to make a move. PARADISE uses production

rules to narrow a search (a conventional minimax type) to select the move to play.

4
 The definition for tactical and positional moves was taken from the web page:

http://www.research.ibm.com/deepblue/reference/html/i.2.html

http://www.research.ibm.com/deepblue/reference/html/i.2.html

21

The same approach is taken in the later part of this thesis whereby the research

application orders an alpha-beta search based on the likelihood of a move, given by

an analysis of chunks on the chessboard (cf. page 165).

3.2. Chapter conclusion

The case supporting the existence of chunks within humans and other animals based

on psychological studies is reported in numerous papers. Similarly, the application of

chunk knowledge in relation to learning and skill is widely reported especially with

respect to skill in chess players, with quantifiable results. A considerable amount of

work is reported in the literature with collection of empirical data and computational

modelling of chunking systems. This thesis seeks to complement existing research

by looking at chunking within a computational environment, with varying chunk

parameters, such as the number of pieces that constitute a chunk and the

relationship of pieces within a chunk.

22

4. DEFINING A CHUNK

Psychologists seem to know a chunk when they see one. A definition, however, is

hard to come by. Neither the large literature on chunking by humans nor the more

modest literature on chunking by animals provides an operational definition of this

term. (Terrace 2001).

Although the existence of chunks within chess play has been discussed in various

research papers many of the papers describe psychological experiments and these

largely focus on measuring the effects of chunking on human behaviour rather than

measuring the chunk properties directly (Chase and Simon 1973a, 1973b, de Groot

1965, Simon and Chase 1973). The properties of chunks are therefore deduced by

inference rather than direct measurement. The remainder of this chapter looks at

some of the definitions and properties of chunks given in the literature. The

definitions of a chunk given in this chapter will be used later in the thesis when

chunks are extracted from actual chess games.

4.1. Chunks are learnt constellations

The chess player is said to acquire his knowledge of chunks by studying previous

games. Constellations of pieces become associated with moves or strategies and are

stored in long-term memory. Chess masters typically study games, or more precisely,

parts of a game, for several hours each day over many years (Chase and Simon

(1973) estimate that it takes to “the order of ten years to achieve expertise in any

domain”). Chunking theory dictates that during the study of other players‟ games

chunks are learnt and memorised by the subject.

23

4.2. Chunks are frequently occurring configurations

Programs such as IAM (Walczak 1992) EPAM (Feigenbaum and Simon 1984) and

CHREST (Gobet 1998) extract chunks from games by accumulating frequently

occurring patterns. Capturing frequently occurring patterns is useful as this reduces

the impact of random or insignificant moves, and the repetition of a chunk that is

linked to a move eliminates false associations. CHREST uses frequency of

appearance as a criterion for finding chunks: “objects have to be presented several

times in order to be learned” (Groot and Gobet 1996). Similarly IAM needs to detect a

pattern in “at least two games” for it to be considered significant. “Patterns which

have tactical significance and are known by an adversary are typically repeated in

multiple games” (Walczak 1992). Frequently used chunks are often present in

positional moves as opposed to novel tactical moves and for this reason systems

based on CHREST favour positional as opposed to tactical moves (Gobet and

Jansen 1994). From a technical perspective the selection of chunks by frequency of

occurrence is an easily programmable process but selection of rare tactical moves

would be more complex as this would require an understanding of the game by the

program.

4.3. Recall of chunks are separated by a two second boundary

Chase and Simon (1973a) offer a definition of a chunk based on the time taken to

place the chess pieces when reconstructing a chessboard. The player appeared to

place the chess pieces in bursts of activity with a short latency between groups. A

latency (or boundary) of two seconds or longer was considered to be the break

between ending the placement of one chunk and the starting of another. The above

definition of a chunk allows an estimate of the size of a chunk or the number of

24

pieces that constitute a chunk, although the measurement may be limited by the

number of pieces that can be held in the hand (Gobet and Simon 1998).

4.4. Chunks can be a tool to extend short-term memory

According to Gobet, “a chunk is defined as long term memory (LTM) information that

has been grouped in some meaningful way, such that it is remembered as a single

unit. Each chunk will only take up one slot in STM5, in the form of a „label‟ pointing to

the chunk in LTM6” (Gobet and Jackson, 2002). Miller‟s 1956 paper has been very

influential on research that features short-term memory (Chase 1983, Chase and

Simon 1973, Fenk-Oczlon and Fenk 2000, Gobet et al. 2001). Miller (op. cit.) used

the term „chunking‟ to describe the mental grouping of information from low

information content items into a smaller number of high information content items.

Chunking has been described as the cognitive „work-around‟ for the short-term

memory limitation by storing chunks of items in long-term memory and, in

computational terms, indexing the items from the short-term memory.

The analogy works well when considering the memory task of recalling a

sentence from this page. The reader has acquired a large database of words in long-

term memory so that if required to write the sentence it is not necessary to recall the

individual characters to spell out the words. The spelling of the words can be recalled

from long-term memory. Rather than remembering the fifty-two characters in the

previous sentence the reader can recall just twelve words or less (as the phrase

„long-term memory‟ is arguably remembered as a single item, or a „chunk‟, in itself).

The same reasoning for chunking is applied to chess configurations by grouping

frequently used constellations of pieces and remembering these as one item. The

5
 STM is an acronym for „Short Term Memory‟

6
 LTM is an acronym for „Long Term Memory‟

25

number of items remembered in short term memory may be limited to a relatively

small number, but the chunks themselves are not subject to the short-term memory

limitations as they are stored in long-term memory. The number of pieces that make

a chunk within the context of the game of chess is investigated and results reported

in chapter 7 of this thesis.

The above view of the significance of chunking is echoed by Terrance (2001):

“The basic function of a chunk is to enhance STM (short term memory)”. The

research reported in this thesis shows that the meaning associated with a chunk is

key to understanding the usefulness of the chunk. Chunks must therefore be

organised in meaningful ways, thereby offering the potential to extend the basic

function (to enhance short term memory). De Groot and Gobet (1996 pp14)

describes increasing knowledge in the terms: “The more domain knowledge and

experience a person has, the greater and more comprehensive are the units

(clusters, patterns, configurations) in terms of which he can encode the stimulus” (de

Groot and Gobet op. cit.). The organisation of chunks by incrementally adding

knowledge, or building on previously learnt experience is not included in this thesis

but is an area for further research.

4.5. Chunks contain elements that are related to each other

A chunk is defined as “a collection of elements having strong associations with one

another, but weak associations with elements within other chunks” (Gobet and

Jackson 2002), and similarly “a collection of concepts that have strong associations

to one another and much weaker associations to other chunks concurrently in use”

(Cowan 2001). These definitions suggest that chunks are groups of pieces, and

indeed the notion that chunks are groups of pieces is implicit in papers that describe

the effects of chunks. Gobet and Simon (1998) describe a chunk as a “long-term

26

memory symbol, having arbitrary sub parts and properties that can be used as a

processing unit. Each chunk can be retrieved by a single act of recognition” (Gobet

and Simon op. cit.). Some programs that extract chunks use specific relationships

between pieces and these are discussed in the following sections.

4.6. Pieces are related by proximity

Papers by Gobet and Jansen7 (1994) and also Walczak (1992) report work done on

analysis of boards with chess pieces that are in close proximity to each other. The

rationale for this limitation is based on the model of human performance suggested

by the „Principles of perceptual organization‟ proposed by the early 20th-century

German psychologists of the Gestalt school (Walczak 1992). One aspect of the

Gestalt principle is that local objects tend to be visually grouped together. When

considering a board in chess play the expert may limit their attention to small areas of

the board as opposed to all sixty-four squares. An area of say four by four squares

limits a chunk to a maximum size of sixteen pieces, with the pieces being in close

proximity to each other.

4.7. Pieces are related by attacking/defending relationships

Wilkins (1980) writes: “Human masters, whose play is still much better than the best

programs, appear to use a knowledge intensive approach to chess. They seem to

have a huge number of stored „patterns‟ and analysing a position involves matching

those patterns to suggested plans for attack or defence”. Experiments with chess

players by McGregor and Howes (2002) suggest that the attack/defence relationship

of pieces is more significant for skilled chess players than the size of the chunk on

the board. They argued against the notion that proximity of pieces is a factor in chunk

7
 Whilst most chunks acquired by CHREST are related by proximity, CHREST also learns chunks

based on attack/defence relationships, following eye movement heuristics cf. page 150

27

structure and suggested that experiments on chess player‟s ability to remember

configurations provide evidence in support of the idea that the relationship of pieces

is the main factor in chunk selection. That is, McGregor and Howes (op. cit.)

proposed that the pieces within a chunk are related in an attacking or defending

fashion. This viewpoint was earlier expressed by Simon and Barenfield (1969) who

noted that attacking and defending relationships are significant factors in the players‟

analysis of a board: “By analysing an expert player‟s eye movements, it has been

shown that, among other things, he is looking at how pieces attack and defend each

other”.

Russian psychologists Tichomirov and Poznyanskaya (1966) studied the eye

movements of expert chess players and showed that the eyes did not move in a way

that would be consistent with searching through a tree of moves and with the

corresponding replies. The eye movements did however fixate on about twenty

points on the board, abruptly moving in „saccadic‟ movements between pieces that

are in attacking or defending positions. The interesting point is that the eye

movements are not random and the player must have known where to look next after

fixating on one piece. The player would know the target square before the saccade

began. The observation implies the player has knowledge of expected positions on

the board based on awareness of part of the configuration. The pieces on the board

are presumably positioned in recognisable groups, or frequently occurring

configurations so that the chess player can expect certain pieces, or chunks, to be

associated with some configurations.

4.8. Chunks are absolutely positioned

From a chess player‟s perspective the properties of a piece are dependent on the

position the piece occupies on the board. The board is just eight by eight squares so

28

proximity to the edge of the board is an important factor. Generally, the centre

squares are more highly prized as they command a greater influence on the board as

a whole whereas the side positions provide some protection as attacks can only

come from one direction. Attempts to generalise a chunk by making it independent of

its position on the board (relative positioning) are not sensible (Lane and Gobet

2010). Indeed, Linhares and Freitas (2010) cite examples of chessboard

configurations where there is a win for White, but white cannot win in an alternate

shifted position, and another example where shifting positions changes the board

from a win for White to a win for Black - assuming white plays first, see figure 4.1

below

Figure 4.1: Shifting pieces from 'a' to 'b' changes winning position from White to Black
(from Lane and Gobet, 2010)

Domains such as „Go‟ however have a much larger playable area and in that case,

the relative positioning of chunks may be more meaningful. However, Holding (1985)

argued that chess chunks might be remembered in relative positions, with the

relationship between the pieces of the chunk being fixed, but the position of the

configuration on the chessboard being relative. If chunks were stored without fixed

(absolute) positioning the number of chunks (based on Simon and Gilmartins‟s 1973

simulations) reduce by a factor of about twenty. Holding argues that Chase and

Simon‟s (1973) estimate of chunks held in long-term memory is too numerous. Gobet

29

and Simon (1998) argued against Holding, stating “Holding‟s criticisms either are not

empirically founded or are based on a misunderstanding of the chunking theory and

its role in a comprehensive theory of skill”. Chunks whose pieces are moved

(maintaining the same relative position of the pieces with respect to each other but

moving the group to a different area on the chessboard) or translated through a

mirror image results in subjects having a greater difficulty recalling the configurations.

Pieces with absolute positioning on the board were easier to encode and recall than

pieces transposed on the chessboard (Saariluoma 1991, Gobet and Simon 1996.

This result is consistent with Binet (1896/1996) in that “chess masters could not

remember games unless they understood them” and changing the location of a

chunk relatively on the chessboard would change the meaning of the chunk. In this

thesis chunks are always processed with absolute positioning and the properties of

chunks include meaning (the effect the chunk has within chess play). If a chunk is

found with the same relationship between the pieces that make up the chunk, but in a

different location on the chessboard then this constellation will be considered to be a

different chunk and will be stored appropriately.

4.9. Experts have a larger chunk knowledge than the novice

Regarding the number of chunks of which an expert has knowledge, Chase and

Simon (1973) stated that in order to reach expertise in any domain, including the

chess domain, the training period might be long, corresponding to “a decade of

human practice for high skill in any non-trivial domain”, with an estimate of the order

of 50,000 chunks learned for expertise in the chess domain (Simon 1981). Simon‟s

estimate is based on the similarities between vocabulary of written words for highly

literate individuals and on experimental analysis of chessboards by using the EPAM

program (the EPAM program is described earlier in the literature review). Chase and

30

Simon (1973) admit that their estimate is a „best guess‟ bearing in mind the data that

they had available at the time of writing. Simon and Gilmartin (1973) put the number

of chunks memorised by an expert player as between 10,000 and 100,000 based on

results from a program „MAPP‟. MAPP (an acronym for Memory Aided Pattern

Perceiver) acquired a relatively small number of chunks and from these replicated

the memory recall performance of a „Class A Player‟ (a „Class A player‟ is a good

chess player, but below expert level). The proposed number of chunks required for a

chess master was extrapolated by Simon and Gilmartin (op. cit.) from the number

used in the experiment at „Class A‟ level to give the estimate between 10,000 and

100,000 chunks, with later estimates pointing to 300,000 chunks, even with the

presence of templates (Gobet and Simon 1996).

4.10. The relationship between chunk definitions

Within the definitions of chunks described in this chapter there are several areas of

overlap, for example, the definition „Recall of chunks are separated by a two second

boundary‟ is a consequence of the definition that „Chunks contain elements that are

related to each other‟, and are remembered by the subject as an item. The definition

„Chunks are frequently occurring configurations‟ is related to the definition „Chunks

are learnt constellations‟ as chunks are learnt by repeatedly seeing the chunks on

chessboards, and as learnt constellations chunks would be stored in long term

memory. The definition „Chunks can be a tool to extend short-term memory‟ is a

consequence of the properties that „chunks are learnt constellations‟ and that chunks

are stored in long term memory, and indeed, the property that „Experts have a larger

chunk knowledge than the novice‟ is a consequence that chunks have to be learned.

 The property of chunks „Pieces are related by proximity‟ is linked to the

property: „Pieces are related by attacking/defending relationships‟ as may attacking

31

and defending configurations exist when pieces are in close proximity to each other,

and the accessibility of an attacking piece is not blocked by another piece. Many

attacking and defending pieces may also depend on the chunks being „absolutely

positioned‟, which also is another property described in this chapter.

The properties of chunks are therefore not considered as isolated entities, but

rather as interrelating and complementary definitions.

4.11. Chapter conclusion

This chapter has defined the properties of chunks that have meaning with respect to

chess and the research undertaken in this thesis. Chunks are simply combinations of

chess pieces. The properties described in this chapter define chunks that are

significant in chess play in that the chunks may be learnt by an expert player. The

properties of significant chunks are taken from the literature on chunking in chess,

describing the differing and overlapping properties of meaningful chunks.

32

5. INVESTIGATING THE PROPERTIES OF CHUNKS

 “I will suggest that chunks have at least three important dimensions, which should be

systematically taken into account in the planning of training for adversary problem-

solving situations. These aspects are the number of chunks, their size, and finally the

relevance of their contents. If one of these dimensions is neglected, the outcome of

the training will not be satisfactory” Saariluoma (1998).

The results reported in this thesis take a detailed look at the nature of chunks that

have been extracted from Grandmaster games. The chunks extracted are applied to

chess play in various ways explained later in this thesis. The research reported adds

detail to one form of chunking, that is, one that works in a computational

environment. The detailed workings of the human brain are outside the scope of this

thesis but whether chunks exist, and what form they take within the domain of chess,

are analysed in detail.

If chunking is significant to chess play then finding meaning within the chunk

patterns is a major task. Chunks are simply constellations of chess pieces on the

chessboard. Chunks that are important to this study are frequently occurring

configurations, of which only a small subset may be significant.

Chunks may or may not have any significance in terms of the board score.

Computer chess programs work by evaluating the overall board score according to

the value of pieces on the board and their relative positions. It is suggested that the

experienced player with an awareness of chunking can outperform a chess program

(Wilkins 1980). For this reason an analysis of the value of the pieces within the chunk

was not considered to be worthwhile.

This thesis reports research on the existence and properties of chunks within

chess play. It should be noted that the same configuration of chess pieces positioned

33

on different squares on the chessboard is assumed to be a different chunk, therefore

chunks will have absolute positions on the chessboard. The absolute positioning of

chunks is discussed in more detail on page 59 of this thesis.

The properties of chunks will be investigated by looking at the following:

 Chunk size. The number of chess pieces that make up a chunk will be

investigated. A human chess player would be expected to have the capacity to

remember up to about nine chess pieces in a chunk (Miller 1956, Cowan 2001,

Gobet and Clarkson 2004). Chunks however may exist as a property of the

chessboard and the rules of the game, and their size may not be limited by

cognitive function. The pieces in the chunk can include all of the pieces,

including both colours, on the chessboard giving a maximum of thirty-two

pieces. However, as a game advances beyond the opening moves the

likelihood of finding very large chunks occurring on more than one chess game

diminishes because the board layout becomes increasingly more unpredictable

(cf. page 61).

Note that a chunk may consist of a single piece, however for this research

chunk sizes of greater than one piece will be considered. It should be noted that

a chunk in human memory may contain more information than simply the

„pieces on positions‟ on the chessboard, and consequently may require more

short term memory capacity than the number of pieces constituting the chunk,

however, this thesis will look at the variation in the effectiveness of chunks of

different sizes in order to investigate the plausibility that knowledge of chunks

consisting of a small number of pieces can be effective indicators in directing

34

chess play. The thesis does not attempt to define the limits of human short term

memory capacity.

 Piece relationships. The relationships of the pieces within chunks will be

investigated and reported in this thesis. In particular the properties of chunks

with pieces in close proximity and pieces in defending relationships will be

reported.

 Chunks and meaningfulness. Results from an investigation to what gives a

chunk meaningfulness and usefulness for the chess player will be reported.

 Chunk familiarity. This research assumes an arbitrary threshold such that a

chunk must appear in at least one per cent of boards from a sample of games in

order to qualify as a frequently occurring chunk. If a pattern found is present on

less than one per cent of the boards then the pattern is considered too

infrequent and is not considered to be a chunk.

 Chunks and player‟s skill. The existence of chunks on the chessboard is in itself

not a measure of the player's skill, as chunks may be a property of the chess

pieces and the rules of the game, however, chunk knowledge and the

application of this knowledge are investigated and reported in this thesis.

5.1. What a chunk looks like

The following chessboards show a few examples of chunks. The chunks shown were

extracted from Grandmaster games by using the CHREST program8.

Chunks may be composed of either or both colour pieces:

8
 The chunk data were provided by Gobet.

35

 
         
         
       
       
         
       
   
        
 

A chunk may be built from smaller chunks:

 
        
       
       
         
         
         
         
         
 

Pieces in the chunk may be unrelated (below left).

A chunk may be part of the initial board layout (below right).

 
         
         
         
        
         
         
        
       
 

36

5.2. Chunk statistics

From an analysis of chessboards it is clear that there are many patterns or

constellations of pieces that occur frequently. The repeated constellations or chunks

exist due to the properties of the chess pieces and the rules of the game. It is easy to

extract chunks from chess games; the difficulty is finding meaning associated with

the chunks. The existence of chunks in itself is not a measure of the player's skill as

chunks are found across the whole range of skill sets. Therefore attempts to correlate

the player's skill with chunks used are futile, but rather, it is the player's skill that

recognises chunks to assist his chess play.

In this chapter we worked with a large number of chunks compiled from Grandmaster

games using CHREST. The data were provided by Gobet and comprised of 251,735

unique chunks made up from four or more chess pieces from games starting at

twenty ply from the beginning of the game.

Positions earlier than twenty ply where not

considered because the beginning of a game is

normally dominated by conventional opening

moves. The existence of chunks within

chessboards of tournament games was

investigated to measure their frequency and

distribution using the chunks provided by Gobet.

5.2.1 Why are there so many chunks on a chessboard?

Before continuing with the reporting of results a few paragraphs follow to explain why

so many chunks are expected to be found on chessboards. The reason why high

numbers of chunks are counted is due to the way chunks are constructed. Each


    
    
   
    
  
    
    
   

Figure 5.2: A chessboard with five

pieces

37

chess piece can be a member of many different chunks. To illustrate this, consider

the chessboard figure 5.2 (above), with just five pieces. The chessboard shows five

pieces on squares as follows:

qd8, ke4, Kg6, Rc4, Bf1

The pieces combine to produce chunks as follows:

A chunk is shown within chevrons and pieces separated by commas. This notation is

used de Groot and Gobet (1996). The piece is denoted by the piece name (R=Rook,

B=Bishop, K=Knight, Q=Queen, K=King, P=Pawn), followed by the square location

on the board. If the piece name is lowercase then the piece colour is black, otherwise

it is white.

The pieces combine giving a number of chunks increasing as a piece is

added. With each piece added, the number of resulting chunks follow the series,

1,3,7,15, 31…

This series can be expressed as a formula:

Combinations = (2 n) – 1

Where „n‟ is the number of pieces on the chessboard.

<qd8> <Bf1, qd8>
<ke4> <Bf1, ke4>
<ke4, qd8> <Bf1, ke4, qd8>
<Kg6> <Bf1, Kg6>
<Kg6 ,qd8> <Bf1, Kg6 ,qd8>
<Kg6, ke4> <Bf1, Kg6, ke4>
<Kg6, ke4, qd8> <Bf1, Kg6, ke4, qd8>
<Rc4> <Bf1, Rc4>
<Rc4, qd8> <Bf1, Rc4, qd8>
<Rc4, ke4> <Bf1, Rc4, ke4>
<Rc4, ke4, qd8> <Bf1, Rc4, <ke4, qd8>
<Rc4, Kg6> <Bf1, Rc4, Kg6>
<Rc4, Kg6 ,qd8> <Bf1, Rc4, Kg6 ,qd8>
<Rc4, Kg6, ke4> <Bf1, Rc4, Kg6, ke4>
<Rc4, Kg6, ke4, qd8> <Bf1, Rc4, Kg6, ke4, qd8>
<Bf1>

Figure 5.3 Combining five chess pieces

38

For example, a typical chessboard may have twenty-five or more pieces in play,

yielding (225 –1) combinations, where 225 equates to 33,554,432. A large number of

chunks are therefore present on the chessboard by virtue of the fact that a chunk is

simply a combination of pieces. The number of chunks counted and shown on figures

5.4 and 5.5 below are the chunks generated (by combining the pieces on the

chessboard) and which also appear in the list of chunks compiled by CHREST. The

list compiled by CHREST, in this instance, consists of 251,735 frequently occurring9

chunks. A typical chessboard configuration taken from the mid-game could therefore

contain a very large number of chunks with a proportion of them being found within

the CHREST chunk list.

5.2.2 The frequency of chunks in relation to player skill

An analysis of games played by players of varying skill was made to see if there was

any correlation between the number of chunks used within the game and player skill

(the skill of the player being given as an Elo rating10). The analysis searched for the

occurrence of any of the chunking patterns in the chunk database, for each board

played in the game. As the length of games varied the results were normalised by

taking from the game just the fifty ply prior to the conclusion of the game, therefore all

game data in this analysis included at least fifty moves, with the fiftieth move being

the conclusion of the game.

The results were obtained for each skill group. The number of games

examined for each skill group is shown in table 5.1.

9
 „Frequently occurring‟ chunks are chunks that occur more than once within import data.

10
 The letters Elo being the family name of the system creator „Ārpád Ėlö‟, a Hungarian born American

physics professor.

39

The pieces on each chessboard for each game were compared with the list of

chunks (from the chunk list supplied by Gobet) so that the number of chunks on each

board could be counted. An average number of chunks for each position within the

game were calculated, for all games in each skill group. The results of the analysis,

which are displayed in figure 5.4, show an increase in the average number of chunks

found on the board as the game progresses towards checkmate.

The most notable observation from this analysis, which is illustrated in the

graph shown in figure 5.4, is the fact that the number of chunks found is more or less

the same, irrespective of the player skill. At first sight this implies that chunking is

unrelated to the skill of the player as the number of chunks on the chessboard does

not change with increasing player skill. This observation does not however conflict

with chunking chess skill theory, as it is the knowledge of the chunks that is attributed

to skill and not the mere presence of chunks. The expert player may recognise

patterns and so pursue certain moves as a result. The novice on the other hand

would not recognise the chunks and may look ahead through many unfruitful paths.

Elo Range Number of
Games

Examined

1400-1599 356

1600-1799 748

1800-1999 1021

2000-2199 2006

2200-2399 2003

2400-2599 2006

2600-2799 502

Table 5.1: The number of games used in each skill group.

40

Figure 5.4 The average number of chunks found on the chessboard

The results shown in figure 5.4 show a steady increase in the number of chunks on

the board as the game progresses until about fifteen moves before checkmate where

the number of chunks increase at a slower rate until about ten moves before

checkmate, after which the rate of chunk formation increases again. This trend is

common to all skill sets. The change in the rate of formation of chunks indicates that

chunk formation is significant within the game of chess and chunk formation can be

an indicator of the stage of the game.

0

200

400

600

800

1000

1200

1400

1600

1800

49 44 39 34 29 24 19 14 9 4

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
c

h
u

n
k

s
 o

n
 t

h
e

 b
o

a
rd

.

Position in game (moves from conclusion of game)

2600-2799

2400-2599

2200-2399

2000-2199

1800-1999

1600-1799

1400-1599

Key:
Player skill

(ELO)

41

 It is curious that the number of chunks increase as the game proceeds, as

shown in figure 5.4 above. The reason for this increase is thought to be due to the

pieces being arranged into defensive groups, and the number of such configurations

increasing as the game proceeds. Indeed, as the game proceeds, pieces within small

groups can become related to other pieces within other groups, in defending and

attacking relationships, resulting in a network of inter-related pieces over the whole

board. As the game proceeds, the network of inter-related pieces increase, and as

many of these relationships are frequently occurring between different games, the

number of recognised chunks increases as the game advances.

The results shown in figure 5.4 show the mean number of chunks as the game

proceeds. The standard deviation for the data is approximately 180 at the point

nineteen-ply before the conclusion of the game. This standard deviation is

approximately the same for all skill groups, although the mean values show

differences between skill groups, the differences are small compared to the 95%

confidence interval of two standard deviations (360 chunks). The analysis that

explores the separation of the mean values with chess skill, that follows in this

chapter, is included for interest; however, it is acknowledged that the separation is

not reliable.

5.2.3 Removing the most common chunks

The chunks found on the chessboard were examined in further detail to determine

which chunks were used by each group of player. It was found that 186,297 out of

the 251,735 chunks (74%) occur in games played by the lowest skill set (the lowest

skill set has an Elo rating of 1200-1399). The point here is that the lowest skill-set are

novices, who have supposedly not learnt a library of chunk patterns. The chunk

patterns used by this group must therefore be common configurations that are

42

properties of the chess pieces and the rules of the game (such as advancing pawns).

Many of the chunks are also insignificant, except for the property that they occur

frequently within board layouts.

There is therefore a base set of chunk patterns present with all skill sets.

These chunks may include pieces in their original „start of game‟ positions for

example. If we remove all of the chunk patterns used by the lowest skill set (Elo

1200-1399) the difference between the groups becomes more noticeable. The

suggestion is that there may be a subset of significant chunks that are related to

player skill amongst the large dataset.

By removing the base set, the number of active chunk patterns drops from

251,735 to 65,438. Analysing the game data again with the base set of chunks

removed shows an increase of the „non base chunks‟ with increasing player skill.

The results are plotted on figure 5.5. The graph shows the variation between the

lines which were plotted in figure 5.4 and as a result the vertical scales are very

different between the two graphs.

43

Figure 5.5: The average number of chunks found on the chessboard excluding ‘base chunks’

The results displayed in figure 5.5 show an increase in the chunks used with the skill

level at each point in the game. The graph shows a decline towards the game end.

This decline is not a decline in the number of chunks present but rather a reduction in

the variety of chunks. As the game ends the chunk patterns standardise across all

skill groups and therefore become chunks used in the „base set‟. There are fewer

variations in the end game and therefore by removing the chunks used by the less

skilled groups the number of additional chunks reduces.

0

20

40

60

80

100

120

45 40 35 30 25 20 17 12 7 2

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

c
h

u
n

k
s
 o

n
 t

h
e
 b

o
a
rd

 (
e
x
c
lu

d
in

g
 '

b
a
s
e
'
c
h

u
n

k
s
).

Position in game (moves before conclusion of game).

The average number of chunks at a move versus player skill.

2600-2799

2400-2599

2200-2399

2000-2199

1800-1999

1600-1799

1400-1599

Key:
Player skill

(ELO)

44

 The results shown in figure 5.5 suggest that chunks within chess can be a

differentiator with regard to player skill implying that at each stage in the game,

players with higher ELO ratings construct more chunks on the chessboard than

players with lower ELO ratings, when using a list of chunks generated by CHREST

but excluding chunks used by the lowest skill group, however, this hypothesis will be

investigated in more detail in the next paragraph.

5.3. Testing the skill/chunk relationship using a Pearson Correlation

The analysis in the previous sections consisted of a count of chunks as the game

progressed. By removing the most common chunks (cf. page 41) there appears to be

a differentiation of the number of chunks used with player skill. The differentiation is

most noticeable at a position in the game that is twenty ply before the conclusion of

the game, however, difference in the number of chunks between skill groups is small

(only a few chunks), and the total number of chunks on the board numbers over one

thousand.

 To investigate the variation in number of chunks in greater detail, excluding

the most common chunks, a Pearson Correlation was performed on the data. To

obtain a more exact analysis and to evaluate the significance of the correlation, a

number of chessboards were collated, all at a position of twenty-ply before the

conclusion of the game. Each chessboard was examined and the number of chunks

counted by searching the chessboards for the presence of chunks (chunks provided

by Gobet). The data were correlated with the Elo skill rating for the players. The

player with the lowest Elo rating in each game was recorded, together with the

number of chunks, for each chessboard. A total of about two thousand chessboards

from a Elo skill range between 1000 and 3000 were examined.

 The results are displayed on the scatter plot below:

45

Figure 5.6: Scatter plot showing player skill and the number of chunks

 A Pearson Correlation analysis was performed on the data. The result gave a

correlation coefficient of 0.047, indicating that there is little or no correlation between

chess skill and the number of chunks.

5.4. ‘Defensive’ chunks

This chapter introduces defensive configurations, as they are one of the types used

in further analysis in chapter 7. As previously stated, many of the chunking patterns

appear to have no meaning other than that they are frequently occurring

configurations. With reference the literature on eye movements the chunk database

was analysed to explore the relationship of pieces within the chunk. “By analysing an

expert player‟s eye movements, it has been shown that, among other things, he is

looking at how pieces attack and defend each other” (Simon and Barenfield, 1969).

Using the chunk list generated by CHREST and removing all of the pieces,

except those pieces that defend each other within the chunk, the number of chunks

0

100

200

300

400

500

600

700

800

900

1000

1000 1500 2000 2500

N
u

m
b

e
r

o
f

ch
u

n
ks

Elo of player (the lowest of the opposing players)

46

reduces to 2,504. These chunks („defensive chunks‟) have each piece protecting

another piece within the same chunk and in this way the group of pieces making up

the chunk have an intrinsic value. Chunks in this case are therefore only composed

of pieces of the same colour, yielding 972 white and 1,532 black chunks. These

patterns are only chunks where the pieces defend each other.

It is noted that there is a large difference in the number of defensive chunks

composed of black pieces and chunks composed of white pieces. The reason for this

is unknown and is a topic for further research.

47

Examples of defensive chunks are shown below:

 
        
       
        
        
       
         
         
         
 

 
       
        
       
         
         
         
        
        
 

 
        
       
        
         
         
        
        
         
 

Figure 5.7: Examples of ‘defensive’ chunks

48

5.4.1 The occurrence of defensive chunks throughout a game

The graph below shows an analysis of the use of defensive chunks throughout the

game. Data have been normalised so that the conclusion of the game occurs at

position sixty-four. The games used for the analysis had a span sixty-four or more

moves. Positions before the conclusion of the game are numbered counting back

from sixty-four, where 'ply sixty-four' is the conclusion of the game. Where a game

had more than sixty-four moves the moves before 'ply one' are ignored. The average

number of chunks used at each ply from a dataset of two thousand Master players

chess games are plotted on the graph below.

Figure 5.8: The average occurrence of defensive chunks throughout the game

The results displayed in figure 5.8 show that defensive chunks are frequent within the

mid-game section. The number of defensive chunks on average increase steadily

through the game until about fifteen moves before checkmate, after which the

0

5

10

15

20

25

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

49

number of defensive chunks decline. The rate of change of defensive chunks can

therefore be an indicator of the progress of the game, the decline being indicative of

an imminent conclusion of the game.

5.4.2 The persistence of defensive chunks with player skill

An analysis of games was undertaken to test for a correlation between the

persistence of defensive chunks and the players‟ skill. This was achieved by

measuring the average number of chunks on the board throughout the game. The

analysis tests if a skilful player builds more defensive chunks into the game as part of

a long-term strategy. The results show that there is no significant difference between

skill groups. The lowest skill group shows a slightly higher persistence but as the

sample number of games for this group is lower than the others the result is not

considered reliable.

Skill Elo Range Average
Chunks

throughout
the game

Games
Played

Number of
Boards

evaluated

1200 – 1399 0.323787 55 22836

1400 – 1599 0.284048 191 88890

1600 – 1799 0.295222 343 150978

1800 – 1999 0.276351 1134 539136

2000 – 2199 0.278841 8714 4113450

2200 – 2399 0.276492 18402 8827488

2400 – 2599 0.279601 18704 8795946

2600 – 2799 0.274532 4689 2290836

Table 5.2: A comparison of the use of defensive chunks with skill groups

The results of the analysis comparing the persistence of defensive chunks shows no

significant differences between skill groups. It was therefore not considered

necessary to perform any further statistical analysis on these data.

50

5.5. Chapter conclusion

A simple analysis of chess game data using chunks extracted by CHREST and

provided by Gobet prompted a more detailed investigation into the relationship

between the player‟s skill and the use of chunks. The analysis suggested that

frequency of chunks throughout the game is related to the progress of the game (cf.

figure 5.4) and that the number of non-base chunks present on the board is related to

the skill of the player (cf. figure 5.5). However, an in-depth statistical analysis of the

data found little or no correlation between the player‟s skill and the number of chunks

used. The analysis of defensive chunks (cf. figure 5.8) also show a relationship

between defensive chunks and the progress of the game. A more detailed statistical

analysis using a Pearson Correlation between the player‟s skill rating and the number

of „non-base‟ chunks showed that there was in fact, little or no correlation between

player skill and the selection of chunks on the board.

51

6. THE DEVELOPMENT OF A PROGRAM TO INVESTIGATE
CHUNKING IN CHESS

The thesis so far has reported some of the statistics that accompany chunks within

the game of chess. Although chunks have been found to be plentiful on the

chessboard and the use of chunks are, from the literature, related to the player‟s skill,

however, the nature of chunks within chess remains unknown. The analysis so far

has shown that chunks exist in very large numbers, for example a typical chessboard

with twenty-five pieces will combine to form 33,554,431 chunks.

The continuing investigation into chunking within chess will take into account

the magnitude of chunk numbers but at the same time isolate chunks that are

meaningful and are an indication of chess skill.

The thesis continues with a detailed description of a program developed in

order to isolate and assign meaning to chunks within chess games.

6.1. CLAMP - ‘Chunk Learning And Move Prompting’

“Human chess players do not perceive a position as a static entity but as a collection

of potential actions” (Finkelstein & Markovitch 1998)

Extracting a database of chunks and the recognition thereof within a chessboard is in

itself of little value in the same way that Ericsson and Harris‟s (1990) novice was

trained to recall briefly presented positions to the same standard as a Master chess

player, yet despite having this recall ability the novice was, not surprisingly, still a

poor chess player. If however the recognition of a chunk can direct a player‟s

attention to a move or strategy then the chunk has meaning and purpose. de Groot‟s

52

observations of Master chess players indicated that the presence of chunks had the

effect of directing attention to specific chess pieces (de Groot 1978).

It has been established earlier in this thesis that chunks are present within

chess configurations as a result of i) the rules of the game; ii) the properties of the

pieces; and iii) the strategic play by the chess player. This chapter describes a

program that uses chunks to suggest moves. If knowledge of chunks is

advantageous to the chess player then the player must not only recognise chunks on

the chessboard but also be able to derive an action from their presence. The

previous chapters in this thesis have looked at chunks without any associated

meaning.

CLAMP (which is an acronym for „Chunk Learning And Move Prompting‟)

extracts chunks from chess games and associates each chunk with a move. By

analysing a large number of games CLAMP builds a library of chunks, with their

associated „meanings‟. The library can be used to analyse a new chessboard (that is,

a configuration that was not used in the process of building the library of chunks).

Having found the chunks on a new chessboard, an accompanying program

„CLAMPanalyser‟ can compare the chunks with those held in the library and look up

their associated moves. CLAMP and CLAMPanalyser are used to test the proposal

that a move to be made on the chessboard is supported by a high number of chunks,

where the chunks are associated with a move on previously analysed chessboards.

The method used by CLAMP and CLAMPanalyser is a simple recognition/

association process; chunks are recognised by searching the chunk libraries and are

associated to a move, based simply on which libraries the chunks are found within.

Chunking (within human cognition) is “often called the recognition-association theory”

(Cooke et al. 1993). We will see later that the results obtained from CLAMP and

CLAMPanalyser show that chunking using a simple recognition/association is a

53

viable method to direct attention to salient moves, but first we need to consider the

building of chunk libraries.

6.2. Building chunk libraries

CLAMP acquires chunks that exist on a chessboard just prior to a move of a piece to

a square. The chessboards used for this process are taken from Grandmaster

games11. Grandmaster games were used as a data source for the following reasons:

 It is assumed that the moves made by Grandmasters are consistently good

moves.

 Grandmaster games are plentiful and easily obtainable from the Internet giving

the potential for a large data source.

 Games played by non-Grandmasters can be assumed to be absent from this

dataset thereby ensuring availability of chess data not included within the

library which can be used to test CLAMP.

6.3. Building chessboard collections

The first stage of building a chunk library requires

the compilation of collections of chessboards giving

example configurations before each possible arrival

of a chess piece on each square on the board. For

example, the chessboard opposite12 shows the

piece configuration with white to play from an actual

chess game. After consideration the player played Rxh7 (the rook on h3 took the

11

 A Grandmaster is defined as a player with an ELO skill rating between 2400 and 2799.

12

 The board FEN is: r2q1rk1/pbpnb2p/1p4p1/3pN3/3P1Pp1/3BB2R/PPP1Q2P/R5K1 w - - 0 1


  
 
   
   
   
  
 
    

Figure 6.1: Resulting move:Rxh7

54

pawn on h7). This chessboard could therefore be included in the collection for rook

arriving on „h7‟

 It may be that a piece arriving on a square is also a capture of the piece on the

square. This additional information (whether a piece is captured or not) is not

recorded explicitly. We will see however that the chunks that are generated from the

board configuration (cf. paragraph 6.5) can contain any of the pieces on the

chessboard before the move is made. Chunks can therefore include the captured

piece. If a configuration of pieces frequently results in a move that will capture a

piece then the captured piece will also exist within chunks that are associated with

that move.

The chessboard below13 shows a configuration from another game. The move played

was Ne5 making this configuration eligible for inclusion into the collection Knight

arriving on „e5‟

A collection of one thousand chessboards was

compiled with board layouts immediately prior to

the arrival of a Rook on square h7. Another

collection of one thousand chessboards was built

giving boards prior to the arrival of the Knight on

e5. Similarly, collections of one thousand

chessboards for each piece (Pawn, Rook,

Bishop, Knight, King and Queen) arriving on each of the sixty-four squares of the

chessboard were compiled.

13

 The board FEN is defined r1bq1k1r/ppppbpp1/5nB1/3P2p1/3Q4/5N2/PP1N1PPP/4RK1R w - - 0 1


  
 
   
   
    
   
  
  

Figure 6.2: Resulting move: Ne5

55

 Building collections of chess moves in this way has the advantage that all

moves have the same number of observations, but the disadvantage that information

is lost about the frequency with which the moves occur in the environment. A factor

for the frequency of occurrence is introduced later (cf. page 89) as the significance of

each predicted move, after analysing the chunks on a chessboard, is scaled by a

„move rareness‟ figure.

By compiling collections of one thousand chessboards prior to each move

(each piece to each of the sixty-four squares on the chessboard), each move is

supported by a large number of chunks as each chessboard observation can contain

a different assortment of chunks. The figure of one thousand chessboards was found

to provide a sufficient variation of chunks so that at least one chunk present on a new

chess configuration (not one of the chessboards used in the „collections‟) can be

found within the collection for a large percentage of cases (cf. page 94).

Compiling collections with equal numbers of chessboards also ensures that

each move analysis can be treated equally; with the calculations for each suggested

move using numbers of the same order (cf. page 82).

There are six types of piece (Pawn, Rook, Knight, Bishop, Queen and King), and

sixty-four squares. According to the rules of chess, each piece can arrive onto any

square on the board with the exception of the Pawn. The white Pawn starts in the

second row and can only move forward and so it is impossible for a Pawn to arrive

on the first or second row. Similarly if a Pawn arrives at row eight it is normally

instantly promoted. Therefore rows one, two and eight are not viable positions for a

white Pawn to arrive.

 It should be noted CLAMP does not distinguish between the move of a pawn

to the last row and the pawn being promoted, and with a real move of the same piece

56

(the piece that the pawn is promoted to) onto the same square. This could be a

limitation in the operation of CLAMP when analysing moves to the last row as the

chunks relevant to the two situations could be significantly different.

Both white and black pieces would need to be analysed to build a library of

chunks for white and black piece moves. For this thesis, just white moves were

considered; allowing CLAMP to suggest only moves when white is to play. To allow

CLAMP to suggest black moves, a library of chunks would need to be built from

chessboards just prior to black piece moves. The process would be identical to the

process for white pieces, however, an analysis of both black and white pieces was

considered unnecessary, as the proof of concept would be satisfied with the analysis

of one colour only. For this thesis, only chessboards in the position of „white to move‟

were considered.

For this research chunks are defined as frequently occurring constellations of

pieces. In order to determine the frequency of occurrence, a number of boards were

needed for each of the arrival squares, with a number of instances of each board

extracted. Chessboards at move twenty ply or above were used for building the

libraries, as the middle game is particularly interesting because it is outside the scope

of standard openings and the board configurations are extremely varied. One

thousand arrivals of each white piece on each square were extracted from a

database of Grandmaster games (the database was supplied by ChessBase.com)

requiring a total of 360,000 boards14 (of course, many more boards are examined to

yield the required total). Some of the arrivals were rare, such as the white King

arriving on position A8. From the collection of games used, in order to find one

thousand instances of this move over fifty million boards (taken from 1,496,327

14

 The number of possible moves is 6x64 (384) however as it is not legal for a pawn to arrive on rows
1,2 or 8 the number of legal moves reduce to 360.

57

Grandmaster games) where required. A large number of Grandmaster boards were

examined to find the required number of instances for each piece on every square;

each piece arrival is shown in the table below.

58

Move To: Pawn Rook Knight Bishop King Queen

A8 N/A 962602 9636907 4467304 50864607 2040445
B8 N/A 1174639 12460136 5599671 29176446 2332073

C8 N/A 820111 4095665 3056348 27958146 1984924

D8 N/A 683546 5134560 3938365 27870774 1478493

E8 N/A 935039 5050787 3800114 25795377 2066843
F8 N/A 1260767 5454715 2165152 27207363 2850746

G8 N/A 2113968 23639737 7782391 25396161 4042016

H8 N/A 1884914 23366342 20582787 46281290 2701517

A7 3521477 596916 4134549 3393952 18842186 1609270
B7 2935805 557450 2742381 1145894 9438385 1068589

C7 3242341 601982 1597288 2212306 9225011 1392916

D7 3230427 630209 1320142 1669882 9062871 1323358

E7 3582266 850656 1308897 1453806 8142512 1534606
F7 3618273 1018496 1670824 1907198 7884365 1680755

G7 4056859 1217361 3989406 889163 8756837 2482110

H7 4774298 1278239 6186154 3803997 14936412 2367307

A6 1008527 1006426 5181266 1975169 10668581 1958452
B6 635482 957923 1294400 1874056 5023890 1704808

C6 516532 788357 689251 674791 4138472 1082963

D6 800271 802506 499105 934086 3438595 1256137

E6 789274 1080382 620480 848327 3388856 1165232
F6 634253 1126181 737972 558351 3553416 1191246

G6 755318 1620143 1408503 2031708 901269 1600367

H6 1363652 1672341 3063138 1086343 6383310 1496397

A5 416995 1012265 1713427 1786855 8105232 1462195
B5 274587 979729 505148 758460 3210255 975425

C5 271800 757108 492546 705811 2304620 1030043

D5 218829 748873 269886 400474 1939944 687370

E5 201447 955100 262779 456398 1689275 836424
F5 247797 1067330 400775 953373 1673329 986576

G5 330288 1599027 431353 577783 2019553 1057355

H5 473781 1573794 1589764 1571545 3867717 696422

A4 202672 1110995 777620 2810634 7266197 568602
B4 209680 1181848 1567814 884435 2577234 1016290

C4 251143 835781 321433 392124 1470933 530568

D4 172106 734475 231347 385294 1087396 596908

E4 177802 900222 204929 374491 843087 573751
F4 139105 875703 452396 465262 910526 814563

G4 189311 1563035 1028113 745158 1114939 682095

H4 193203 1606167 620131 2422522 2099493 1050261

A3 302254 1010023 967534 516157 6448602 1452765
B3 360627 1030745 470838 999675 1704941 316647

C3 330105 787655 247661 364099 1075625 478525

D3 536731 721953 593026 372405 646436 405798

E3 498782 763272 478039 259096 433794 562873
F3 274374 620238 223837 300180 337135 392134

G3 326352 1141493 572883 1609019 523076 865603

H3 240826 1345626 1465702 683675 1034394 1537984
A2 N/A 827830 5139687 5923694 5934705 1974852

B2 N/A 824280 2325303 467965 1414601 656674

C2 N/A 491314 858240 1271097 955550 245706

D2 N/A 474966 205475 345030 524542 277968
E2 N/A 547827 343896 354055 303757 277132

59

F2 N/A 481116 1244209 1453267 237962 768195

G2 N/A 1229702 2116174 627078 172481 1293581
H2 N/A 1686492 2001144 10191236 307153 5005480

A1 N/A 489915 12684118 1975657 8302218 1939527

B1 N/A 204455 1776868 3904377 1222527 1141736

C1 N/A 133369 1868735 596446 651583 762673
D1 N/A 124670 1278145 1263712 933093 629093

E1 N/A 141096 880389 1529827 776908 866834

F1 N/A 138663 936311 484712 313351 1442860

G1 N/A 491533 2650237 7160748 249171 6669745
H1 N/A 980212 16876043 3893057 334234 9493423

Table 6.1: The number of chessboards required to find 1,000 instances of each piece (white

only) moving to a square.

The collections of one thousand arrivals were saved in files with the piece name and

arrival square as components of the filename (360 files in total).

6.4. Move asymmetry: A case against Holding (1985)

It is interesting to note the lack of symmetry in table 6.1 (above). Considering two

points at opposite sides of the chessboard, the number of instances of a bishop

arriving on H6 is substantially greater than the instances of a bishop arriving on

square A6. When building the collection 1,086,343 boards were required to find

1,000 instances of the bishop arriving on A6 compared to 1,975,169 boards for one

thousand instances for bishop arriving on square H6 (therefore the arrival on A6 is

more frequent and easier to find than and arrival on H6). The lack of symmetry is an

argument against Holding‟s suggestion that “chunks might be remembered in relative

positions” (Holding 1985), as Holding considered Chase and Simon‟s (1973) estimate

of chunks held in long-term memory as being too numerous (cf. page 17). The lack of

symmetry in piece arrivals is a possible reinforcement of the view that chunks have

different meanings depending on their absolute position on the chessboard. The lack

of symmetry is even more pronounced when considering piece arrivals to row seven

60

and eight (the differences between left and right positions undoubtedly due to the

initial positions of the King and Queen).

The notion that chunks are absolutely positioned is endorsed by Saariluoma

(1994) in a series of experiments that measured the recall ability of chunks from their

original position on the board and the same configuration of pieces shifted from their

original positions. Even though the forms of the chunks were unchanged the recall

ability decreased if the chunks were moved, implying that location information is part

of the knowledge stored with the chunk in the chess players memory.

Gobet and Simon (1996) report similar results from experiments with recall of

chunks using chessboards transposed to a mirror image of original configurations,

using a computer simulation, with a version of CHREST. The number of chunks

found on a vertical axis mirrored image chessboard is reduced compared to the

recognition of chunks from the original board. Similar results were obtained, and

reported in the same paper, when testing human chess players.

To conclude, the lack of symmetry in table 6.1 can be used as another

argument for the notion that chunks are absolutely positioned on the chessboard.

The different frequency of moves of pieces to squares on the left and right hand

sides of the board show that the moves of pieces have different significances on

opposite sides of the board. As the presence a piece occurs with different

frequencies depending of the position on the chessboard, chunks of pieces (with the

same relative piece positions within the chunk) will have different properties

depending on the position of the chunk on the board. A chunk will therefore have

different properties when located on different positions on the chessboard. For this

reason chunks of pieces can only be considered to have the same properties when

the pieces are located on fixed positions on the chessboard.

61

6.5. Analysing chunks from collections

Having compiled collections of boards that contextualise moves of specific pieces to

specific squares, the next stage in the chunk library building process was to analyse

each board within each collection to find repeated chunks. To build a „chunk library‟

CLAMP systematically analysed each board in each collection, extracting all chunks

in the boards and assigning them to the move that followed. Collection Rook arriving

on a7 for example, contains one thousand boards, each of which existed in a

Grandmaster game immediately prior to the move of the Rook to square „a7‟. All

chunks on each board are assigned to the move „Rook to a7‟ and the count of how

many times each chunk was found is maintained in the chunk library. As each

collection was examined, chunk libraries were built and the chunks associated with

the move that defined the collection.

A board can contain up to thirty-two chess pieces on sixty-four squares. All

combinations of pieces (pieces with their absolute location on the board) are

generated to create chunks. The order of pieces within the chunk is not considered

significant and so the elements of the chunk are arranged in ascending order of

value. Ordering the pieces within the chunk eliminates duplications of chunks where

the pieces are arranged in a different order. As a result the number of chunks is the

total number of combinations rather than the total permutations of pieces.

Using the formula described on page 37, it is therefore possible for CLAMP to

find up to 4,294,967,295 chunks for each board, with chunk sizes ranging from one to

thirty-two pieces. The theoretical maximum number of chunks when analysing one

thousand boards in a collection could therefore be as high as 4.2 trillion. Storing and

processing data of this size would present serious technical difficulties, however, as a

game precedes beyond the opening moves the likelihood of finding very large

frequently occurring chunks diminishes as the board layout becomes increasingly

62

diverse. This is supported by data obtained by CHREST (supplied by Gobet) from

chunks extracted from Grandmaster games; the distribution of chunks by chunk size

is shown in table 6.2 below:-

Chunk
Size

Number
found

Percentage
of total

4 58,698 23.32%

5 63,457 25.21%

6 54,630 21.70%

7 36,869 14.65%

8 20,814 8.27%

9 10,036 3.99%

10 7,231 2.87%

Total: 251,735 100.00%

Table 6.2: Chunk sizes from CHREST data

CHREST was programmed to extract chunks

of size between four and ten pieces. The

number of chunks reduces as the chunk size

increases above five pieces; the number of

chunks present with a size of ten pieces

reduces to less that 3% of the total chunk

count. The research reported in this thesis

investigates chunk sizes of 2,3,4,5,6 and 7 pieces. Chunks of size greater than seven

pieces account (in total) for less than sixteen per cent of all chunks extracted by

CHREST and are, compared to chunk sizes of fewer than seven pieces, considered

too infrequent for this study. Consequently the maximum number of chunks reduces

considerably as the combination of pieces are limited to seven rather than the

maximum of thirty-two.

 It should be noted that, because of the huge variation between chess games

each chessboard can be considered unique and therefore the chance of finding a


    
    
   
    
  
    
    
   


Figure 6.3: A simple chessboard

63

large group of pieces in the same configuration diminishes with increasing group

size.

To illustrate how the number of chunks reduce, consider the simple

chessboard shown in figure 6.3 above. The chessboard shows five pieces on

squares as follows:

 qd8, ke4, Kg6, Rc4, Bf1

The pieces combine to give a total of thirty-one combinations. If combinations

with more than, for example, three pieces are removed, then the number of

combinations reduce to twenty-four as illustrated in the table below.

<qd8> <Bf1, qd8>
<ke4> <Bf1, ke4>
<ke4, qd8> <Bf1, ke4, qd8>
<Kg6> <Bf1, Kg6>
<Kg6 ,qd8> <Bf1, Kg6 ,qd8>
<Kg6, ke4> <Bf1, Kg6, ke4>
<Kg6, ke4, qd8> <Bf1, Kg6, ke4, qd8>
<Rc4> <Bf1, Rc4>
<Rc4, qd8> <Bf1, Rc4, qd8>
<Rc4, ke4> <Bf1, Rc4, ke4>
<Rc4, ke4, qd8> <Bf1, Rc4, <ke4, qd8>
<Rc4, Kg6> <Bf1, Rc4, Kg6>
<Rc4, Kg6 ,qd8> <Bf1, Rc4, Kg6 ,qd8>
<Rc4, Kg6, ke4> <Bf1, Rc4, Kg6, ke4>
<Rc4, Kg6, ke4, qd8> <Bf1, Rc4, Kg6, ke4, qd8>
<Bf1>

Table 6.3: Piece combinations with chunks of size greater than three marked with a
strikethrough

In order to make comparisons between chunk sizes, CLAMP processed the

collections to build chunk libraries for distinct chunk sizes; for example, a library of

chunks was built with four piece chunks and another library with five piece chunks.

Building libraries for each chunk size in isolation also reduces the maximum number

of chunks processed and stored. In the above example the number of three-piece

chunks resulting from the combinations equate to ten. Note that chunks are made

from both black and white pieces.

64

6.6. Chunk size and memory requirements

The following table shows the computer memory required against chunk size:

 Chunk Size
(Max)

Number of chunks after
combining the pieces

(Total)

Number of
chunks of

selected chunk
size

Memory required
for combinations

(bytes)

2 528 496 1552

3 5,488 4,960 21,392

4 41,448 35,960 201,192

5 242,824 201,376 1,409,448

6 1,149,016 906,192 7,752,792

7 4,514,872 3,365,856 34,679,640

Table 6.4: Chunk Statistics and memory requirements

Table 6.4 shows the maximum numbers of chunks for a chessboard with thirty-two

pieces when limiting the chunk size to between two and seven. The table shows the

number of chunks increases with an increasing chunks size, with a corresponding

increase in memory required for processing and storing. Limiting the number of

pieces in the chunk reduces the number of potential chunks that can be extracted

from a chessboard to more manageable proportions. The potential number of chunks

processed is the sum of the chunks extracted from each chessboard in a collection (a

collection consists of one thousand boards). As each chunk occupies space in

memory or on disk, careful consideration was given to the software design to

maximise processing speed and minimise memory requirements while processing

data.

The following code snippet, which is written in the C++ language, shows how

pieces are combined to produce all combinations with a size „CHUNKSIZE‟ pieces.

The function is called, passing each piece and position to construct all combinations

on the „List‟ array variable (the memory size required for the List variable is shown in

table 6.4).

65

Combinations of pieces are assembled in memory pointed to by the variable „List‟.

The memory used is allocated from the system heap as required.

#define BLOCKCELLS 20000000

BOOL CGenLibs::Combination(char piece, char pos)
{
 int size;
 short px;
 px = piece;
 px *=64;
 px += pos; //px is the 'piece-position object
 long TheEnd = end;
 List[end++] = px;
 List[end++] = -1; //add terminator (-1)
 start = 0;
 for(;;) { //add px to all existing cells
 if(start == TheEnd) break;
 for(size=0;size<32;size++) {
 if(List[start+size] == -1) break; //break out with size set to the chunk size+1
 }
 size++; //include the spacer character
 start+=size; //move start on if we need to skip this chunk
 if(size > CHUNKSIZE) continue; //only consider chunks of chunk size or less
 start-=size; //revert back to chunk start to continue

 for(;;) { // Add piece to chunk - all
 List[end] = List[start++]; //copy this sequence to new sequence for adding
 if(List[end] == -1) break;
 end++;
 }
 List[end++] = px; //append this Piece to the sequence
 List[end++] = -1; //mark end of sequence

//Reallocate memory if the buffer is too small
 if(end*2 > (BLOCKCELLS*SizeMem)-1280) { // Memory Buffer too small!
 SizeMem++; //increase allocation
 List = (short *)realloc(List, BLOCKCELLS*SizeMem);
 if(List == NULL) return true; //return on error
 }
 }
 return false; //exit ‘ok’

}

Figure 6.4: Code Snippet – Making chunks by combining pieces

66

6.7. CLAMP design, data structures and processes

The CLAMP program processes a large amount of data when analysing piece

constellations from many Grandmaster games. Careful consideration was given to

the design of data structures and processes for efficient processing and data storage.

In order to conserve memory space, a „piece-position‟ is represented by

CLAMP as a single integer comprising of sixteen bits. The lower six bits define the

square on the chessboard that the piece occupies (six bits have the range capacity

for 26 or decimal sixty-four numbers). The upper ten bits of the integer define the

chess piece. As chunks comprise of both black and white pieces there are twelve

possible piece types (six black and six white) that need to be defined, needing at

least four bits. The „piece‟ part of the integer and the „position‟ part require ten bits in

total. A sixteen-bit integer was chosen, as it is the smallest integer that the compiler

supports that accommodates ten or more bits.

Piece-positions within chunks are sorted into ascending order, for example:

< Nc3, Bb3, Ra2, Pa1 >

… is considered to be the same chunk as:

< Bb3, Nc3, Pa1, Ra2 >

Sorting piece-positions into ascending order will:

 Eliminate multiple representations of the same chunk where pieces

within the chunk are combined in a different order (a similar technique

is adopted by CHREST as a means to remove „redundant links‟

between chunks (Groot and Gobet 1996).

 Facilitate forward only searching through chunk library lists.

67

struct _Node {
 short PiecePosition; //the Piece-Position
 short Counter; //count of times this node was searched
 long Link; //address of preceding node
};

Figure 6.5: Code Snippet - The 'node' structure

Forward only searching is a fast and efficient method to search for chunks within the

chunk libraries. The „cursor‟ (the position within the file currently being looked at)

starts at the beginning of the library file and progresses to the end of the file, without

the need to re-start at any point. The library is organised so that the components of a

chunk are found in ascending order, for example Nc3 will always be positioned after

Bb3. When searching through the library Nc3, will always succeed Bb3 so that,

provided we search for piece-positions in the same order, we need only one pass

through the library to find all components of the chunk.

Piece-positions are stored in a structure called a „node‟, containing a counter,

to record the frequency of the piece-position, and a pointer to index another node.

When building a chunk library the pieces on a chessboard are combined to make

chunks. Chunks are added to the library by adding piece-positions after sorting the

piece-positions into order, and advancing through the library file from the beginning

to the end. Chunks are stored within a library by linking nodes to construct a linked

list data structure.

The „node structure‟ is defined as follows:

68

6.8. Combining ‘nodes’ to build ‘lists’.

Chunks are represented by a linked list of nodes, for example, a four-piece chunk will

comprise of four nodes, with the link in each node pointing to the previous node.

The chunk < Bb3, Nc3, Pa1, Ra2 > would have nodes as follows:

The first „piece-position‟ is always the starting node. Subsequent piece-positions are

added to the library by adding a node with the „Link‟ pointer indexing the previous

node (the node that contains the previous „piece-position‟). Similarly, the third piece-

position node will be added with the link indexing the second node and so on.

A second chunk that is to be added to the library that also starts with Bb3 will

add to the linked list. The chunk <Bb3, rc2, Pd4, Pe2> will join, omitting the first

node, but incrementing the counter in the first node. The counter keeps account of

how many times the node has been referenced (this count will later be used to

Node 1
 PiecePosition: Bb3
 Counter = 4
 Link = 0

Node 2
 PiecePosition: Nc3
 Counter = 3
 Link = Node(1)

Node 3
 PiecePosition: Pa1
 Counter = 2
 Link = Node(2)

Node 4
 PiecePosition: Ra2
 Counter = 1
 Link = Node(3)

69

eliminate infrequently occurring nodes from the library so that only frequently

occurring chunks are contained within the chunk library).

The list of nodes, after adding the chunk <Bb3, rc2, Pd4, Pe2> will be as follows:

The following example shows how five chunks are represented in the list structure.

Chunks to add:

< Bb3, Nc3, Pa2, Ra1 >

< Bb3, Nc3, Pa2, Pg2 >

< Bb3, Nc3, Pa2, Qd4 >

< Bb3, Kg1, Pd4, Pg2 >

< Bb3, Kg1, Pd4, Pc4 >

Node 1
 PiecePosition: Bb3
 Counter = 7
 Link = 0

Node 2
 PiecePosition: Nc3
 Counter = 3
 Link = Node(1)

Node 3
 PiecePosition: Pa1
 Counter = 2
 Link = Node(2)

Node 4
 PiecePosition: Ra2
 Counter = 1
 Link = Node(3)

Node 5
 PiecePosition: rc2
 Counter = 3
 Link = Node(1)

Node 6
 PiecePosition: Pd4
 Counter = 2
 Link = Node(5)

Node 7
 PiecePosition: Pe2
 Counter = 1
 Link = Node(6)

70

The chunks are represented in the list as follows:

The representation of chunks in the list structure is necessary for two reasons.

 The list will hold in a compact form a large collection of chunks. Duplicate

piece-position sequences are eliminated, as are duplications of the same

chunk. The example above has, for example, reduced six chunks

consisting of thirty piece-positions to just ten nodes.

 Each node in the list has a counter to record the frequency of the node. For

this thesis one of the properties of a significant chunk is that it is frequently

Node 1
 PiecePosition: Bb3
 Counter = 10
 Link = 0

Node 2
 PiecePosition: Nc3
 Counter = 4
 Link = Node(1)

Node 3
 PiecePosition: Pa2
 Counter = 3
 Link = Node(2)

Node 4
 PiecePosition: Ra1
 Counter = 1
 Link = Node(3)

Node 5
 PiecePosition: Kg1
 Counter = 4
 Link = Node(1)

Node 6
 PiecePosition: Pd4
 Counter = 3
 Link = Node(5)

Node 7
 PiecePosition: Pg2
 Counter = 1
 Link = Node(6)

Node 8
 PiecePosition: Pc4
 Counter = 1
 Link = Node(6)

Node 9
 PiecePosition: Pg2
 Counter = 1
 Link = Node(3)

Node 10
 PiecePosition: Qd4
 Counter = 1
 Link = Node(3)

71

occurring. The node counter can be used as a measure of the significance

of the chunks within a list.

6.9. Building ‘lists’ from collections

When building chunk libraries, CLAMP will take a collection (a collection is one

thousand chessboards showing the configuration immediately prior to a specific

move of a piece to a square), combine the pieces on each board in the collection to

construct chunks, and save the chunks in list structures. The elements of the list

consist of the piece (Pawn, Bishop, King Etcetera), which is represented as a

numeric code, plus the position the piece occupies on the chessboard. The

combination of piece and position gives a unique numeric value that represents the

piece on a square. Chunks are „pieces on squares‟ and are sorted in order of the

numeric representative values. Because the chunks are sorted into ascending order

the first element in the chunk is always the root node of a list. When building the

chunk libraries there may be up to 768 lists in construction, each list having a

different root node for each of the twelve chess pieces (chunks are composed of

black and white Pawn, Rook, Knight, Bishop, King and Queen pieces) on each of the

sixty-four squares of the board. CLAMP will first find the list with the root node as the

beginning piece-position of the chunk. CLAMP then searches through the list to find

the node that matches the second piece-position and where the „Link‟ element in the

node points to the previously matched node. If a node is found then the counter

element is incremented, otherwise a new node is appended to the list. CLAMP

continues searching from the current position for the next node and so on until all

nodes in the chunk have been found or added.

As piece-positions within chunks are ordered in ascending value, higher value

piece-positions will always be added to the list after lower value piece-positions. This

72

property of the list ensures forward only searching through the list, by virtue that

higher value elements will always succeed lower value elements in position within the

list. Adding a chunk to a list is therefore efficient and fast as it involves, at most, just

one search through the list.

All chunks from each board form a collection stored in lists using the process

described above. Due to the large number of chunks that may be present on each

board, and as one thousand boards in the collection are to be assimilated, the

process of consolidation of chunks into lists needs to be efficient. When processing

all of the data from a collection, the number of nodes stored can be large, for

example the actual number of chunks contained in a library consisting of five piece

chunks amounts to 45,646,773 with each node comprising of eight bytes, giving a

potential file size of 1,825,870,929 bytes. The actual size of the library reduces to

599,966,829 bytes (a 67% reduction in size) as a result of the elimination of duplicate

sequences.

The reduction in storage size by using the list is important because the lists

are constructed in the computer‟s physical memory. If the memory required for the

construction of lists exceeds the available physical memory then the processing time

would be greatly extended due to the need to swap physical memory with disk

storage and thereby incurring an associated operating system overhead.

6.10. The structure of a ‘Trie’

The „list‟ data structure described above has the elements of the list sorted in order.

As chunks are added, the nodes may link in ways representing „branches‟ from the

„trunk‟ like branches in a tree. As the elements within the structure are such that the

first node (or root) is shared by all chunks within the structure, and the elements of

the chunks are stored in the contents of each node in the path from the root to the

73

node, rather than the node itself (refer to section 6.8 for more a more detailed

explanation of this structure). In this thesis „lists‟ are contained in a structure named a

„trie‟. The „trie‟ structure is the list prefixed with a header represented as a „C‟

program structure as follows:

The trie structure has the piece-position, which is the root of the trie, as the first

parameter. The root is the first element in the chunks that are stored in the trie. The

„NodeMax‟ value is the number of nodes that are used in the trie. The „NodeLimit‟ is

the memory space allocated during construction of the trie. When adding a node, if

the NodeLimit has been exceeded then CLAMP will allocate more memory and

increase the NodeLimit value in the trie structure.

The following code snippet from the CLAMP program15 shows how the trie structure

is constructed when a chunk is added to a list:

15

 The full source code for CLAMP is provided on the disks that are attached to the back cover of this
thesis.

struct _Trie {
short PeicePos; //Root Piece-Position
long NodeMax; //Number of nodes in this trie
long NodeLimit; //Maximum nodes allocated to this trie
long Address; //Address of starting node
struct _Node

short PiecePosition; //Piece-Position of this node
short Count //node frequency
long Link //this contains address of preceding node

 } [NodeLimit]; //there are ‘NodeLimit’ node structures
}

Figure 6.6: Code Snippet - The ‘trie’ structure

74

int CGenLibs::AddNode(int size, short Tchunk[])
{
 int Base;
 int exists = 0;
 int LinkPos;
 char buf[80];
 struct _Node * Node;
 int PrevLink = -1; // set for first Piece (no previous links)

 for(Base=0;Base<MAXTREES;Base++) {
 if(TreeStart[Base].PeicePosition == -1) { // make a new tree if necessary
 TreeStart[Base].PeicePosition = Tchunk[0];
 TreeStart[Base].chunklimit = 1000;
 TreeStart[Base].Tree =
 (struct _Node *)malloc(sizeof(struct _Node) * TreeStart[Base].chunklimit);
 if(TreeStart[Base].Tree == NULL) return; // Insufficient memory!
 TreeStart[Base].chunkmax = 0;
 } // Have we seen this before? If so add to the tree
 if(TreeStart[Base].PeicePosition == Tchunk[0]) break;
 }

 for(int p=0;p<size;p++) {
 LinkPos = 0;
 Node = TreeStart[Base].Tree;
 for(;;) {
 if(LinkPos == TreeStart[Base].chunkmax) {
 if(TreeStart[Base].chunkmax == TreeStart[Base].chunklimit) {
 TreeStart[Base].chunklimit += 1000;

 TreeStart[Base].Tree = (struct _Node *)realloc(TreeStart[Base].Tree,
 sizeof(struct _Node) * TreeStart[Base].chunklimit); //increase allocated memory

 if(TreeStart[Base].Tree == NULL) return -1;
 }
 Node = TreeStart[Base].Tree;
 Node += LinkPos;
 }
 Node->Piece = Tchunk[p];
 Node->Count = 1; ///#
 Node->Link = PrevLink;
 PrevLink = LinkPos++;
 TreeStart[Base].chunkmax++;
 Node++; //always add to the new node after adding a node
 if(++p < size) continue;
 break;
 }
 if(Node->Piece == Tchunk[p]) { //most unlikely first
 if(Node->Link == PrevLink) {

 // just for information on chunks
 Node->Count++; //found again
 if(p == size-1) { //
 if(Node->Count > THRESHOLD) exists = 1;
 }
 PrevLink = LinkPos;
 break;
 }
 }
 LinkPos++;
 Node++;
 }
}
return exists; //return the number of times this chunk exists

}
Figure 6.7: Code Snippet – CLAMP function to construct ‘trees’

75

6.11. Combining ‘tries’ to make a ‘library’

A chunk library consists of a group of files, each file being composed of the tries

compiled from the processing of one collection and associated with the move that

generated the collection. Each file is given a name that is linked to the move of the

piece to the square that was the basis for the collection.

One of the definitions of a chunk (cf. page 23) is that chunks are frequently

occurring configurations. In order to remove infrequent chunks from the libraries,

infrequent nodes are removed from the tries before saving in the library. The number

of times a node has been found is recorded in the counter (an element of the node

structure). An arbitrary threshold of a chunk existing on one per cent of the total

boards within the collection was assumed so, as one thousand boards were

processed in each collection, all nodes with a counter value less than ten were

removed from the tries before copying to the library file.

Rather than having each trie as an individual file (there are 768 tries resulting

from each collection), which would generate a total of 276,480 files for all collections,

the tries from a collection are concatenated into a single „library‟ file. The library

therefore consists of 360 files, corresponding to one file for each white piece arriving

on each of the sixty-four squares of the chessboard. One file results from each

collection. The library file contains chunks that are associated with a move of a piece

to a square on the chessboard.

76

The library file has a structure shown in the „C‟ code snippet below:

The library file is associated with an arrival of one chess piece type to a specific

square on the chessboard. The file contains all of the tries associated with the move,

with an index to facilitate rapid access to the part of the file containing the trie of

interest. A header section records the size of chunks that were processed to make

the library, the number of items that are indexed and the number of tries within the

file. The index includes the starting piece-position of the chunk that is the root of the

trie, with the starting position as a byte offset to the start of the trie, and the number

of nodes that make up the trie. The index is sorted in ascending order of starting

piece-positions.

6.12. A graphical representation of a chunk

This chapter has described how chunk libraries were built. A chunk library

encapsulates domain knowledge by associating chunks with moves. A chunk can be

associated with a number of moves. Each move that the chunk is associated to is

long IndexSize //this contains the number of index items
long ChunkSize; //this contains the chunk size
long TreeSize //this contains the size of the tree data

struct _index { //index structure
 short PiecePos; //this contains the tree root item
 long StartPos; //this contains the address of the tree structure
 long Size; //this contains the size of the tree structure
}[IndexSize]; //there are ‘IndexSize’ items, sorted by ‘PiecePos’

struct _Tree {

short PeicePos; //Root Piece-Position
long NodeMax; //Number of nodes in this tree
long NodeLimit; //Maximum nodes allocated to this tree
long Address; //Address of starting node
struct _Node

short PiecePosition; //Piece-Position of this node
short Count //node frequency
long Link //this contains address of preceding node

 } [NodeLimit]; //there are ‘NodeLimit’ node structures
} [TreeSize]; //there are ‘TreeSize’ tree structures

Figure 6.8: Code snippet - The Library file format

77

„scored‟ with the number of occurrences that the chunk is present within a sample

collection of chessboards that precede the move. The „move‟ is a composite of the

piece and the square it is moved to. The number of possible moves is therefore

three-hundred and sixty as there are sixty-four squares and six piece types but minus

twenty-four illegal moves which include a pawn arriving on the first, second and

eighth rows (cf. page 56). A chunk can be represented in graphical form with the „x‟

axis labelled 1-360, representing the piece/position combination of the move and the

„y‟ axis as the score for the move.

Figure 6.9: Graphical representation of chunk < Nc3, Ph2, nf6, ph7 >

The key for the axis „Move To piece/position‟ for the graphs shown in figures 6.9,

6.10 and 6.11 is given in appendix 13.2 on page 187.

0

50

100

150

200

250

300

1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316

O
c
c
u

rr
e
n

c
e
s

'Move to' piece/position

<Nc3, Ph2, nf6, ph7>

78

0

50

100

150

200

250

1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316

O
c
c
u

rr
e
n

c
e
s

'Move to' Piece/Position

<Ph2, kg8, nf6, pf7>

0

10

20

30

40

50

60

70

80

1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316

O
c
c
u

rr
e
n

c
e
s

'Move to' Piece/Position

<Pd4, Pb2, kg8, pf7>

Figure 6.10: Graphical representation of chunk < Ph2, kg8, nf6, pf7 >

Figure 6.11: Graphical representation of chunk < Pd4, Pb2, kg8, pf7 >

79

A four-piece chunk compiled from pieces on the whole board area and consisting of

pieces < Nc3, Ph2, nf6, ph7 > is represented in the graph shown in figure 6.9

(above). A typical chessboard would contain approximately 36,000 chunks (cf. page

64) each with a unique profile. Figures 6.10 and 6.11 show the profiles for two more

four-piece chunks(compiled from pieces on the whole board area). Chunk < Ph2,

kg8, nf6, pf7 > was found on chessboard configurations prior to a number of moves.

Chunk < Nc3, Ph2, nf6, ph7 > however was found on fewer configurations.

6.13. Hardware considerations

The building of library files requires a large amount of processing despite careful

consideration being given to the relevance of data, the size of the chunks, data

structures and searching techniques. Several variations of libraries were built (the

variants are discussed later in the thesis cf. page 92) which required CLAMP to run

numerous times. The software was written in C++ and designed to exploit physical

available memory on the processor to minimise operating system overheads. The

process was run on a cluster computer (The Birmingham University BlueBEAR

cluster
16

) employing 128 processors for parallel processing under MPI (Message

Passing Interface), the program being written to exploit the parallel processing

properties of the cluster and as a result the program execution, compared with

running CLAMP on a PC, was increased by a factor of about one hundred times.

CLAMP is a compiled C++ program using efficient techniques to maximise the speed

of execution, however, some library builds required a lot of processing, for example

building a chunk library from pieces from the entire board space, for a chunk size of

five pieces would take approximately five months on a high performance stand-alone

16 BlueBEAR is equipped with 1536 cores with 8GB memory per node (each node has four cores) and

150 TB of disk space.

80

P.C. Using 128 processors on BlueBEAR the processing time reduced to twenty-

eight hours.

The research required for this thesis necessitated the compilation of thirty

chunk libraries.

Figure 6.12: The BlueBEAR Cluster computer.
17

6.14. Chapter conclusion

This chapter has described the program „CLAMP‟, a software program designed to

compile „libraries‟ of chunks that can be associated with chess piece moves within

the game of chess. CLAMP is designed so that it can compile libraries according to

various specifications, to build libraries made from chunks with specified numbers of

17

 This photograph is shown with permission from the IT Services, The University of Birmingham.

81

chess pieces, or with specific relationships between the pieces of the chunk (such as

pieces in close proximity, or pieces in defensive relationships). The chunk libraries

link chunks that are present on a chessboard to moves that are commonly made by a

chess player. Chunk libraries therefore encapsulate the knowledge of commonly

played chess moves following the presence of specific chunks on a chessboard. The

next chapter describes the program „CLAMPanalyser‟ which will use the knowledge

contained within the chunk libraries to suggest chess moves.

82

7. USING ‘CLAMPANALYSER’ TO SUGGEST MOVES

“Human masters, whose play is still much better than the best programs, appear to

use a knowledge intensive approach to chess. They seem to have a huge number of

stored „patterns‟ and analysing a position involves matching those patterns to

suggested plans for attack or defence” (Wilkins 1980).

The previous chapter described how CLAMP built „chunk libraries‟ by analysing

Grandmaster games. This chapter will describe how the program „CLAMPanalyser‟

uses the chunk library to select a move. CLAMPanalyser will analyse a chessboard

(a chessboard that was not used in the process to build the libraries) by extracting

chunks in the same manner as used for the „library building‟ process (cf. page 61).

Each possible move on the test board is examined and the chunks searched for, in

each of the appropriate libraries. A library file is associated with a move of a piece to

a square. If the chunk from the chessboard being analysed is found within the library

then the score for this move is increased. The move score is the total of the number

of chunks from the chessboard that are found to exist in the appropriate library file for

that move.

In order to suggest a move CLAMPanalyser will combine all of the pieces on a

test chessboard to build chunks. The pieces on the test chessboard are combined to

make chunks with the same chunk size as the chunks within the library, the

„compatible chunk size‟ being read from the first byte in the library file. The pieces

and their positions on the chessboard are combined and sorted into order using the

same method that was used when building the library files.

Considering each piece on the chessboard and all possible moves for that

piece, CLAMPanalyser will compile a list of all of the pieces and their arriving

squares. The chunk library consists of a set of files with each file corresponding to

83

each piece arriving on each square. To calculate a score for the move

CLAMPanalyser will count how many of the chunks are present within each of the

corresponding library files. For example, if the test board can make the move:

„Bishop to square A5‟

CLAMPanalyser will examine the library file associated with this move (Bishop to

square A5). CLAMPanalyser will search for each chunk that has been generated

from the test board, to see if it exists in this library file. Each time a chunk from the

test board is found in the library file the score for that move (in this case Bishop to

square A5) is incremented.

Using the same procedure, every possible move for each chess piece on the

chessboard can be scored. If the analysis of a move gives a high score then a lot of

the chunks on the test board match the chunks within the collections of boards that

are associated with that move. A high score is therefore an indication that the move

was frequently played in the set of Grandmaster games (the games that were used to

build the library) when similar chunks were present on the chessboards. Assuming

that Grandmasters make good moves the score can be an indication of likelihood

that the move is also a good move.

CLAMPanalyser does not possess any knowledge of the relative value of

pieces or tactics that could determine which out of all the possible moves would be a

better move. The program has no knowledge of the effect of a move, for example, if

moving one piece would expose another (break a defensive relationship), or even if a

move onto a square occupied by an opponent‟s piece would result in the opponent‟s

piece being taken. The score assigned to each piece is based purely on the

84

comparison of chunk patterns from the test chessboard with those stored in the

library files. CLAMPanalyser performs an assessment of the board without look-

ahead or the sophisticated scoring methods that are common in conventional chess

programs.

The results that follow in this chapter show a correlation between the score

assigned from CLAMPanalyser and the score calculated by a conventional chess

program. Moves which are assigned a high score by CLAMPanalyser are therefore

suggested as likely candidates for the move to be made by the player.

7.1. An evaluation of scores for a move to a position.

The chessboard18 shown opposite is taken from a

tournament game between two expert players,

Kenneth Coates (white) and James Parkin (black),

on 5th May 2001. White is to play the next move.

CLAMPanalyser calculated a score for each piece

move on the chessboard by combining the pieces

to make chunks and then, by searching the chunk

library, counting the frequency of each chunk in

each of the library files. On the configuration opposite white has fourteen pieces

made up from six piece types (Rook, Queen, King, Pawn, Bishop and Knight). As

CLAMPanalyser has no knowledge of the rules of chess many of the moves, even

though they are given a score, are illegal. Each piece will be given a score for a

move to each of the sixty-four squares on the chessboard.

18

 The board taken from a tournament game can be represented by the Fen:
r3k2r/pp3ppp/2nqpn2/7b/1b1P4/2N1BN1P/PP2BPP1/R2Q1RK1 w kq - 3 12


  
 
  
   
    
  
 
  


Figure 7.1:

Coats v Parkin 5
th

 May 2001

85

Using knowledge of how a chess piece can legally move on the board and

considering the configuration above (Coats v Parkin), white can make one of forty-

one possible moves. In order to compare the CLAMPanalyser score with the score

from a commercial chess program illegal moves have been removed from the output

and the resulting moves are shown in the table 7.1 (below), with each move assigned

the score output by CLAMPanalyser after analysing the board for four-piece chunks.

The score from CLAMPanalyser is a count of the number of chunks that have been

found in the library for the move to the positions shown. Against the CLAMPanalyser

score is shown the score produced by Fritz (a commercial chess program), based on

an evaluation of the move and looking twelve-ply deep. The „Fritz score‟ equates to

the gain resulting from the move in terms of a pawn value.

The table below shows the CLAMPanalyser score and Fritz score for each

possible moves in the „Coats v Parkin‟ chessboard.

MOVE
FROM:

MOVE
TO:

CLAMP
SCORE

FRITZ
SCORE

MOVE
FROM:

MOVE
TO:

CLAMP
SCORE

FRITZ
SCORE

Be2 Bd3 231657 -0.41 Nf3 Ng5 216931 -0.44

Be2 Bc4 212682 -0.37 Pa2 Pa3 417532 -0.06

Be2 Bb5 192263 -0.44 Pa2 Pa4 248241 -0.5

Be2 Ba6 85221 -3.34 Pb2 Pb3 222510 -0.47

Be3 Bg5 274531 -0.25 Pd4 Pd5 192147 -0.91

Be3 Bd2 205979 -0.31 Pg2 Pg3 152032 -0.47

Be3 Bf4 197600 -3.62 Pg2 Pg4 85885 -0.19

Be3 Bh6 129318 -3.03 Ph3 Ph4 38088 -0.62

Be3 Bc1 76306 -0.5 Qd1 Qb3 327807 -0.12

Kg1 Kh1 115648 -0.34 Qd1 Qc2 290939 -0.34

Nc3 Na4 329186 -0.28 Qd1 Qa4 288587 0

Nc3 Nb5 221909 -0.06 Qd1 Qd2 265918 -0.41

Nc3 Ne4 199718 -3.16 Qd1 Qc1 205312 -0.44

Nc3 Nd5 151850 -3.59 Qd1 Qe1 193843 -0.37

Nc3 Nb1 128618 -0.5 Qd1 Qb1 156168 -0.5

Nf3 Nh4 351078 -0.53 Qd1 Qd3 150672 -0.28

Nf3 Nd2 344666 -0.41 Ra1 Rc1 206116 -0.06

Nf3 Ne5 280526 -0.19 Ra1 Rb1 120512 -0.25

Nf3 Ne1 272470 -0.44 Rf1 Re1 191577 -0.25

Nf3 Nh2 244546 -0.53

Table 7.1: – Move ‘To’ CLAMP and Fritz score comparison

86

A linear least squares fit between the score from CLAMPanalyser and the score

obtained by Fritz gave a correlation coefficient of 0.31. Although this is not a strong

correlation19 the result shows some correlation between CLAMPanalyser and Fritz

move scores. The result is interesting because as previously stated, CLAMPanalyser

is not using any chess knowledge, for example CLAMPanalyser has no knowledge if

a move would result in the loss of a piece or be a disastrous tactical blunder, yet

CLAMPanalyser has produced a score for each move that correlates, albeit with a

correlation coefficient of 0.31, with the score produced by a chess engine which uses

conventional minimax methods to evaluate a move looking twelve-ply ahead.

 The Coats v Parkin example is a typical chessboard configuration. However,

to evaluate the effectiveness of CLAMP a simple test was performed on a number of

chessboard configurations from a sample of mid-game positions. The boards were

taken from tournament games between expert chess players, and from games that

were not in the dataset used to build the library files. Inclusion of games that were

used to build the libraries would distort the results as the board configuration and the

move outcome will certainly match. The aim of the experiment is rather to test

unfamiliar chessboard configurations to see if the „chunk composition‟ of the board

can be associated with the resulting move. The actual move made by the player

resulting from the configuration was compared with the output from CLAMPanalyser,

with a „success‟ attributed to the players move being in the top 50% of

CLAMPanalyser‟s ordered list. The null hypothesis for the test is that

CLAMPanalyser‟s list is random and CLAMPanalyser will place the player‟s move in

equal proportions within the top and bottom 50% positions. If the move played is

above the 50% point on CLAMPanalyser‟s list then the test will be assigned a

19

 The correlation coefficient is an indication of the closeness of linear fit between two sets of
variables. A coefficient of „one‟ is a perfect fit whereas „zero‟ is no fit at all.

87

„success‟, if the move is on the 50% point, or below, within CLAMPanalyser‟s list then

the test is assigned „failure‟.

After analysing a number of configurations, the number of „successes‟ can be

divided by the number of boards tested to give a „percentage success‟ figure. The

percentage success figure can then be used to compare the effectiveness of different

scenarios. A percentage success greater than 50% is an indication that the process

is significant and not random; the higher the percentage the more significant the

process, and the better the scenario is for „predicting‟ which piece will be chosen by

the player for the next move.

A percentage of „success‟ figure for all of the test chessboards was calculated

as follows:

%Success = (number of successes)/(number of boards tested)

In order to test CLAMPanalyser, a sample of chessboards that were used in the

process of building the chunk libraries was analysed. This analysis is included

because it is a standard step in machine learning systems, and was provided in order

to validate the process.

A chunk size of four pieces was used for the analysis. The results are tabulated

below:

Analysis using a chunk size of four pieces Result

Number of pieces making a chunk 4

Number of chessboards analysed 250

Number of boards with one or more chunks on the
board found within one or more chunk libraries:

241

Number of „Successes‟ according to the hypothesis
cf. page 86.

166

Number of „failures‟ 84

Standard deviation of score results 64.5

Percentage success 66.4%

Results from the verification of CLAMPanalysis using a sample from the ‘training’
chessboards.

88

The results of the verification test show that in 66.4% of cases the chess player

selected a move that was within the top 50% of the move list which was ordered in

„likelihood of being played‟ by the CLAMPanalyser program. CLAMPanalyser

therefore produces a result that is better than a random selection

Having verified CLAMPanalyser using a sample of chessboards from the training set

further analysis was performed using chessboards that were not included within the

training data. The results based on chunk sizes of two to five pieces using a sample

of one thousand chessboards are listed as follows:

Chunk
size

Number of
Successes

Number
of

Failures

Number
scored
boards

%Success

2 piece 657 343 995 65.7%

3 piece 661 339 995 66.1%

4 piece 668 332 995 66.8%

5 piece 393 603 567 39.3%

Table 7.2: ‘Percentage Success’ comparison for the whole board area.

7.2. A few large chunks or many small chunks?

Suppose a chess expert moved a piece on a particular chessboard within a game

and, at another time, exactly the same board configuration was seen in another

game. Assuming the move made in the first instance was the best move we can also

assume that exactly the same move would be chosen for the other game. If the

chunk size were such to encompass all of the pieces on the chessboard then the

configuration would be encapsulated into the one chunk. Very large chunks are

therefore more influential in directing moves but at the same time, as the chunks

enlarge in size they become increasingly rare. The likelihood of seeing exactly the

same board configuration in the mid-game is unlikely as the number of possible

games within the domain of chess is very large (Shannon 1950).

89

 The approach taken with this research was to work with distinct chunk sizes

(chunks consisting of the same number of pieces). The reason for this was to obtain

insight into the effectiveness of chunks as the number of pieces that make up the

chunk change. Chunks with a large size are rare but specific whereas small chunks

are frequent and general. Therefore, if CLAMPanalyser is working with a library of

small chunks we can expect to find a large number of chunks from the chessboard

being associated with moves in the library files; the suggested moves that

CLAMPanalyser generate being the consensus of scores from all chunks. On the

other hand, when working with large chunk sizes, a smaller number of more

influential chunks will be available.

There is therefore a „trade-off‟ in performance as the chunk size increases. In

some cases, when working with large chunk sizes CLAMPanalyser will be unable to

find any of the chunks in the library, and will be unable to suggest moves. Table 7.2

(above) shows the number of boards scored with chunk sizes two to five. Chunks

with two, three and four pieces had almost all of the boards successfully scored;

however, when using a chunk size of five only 567 out of the one thousand boards

(56.7%) were successfully scored.

Although a full analysis of chunk sizes above five pieces was not possible due to the

computational complexities in processing, indications were that the number of boards

scored continued to decline as the chunk size increased above five pieces.

7.3. Adjusting for ‘move rareness’

Some moves in chess occur more frequently than others. A piece may, for example

often move to the centre positions of the board and during the course of several

games a piece may move to the same position numerous times. The actual

90

distribution of move frequencies are systematically presented in table 6.1 on page

59. On inspection of table 6.1, the arrival of a Knight on square „D6‟ is relatively

common such that to find one thousand instances of this move 499,105 chessboards

were required, whereas the arrival of the Knight on H8 is rare, requiring 23,366,342

different chessboards to find one thousand instances of this occurrence. A move of a

piece to a square can therefore be accompanied by a „rareness‟ figure.

 CLAMP ignores the „rareness‟ of moves when building the chunk libraries.

Each library file was compiled using a collection consisting of one thousand arrivals

of each piece on each square. Each move, when building the chunk library, is

presented to CLAMP in equal significance with no information as to how frequently

the move occurs in the game of chess. To compensate for this, when

CLAMPanalyser is calculating the likelihood of a move from a chessboard, an

adjustment for the „rareness of a move‟ can be applied to the score from

CLAMPanalyser by dividing the chunk count by a factor of the „move rareness‟ figure.

Unlikely moves have a high „rareness‟ value. If CLAMPanalyser suggests a

move that is rare, dividing the „move score‟ by the rareness figure decreases the

significance of the move. Dividing the number of chunks associated with each move

by the „move rareness‟ figure improves the score by a small percentage. The

adjusted scores for two, three, four and five piece chunks are shown in the table

below:

Chunk
size

%Success

%Success
with ‘move
rareness’

adjustment

2 piece 65.7% 69.7%

3 piece 66.1% 70.1%

4 piece 66.8% 69.7%

5 piece 39.3% 39.6%

Table 7.3: Percentage Success comparison for the whole board area.

91

Unless otherwise stated, the move rareness adjustment is included as part of the

success score calculations in the results in this thesis from this point forward.

7.4. Changing the ‘success’ threshold

Comparing CLAMPanalyser‟s output to test if the chosen move appears within the

top 50% of CLAMPanalyser‟s ordered list will test to see if CLAMP‟s move ordering is

significant compared to a random ordered list. The results displayed in table 7.2 (cf.

page 88) show that for chunks sizes two, three and four CLAMP performs better than

a random ordering. The following table shows the results from an analysis of one

thousand chessboards with the „success‟ threshold set between 40% and 90% and

with move rareness adjustment applied to the results.

Chunk Size 2 3 4 5

40% threshold 77.7% 78.9% 79.5% 45.1%

50% threshold 69.7% 70.1% 69.7% 39.6%

60% threshold 62.3% 61.6% 59.9% 34.9%

70% threshold 52.3% 50.5% 49.6% 28.7%

80% threshold 28.9% 28.3% 28.8% 19.5%

90% threshold 15.1% 15.5% 15.2% 10.2%

Table 7.4: Percentage success figures with various thresholds

92

The percentage success against threshold data are plotted below:

Figure 7.2: Effect of change in threshold on percentage success
20

.

Figure 7.2 illustrates that similar results are obtained for each chunk size (with the

exception of chunk size five, for the reasons given above) across the range of

„success thresholds‟.

Unless stated otherwise, a success threshold of 50% is assumed for all results

documented in this thesis.

7.5. The relationship between pieces within chunks

The analysis so far has focused on chunks that have been extracted from the whole

area of the chessboard. To explore the properties of chunks, chunks were extracted

20

 Five piece chunks do not perform as well as other chunk sizes shown in figure 7.2 because five
piece chunks score only 56.7% of the boards in the sample.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

40 50 60 70 80 90

T
e
s

t
T

h
re

s
h

o
ld

Percentage Success

2 Piece

3 Piece

4 Piece

5 Peice

93

from the board using a variety of methods. For each extraction method CLAMP

produced a chunk library. Using each library in turn, the comparison between

methods was made using a large number of test chessboards, in the mid-game

section of tournament games between experts or Master players. One thousand test

chessboards were scored in each case. By using a large sample of games as

opposed to considering a single chessboard, a more statistically reliable result was

achieved.

Three different methods were used to refine the compilation of chunks. The

first method combined all of the chess pieces from the entire board. This is a

systematic analysis of the board and assumes no knowledge of the rules of the

game. The second method combines pieces from a subset of the board so that

pieces within the chunk are restricted to being in close proximity. With this method all

pieces on the board are combined but, using a visual analogy, the chessboard was

viewed through a sliding window that moved over the entire board. The analysis of a

subset of the board assumes that the pieces that combine to make effective chunks

exist in close proximity.

The third method was to only combine pieces that are in defending

relationships with each other. This method requires knowledge of how pieces move

and the significance of the colour of the pieces. Pieces on the board that are not

„protected‟ by a piece of the same colour are ignored. Pieces on the chessboard are

combined to make chunks with the caveat that the pieces within the chunks are in

defending relationships with each other - they have the property that they are

defending another piece within the same chunk.

For each of the above methods the size of the chunk, or in other words, the

number of pieces being combined to make the chunks was varied. For each scenario

CLAMP produced a chunk library and the library was used to analyse a number of

94

test boards. A figure was obtained for the effectiveness of the chunk library at

predicting the next piece to be played for each of the test boards. The aim of this

analysis was to find the most effective method and chunk size, for selecting the piece

to be moved.

7.5.1 The number of chunks in a chunk library

Table 7.5 (below) shows results for the analysis when using chunk sizes of two,

three, four and five pieces. The results show a chunk size of three being slightly

better than a chunk size of two and four. The number of chunks within the chunk

library increases with the chunk size. The reason for this is, as the chunk size

becomes larger the number of combinations of pieces making up the chunk also

increase, and therefore, when building the chunk library a larger number of chunks

will be stored in the library. However, when analysing a chessboard as the chunk

size increases, the number of chunks matched within the library decreases because

the chunks become more specialised. The chance of finding a large chunk is less

likely as that chunk may not have been seen in the sample of chessboards that made

the collection during the process to build the library.

7.5.2 The ‘effectiveness’ of a chunk

Table 7.5 (below) shows a low „success‟ score for the chunk size „five.‟ The low score

is largely due to the absence of matching chunks from the test boards being present

within the five-piece chunk library. The number of successes is limited to the number

of boards that match at least one chunk from the chunk library, and in the five-piece

case shown in the table only 567 boards out of the one thousand samples achieved

this. If however CLAMP had constructed the libraries using a larger collection of

95

moves then the number of scored boards in this analysis would increase accordingly.

Therefore, a more appropriate measure of the effectiveness of a chunk should be

based on the score divided by the number of scored boards. In this thesis this

measure is referred to as the „effect‟.

In the results reported in this section the „effect‟ value generally increases with

increasing chunk size, which is consistent with section 7.2 (above). In practical

situations however, when analysing a single chessboard, it may not be possible to

match any chunks from the chessboard to chunks in the chunk library, particularly

when using large chunk sizes. A practical example of how chunking with large chunk

sizes and the „number of boards scored‟ figure can be used with confidence when

analysing just one chessboard is described in section 7.11 (cf. page 147).

7.5.3 Analysis of the whole board area.

Analysis of the whole board for piece configurations that frequently exist prior to a

piece move (cf. page 88) was performed considering chunks sizes of 2,3,4 and 5

pieces with move rareness applied and a „50% success‟ threshold. The results are

summarised below:

Chunk
size

Chunks
In

Library

Number of
Successes

Number
of

Failures

Number
scored
boards

%
Success

%
Effect

%Standard
Error

2 piece 1261864 697 303 995 69.7% 70.1% 6.27%

3 piece 7596060 701 299 995 70.1% 70.5% 7.11%

4 piece 27127049 697 303 995 69.7% 70.1% 7.88%

5 piece 45646773 396 604 567 39.6% 69.8% 10.72%

Table 7.5: Percentage success comparison for the whole board area.

96

Note: The values shown in table 7.5 are taken from results presented in tables 7.2
and 7.3. The columns in table 7.5 are as follows:

Chunk size. The number of pieces that make up a chunk.

Chunks In
Library

The number of chunks that make up the library.

Number of
Successes

The number of instances where the actual move taken was
one of the pieces in the highest 50% CLAMP score values.

Number of
Failures

The number of instances where the actual move taken was
not one of the pieces in the highest 50% CLAMP score
values.

Number scored
boards

The number of boards that were successfully scored. A
„scored board‟ is a board that has at least one chunk
associated with a move.

% Success
The number of successes divided by the number of sample
boards.

% Effect
The number of successes divided by the number of scored
boards.

Standard Error

The Standard Error shown in the above table shows the
adjustment, plus or minus, and applied to the „percentage
effect‟. The Standard Error is reported with all similar results
in this thesis and denoted by „SE‟.

Table 7.6: An explanation of the columns shown in table 7.5

The following table shows the percentage success with 95% confidence limits. The

table, and the graph below, shows that the percentage success is comfortably in

excess of two standard deviations of the 50% null hypothesis for chunk sizes 2,3,4

and five pieces.

Chunk
Size

%
effect

(mean)

% Standard
Error

low 95%
confidence limit

high 95%
confidence limit

2 piece 70.1 6.27 63.83 76.37

3 piece 70.5 7.11 63.39 77.61

4 piece 70.1 7.88 62.22 77.98

5 piece 69.8 10.72 59.08 80.52

Table 7.7: Chunk ‘effect’ with 95% confidence limits.

It is noted that a chunk size of five pieces show a small decrease in the mean

compared to sizes of two, three and four pieces. The decrease is attributed to the

97

reduction in the number of large (five piece) chunks found on the chessboards that

are frequently occurring within the training data (cf. page 88).

Figure 7.3: Percentage success comparison for the whole board area.
(The error bars represent a 95% confidence interval).

7.5.4 Chunks and meaning

CLAMP‟s criterion for recognition of a chunk, when considering the whole board, is

based simply on the frequency of occurrence of piece constellations. A human player

is likely to be a lot more discriminating in his recognition of chunks and as a result

may remember fewer configurations, but the configurations may have a greater

significance. An example of being more discriminating could be by only selecting

chunks that are related in other ways, such as chunks with pieces that are in close

proximity, or chunks with pieces that are in attacking or defending relationships with

each other. The thesis continues with an analysis of chunks that includes pieces in

close proximity and pieces that are in defending relationships.

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5

%
 E

ff
ec

t

Chunk size

98

7.5.5 Analysis of chunks in small grouped areas on the chessboard

Papers by Gobet and Jansen (1994) and also Walczak (1992) report work done on

analysis of boards with chess pieces that are in close proximity to each other (cf.

Page 26). Papers by Simon and Gilmartin (1973) and also Gobet and de Groot

(1996) with respect to eye movement show that expert chess play conforms to this

notion and in addition the player examines attacking and defending positions.

Limiting the view to a small area on the board considerably reduces the number of

possible combinations of pieces. The original analysis for the whole board area was

repeated but limiting the scope of a chunk to, for example, a 4x4 square area on the

board. In this mode all combinations of pieces were obtained but only pieces that

were located within an area of sixteen squares were significant. The chessboard was

viewed with a 4x4 window, which scanned over the board and pieces within the

„window‟ at each juncture were combined to make chunks. Considerably fewer

chunks were found with this limitation. Windows sizes of 3x3, 4x4, 5x5, 6x6 and 7x7

squares were processed and results compared.

The results are tabulated below. The points of interest are the positions of

maximum percentage success. Areas start with the 3x3 size but where the

percentage success shows a decline the analysis was stopped. Uncalculated

scenarios are shown with x‟.

99

Local
areas

Chunks
In

Library

Number of
Successes

Number
of

Failures
%Success

%Boards
scored

Effect SE

local 3x3
Size 2

114943 579 421 57.9% 85.1% 68.4% 7.16%

local 3x3
Size 3

80819 579 421 57.9% 82.0% 70.6% 9.21%

local 3x3
Size 4

23855 424 576 42.4% 54.2% 78.2% 11.38%

local 3x3
Size 5

3944 205 795 20.5% 22.3% 91.9% 20.01%

local 3x3
Size 6

x x x x x x x

local 3x3
Size 7

x x x x x x x

local 4x4
Size 2

253476 577 423 57.7% 87.2% 66.2% 7.81%

local 4x4
Size 3

343409 590 410 59.0% 84.0% 70.2% 8.87%

local 4x4
Size 4

210120 521 479 52.1% 68.2% 76.4% 11.39%

local 4x4
Size 5

85679 393 607 39.3% 49.9% 78.8% 12.19%

local 4x4
Size 6

26139 186 814 18.6% 21.0% 88.6% 17.17%

local 4x4
Size 7

x x x x x x x

local 5x5
Size 2

453492 639 361 63.9% 90.5% 70.6% 7.16%

local 5x5
Size 3

998254 590 410 59.0% 84.9% 69.5% 8.62%

local 5x5
Size 4

1057802 575 425 57.5% 78.6% 73.2% 9.33%

local 5x5
Size 5

726212 481 519 48.1% 65.6% 73.3% 9.57%

local 5x5
Size 6

388865 390 610 39.0% 51.8% 75.3% 12.07%

local 5x5
Size 7

x x x x x x x

local 6x6
Size 2

721550 585 415 58.5% 87.5% 58.5% 7.25%

local 6x6
Size 3

2593877 611 389 61.1% 88.5% 71.5% 8.34%

local 6x6
Size 4

4918042 587 413 58.7% 84.3% 69.6% 8.33%

local 6x6
Size 5

6179518 535 465 53.5% 76.3% 70.1% 8.95%

local 6x6
Size 6

4621214 390 610 39.0% 54.9% 71.0% 10.78%

local 6x6
Size 7

x x x x X x x

Table 7.8: Analysis of chunks in small local areas

100

The graph below shows a comparison of the percentage effect figures against chunk

size, for each board area listed above. The graph shows each area achieving a

percentage effect increasing as the chunk size increases.

Figure 7.4: A comparison of small area analysis and chunk size
(The error bars represent a 95% confidence interval).

The results shown in table 7.8 show that as the percentage effect increases with

increasing chunk size the number of chunks found within the chunk library (the

percentage success) decreases. This result is consistent with the argument given in

paragraph 7.5.1. It can also be seen from table 7.8 that the number of chunks found

(the number of successes) in small local areas on the chessboard increases with a

larger board area. Walczak (1992) reported in an analysis of chessboards that “most

chess patterns are contained within a sixteen squares area on the board. An analysis

of eighty games from a former world chess champion eighty-six chunks were

acquired within a 4x4 area. Increasing to 5x5 resulted in just one extra chunk, the

0

20

40

60

80

100

120

1 2 3 4 5 6

%
 E

ff
ec

t

Chunk Size

Chunks In Local Areas

3x3

4x4

5x5

6x6

Area

101

chunk being one of the existing eighty-six chunks plus two additional pieces”.

However, the analysis reported in this thesis, which is based on a much larger

sample of games showed a significantly higher number of chunks present in a 5x5 as

opposed to a 4x4 square area.

The percentage effect when restricting chunks to a small area on the board is

comparable to results obtained from an analysis of the whole board area, however,

the number of chunks in the respective chunk libraries can be dramatically different

(cf. table 7.5 and 7.8). When analysing a chessboard, CLAMPanalyser compiles all

chunks for the whole of the board under test, the difference in each method is the

choice of chunk library that is searched. The „local area‟ libraries contain a smaller

number of chunks than those contained in the „whole board‟ libraries, for example, for

a chunk size of four pieces the whole board library has 27,127,049 chunks giving a

percentage effect of 70.1%, whereas when limiting the pieces with chunks to a 5x5

area reduces the percentage effect to just 69.0% but the number of chunks in the

corresponding library reduce to 1,057,802 (a reduction to approximately 4% of the

original size).

As all of the 1,057,802 chunks within a local area library are contained in the

„whole board‟ library by virtue of the systematic way the libraries are constructed, it is

possible that the chunks within the 5x5 local area chunk library make up a high

proportion of the chunks that are found when searching the whole board libraries.

The chunks contained in the „local area‟ libraries can therefore be considered to be

„more salient‟ as comparable results are obtained to the „whole board‟ libraries

despite having considerably fewer chunks within the libraries.

It is therefore possible that a property of many of the chunks that are

significant (in that they can be indicators of a move to make) within the game of

chess is that they are composed of pieces that are in close proximity to each other. A

102

chunk library that has been built with the addition of this knowledge is therefore

smaller as it contains fewer chunks, but the chunks that are contained are more

salient. The theoretical implications of this result, on a computer system, are that

smaller chunk libraries can be produced requiring less storage space and enabling a

faster searching through the library to find specific chunks. The result also shows the

implication of additional knowledge (that effective chunks normally consist of pieces

in close proximity) can produce a result where a higher number of chunks are

meaningful in terms of moves made.

It can be seen from figure 7.3 that a chunk size of four pieces within a 3x3

square archives the highest percentage success for the scenarios shown on the

chart. The mean percentage success for this mode is 78.2% and with a standard

error of 11.4%,

7.5.6 Analysis of chunks comprising of pieces in defensive relationships

An analysis of configurations that include only pieces that were in defensive

relationships with each other (cf. page 26) was performed and the results compared

with results from the „whole board‟ and „local area‟ analysis. „Defensive relationships‟

with respect to the pieces within a chunk are defined such that each piece within the

chunk is protecting another piece within the same chunk (cf. page 46). If the

opponent were to take the „protected‟ piece then the opponent could in turn be taken

by the „protecting‟ piece. In practice many of the pieces on the chessboard are

arranged in clusters so that each piece protects another. The rationale behind

analysing chunks in defensive relationships is based on papers by Wilkins (1980)

“Human Masters, whose play is still much better than the best programs, appear to

use a knowledge intensive approach to chess. They seem to have a huge number of

103

stored „patterns‟ and analysing a position involves matching those patterns to

suggested plans for attack or defence”. Experiments with chess players by McGregor

and Howes (2002) propose that the attack/defence relationship of pieces is more

significant to skilled chess players than the size of the chunk on the board. McGregor

and Howes (op. cit.) argue against the notion that proximity of pieces is a factor in

chunk structure and by experiments on chess player‟s ability to remember

configurations, gives evidence in favour of the relationship of pieces being the main

factor in chunk selection. CLAMP was modified to build chunk libraries based on

boards that consisted only of pieces in defending relationships to each other; the

analysis ignored all „passive‟ pieces on the board, that is, within a chunk, any pieces

that did not defend another piece where ignored. Chunk patterns with two, three,

four, five, six and seven pieces in defensive relationships where analysed.

It should be noted that the recognition of defensive chunks in a board being

examined is only approximate as it fails to take account of the fact that some or all

defence relationships in the chunks could be suppressed by intervening pieces.

In order for CLAMP to extract chunks that contained pieces in defensive

relationships, some knowledge of how pieces move and their scope, was required,

for example, a bishop requires a diagonal which is not blocked by a piece between

itself and the piece it is defending, however, the knight can jump over an obstructing

piece. This knowledge was required when building the chunk library so that only

pieces in defensive relationships were processed and ultimately stored in the library,

however, when using the libraries to analyse a board CLAMPanalyser simply

combines all pieces on the whole chessboard, without any knowledge of chess

semantics, and searches for the chunks within the library. Knowledge of how a piece

defends another is therefore not required when analysing a chessboard.

The results of the analysis of defending chunks are tabulated below:

104

Chunk
size

(pieces)

Chunks
In

Library

Number of
Successes

Number
of

Failures

Number
of boards

scored
%Success % Effect SE

2 44266 696 304 995 69.6% 69.9% 6.38%

3 45096 644 356 954 64.4% 67.5% 7.04%

4 119857 666 334 965 66.6% 69.0% 7.57%

5 147510 593 407 825 59.3% 71.9% 8.54%

6 158275 538 462 714 53.8% 75.4% 9.32%

7 129313 338 662 427 33.8% 79.2% 12.07%

Table 7.9: A comparison of chunk library size and percentage success (defensive chunks)

The results are shown in the graph below:

Figure 7.5: Percentage Success using ‘defensive chunks’
(The error bars represent a 95% confidence interval).

Using the same argument as used for chunks in local areas in paragraph 7.5.5, all of

the chunks in the defensive libraries are contained within the „all board‟ libraries,

however, the percentage success figure is comparable between the two methods,

moreover, the number of chunks when using pieces in defending relationships

reduce to less that 0.5% of the number of chunks in the whole board library (the

number of chunks in the library for whole board, four piece chunks is 27,127,049,

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

%
 E

ff
ec

t

Chunk Size

105

whereas the number of chunks in the four piece defending library is 119,857, the

defending chunk library is 0.44% of the size of the library for the whole board).

It is therefore possible that a property of many of the chunks that are

significant within the game of chess is that they are composed of pieces that are in

defensive relationships with each other. It is also possible as the percentage success

figures for the „local area‟ and the „defensive‟ methods give similar results so many of

the defensive chunks have pieces that are in close proximity and are therefore also

present within the „local area‟ libraries.

A comparison of the „percentage effect‟ for each chunk size was made for

chunks extracted from the whole board and chunks extracted from pieces restricted

to defending relationships. The results are show in the graph below:

Figure 7.6: A comparison between ‘defending’ and ‘all board’ methods
(The error bars represent a 95% confidence interval).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7

%
 E

ff
ec

t

Chunk Size

All

Defending

106

The following table compares the chunk libraries for three methods that give a similar

percentage success figure:

Chunk
Type

Chunks
In

Library

Number of
Successes

Number
of

Failures

Percentage
of boards

scored

Standard
Deviation

%Success
Including
no-score
boards

Effect

Whole
Board:
Size 4

27127049 697 303 99.5% 26.4% 69.7% 70.1%

local 5x5:
Size 4

1057802 666 334 96.5% 23.1% 66.6% 69.0%

Defending:
Size 4

119857 666 334 96.5% 26.0% 66.6% 69.0%

Table 7.10: A comparison of three methods using four piece chunks

The results presented in this section compare the effectiveness of methods. When

analysing the whole board area all pieces are combined. The „whole board‟ analysis

is therefore comprehensive, including all chunks on the chessboard. The number of

chunks found is therefore larger than the „local group‟ and „defensive‟ methods, which

restrict the pieces that can be included within chunks. The whole board „method‟ may

also contain a large number of chunks that are not relevant, or significant, to the

move to be played. Local group and defensive analysis do not capture all of the

significant chunks, but still achieve a high percentage success figure because the

„local group‟ and „defensive‟ libraries have a high percentage of significant chunks.

„Defensive‟ and „local‟ chunks can therefore archive good results when suggesting a

move to be played even though libraries consisting of a small number of the total

chunks that are present within the „whole board‟ chunk library.

7.6. Changing the ‘success’ threshold with defensive chunks

Setting the „success‟ threshold (or the „null hypothesis‟ point (cf. page 86)) so that if

the actual move taken appears within the top 50% of CLAMPanalyser‟s ordered list

107

will test CLAMP against a random ordering, whereas, changing the threshold from

50% to other values can be used to compare the methods employed by CLAMP. The

following table shows the results from an analysis of one thousand chessboards,

using defensive chunks of various sizes, with the „success‟ threshold set between

40% and 90%.

Chunk size: 3 SE 4 SE 5 SE 6 SE 7 SE

40% threshold 73.4% 6.38% 7.04% 7.57% 67.3% 8.54% 59.5% 9.32% 37.1% 12.07%

50% threshold 64.4% 6.38% 66.6% 7.57% 59.3% 8.54% 53.8% 9.32% 33.8% 12.07%

60% threshold 56.1% 6.38% 56.8% 7.57% 50.8% 8.54% 46.4% 9.32% 29.3% 12.07%

70% threshold 46.5% 6.38% 46.1% 7.57% 41.4% 8.54% 37.6% 9.32% 24.0% 12.07%

80% threshold 28.0% 6.38% 28.1% 7.57% 25.4% 8.54% 22.9% 9.32% 13.9 % 12.07%

90% threshold 12.3% 6.38% 12.9% 7.57% 12.4% 8.54% 11.9% 9.32% 7.6% 12.07%

% boards scored 95.4% - 96.5% - 82.5% - 71.4% - 42.7% -

Table 7.11: Percentage success with varying ‘success threshold’ for defensive chunks

The results are displayed on the graph below:

Figure 7.7: Graph of percentage success with varying threshold settings (defensive chunks).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

40 50 60 70 80 90

P
e
rc

e
n

ta
g

e
 s

u
c
c
e
s
s

Threshold value

3

4

5

6

7

Chunk
Size

108

The results displayed in figure 7.7 show, when the threshold value is low, a varying

percentage success result with differences in chunk size. A chunk size of four pieces

gave the highest percentage success when the threshold values are less that 60%.

Higher threshold values yielded a lower percentage success, and less of a distinction

between chunk sizes.

7.7. An analysis of de Groot’s Position ‘A’

Adriaan de Groot presented the chess configuration which has become known as „de

Groot‟s Position A‟ to five Grandmaster players, including Alekhine, Keres, Euwe and

Flohr, and also to other expert players at the 1938 AVRO tournament21.


  
 
 
   
    
   
  
   


Figure 7.8: de Groot Position 'A'

All Grandmasters except Flohr chose the move: Bxd5. Move Nxc6 was also

considered and was thought to be equally strong by Alekhine and was preferred by

Flohr. Other players chose weaker, but safe moves: Rfe1 or Bh6.

 An analysis of the chessboard by CLAMPanalyser (an analysis of the „Position

A‟ configuration) produced a list of moves in order of the number of chunks that

21

 The „Position A‟ FEN is: 2r2rk1/pp2bp1p/1qb1pnp1/3nN1B1/3P4/P1NQ4/BP3PPP/2R2RK1 w - - 0 1

109

support the move to be played, based on the four-piece chunks found on the whole

board. The move Bxd5 did not score well at position forty-ninth on the list of moves

out of possible fifty-seven moves. Move Nxc6 fared better at position twenty, and

Bh6 was at position twenty-four. The „safe‟ move Rfe1 however, was positioned

second.

The safe moves, and in particular Rfe1, are therefore frequently occurring

moves for similar piece configurations, whereas Bxd5 is probably a rare tactical

move which is not normally seen with pieces similar to this configuration. However, it

should be noted that the Grandmasters were able to find the move Bxd5 within a

short space of time suggesting that chunking could be present within the

Grandmasters thinking process for this move, but clearly, CLAMP‟s chunking process

is very simplistic when compared with human cognition.

110

The table below shows the „Score‟ from CLAMPanalyser for each move. Column „F‟

shows the order in which the Fritz chess program (searching to a depth of twelve ply)

assigns moves and is shown for comparison with the CLAMPanalyser ordering.22

From To Score F From To Score F From To Score F

Rf1 Rd1 693558 4 Ne5 Nc6 257060 3 Qd3 Qb5 157609

Rf1 Re1 685485 2 Ba2 Bc4 256227 Ne5 Ng6 157215

Nc3 Na4 522029 Ne5 Nc4 254717 Qd3 Qd1 155330

Qd3 Qc2 407274 Bg5 Bf6 252325 Qd3 Qf3 148540

Ph2 Ph3 395134 5 Bg5 Bh6 248520 Qd3 Qh3 109353

Ne5 Nd7 362237 Pf2 Pf4 244847 Ne5 Ng4 109217

Qd3 Qe2 349526 6 Bg5 Bd2 244450 Rc1 Ra1 105196

Pa3 Pa4 337046 Qd3 Qb1 240452 Qd3 Qa6 104852

Pd4 Pd5 330458 Pf2 Pf3 225081 9 Qd3 Qg3 99011

Nc3 Ne6 327255 Nc3 Nd1 223866 Qd3 Qe4 93798

Ba2 Bb1 321210 Nc3 Nb1 209507 Ba2 Bd5 89228 1

Nc3 Nb5 317700 Bg5 Bf4 208938 Pg2 Pg4 87402

Pb2 Pb4 316133 Pg2 Pg3 208047 Qd3 Qe3 86611

Qd3 Qd2 309224 Rc1 Rb1 204788 8 Ph2 Ph4 72047 7

Bg5 Be3 306666 Kg1 Kh1 186945 Ne5 Nf7 64672

Pb2 Pb3 289354 Ne5 Nf3 175799 Qd3 Qf5 56125

Nc3 Nd5 283839 Ba2 Bb3 175405 Qd3 Qg6 15466

Bg5 Bh4 282060 Qd3 Qc4 167558

Nc3 Ne2 258413 Rc1 Rc2 160796 10

Table 7.12: de Groot Position 'A' move scores

(compiled using the four-piece whole board chunk library)

Comparing the list of moves ordered by the CLAMP score, and the order of moves

output by Fritz, CLAMP successfully identifies a number of good moves within the top

seven positions of the CLAMPanalyser list. The top seven moves „identified‟ by

CLAMP include Rfe1, Rfd1, h3 and Qe2, all of which are not unreasonable. Table

7.13 (below) shows the top five CLAMP scores with the position of the move in order

of preference from an analysis by the Fritz chess engine, with „1‟ being the best move

and „57‟ being the worst move.

22

 Results were obtained by the Chess program „Fritz version 10‟ using the „explain all moves‟ feature.
Analysis was to a depth of 10 ply.

111

Table 7.13

The moves associated with the top five CLAMP scores three out of the moves

compare favourably with the analysis of the same configuration by the Fritz chess

engine. The exceptions are the move to Na4 which, although this move is supported

by a high proportion of chunks the move is tactically poor as it could result in the loss

of the knight, similarly the move Qc2 could result in the loss of the pawn on „d4‟.

The analysis of „Position A‟ by CLAMP is included in this thesis for general interest

although few conclusions can be drawn from the performance of CLAMP on one

chessboard considered in isolation.

From To
Fritz move
preference

Rf1 Rd1 4

Rf1 Re1 2

Nc3 Na4 47

Qd3 Qc2 30

Ph2 Ph3 5

112

7.8. The Bratko/Kopec tests

The Bratko/Kopec test consists of twenty-four chessboard configurations designed by

Dr. Ivan Bratko and Dr. Danny Kopec in 1982 to test a player‟s ability at the game of

chess. The tests are used to rate a player‟s knowledge of chess and in addition have

been used to test the power of computer chess programs. The tests consist of a

chessboard configuration and the corresponding „best‟ moves for each of the twenty-

four tests. The moves are classed as either a „tactical move‟ or a „pawn lever‟ type

move.

A „pawn lever‟ move is a move by a pawn that ultimately damages the

opponent‟s pawn structure by capturing an opposing pawn. The player‟s pawn is put

in a position where it can be taken by the opponent and so the pawn is often

sacrificed. In some instances the player‟s pawn structure may also be improved, as a

result of a pawn lever move.

CLAMP does not perform very well with many of the Bratko/Kopec tests. The

poor performance is believed to be partly due to the tactical nature of many of the

„best moves‟, as „tactical moves‟ normally require knowledge of the game of chess -

which CLAMP does not possess. Tactical moves are generally not related to chess

pieces being in frequently occurring positions, as is the case with positional moves,

but normally require knowledge of the semantics of the game. Tactical moves tend to

be more rare and less repeatable than positional moves.

The results below show only the Bratko/Kopec tests where white is to play (a

total of twelve tests) as the libraries compiled for this research work were for „white to

move‟ only configurations. CLAMPanalyser used the library with four-piece chunks

„whole board area‟ for this analysis. In the twelve tests only one scenario has the

„best move‟ within the top four of CLAMPanalyser‟s rank-ordered list of suggested

moves. If however the test configurations are analysed by the Fritz chess engine

113

then it can be seen that many of the top ordered moves are highly rated by Fritz. In

five out of the seven pawn-lever tests CLAMPanalyser suggested within its top four

choices moves that are within Fritz top four moves. In two out of five tactical tests

CLAMP suggested within its top four choices moves that are within Fritz top four

moves. The fact that CLAMP performed slightly better with ordering pawn lever

configurations as opposed to tactical configurations is consistent with chunking

theory. The results of each test are reported in the following pages.

7.8.1. Bratko/Kopec Test 4 (best move: pawn lever)


 
  
    
   
    
    

  


The table below shows all possible moves, with the score assigned by CLAMP, for

configuration test 4. Column „F‟ shows the ordering of the move assigned by Fritz.

Result: The „best move‟ (marked with „<‟ alongside

in the table below) for „test 4‟ according to the

Bratko/Kopec test is rated the 38th choice out of a

possible thirty-eight scored positions, however the

sixth choice in CLAMP‟s rank order (Nf3) is actually

the second highest scoring move (shown with „2‟

alongside) when the chessboard is analysed by

Fritz.

114

From To Score F From To Score F From To Score F

Bc1 Bg5 474395 Pg2 Pg3 264308 Qe2 Qg4 152290

Bc1 Bd2 434346 Qe2 Qd2 254985 Pb2 Pb4 147631

Pa2 Pa3 398470 Qe2 Qh5 247290 5 Ra1 Rb1 146494

Bc1 Be3 369474 Ke1 Kd1 244264 Pf2 Pf4 145460

Bc1 Bf4 367386 Bc1 Bh6 212982 Ph2 Ph4 121797

Nd4 Nf3 364672 2 Nd4 Nc6 205980 Qe2 Qd1 117279

Ph2 Ph3 309563 Pf2 Pf3 205363 Rh1 Rg1 104693

Pb2 Pb3 304146 Nd4 Nf5 204345 Qe2 Qa6 101879

Pa2 Pa4 298771 Qe2 Qd3 201949 Qe2 Qe3 96046

Pc3 Pc4 297073 Qe2 Qb5 195325 Ke1 Kd2 78482

Nd4 Nb3 291897 3 Qe2 Qc4 177933 Pg2 Pg4 76638

Nd4 Nb5 284993 4 Nd4 Ne6 164475 Pe5 Pe6 70692 <

Qe2 Qf3 277261 Qe2 Qe4 164306

Table 7.14: Bratko/Kopec Test 4 CLAMP Scores.

Table 7.15 (below) shows the top five CLAMP scores with the position of the move in

order of preference from an analysis by the Fritz chess engine, with „1‟ being the best

move and „38‟ being the worst move.

From To
Fritz move
preference

Bc1 Bg5 8

Bc1 Bd2 13

Pa2 Pa3 19

Bc1 Be3 11

Bc1 Bf4 12

Table 7.15

The moves associated with the top five CLAMP scores compare reasonably

favourably with the analysis of the same configuration by the Fritz chess engine, with

all moves being in the top 50% of Fritz‟s move preference list.

115

7.8.2. Bratko/Kopec Test 5 (best move: tactical)


 
   
  
   
   
   
 
   


The table below shows all possible moves, with the score assigned by CLAMP, for

configuration test 5. The second move in CLAMP‟s ordered list is rated as the third

best move by Fritz.

From To Score F From To Score F From To Score F

 Ra1 Re1 796082 Be3 Bd2 257942 Bb3 Be6 69954

 Ra1 Rd1 621528 3 Kg1 Kh1 257438 Qd4 Qb6 65762

 Ra1 Rc1 618780 Nc3 Nb1 206836 Qd4 Qd6 65616

 Pa2 Pa3 484378 Bb3 Bc4 191401 Ph2 Ph4 62558

 Qd4 Qd2 471313 Qd4 Qa4 187782 Qd4 Qd5 61251

 Nc3 Na4 457269 Qd4 Qd3 178713 Bb3 Bd5 52083

 Pa2 Pa4 400196 4 Rf1 Rf3 155701 2 Qd4 Qe5 46331

 Nc3 Nd1 367210 Be3 Bf2 152375 Qd4 Qc5 41655

 Ph2 Ph3 365476 Pg2 Pg3 139519 Rf1 Rf5 34233

 Be3 Bg5 354725 Rf1 Rf2 129534 Rf1 Rf6 31065

 Rf1 Rb1 352371 Bb3 Ba4 123158 Qd4 Qf6 28678

 Nc3 Ne2 334226 Pg2 Pg4 121429 Qd4 Qa7 24340

 Pe4 Pe5 328682 Qd4 Qc4 109192 Kg1 Kf2 7690

 Nc3 Nd5 314926 < Be3 Bc1 103979

 Be3 Bh6 300975 Qd4 Qd1 99096

 Be3 Bf4 277532 Rf1 Rf4 87873 5

 Nc3 Nb5 258640 Qd4 Qb4 71385

Table 7.16: Bratko/Kopec Test 5 CLAMP Score.

Result: The „best move‟ (marked with „<‟ alongside

in the table below) according to the Bratko/Kopec

test is rated the 14th choice out of a possible forty-

seven moves scored by CLAMP (note that not all of

the moves scored by CLAMP are legal moves)

116

Table 7.17 (below) shows the top five CLAMP scores with the position of the move in

order of preference from an analysis by the Fritz chess engine, with „1‟ being the best

move and „47‟ being the worst move.

From To
Fritz move
preference

Ra1 Re1 7

Ra1 Rd1 3

Ra1 Rc1 8

Pa2 Pa3 6

Qd4 Qd2 18

Table 7.17

The moves associated with the top five CLAMP scores compare reasonably

favourably with the analysis of the same configuration by the Fritz chess engine, with

all moves being in the top 40% of Fritz‟s move preference list.

117

7.8.3. Bratko/Kopec Test 6 (best move: pawn lever)


  
 
   
    
    
   
  
    


The table below shows all possible moves, with the score assigned by CLAMP, for

configuration test 6:

From To Score F From To Score F From To Score F

Pa2 Pa3 27157 5 Pe5 Pe6 4033 Rd7 Re7 805

Pc2 Pc3 27067 6 Rd7 Rd3 3168 Kg3 Kf3 640

Pc2 Pc4 19742 Rd7 Rd4 2966 Kg3 Kh3 621

Pa2 Pa4 15659 4 Rd7 Rd8 2831 Kg3 Kh4 439

Rd7 Rd1 11307 Pg5 Pg6 2479 < Rd7 Rc7 426

Pf4 Pf5 11054 Kg3 Kg2 2350 Rd7 Rf7 276

Pb3 Pb4 6364 3 Kg3 Kf2 2327 Kg3 Kg4 141

Rd7 Rd2 4658 Rd7 Rd5 1885 Rd7 Re7 805

Kg3 Kh2 4374 Rd7 Rd6 1099 Kg3 Kf3 640 2

Table 7.18: Bratko/Kopec Test 6 CLAMP Scores

Table 7.19 (below) shows the top five CLAMP scores with the position of the move in

order of preference from an analysis by the Fritz chess engine, with „1‟ being the best

move and „27‟ being the worst move.

From To
Fritz move
preference

Pa2 Pa3 5

Pc2 Pc3 6

Pc2 Pc4 7

Pa2 Pa4 4

Rd7 Rd1 15

Table 7.19

Result: The „best move‟ is Pg6. which is rated 14th

out of twenty-seven moves which have been

scored by CLAMP. The fourth move in CLAMP‟s

ordered list is fourth in the list of moves ordered by

Fritz.

118

The moves associated with the top five CLAMP scores compare reasonably

favourably with the analysis of the same configuration by the Fritz chess engine, with

all moves being in the top 50% of Fritz‟s move preference list.

119

7.8.4. Bratko/Kopec Test 7 (best move: tactical)


 
  
   
 
  
   
 
   


The table below shows all possible moves, with the score assigned by CLAMP, for

configuration test 7:

From To Score F From To Score F From To Score F

Be2 Bd3 135498 Ra1 Rb1 70620 Qd1 Qf1 27036

Be2 Bc4 122895 Nh5 Ng3 67850 Nh5 Nf6 23082 <

Ph2 Ph3 117367 Ba3 Bd6 62818 2 Pg2 Pg4 22770

Rf3 Rf1 111055 Qd1 Qb1 61194 Rf3 Rg3 20997

Qd1 Qe1 107875 Ba3 Bb4 55295 5 Pe5 Pe6 16931

Pg2 Pg3 106605 Ba3 Be7 53064 Ph2 Ph4 16406

Ra1 Rc1 104592 Rf3 Rh3 49238 Rf3 Re3 13655

Ba3 Bb2 90278 Rf3 Rf2 44530 Nh5 Ng7 13325

Pd4 Pd5 85219 Pf4 Pf5 42641 Kg1 Kf1 8934

Qd1 Qc1 83908 3 Ba3 Bc1 40721 Kg1 Kf2 6368

Qd1 Qd3 77919 Ra1 Ra2 38956 Rf3 Rd3 6327

Qd1 Qd2 76942 4 Be2 Bf1 30657

Kg1 Kh1 71114 Ba3 Bc5 28512

Table 7.20: Bratko/Kopec Test 7 CLAMP Scores

Table 7.21 (below) shows the top five CLAMP scores with the position of the move in

order of preference from an analysis by the Fritz chess engine, with „1‟ being the best

move and „38‟ being the worst move.

Result: The „best move‟ (marked with „<‟

alongside in the table below) according to the

Bratko/Kopec test is rated the 29th choice out of a

possible thirty-eight moves on CLAMP‟s list.

120

From To
Fritz move
preference

Be2 Bd3 32

Be2 Bc4 30

Ph2 Ph3 21

Rf3 Rf1 24

Qd1 Qe1 7

Table 7.21

The moves associated with the top five CLAMP scores compare poorly with the

analysis of the same configuration by the Fritz chess engine. The moves associated

with the top two CLAMP scores are tactically poor as they could result in a loss of the

piece.

121

7.8.5. Bratko/Kopec Test 8 (best move: pawn lever)


   
   
   
  
   
    
  
    


The table below shows all possible moves, with the score assigned by CLAMP, for

configuration test 8:

From To Score F From To Score F

Pa2 Pa3 12393 4 Ph2 Ph4 4386

Ph2 Ph3 12248 3 Pe5 Pe6 2486

Ne2 Nc1 8533 Ke3 Kf2 1335

Ne2 Nc3 8291 2 Ke3 Kd2 577

Pa2 Pa4 8201 Ke3 Ke4 232

Pf4 Pf5 5902 < Ke3 Kd3 228

Ne2 Ng1 4831 Ke3 Kf3 220

Pg3 Pg4 4538

Table 7.22: Bratko/Kopec Test 8 CLAMP Scores

Table 7.23 (below) shows the top five CLAMP scores with the position of the move in

order of preference from an analysis by the Fritz chess engine, with „1‟ being the best

move and „16‟ being the worst move.

Result: The „best move‟ is Pf5. which is rated 7th

out of sixteen moves which have been scored by

CLAMP however the second choice in CLAMP‟s

rank order (Ph3) is actually the fourth highest

scoring move when the chessboard is analysed by

Fritz.

122

From To
Fritz move
preference

Pa2 Pa3 4

Ph2 Ph3 3

Ne2 Nc1 9

Ne2 Nc3 2

Pa2 Pa4 11

Table 7.23

The moves associated with the top five CLAMP scores compare reasonably

favourably with the analysis of the same configuration by the Fritz chess engine,

however the move „a4‟ is tactically poor as it could result in the loss of the piece.

123

7.8.6. Bratko/Kopec Test 9 (best move: pawn lever)


  
  
  
  
    
  
 
 


The table below shows all possible moves, with the score assigned by CLAMP, for

configuration test 9:

From To Score F From To Score F From To Score F

Kc1 Kb1 108828 5 Nc3 Nd5 21820 Nc3 Nb1 9960

Bf1 Be2 46424 Nc3 Ne4 21089 Rd1 Re1 9585 <

Bf1 Bd3 44442 3 Bh4 Bg5 19113 Nf3 Ng1 8591

Pa2 Pa3 41596 Pd4 Pd5 19044 Qh3 Qg4 8137

Nc3 Na4 31204 Pb2 Pb3 17426 Rh1 Rg1 7879

Bf1 Bb5 31076 2 Bf1 Bc4 16789 Pb2 Pb4 7449

Nf3 Ne5 29965 Bf1 Ba6 14564 Qh3 Qf5 5310

Bh4 Bg3 29565 Pa2 Pa4 14318 Bh4 Be1 4994

Nc3 Ne2 27934 Qh3 Qg3 13747 Kc1 Kd2 4804

Nc3 Nb5 27766 6 Nf3 Ne1 13736 Rd1 Rd2 4444

Nf3 Nd2 27201 Bh4 Bf2 12715 Qh3 Qe6 3525

Nf3 Ng5 26756 Bh4 Bf6 10138 Pg2 Pg4 3459

Pg2 Pg3 21972 4 Pf4 Pf5 10010 Rd1 Rd3 2883

Table 7.24: Bratko/Kopec Test 9 CLAMP Scores

Table 7.25 (below) shows the top five CLAMP scores with the position of the move in

order of preference from an analysis by the Fritz chess engine, with „1‟ being the best

move and „38‟ being the worst move.

Result: Result: The „best move‟ is Pf5. which is

rated 28th out of thirty-eight moves which have

been scored by CLAMP however the first choice in

CLAMP‟s rank order (Kb1) is actually the fith

highest scoring move when the chessboard is

analysed by Fritz.

124

From To
Fritz move
preference

Kc1 Kb1 5

Bf1 Be2 8

Bf1 Bd3 3

Pa2 Pa3 10

Nc3 Na4 23

Table 7.25

The moves associated with the top five CLAMP scores compare reasonably

favourably with the analysis of the same configuration by the Fritz chess engine.

125

7.8.7. Bratko/Kopec Test 11 (best move: pawn lever)


 
 
   
   
 
   
  
   


The table below shows all possible moves, with the score assigned by CLAMP for

configuration test 11:

From To Score F From To Score F From To Score F

Ra1 Rc1 823028 Pf2 Pf3 255594 Ra1 Ra3 161908

Rf1 Rd1 744714 5 Be3 Bd2 253801 Qe2 Qd1 158106

Rf1 Re1 721288 4 Qe2 Qb2 246547 Ng3 Nh5 154676 2

Rf1 Rb1 539637 3 Ng3 Nf5 227789 Qe2 Qh5 137465

Qe2 Qc2 435685 Kg1 Kh1 219768 Be3 Bc5 135898

Ph2 Ph3 422464 Qe2 Qe1 218067 Qe2 Qa2 117778

Pa4 Pa5 388034 Be3 Bd4 204563 Ph2 Ph4 90527

Qe2 Qd2 355413 Bd3 Bc2 193701 Pd5 Pd6 83222

Pf2 Pf4 324268 < Ng3 Nh1 189365

Bd3 Bb1 307055 Be3 Bc1 178688

Pc4 Pc5 305381 Qe2 Qg4 177824

Be3 Bg5 304848 Qe2 Qf3 177389

Be3 Bh6 271174 Ra1 Ra2 172697

Pe4 Pe5 259295 Be3 Bf4 163758

Table 7.26: Bratko/Kopec Test 11 CLAMP Scores

Table 7.27 (below) shows the top five CLAMP scores with the position of the move in

order of preference from an analysis by the Fritz chess engine, with „1‟ being the best

move and „36‟ being the worst move.

Result: The „best move‟ (marked with „<‟

alongside in the table below) according to the

Bratko/Kopec test is rated the 9th choice out of a

possible thirty-six, however the third choice in

CLAMP‟s rank order (Re1) is actually the fourth

highest scoring move when the chessboard is

analysed by Fritz. Fritz also scored Rb1 as its

third choice, which is fourth in CLAMP‟s ordered

list.

126

From To
Fritz move
preference

Ra1 Rc1 17

Rf1 Rd1 5

Rf1 Re1 4

Rf1 Rb1 3

Qe2 Qc2 22

Table 7.27

The most of the moves associated with the top five CLAMP scores compare

reasonably favourably with the analysis of the same configuration by the Fritz chess

engine.

127

7.8.8. Bratko/Kopec Test 13 (best move: pawn lever)


  
  
   
   
   
   
  
    


Rd1 is scored second in CLAMP‟s list and third by Fritz; Rb1 is scored fourth in both

CLAMP‟s list and Fritz. The table below shows all possible moves, with the score

assigned by CLAMP, for configuration test 13:

From To Score F From To Score F From To Score F

Re1 Rc1 702832 2 Bd2 Bc3 287573 Qd3 Qh3 131406

Re1 Rd1 650142 3 Pe4 Pe5 283595 Ph2 Ph4 123786

Pa2 Pa3 505598 5 Pb2 Pb4 263487 < Pg2 Pg4 118111

Re1 Rb1 442731 4 Pf2 Pf3 249974 Bd2 Ba5 110389

Pa2 Pa4 426944 Qd3 Qb1 191949 Pd5 Pd6 110010

Bd2 Be3 418787 Kg1 Kh1 189124 Qd3 Qe3 106982

Ph2 Ph3 417401 Pg2 Pg3 188708 Qd3 Qa6 97372

Qd3 Qc2 404200 Qd3 Qf3 188322 Re1 Re2 78894

Bd2 Bg5 394022 Qd3 Qc4 172607 Re1 Re3 73430

Pb2 Pb3 388613 Qd3 Qd4 170358 Qd3 Qf1 70316

Qd3 Qe2 374733 Qd3 Qb5 158894 Kg1 Kf1 38174

Qd3 Qb3 328366 Qd3 Qa3 142002 Re1 Rd1 0

Bd2 Bh6 321539 Bd2 Bc1 136577 Re1 Rc1 0

Bd2 Bf4 317416 Qd3 Qc3 134305 Re1 Rb1 0

Re1 Rf1 308866 Qd3 Qg3 133948

Pf2 Pf4 300562 Bd2 Bb4 132266

Table 7.28: Bratko/Kopec Test 13 CLAMP Scores

Result: The „best move‟ (marked with „<‟ alongside

in the table below) according to the Bratko/Kopec

test is rated the 19th choice out of a possible forty-

six positions scored by CLAMP, however the first

choice in CLAMP‟s rank order (Rc1) is actually the

second highest scoring move when the chessboard

is analysed by Fritz.

128

Table 7.29 (below) shows the top five CLAMP scores with the position of the move in

order of preference from an analysis by the Fritz chess engine, with „1‟ being the best

move and „46‟ being the worst move.

From To
Fritz move
preference

Re1 Rc1 2

Re1 Rd1 3

Pa2 Pa3 5

Re1 Rb1 4

Pa2 Pa4 17

Table 7.29

The moves associated with the top five CLAMP scores compare reasonably

favourably with the analysis of the same configuration by the Fritz chess engine.

7.8.9. Bratko/Kopec Test 14 (best move: tactical)


  
  
  
  
    
  
 
  


The table below shows all possible moves, with the score assigned by CLAMP, for

configuration test 14:

Result: The „best move‟ (marked with „<‟

alongside in the table below) according to the

Bratko/Kopec test is rated the 3rd choice out of a

possible thirty-two positions scored by CLAMP.

129

From To Score F From To Score F From To Score F

Nf3 Nd2 939370 Pb3 Pb4 573087 Bb2 Bc1 227328

Bg2 Bh1 937629 Qd1 Qc1 532626 5 Pd5 Pd6 177277

Qd1 Qd2 865691 < Nf3 Ne5 499241 Pg3 Pg4 156525

Pa2 Pa3 856011 Bb2 Ba3 492595 Ph2 Ph4 138197

Qd1 Qc2 827568 4 Nf3 Ng5 486776

Rf1 Re1 770952 Ra1 Rb1 405579

Nf3 Ne1 752782 Bb2 Bc3 391611 3

Pe2 Pe3 716420 Qd1 Qe1 367372 2

Nf3 Nh4 710429 Pd5 Pc6 356273

Nf3 Nd4 709700 Bg2 Bh3 327054

Pe2 Pe4 693070 Kg1 Kh1 324048

Pa2 Pa4 678859 Qd1 Qd3 267610

Ph2 Ph3 665722 Qd1 Qb1 263978

Ra1 Rc1 600505 Qd1 Qd4 250290

Table 7.30: Bratko/Kopec Test 14 CLAMP Scores

Table 7.31 (below) shows the top five CLAMP scores with the position of the move in

order of preference from an analysis by the Fritz chess engine, with „1‟ being the best

move and „32‟ being the worst move.

From To
Fritz move
preference

Nf3 Nd2 7

Bg2 Bh1 23

Qd1 Qd2 1

Pa2 Pa3 16

Qd1 Qc2 4

Table 7.31

The moves associated with the top five CLAMP scores compares reasonably with the

analysis of the same configuration by the Fritz chess engine with the exception of

„Bh1‟ and „a3‟, both of which are tactically poor as they can lose material

130

7.8.10. Bratko/Kopec Test 15 (best move: tactical)


  
  
  
   
   
  
 
   


The table below shows all possible moves, with the score assigned by CLAMP, for

configuration test 15:

From To Score F From To Score F From To Score F

Pd3 Pd4 223143 Qg4 Qa4 113440 Rg3 Rh3 46603

Pa2 Pa3 208251 Nd2 Ne4 112631 Rf1 Rf4 43089 4

Rf1 Rc1 196072 Rf1 Rd1 105747 Qg4 Qe4 31980

Rf1 Rf3 192680 3 Kg1 Kh1 95824 Qg4 Qf5 31528

Pe3 Pe4 185806 Rf1 Rb1 93952 Qg4 Qg7 27861 <

Pa2 Pa4 181244 5 Qg4 Qh5 69711 Qg4 Qf4 27514

Pc2 Pc4 175453 Qg4 Qh4 61205 Qg4 Qg5 25921

Nd2 Nb1 161104 Qg4 Qc4 61082 Ph2 Ph4 24606

Ph2 Ph3 160948 Rf1 Ra1 60010 Qg4 Qe6 23843

Pc2 Pc3 144831 Pb3 Pb4 57138 Rf1 Rf5 22876

Rf1 Re1 144465 Qg4 Qd4 56975 Qg4 Qg6 15730

Qg4 Qe2 133627 Qg4 Qf3 54747 Rf1 Rf6 15647 2

Nd2 Nf3 129613 Qg4 Qb4 54614 Kg1 Kf2 5583

Nd2 Nc4 124816 Rf1 Rf2 50575 Rf1 Rf3 0

Qg4 Qh3 116050 Qg4 Qd1 49575

Table 7.32: Bratko/Kopec Test 15 CLAMP Scores

Table 7.33 (below) shows the top five CLAMP scores with the position of the move in

order of preference from an analysis by the Fritz chess engine, with „1‟ being the best

move and „44‟ being the worst move.

Result: The „best move‟ (marked with „<‟ alongside

in the table below) according to the Bratko/Kopec

test is rated the 35th choice out of a possible forty-

four, however the fourth choice in CLAMP‟s rank

order (Rf3) is actually the fourth highest scoring

move when the chessboard is analysed by Fritz.

131

From To
Fritz move
preference

Pd3 Pd4 10

Pa2 Pa3 9

Rf1 Rc1 13

Rf1 Rf3 3

Pe3 Pe4 11

Table 7.33

The moves associated with the top five CLAMP scores compare reasonably with the

analysis of the same configuration by the Fritz chess engine, with all five moves

being within the top 25% of top moves scored by Fritz.

132

7.8.11. Bratko/Kopec Test 16 (best move: tactical)


 
   
  
  
    
   
 
  


The table below shows all possible moves, with the score assigned by CLAMP, for

configuration test 16:

From To Score F From To Score F From To Score F

Pa2 Pa3 450075 Nd2 Nc4 238246 Pf2 Pf3 146347

Pc2 Pc3 425795 Bg5 Bf4 237652 3 Bb3 Bc4 142428

Pa2 Pa4 362787 Nd2 Nf3 225476 Kg1 Kh1 140785

Ph2 Ph3 307219 Bg5 Be7 218320 4 Qd1 Qb1 134311

Qd1 Qe2 301220 Qd1 Qe1 208300 Nd2 Nb1 132277

Pc2 Pc4 293176 Qd1 Qf3 207369 Qd1 Qg4 124560

Rf1 Re1 291386 Qd1 Qh5 196826 2 Bb3 Ba4 116872

Bg5 Bh4 277750 Pf2 Pf4 190494 Pg2 Pg4 61992

Bg5 Be3 256595 5 Qd1 Qc1 188446 Ph2 Ph4 55419

Nd2 Ne4 249521 < Pg2 Pg3 167577 Bb3 Bd5 51565

Ra1 Rc1 248032 Bg5 Bh6 150211 Pe5 Pe6 42097

Bg5 Bf6 240372 Ra1 Rb1 149180

Table 7.34: Bratko/Kopec Test 16 CLAMP Scores

Table 7.35 (below) shows the top five CLAMP scores with the position of the move in

order of preference from an analysis by the Fritz chess engine, with „1‟ being the best

move and „35‟ being the worst move.

Result: The „best move‟ (marked with „<‟ alongside in

the table below) according to the Bratko/Kopec test is

rated the 10th choice out of a possible thiry-five.

133

From To
Fritz move
preference

Pa2 Pa3 17

Pc2 Pc3 13

Pa2 Pa4 7

Ph2 Ph3 25

Qd1 Qe2 19

Table 7.35

The moves associated with the top five CLAMP scores compare with the analysis of

the same configuration by the Fritz chess engine, however, most of the moves are

tactically weak as they can result in a loss of material.

134

7.8.12. Bratko/Kopec Test 20 (best move: pawn lever)


   
 
   
  
    
    
 
   


The table below shows all possible moves, with the score assigned by CLAMP, for

configuration test 20:

From To Score F From To Score F From To Score F

Pa2 Pa3 84625 Pb2 Pb4 30689 Qe2 Qg4 13398

Nc3 Na4 68029 Ne5 Ng4 29452 Qe2 Qb5 13173

Kc1 Kb1 66919 5 Qe2 Qf2 28335 Qe2 Qa6 12912

Ne5 Nd7 66588 Ne5 Nc4 27783 Qe2 Qe4 12532

Pb2 Pb3 64061 Nc3 Nb1 27695 Qe2 Qf1 11185

Pa2 Pa4 51168 Re1 Rf1 25535 Ne5 Nf7 10504

Ph2 Ph3 50834 < Ne5 Nd3 25137 Qe2 Qc4 9856

Pd4 Pd5 49339 Ne5 Ng6 23082 Rd1 Rd3 8689

Qe2 Qd2 47589 Qe2 Qf3 20987 Qe2 Qg2 8209

Nc3 Nd5 47109 Pg3 Pg4 20157 3 Re1 Rg1 7212 2

Nc3 Ne4 46971 Qe2 Qd3 19475 Re1 Rh1 2274

Nc3 Nb5 37886 Ph2 Ph4 18430 Kc1 Kd2 2249

Ne5 Nc6 37618 Qe2 Qh5 17029 4

Ne5 Nf3 32087 Qe2 Qe3 15390

Pf4 Pf5 30969 Rd1 Rd2 15104

Table 7.36: Bratko/Kopec Test 20 CLAMP Scores

Table 7.37 (below) shows the top five CLAMP scores with the position of the move in

order of preference from an analysis by the Fritz chess engine, with „1‟ being the best

move and „42‟ being the worst move.

Result: The „best move‟ (marked with „<‟ alongside

in the table below) according to the Bratko/Kopec

test is rated the 25th choice out of a possible forty-

two.

135

From To
Fritz move
preference

Pa2 Pa3 19

Nc3 Na4 16

Kc1 Kb1 5

Ne5 Nd7 34

Pb2 Pb3 26

Table 7.37

The moves associated with the top five CLAMP scores compare poorly with the

analysis of the same configuration by the Fritz chess engine. The move‟Nd7‟ is

tactically poor as it could result in a loss of the piece.

7.9. An analysis of the top moves

The analysis described so-far in this thesis has tested if the move played by the

chess player was one of the suggested moves (suggested by CLAMP) appearing in

the top half of the list of all possible moves which had been sorted in descending

order of „likelihood to be played‟ by CLAMP. This chapter has reported results from

the comparison of methods using the whole board areas, sub-sections of the board

and pieces in defending positions, for various chunks sizes. The analysis focused on

the piece type and the position that a piece is moved to.

Another comparison method (which was used by Gobet and Jansen (1994) to

test the „CHUMP‟ program), is to quantify the percentage of cases that give a correct

move within the top few „predictions‟ (in this instance a „prediction‟ is a move that is

supported by the highest number of chunks, and the „correct move‟ is the move that

was actually played by the chess player). This analysis will therefore focus on the

moves that CLAMP attributes the highest scores; low-scoring moves and chessboard

configurations that give no scores are treated similarly. The chessboards were taken

136

from tournament games that were not used in the process to build the libraries and

had an average 40.47 possible moves on the board with a standard deviation 5.86.

If move predictions were a result of a random selection then each move would

have a uniform probability of approximately 1/40 of being selected. This estimate

ignores the small variation in the number of possible moves in the sample of

chessboards used for the evaluation. The probability of selecting a move and this

being the best move therefore equates to 2.5% or 25 from a sample of one thousand

chessboards. The chance of a random move being in the top two positions is

similarly 5%, or 50 from a sample of one thousand chessboards (by adding the

probabilities of the two positions), and 10%, or 100 from a sample of one thousand

boards for the move to within the top four positions.

Table 7.37 (below) shows the probability that a randomly selected move will

appear within the top „n‟ best moves,

Where:

„p-1‟ is the best move.

„p-2‟ the move is within the top two positions.

„p-3‟ the move is within the top three positions.

„p-4‟ the move is within the top four positions.

p-1 p-2 p-3 p-4

25 50 75 100

Table 7.38: The probability of random moves from a sample of 1000 boards

If CLAMP suggests a „best move‟ then, to be significant (that is, better than a random

selection), the percentage of best moves that match the player‟s chosen move must

occur more than 2.5% of the time. Similarly, for „p-2‟ a better than random selection

would be a percentage better than 5% and so on.

137

7.9.1. Using ‘Whole Board’ chunk libraries

The results from the analysis of one thousand chessboards, in the mid-game section

of tournament games (games that were not used to build the chunk libraries), using

chunk libraries based on the whole board area are shown in the table below. The

table reports the number of actual moves played that matched the move associated

with the highest score from CLAMP (p-1). In addition, the number of actual moves

played that were within the top two scoring outputs (p-2), top three scoring outputs

(p-3) and top four scoring outputs (p-4) from CLAMP.

Table 7.39: Chunks from entire board area

The „low‟ and „high‟ figures show the 95% confidence limits for each result. The

results shown in table 7.39 (above) are based on a sample („N‟) of one thousand

 number
of actual

moves
played

low high

Chunk size 2 p-1 52 42 62

 p-2 86 72 100

 p-3 125 109 141

 p-4 170 151 189

Chunk size 3 p-1 52 42 62

 p-2 95 81 109

 p-3 132 116 148

 p-4 162 143 181

Chunk size 4 p-1 52 42 62

 p-2 97 83 111

 p-3 135 119 151

 p-4 173 154 192

Chunk size 5 p-1 42 32 52

 p-2 76 62 90

 p-3 107 91 123

 p-4 139 120 158

138

games. As the number of samples are high, a binomial distribution is approximately

equal to the standard deviation for the data. Assuming that each game will select one

move from a possible („p‟) of forty options, the standard deviation for column „p-1‟can

be estimated:

 (SD) = √ (Np(1-p))

= √ (1000 *1/40 *39/40)

= 4.937

Subtracting two standard deviations from the results shown in the column „p-1‟ shows

that the results reported in table 7.38 are comfortably are in excess of two standard

deviations (the results exist within a 95% confidence interval) from the random

probability of 2.5%. Similarly, the standard deviations for the other columns are as

follows:

Chunk
Size

Standard
deviation

p-1 4.93

p-2 6.892

p-3 7.888

p-4 9.747
Table 7.40: Standard deviations for each column

The results for p-1, p-2, p-3 and p-4 reported in table 7.39 show figures that are

above the random percentage figures, indicating that the results from CLAMP are

significant, albeit by a small amount. All of the results are in excess of two standard

deviations, from the random positions for each column. As the size of the chunk

increases to five pieces, the percentage of boards that were successfully scored

decreases (cf. page 88). The highest p-1, p-2, p-3 and p-4 percentages were found

when a chunk size of four was used.

139

7.9.2. Using ‘Defensive’ chunk libraries

The following table shows the scores when using libraries that were built from chunks

with pieces in defensive relationships:

 number
of actual

moves
played

Low high

Chunk size 2 p-1 35 25.14 44.86

 p-2 62 48.22 75.78

 p-3 99 83.22 114.78

 p-4 129 109.51 148.49

Chunk size 3 p-1 36 26.14 45.86

 p-2 74 60.22 87.78

 p-3 102 86.22 117.78

 p-4 142 122.51 161.49

Chunk size 4 p-1 38 28.14 47.86

 p-2 83 69.22 96.78

 p-3 117 101.22 132.78

 p-4 150 130.51 169.49

Chunk size 5 p-1 49 39.14 58.86

 p-2 86 72.22 99.78

 p-3 122 106.22 137.78

 p-4 151 131.51 170.49

Chunk size 6 p-1 50 40.14 59.86

 p-2 90 76.22 103.78

 p-3 117 101.22 132.78

 p-4 156 136.51 175.49

Chunk size 7 p-1 40 30.14 49.86

 p-2 74 60.22 87.78

 p-3 104 88.22 119.78

 p-4 124 104.51 143.49

Table 7.41: Analysis using defensive chunks

140

All of the results shown in table 7.41 (above) show that when using chunk sizes of

3,4,5,6 or 7 pieces the results are in excess of two standard deviations from the

random positions for each column (cf. table 7.38). The results when using a chunk

size of two shows a lower 95% confidence interval which is very close to the random

distribution value (cf. page 136).

The number of moves played shown in table 7.41 are slightly lower than but

comparable to, results obtained when using the whole board area. However, the

defending libraries are considerably smaller in size (cf. 104).

141

7.9.3. Using small grouped area chunk libraries

The tables below show results obtained from using libraries generated from chunks

in small local areas on the chessboard:

 number
of actual

moves
played

low high

Chunk size 2 p-1 39 29 49

 p-2 68 54 82

 p-3 94 78 110

 p-4 129 110 148

Chunk size 3 p-1 53 43 63

 p-2 101 87 115

 p-3 136 120 152

 p-4 160 141 179

Chunk size 4 p-1 58 48 68

 p-2 104 90 118

 p-3 142 126 158

 p-4 162 143 181

Chunk size 5 p-1 40 30 50

 p-2 76 62 90

 p-3 87 71 103

 p-4 102 83 121

Table 7.42: Chunks with pieces in 3x3 local areas

All of the results shown in table (above) show that when using chunk sizes of 2, 3,4

or 5 pieces the results are in excess of two standard deviations from the random

distribution value (cf. page 136).

142

 number
of actual

moves
played

low high

Chunk size 2 p-1 41 31 51

 p-2 91 77 105

 p-3 123 107 139

 p-4 157 138 176

Chunk size 3 p-1 48 38 58

 p-2 94 80 108

 p-3 141 125 157

 p-4 177 158 196

Chunk size 4 p-1 53 43 63

 p-2 104 90 118

 p-3 141 125 157

 p-4 185 166 204

Chunk size 5 p-1 50 40 60

 p-2 88 74 102

 p-3 117 101 133

 p-4 152 133 171

Chunk size 6 p-1 33 23 43

 p-2 57 43 71

 p-3 74 58 90

 p-4 90 71 109

Table 7.43: Chunks with pieces in 4x4 local areas

All of the results shown in table (above) show that when using chunk sizes of 2, 3,4

or 5 pieces the results are in excess of two standard deviations from the random the

random distribution (cf. page 136). When using a chunk size of six pieces, the lower

95% confidence limit is below the value for the random distribution value (cf. page

136).

143

 number of
actual moves

played

low high

Chunk size 2 p-1 35 25 45

 p-2 70 56 84

 p-3 108 92 124

 p-4 145 126 164

Chunk size 3 p-1 50 40 60

 p-2 81 67 95

 p-3 107 91 123

 p-4 148 129 167

Chunk size 4 p-1 44 34 54

 p-2 83 69 97

 p-3 121 105 137

 p-4 153 134 172

Chunk size 5 p-1 47 37 57

 p-2 89 75 103

 p-3 123 107 139

 p-4 158 139 177

Chunk size 6 p-1 40 30 50

 p-2 96 82 110

 p-3 131 115 147

 p-4 169 150 188

Table 7.44: Chunks with pieces in 5x5 local areas

All of the results shown in table (above) show that when using chunk sizes of 2, 3,4,6

or 6 pieces the results are in excess of two standard deviations from the random

distribution value (cf. page 136).

144

 number
of actual

moves
played

low high

Chunk size 2 p-1 33 23 43

 p-2 59 45 73

 p-3 98 82 114

 p-4 124 105 143

Chunk size 3 p-1 37 27 47

 p-2 65 51 79

 p-3 101 85 117

 p-4 131 112 150

Chunk size 4 p-1 35 25 45

 p-2 60 46 74

 p-3 98 82 114

 p-4 129 110 148

Chunk size 5 p-1 40 30 50

 p-2 78 64 92

 p-3 105 89 121

 p-4 142 123 161

Chunk size 6 p-1 46 36 56

 p-2 76 62 90

 p-3 102 86 118

 p-4 130 111 149

Table 7.45: Chunks with pieces in 6x6 local areas

All of the results shown in table 7.45 (above) are close to or in excess of two

standard deviations with respect to the lower confidence limits, from the random

distribution values (cf. page 136).

145

7.10. Top move analysis and the number of boards scored

When considering chunks within a small area on the board, a chunk size of four

within a local area of 4x4 squares gives the best overall results with 18.5% of moves

played, being within the top four of CLAMP‟s output. With this configuration, the

highest scoring move from CLAMP is the actual move played 5.3% of the time. The

„4x4 area – four piece chunks‟ chunk library is not only slightly better than the „whole

board – four piece chunk‟ library but it contains 210,120 chunks, which is a fraction of

the 27,127,049 chunks contained in the „whole board – four piece chunk‟ library,

equating to a 99.8% reduction in chunks within the library. The 4x4, 4 piece chunk

however only found chunks on 682 out of the sample one thousand boards.

 As the chunk size increases, the number of boards that are successfully

scored decreases. As reported earlier in this thesis, large chunks are rare but specific

(cf. page 88) so if CLAMP can find large chunks in the configuration and match these

to a move in the library then the move has a high likelihood of being the „best‟ move.

Using large chunks however, will fail to score many boards, for example in the above

analysis the „3x3 – five piece chunk‟ analysis only scored 223 chessboards out of the

one thousand in the test. However, if at least one chunk from the chessboard is

found within the chunk library then the accuracy of CLAMP‟s prediction is higher

when using large chunk sizes than for chunks made up from a small number of

pieces.

The percentage probability that CLAMP will correctly score a move within the

top four positions provided the board has at least one chunk matching a move within

the chunk library can be calculated by dividing the p-4 score by the „Number of

boards scored‟ value, and then multiplying the result by 1000, in the above tables.

The adjusted scores for each of the scenarios are shown below:

146

Chunk
Size

p-4
Number of boards

scored (#)
Adjusted

p-4

2 17.0% 995 17.1%

3 16.2% 995 16.3%

4 17.3% 995 17.4%

5 13.9% 567 24.5%

Table 7.46: ‘Adjusted p-4' percentage - Whole board

Table 7.47: ‘Adjusted 'p-4' percentage - Defending chunk libraries

Local area
(squares)

Chunk
size

p-4
Number of boards

scored
Adjusted

p-4

3x3 2 12.9% 851 15.2%

3x3 3 16.0% 820 19.5%

3x3 4 16.2% 542 29.9%

3x3 5 10.2% 223 45.7%

4x4 2 15.7% 872 18.0%

4x4 3 17.7% 840 21.1%

4x4 4 18.5% 682 27.1%

4x4 5 15.2% 499 30.5%

4x4 6 9.0% 210 42.9%

5x5 2 14.5% 905 16.0%

5x5 3 14.8% 849 17.4%

5x5 4 15.3% 786 19.5%

5x5 5 15.8% 656 24.1%

5x5 6 16.9% 518 32.6%

6x6 2 12.4% 875 14.2%

6x6 3 13.1% 855 15.3%

6x6 4 12.9% 843 15.3%

6x6 5 14.2% 763 18.6%

6x6 6 13.0% 549 23.7%

Table 7.48: ‘Adjusted p-4' percentage – Local area chunk libraries

Chunk
Size

p-4
Number of boards

scored
Adjusted

p-4

2 12.9% 995 13.0%

3 14.2% 954 14.9%

4 15.0% 965 15.5%

5 15.1% 825 18.3%

6 15.6% 714 21.8%

7 12.4% 427 29.0%

147

7.11. Using chunks to suggest a move: a design strategy

This section is included to illustrate how libraries with large chunks can be used in a

practical scenario, taking into consideration that large chunks are rarely repeated

between chessboards and, as a result, many large chunks may be absent from the

chunk libraries.

Suppose a program has to be written to suggest the best chess move with a

„confidence‟ percentage, how could such a program be written? A good strategy

when applying chunking to practical applications would be to use the libraries with

the smallest number of chunks (so that searching through the library is faster) to find

associated moves, and starting with a library that gives the highest „Adjusted p-4‟

percentage, and then iterate through numerous chunk libraries until a move is

predicted.

If the hypothetical program can make four guesses when analysing a

chessboard the probability of the correct move being within the four guesses can be

calculated for each of the chunk libraries by using column labelled „Adjusted p-4‟ in

tables 7.46, 7.47 and 7.48. The probability that a score will be assigned by the chunk

library is calculated from the column labelled „number of boards scored‟ from the

above tables.

In order to maximise the program speed, where possible, the smallest chunk

libraries should be used to minimise the search.

With reference to the results reported in section 7.9, the process could, for

example, use chunk libraries in the sequence shown in the table below:

148

Sequence
Board area
(squares)

Chunk
Size

(pieces)

Number of
chunks in

library

Number of
boards
scored

Probability
of getting a

score

Probability of the
‘correct move’ being

in top 4 scores

1 4x4 6 26139 210 21.0% 42.9%

2 5x5 6 388865 518 51.8% 32.6%

3 4x4 4 210120 682 68.2% 27.1%

4 3x3 3 80819 820 82.0% 19.5%

5 8x8 3 7596060 995 99.5% 16.3%

Table 7.49: Iteration sequence to predict top moves.

The move predictor program will perform the following steps in the order below:

1. Using the „4x4 six-piece chunk‟ library will score approximately 21% of boards;

if a score is obtained then the first four moves will contain the best move with a

probability of approximately 43%. The chunk library is small with 26139

chunks and so searching this library will be fast.

2. If no score is obtained from step 1 (above) then the „5x5 six-piece chunk‟

library should be tried. The „5x5 six-piece chunk‟ library will score

approximately 52% of boards and will predict the best move being within the

top four outputs with a probability of approximately 33%.

3. If no score is obtained from step 2 (above) then the „4x4 four-piece chunk‟

library should be tried. The „4x4 four-piece chunk‟ library will score

approximately 68% of boards and will predict the best move being within the

top four outputs with a probability of approximately 27%.

4. If no score is obtained from step 3 (above) then the „3x3 three-piece chunk‟

library should be tried. The „3x3 three-piece chunk‟ library will score

approximately 82% of boards and will predict the best move being within the

top four outputs with a probability of approximately 20%.

5. If no score is obtained from step 4 (above) then the „whole board three-piece

chunk‟ library should be tried. The „whole board three-piece chunk‟ library will

149

score approximately 99% of boards and will predict the best move being within

the top four outputs with a probability of approximately 16%.

The above sequence will search for moves associated with chunks, starting with

large (six piece) chunks and decreasing to three-piece chunks. The sequence

attempts to find rare but specific chunks first, with each step moving increasingly

towards frequent and general chunks. The final stage (whole board, three piece

chunk library) will score 99% of boards albeit with an accuracy probability of 16% that

the best move is in the four suggested outputs.

7.12. Chapter conclusion

This chapter has reported results from the analysis of chunks produced by the

program CLAMP. The results show that chunk patterns can be used to suggest

chess moves with a probability that is higher than a random selection. Results

reported compared the effectiveness of different sizes of chunk and various filters

used in the procurement of chunks, including restricting chunks to pieces in close

proximity or restricting chunks to pieces in defending relationships. The

corresponding reduction in chunk library size without significant loss of accuracy

intimating that many of the effective chunks exist as pieces in defending positions or

with close proximity.

 This chapter tested the effectiveness of the selection of a move to play by

comparing the output of CLAMPanalyser with one thousand sample games. The

games comprised of tournament transcripts between master chess players (games

that were not used by CLAMP to build the chunk libraries) with CLAMPanalyser

matching the human player‟s moves with a „better than random‟ result comfortably

with a 95% confidence limit.

150

 Specific chessboard configurations were also tested, such as de Groot‟s

Position „A‟ and the Bratko/Kopec configurations, with results compared with the

output form a commercial chess program. The Bratko/Kopec test showed that

CLAMPanalyser performed slightly better with positional as opposed to tactical

moves.

 The final section illustrated how a hypothetical program could use several

chunk libraries to select a move, based on the probability that a library will „score‟ a

chessboard and the likelihood that the best move is in the top four suggestions.

The results of the tests on CLAMPanalyser show that knowledge of chunks

within a computer system can be used to suggest good chess moves from an

analysis of the piece constellations on the board. The result is consistent with human

chunking theory that suggests that an expert human chess player has knowledge of

chunks, and that this knowledge, or “perceptual advantage”, can direct attention to

relevant moves (de Groot 1978, pp. 307).

151

8. AN EVALUATION OF PIECES MOVED FROM A POSITION

The analysis reported so far in this thesis was based on libraries built from collections

that were compiled from pieces arriving on squares. This chapter examines the

results when CLAMP was configured to produce libraries using collections of

departures from squares. In this case the collections (cf. page 53) are compiled from

board configurations that exist immediately prior to the move of a piece. The result of

this process is that CLAMPanalyser will produce a list of pieces in order of their

likelihood of being moved from their current positions. Pieces from a position are less

useful when suggesting a chess move as the destination of where the piece is moved

to is unknown. The number of possible moves is reduced to the number of pieces on

the board of the colour who is to move. Only „white‟ moves are considered in this

chapter, as this is sufficient for proof of concept.

When building a chunk library, the name of the collection includes the

piece/position of the chess piece prior to the move. This method generates a score

for each (white) piece on the board, for example, the „Coats v Parkin‟ configuration

(cf. page 84) results in fourteen scores, one for each white piece. No knowledge of

the rules of chess, or how pieces move, is used and in some instances a score is

allocated to a piece even if the piece cannot legally move (for example, in the „Coats

v Parkin‟ configuration (cf. page 84), the pawn on f2 is blocked by the white knight on

square f3).

The analysis using departures gave a score for a move from a position for

each piece on the chessboard. In the same way as the process described in chapter

6 gave indicators for moves to a square, analysis of moves from squares gave an

indication of which pieces were likely candidates to be moved.

With the „analysis of departures from a square‟ the CLAMPanalyser score is

the total of the number of chunks that exist on the chessboard that can be found in

152

the library file that is associated with a move of the piece from the square. The

following table shows CLAMPanalyser scores based on four piece chunks, for piece

departures and the corresponding Fritz score. The Fritz score is based on the best

(the highest scoring move) that the piece can make.

MOVE
FROM:

CLAMP
SCORE

FRITZ
SCORE

MOVE
FROM:

CLAMP
SCORE

FRITZ
SCORE

Be2 237562 -0.37 Pd4 189049 -0.91

Be3 131419 -0.25 Pg2 107479 -0.19

Kg1 036547 -0.34 Ph3 035862 -0.62

Nc3 207605 -0.06 Qd1 303675 -0.12

Nf3 254543 -0.19 Ra1 148715 -0.06

Pa2 233678 -0.06 Rf1 127730 -0.25

Pb2 165369 -0.47 Pf2 094086 N/A

Table 8.1: – Move ‘From’ CLAMP and Fritz score comparison

The scatter graph below shows the CLAMP score compared with the Fritz score. The

line drawn on the graph shows the linear least squares analysis with a correlation

coefficient of 0.307

Figure 8.1: Move ‘From’ CLAMP and Fritz score comparison

153

8.1. ‘Move From’ scores by using ‘Move To’ analysis

When considering moves from a square in the above procedure, no consideration is

given as to the number of positions that a piece can move to, for example, if there

are no viable moves for a piece on the chessboard under examination then the piece

should not be considered for a move. Similarly, if there are just a few viable positions

a piece can be moved to, then it may be advantageous to take this into account when

calculating the score for the piece. A piece departing from a square may move to

several alternative positions with varying merit. An enhancement to the „Move To‟

method is to attribute the „best‟ score, from the possible destination squares. By

calculating the chunk move score for pieces moving to a position a more meaningful

result can be achieved.

The „Coats v Parkin‟ configuration (cf. page 84) has thirteen possible white

piece moves. Table 7.1 shows the scores for all available squares a piece can move

to. By taking the move with the highest CLAMPanalyser score and assigning this

score to the piece, CLAMPanalyser will assign scores to pieces based on the most

frequently played move according to the chunks that exist on the chessboard. This

method assumes that if a piece is moved then it will be moved to its highest scoring

position. The score assigned to a piece is therefore the highest potential score for

that piece.

The table below shows the scores from table 7.1 by assigning the highest

scores to each piece (the highest CLAMP score and the highest Fritz score for a

piece moving from a position). Similarly the table shows the „Fritz Score‟ as the

highest scores that a piece can acquire by selecting the best move for each piece

calculated by Fritz.

154

MOVE
FROM:

CLAMP
SCORE

FRITZ
SCORE

MOVE
FROM:

CLAMP
SCORE

FRITZ
SCORE

Be2 231657 -0.37 Pd4 192147 -0.91

Be3 274531 -0.25 Pg2 152032 -0.19

Kg1 115648 -0.34 Ph3 38088 -0.62

Nc3 329186 -0.06 Qd1 327807 0

Nf3 351078 -0.19 Ra1 206116 -0.06

Pa2 417532 -0.06 Rf1 191577 -0.25

Pb2 222510 -0.47

Table 8.2: – Move ‘From’ using highest ‘Move To’ CLAMP and Fritz score comparison

The scatter graph below shows the CLAMP score compared with the Fritz score. The

line drawn on the graph shows the linear least squares analysis with a correlation

coefficient of 0.616

Figure 8.2 Move ‘From’ using highest ‘Move To’ CLAMP and Fritz score comparison

When considering a piece move from a position, the correlation between CLAMP and

Fritz is higher using move from scores by using „Move To‟ analysis than with „Move

From‟ method reported in this section (although the comparison of methods reported

in this section was based on just one chess configuration - the „Coats v Parkin‟

configuration (cf. page 84)).

155

8.2. Combining the likelihood of a Move To with the Move From score

The „Move From‟ and „Move To‟ methods each produce a likelihood score for a piece

departure from a square and a piece arrival on a square. The „Move From‟ score

gives no indication of where the piece is moved to, and similarly the „Move To‟ score

no indication of the source. In some circumstances, for example where there is more

than one piece of the same type on the board, the „Move To‟ analysis cannot

differentiate the actual move from source to destination.

This section shows how the two methods can be combined to give a score for

the move of a piece from its old position to the new position.

Table 8.3 (below) lists the move scores based on „Move From‟ and „Move To‟

analysis. The „Move From‟ and „Move To‟ likelihood percentages are combined (as

the product from the two methods) to give an overall likelihood score. The „Fritz

score‟ is included for comparison with the combined score.

156

MOVE
FROM

MOVE
FROM

SCORE

MOVE FROM
LIKELIHOOD

%

MOVE
TO

MOVE TO
SCORE

MOVE TO
LIKELIHOOD

%

COMBINED
LIKELIHOOD

%

FRITZ
SCORE

Be2 237562 78.2% Bd3 231657 55.5% 43.4% -0.41

Be2 237562 78.2% Bc4 212682 50.9% 39.9% -0.37

Be2 237562 78.2% Bb5 192263 46.1% 36.0% -0.44

Be2 237562 78.2% Ba6 85221 20.4% 16.0% -3.34

Be3 131419 43.3% Bg5 274531 65.8% 28.5% -0.25

Be3 131419 43.3% Bd2 205979 49.3% 21.4% -0.31

Be3 131419 43.3% Bf4 197600 47.3% 20.5% -3.62

Be3 131419 43.3% Bh6 129318 31.0% 13.4% -3.03

Be3 131419 43.3% Bc1 76306 18.3% 7.9% -0.5

Kg1 36547 12.0% Kh1 115648 27.7% 3.3% -0.34

Nc3 207605 68.4% Na4 329186 78.8% 53.9% -0.28

Nc3 207605 68.4% Nb5 221909 53.2% 36.3% -0.06

Nc3 207605 68.4% Ne4 199718 47.8% 32.7% -3.16

Nc3 207605 68.4% Nd5 151850 36.4% 24.9% -3.59

Nc3 207605 68.4% Nb1 128618 30.8% 21.1% -0.5

Nf3 254543 83.8% Nh4 351078 84.1% 70.5% -0.53

Nf3 254543 83.8% Nd2 344666 82.6% 69.2% -0.41

Nf3 254543 83.8% Ne5 280526 67.2% 56.3% -0.19

Nf3 254543 83.8% Ne1 272470 65.3% 54.7% -0.44

Nf3 254543 83.8% Nh2 244546 58.6% 49.1% -0.53

Nf3 254543 83.8% Ng5 216931 52.0% 43.6% -0.44

Pa2 233678 77.0% Pa3 417532 100.0% 77.0% -0.06

Pa2 233678 77.0% Pa4 248241 59.5% 45.8% -0.5

Pb2 233678 77.0% Pb3 222510 53.3% 41.0% -0.47

Pd4 189049 62.3% Pd5 192147 46.0% 28.7% -0.91

Pg2 107479 35.4% Pg3 152032 36.4% 12.9% -0.47

Pg2 107479 35.4% Pg4 85885 20.6% 7.3% -0.19

Ph3 35862 11.8% Ph4 38088 9.1% 1.1% -0.62

Qd1 303675 100.0% Qb3 327807 78.5% 78.5% -0.12

Qd1 303675 100.0% Qc2 290939 69.7% 69.7% -0.34

Qd1 303675 100.0% Qa4 288587 69.1% 69.1% 0

Qd1 303675 100.0% Qd2 265918 63.7% 63.7% -0.41

Qd1 303675 100.0% Qc1 205312 49.2% 49.2% -0.44

Qd1 303675 100.0% Qe1 193843 46.4% 46.4% -0.37

Qd1 303675 100.0% Qb1 156168 37.4% 37.4% -0.5

Qd1 303675 100.0% Qd3 150672 36.1% 36.1% -0.28

Ra1 148715 49.0% Rc1 206116 49.4% 24.2% -0.06

Ra1 148715 49.0% Rb1 120512 28.9% 14.1% -0.25

Rf1 127730 42.1% Re1 191577 45.9% 19.3% -0.25

Table 8.3: 'Move From' and 'Move To' analysis results

The moves shown as a scatter graph on the graphs below:

157

Figure 8.3: CLAMP / Fritz comparison (‘Move To’ analysis)

Figure 8.4: CLAMP / Fritz comparison (move from analysis)

Figure 8.5: CLAMP and Fritz move likelihood comparison
23

23

 The correlation coefficient for the Fritz score and CLAMP move likelihood percentage is 0.314

158

Combing the „Move To‟ and „Move From‟ likelihood has little effect on the correlation

coefficient between Fritz and CLAMPanalyser scores, however, this process reduces

the ambiguity of a move where a type of piece could move to a position from more

than one origin. The top ten move-likelihood‟s for Fritz, „Move To‟ and combined

„Move To/Move From‟ scores are different in each case as shown in table 8.4 below:

Move

ordering
Fritz Move To

Move To and
Move From

1 Qa4 Pa3 Qb3

2 Nb5 Nh4 Pa3

3 Pa3 Nd2 Nh4

4 Rc1 Na4 Qc2

5 Qb3 Qb3 Nd2

6 Ne5 Qc2 Qa4

7 Pg4 Qa4 Qd2

8 Bg5 Ne5 Ne5

9 Rb1 Bg5 Ne1

10 Re1 Ne1 Na4

Table 8.4: Move ordering comparison

8.3. Chapter conclusion

This chapter has introduced the method for suggesting the move of a piece from a

square on the chessboard by analysing the component chunks on the board and

using knowledge in a chunk library based on the frequently played moves from a

piece on the chessboard. The suggested move from a piece can then be combined

with the suggested move to a square, by using the chunk libraries compiled as

described in earlier chapters of this thesis. The resulting move ordering has less

ambiguity regarding which piece is moved in situations where two chess pieces of

the same type can access the same destination.

159

9. AN APPLICATION OF CHUNKING TO A CHESS PLAYING
PROGRAM

“Put one pound of Alpha Beta Prunes in a jar or dish that has a cover. Pour one quart

of boiling water over the prunes. The longer the prunes soak, the plumper they get. –

Alpha Beta Acme Markets, Inc, La Habra, California” – Knuth and Moore, 1975

9.1. A brief look at the MINIMAX routine

The vast majority of chess programs use a variation on the MINIMAX search to select

the move to make. The MINIMAX algorithm, which was proposed by Claude

Shannon (Shannon 1950), is essentially a simple process that „moves‟ each piece on

the board, trying every possible legal position for the piece. The MINIMAX algorithm

can be used to explore domains where an action results in a number of

consequential responses, each response then evokes a further action and so on,

resulting in an ever expanding tree of possible solutions with increasing depth of

search. MINIMAX (or more normally the alpha-beta routine which is an enhancement

to the MINIMAX routine) is commonly used in games to test possible moves and

responses between two players, in particular the alpha-beta search is used

extensively within the game of chess where all possible moves and counter-moves

are evaluated many positions in advance. The routine starts with a move with its own

colour (for example, Black), moving one piece one position. The program then moves

each white piece, trying every legal position in turn. Each move requires the

opponent to move all of his pieces through all possible moves, resulting in a huge

branching structure illustrated below:

160

Figure 9.1: An example of the MINIMAX function to explore all moves and counter moves to a
depth of three ply.

The diagram shows the black pieces having two possible moves, „A‟ and „I‟. The

program will make move „A‟ (a black piece) and then corresponding move „B‟ (a white

piece) . Following this, a black piece is moved and so on. The game is played out by

alternating black and white moves in turn to the depth required (typically between

eight and sixteen) by the program.

Having reached the maximum depth (in the above diagram this is shown as a

depth of three), the program backtracks to the previous move („B‟) and tries an

alternative response („D‟). Every legal response is tried, but in the above example „B‟

is shown to have two possible moves.

Having exhausted all responses to move „B‟ the program backtracks to move

„A‟ and tries the next white move „E‟.

The program plays all possible moves of both black and white pieces for

several turns. This gives all of the possible scenarios for the game looking ahead by

the number of turns. Each of the final scenarios are scored, with the highest scoring

result being passed back to the root level so that the program can choose a move

(either „A‟ or „I‟ in the above diagram) to achieve the best result.

A simple scoring method could be to count the number of black pieces on the

board minus the number of white pieces. From blacks point of view, the higher the

A I

B E J M

C D F G H K L N O

161

number then the stronger black is. Black will favour moves that increase the score

and white will favour moves to decrease it.

Having evaluated all scenarios for the deepest levels, the program can assign

values to each node (each of the moves taken) according to the rule:

 If the move was taken by white then select the lowest score

 If the move was taken by black then select the highest score.

Consider the following example, which shows the score at each node:

Figure 9.2: A simple MINIMAX example with the score at each node.

For example, node „B‟ has two possible moves („C‟ or „D‟). Move „C‟ results in a

score of „6‟ and move „D‟ results in a score of „9‟. As this is white‟s node the lowest

score („6‟) will be assigned to the node „B‟

Node „A‟ has two possible moves, „B‟ and „E‟. As node „A‟ is a black move the

highest score will be taken from nodes „B‟ and „E‟, and in this case, black will chose

to make the move „I‟.

The algorithm assumes both „Black‟ and White‟ always play their best moves.

6 7

6 2 7 4

6 9 2 5 7 8 7 4 7

B E J

A I

M

C D

162

9.2. Optimising the MINIMAX search with alpha-beta pruning.

A mid-game chessboard may allow typically thirty-five legal moves. As each one of

the possible moves will have roughly the same number of counter moves on each

level of the search, the search tree will rapidly expand as the depth of search

increases. A commercial chess program would search typically between eight and

sixteen ply deep giving a potentially huge number of nodes. Alpha-beta pruning is an

optimisation to MINIMAX that can dramatically reduce the number of nodes, thereby

reducing the processing requirement for a chess computer.

Considering the search tree in shown in figure 9.2 above, if the minimum score

for all child nodes is returned to a „white‟ node and the maximum score of all child

nodes is returned to a „black‟ node, a white node will select „6‟ from the two resulting

child nodes „6‟ and „9‟ as „6‟ is the lowest number.

If black nodes on the same level return values less than „6‟ then a value of

less than „6‟ will be returned to the white parent node. In the above example a value

of „2‟ is returned by the deepest level. The black level above the white node will

select the highest value from its child nodes, and in the example the value „6‟ will be

selected. Knowing the value in the white node, when more scores are calculated on

the deepest level (referring to the diagram above) they can be compared against this

value. If a value less than the value in the first white node is found then this new

value, or a value less than this, will be returned to the white node. It is not necessary

to continue processing any more nodes because they will not be considered and

additional branches are „pruned‟. The alpha-beta search tree therefore reduces to the

following:

163

Figure 9.3: The Alpha Beta search tree after ‘pruning’.

In the above example, if a value of „2‟ is returned to node „E‟ It is not necessary to

find other scores because only a lower score than „2‟ will be passed back to node „E‟.

But as node „A‟ will choose the highest score (as it is a black node) from nodes „B‟

and „E‟, node „A‟ will select „6‟.

Nodes „G‟ and „H‟ can be skipped as whatever their score is it will have no

influence on the selection. By optimising in this way considerable savings can be

made, depending on the order in which the nodes are examined.

The advantage of the alpha-beta algorithm over the MINIMAX routine is that

instead of evaluating every possible solution alpha-beta will „prune‟ some branches

“to speed up the search processes without loss of information” (Knuth & More 1979),

resulting in a saving in processing time. However, the order in which branches are

processed is crucial to the efficiency of the alpha-beta process. If the branches are

processed „worst move first‟ then no branches will be pruned, exploring all branches

at each depth. Assuming a search depth of „d‟ and a branching factor 24 of „b‟, the

number of tip nodes will be:

24

 In relation to chess, the „branching factor‟ is the number of moves that can be made on the
chessboard.

6 7

6 2 7 4

6 9 2 8 7 4

A

B E

C D F

I

J M

K L N

164

 nodes = b x b x b x b x b …

 = bd

If however the branches are processed „best move first‟ then the first level consists of

just one branch (the best move). Depth „two‟ explores all possible positions resulting

from the first move. Depth „three‟ selects the perfect move for each configuration;

depth „four‟ explores all possible moves resulting from the previous move and so on.

Assuming a search depth of „d‟ and a branching factor of „b‟ the number of tip nodes

will be:

 nodes = 1 x b x 1 x b x 1 …

 = bd/2
(assuming an even search depth)

 = √ bd

By sorting the order in which branches are processed to „best move first‟ the number

of tip nodes reduce to the square root of the number of nodes evaluated in the „worst

move first‟ case. The number of nodes in practice lies somewhere between the two

extremes as the order of processing is normally between the „best‟ and „worst‟ cases.

A randomly ordered search would, on average, achieve a mid-position between best

and worse. It can be shown that “a random ordered search reduces the average

branching factor by approximately 4√ b3” (Nilsson 1998). Most chess programs apply

heuristics that are specific to the rules of chess to order the moves applied to the

alpha-beta search to improve the efficiency of the process. The research reported in

this thesis uses chunking to sort the moves into an order of likelihood to be played.

The chunking method has no intrinsic knowledge of the rules of chess but from

165

matching chunks (or groups) of chess pieces with similar chunks found on previously

analysed chessboards the likelihood of a move can be estimated. This thesis uses

the game of chess as an example of how chunking, without any knowledge of the

domain, can improve the efficiency of an alpha-beta search.

9.3. Using CLAMP to optimise the alpha-beta search

“While current computers search for millions of positions a second, people hardly

ever generate more than a hundred. Nonetheless, the best human chess players are

still as good as the best computer programs” (Saariluoma 1995, pp 116).

The quotation from Saariluoma‟s 1995 paper (op. cit.) suggests that expert human

chess players employ a narrow search when selecting a move. This chapter attempts

to emulate this (the narrowing of the search) by using chunking to optimise the alpha-

beta search process within a conventional chess program. The chess program will

model human behaviour by recognising chunk patterns, focusing on just a few pieces

from the entire board. This approach, when describing human expert chess players,

was documented by Adriaan de Groot (1978):

“Four distinct stages in the task of choosing the next move were noted. The

first stage was the phase of orientation, in which the subject assessed the situation

and determined a very general idea of what to do next. The second stage, the phase

of exploration was manifested by looking at some branches of the game tree. The

third stage, or phase of investigation, resulted in the subject choosing a probable

best move. Finally, in the fourth stage, the phase of proof, saw the subject convince

himself or herself that the results of the investigation were correct.”

166

The aim is to test whether chunk knowledge within a chess program improves the

efficiency of a chess engine by reducing the width of a search tree. Chunk knowledge

can be used to optimise the chess program by restricting move look-ahead to a

selected subset of pieces and thereby narrowing the search tree of an alpha-beta

routine. The chess program would model the expert player by restricting look-ahead

to just some branches of the game tree. To find the best move, a chess program will

test each possible move with the corresponding counter moves several ply ahead.

The order in which moves are tried will have a very significant influence on the

effectiveness of alpha-beta cut-offs.

 The chess program „Beowulf‟ (a version of which was used in the ChessBrain

project (Frayn 2006)) was modified to include move ordering from an analysis of

chunks. The hybrid of Beowulf and CLAMP was then used to calculate chess moves.

When making a move the chess engine compiled a list of three-piece chunks and

then scored each legal move based on the starting configuration of the chessboard.

The scores were used to order the sequence in which moves where applied to the

alpha-beta search routine.

 The chess engine was programmed to look ahead by four-ply and count the

number of branches produced. The alpha-beta search in normal operation will move

a piece to model moves and counter-moves, changing the original chessboard

configuration, and therefore the chunks contained therein, with each depth of search.

As the depth of search was limited to four-ply the impact of the changing

configuration was small as the majority of pieces stayed in their original positions.

The same move ordering was therefore applied at every node in the search.

 A sample of one thousand chessboards from the mid-game section from

tournament games were processed by the chess engine and the number of branches

recorded. Care was taken to ensure that the sample chessboards were taken from a

167

dataset that was not used to build the chunk libraries. The same chessboards were

processed again but this time with a random order applied to the move ordering. The

random ordering should, on average, give a middle position between a „best move

first‟ and „worst move first‟ move ordering. A comparison between the numbers of

nodes searched when using „chunking ordered‟ as opposed to a „randomly ordered‟

sequence in which branches were processed was performed.

The examples in table 9.1 show typical example chessboard configurations and the

number of nodes searched with random and sorted moves.

Chessboard
configuration:

Random
ordered

Chunk-
sorted

ordering

Saving in
branches

processed


  

   
    
  
  
 
 


601996 270000 55.15%



 
   
  
   
   
  
   


83376 50413 39.54%


 
 
   
   
   
    
  
  


175607 64594 63.22%

168


  
 
   
  
   
    
  
   


352044 300572 12.15%

Table 9.1: Sample results from comparison analysis

The percentage decrease in the number of branches searched was calculated for

each of the one thousand sample chessboards used in the analysis reported in

chapter 7 and the results collated in grouped intervals. The results are reported in

table 9.2 below.

Reduction Frequency Reduction Frequency Reduction Frequency

-150 % 1 -65 % 3 20 % 18

-145 % 1 -60 % 3 25 % 22

-140 % 0 -55 % 0 30 % 25

-135 % 0 -50 % 3 35 % 32

-130 % 2 -45 % 2 40 % 30

-125 % 0 -40 % 2 45 % 42

-120 % 0 -35 % 8 50 % 48

-115 % 2 -30 % 8 55 % 41

-110 % 0 -25 % 7 60 % 48

-105 % 1 -20 % 6 65 % 74

-100 % 2 -15 % 12 70 % 80

-95 % 1 -10 % 9 75 % 84

-90 % 3 -5 % 13 80 % 84

-85 % 2 0 % 11 85 % 95

-80 % 4 5 % 15 90 % 67

-75 % 4 10 % 19 95 % 31

-70 % 1 15 % 25 100 % 0

Table 9.2: Results of analysis of chessboards showing the number of chessboards (Frequency)

against each percentage reduction category.

 Table 9.2 shows the results from the analysis of one thousand chessboards showing

the percentage reduction in intervals and the number of instances (Frequency) within

169

each interval. Considering the results overall, the „chunk ordered‟ process performed

better than the „random ordered‟ process. The graph in figure 9.4 shows the number

of chessboards collated in each percentage interval.

Figure 9.4: Graph showing the number of chessboards in each percentage interval

Using chunking based on three-piece chunks (from an analysis of the whole board

area and without move rareness adjustment) to order the processing of branches in

an alpha-beta search, a significant reduction in the number of branches searched

was achieved when compared with a search based on random ordered moves. The

majority (over 80%) of cases gave a decrease in the number of branches searched

when using chunk ordered moves compared with a random ordering. The results

show the highest number of cases (ninety-five chessboards, or 9.5% of the sample)

giving a percentage decrease within the interval range of 85% to 90%. The mean

percentage decrease for all one thousand cases was found to be 50.8%

The results shown above are based on an analysis using three-piece chunks.

The chessboards were analysed using four and five piece chunks and the results

tabulated as follows:

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

N
u

m
b

e
r

o
f

c
h

e
s

s
b

o
a

rd
s

 i
n

 e
a

c
h

in

te
rv

a
l

Percentage decrease in branches searched

170

 3 Piece chunk 4 Piece chunk 5 Piece chunk

Mean % decrease: 50.75% 48.77% 49.58%

Table 9.3: Comparison of chunk size on search improvement

The same analysis was performed with three piece chunks but applying the output

from CLAMP in reverse order, resulting in an increase of branches searched by a

factor of 880 times.

9.4. Chapter conclusion

This chapter reported an application of chunking to optimise an alpha-beta search

routine. It should be noted that the chunks were built without any knowledge of the

rules of chess or properties of the pieces, yet despite this a significant reduction in

the number of nodes searched was achieved when compared with an alpha-beta

search using random ordered pieces. It is possible that similar techniques could be

applied to searching algorithms in other domains where the parameters that define

the domain are unknown.

171

10. CLAMP AND CHUMP: A COMPARISON

This chapter will make a comparison between CLAMP (cf. page 51) and CHUMP

(CHUnking of Moves and Patterns - Gobet and Jansen 1994). As both programs

analyse chess games to extract chunks and associate the chunks with moves, and

use chunk knowledge to select chess moves, it was considered appropriate to

include a chapter within the thesis to highlight the differences and similarities

between the two programs.

 A number of key points are discussed in the following paragraphs.

10.1. The aims of the programs

CLAMP was designed to investigate the properties of chunks that can be associated

with chess moves. The size of chunks was varied to investigate the effectiveness of

chunk size on the effectiveness of the chunks with respect to selecting a likely move.

In addition, the relationship of the pieces within a chunk were investigated to

compare the effectiveness of chunks compiled under various scenarios. CHUMP on

the other hand, uses a combination of chunk sizes and filter methods to select the

pieces which constitute a chunk. CHUMP is described as “a chess program”, which

“models human „computational‟ mechanisms” (Gobet and Jansen op. cit.). The

discussion of CHUMP in the aforementioned paper seeks to aid understanding of the

chunking mechanism in humans, and propose these methods as possible additions

to competitive game playing programs.

10.2. Chunk acquisition

Both CHUMP and CLAMP acquire knowledge by the examination of experts‟ chess

games, analysing the chunks (chess piece constellations) on the board and

172

associating the chunks to the move that was played. There are, however, a number

of differences in methods between CHUMP and CLAMP.

CLAMP has three basic methods to find the chunks that are present on the board as

follows:

10.2.1 Analysis of the whole board.

All of the pieces on each of the sixty-four squares on the chessboard are

combined. Frequently occurring combinations are saved as chunks. This method

ensures that all possible chunk patterns are found but it has the disadvantage that

a large number of chunks are processed, many of which may not relevant to the

chess move to be played (cf. page 95). In this mode, CLAMP has no prior

knowledge of the rules of chess

10.2.2 Analysis of local areas on the board

As many effective chunks consist of pieces that are in close proximity to each

other CLAMP can analyse the chessboard to build chunks of pieces that exist

within an area of 3x3, 4x4, 5x5, 6x6 or 7x7 squares (cf. page 98).

10.2.3 Analysis of pieces in ‘defensive’ relationships to each other.

In this mode, CLAMP will build chunks consisting only of pieces that are in

defensive relationships with each other (cf. page 102).

Only one of the above options can be selected at a time. CLAMP can therefore

compare the analysis of the same chessboards to measure the effectiveness of each

method.

173

CHUMP uses a combination of methods to select the pieces on the chessboard

which are processed as chunks as follows:

10.2.4 The ‘eye-movement-simulator’.

CHUMP uses an „eye-movement-simulator‟ to scan the chessboard directing

„attention‟ to twenty positions on the chessboard where pieces are expected to

exist, based on the saccades of expert chess players. The eye-movement-

simulator aims to give more meaning to chunks by applying expert‟s knowledge of

expected chess piece positions on the board.

10.2.5 Attack, defence and proximity relationships

In addition to eye movement knowledge, CHUMP uses knowledge of attack,

defence and proximity relationships to select relevant pieces to build meaningful

chunks.

10.3 Chunk repository

In both CHUMP and CLAMP, chunks are associated with moves to be played. With

CLAMP the association of a chunk and a move is the presence of a chunk within a

„library file‟. CLAMP builds a library file for every possible move for each piece on the

chessboard; if a chunk is associated with the move then the chunk will exist within

the file, or indeed, within several files. CHUMP uses two discrimination nets based on

the EPAM model of memory and perception (Feigenbaum and Simon, 1984). One

discrimination net, containing the chunk information, with the chunks referencing a

second net which contains the proposed moves.

174

10.4 Chunk Size

CHUMP recognised chunks with up to twenty pieces, although it has been found

earlier in this thesis that frequently occurring observations of chunks with a size

greater than ten pieces are rare within chess games (cf. page 62), indeed, estimates

for the maximum number of items retained in human short-term memory are thought

to be considerably lower than twenty (but excluding chunks recalled as a result of

template learning).

CHUMP uses a combination of all chunk sizes at the same time. CLAMP, on

the other hand, only works with one chunk size and, for technical reasons, the largest

chunk size investigated as part of this research is seven pieces. Chunks of discrete

sizes between three and seven were processed. A comparison of the effectiveness

of chunk sizes has enabled inferences to be made about the number of pieces that

make effective chunks.

The different approach regarding use of multiple chunk sizes between

CHUMP and CLAMP is consistent with the purpose of the respective programs, that

being as a model of human memory (CHUMP) or as a tool to investigate chunking

parameters (CLAMP).

10.5 Move proposals

Normally when analysing a chessboard several relevant chunks will be found. Each

chunk will be associated to one or more moves. CLAMP will propose the move to

play that is supported simply by the highest number of chunks. CHUMP is more

complex in the move proposal method, selecting on the move that is also supported

by the highest number of chunks, but also by the number of times the chunk has

been „activated‟ within the training data (a chunk is activated each time the chunk is

„seen‟ within the training data).

175

 It is possible that the performance of CLAMP would be improved if CLAMP

similarly used the chunk activation as a factor in the move proposal logic. CLAMP

uses a simple Boolean method with regard to chunk activation in that for a chunk to

be significant it number have been activated on at least one per cent of the training

board data. Infrequent chunks are not considered in the move proposal process if the

chunk does not appear on at least one per cent of the training boards.

 The implementation of CLAMP for this thesis is able to suggest moves where

white is to play only as only „white‟ moves were analysed (cf. page 56). CHUMP is

able to suggest moves for both White and Black to play.

10.6 The move start and end squares

CHUMP associates chunks with a move of a piece from a starting square. CLAMP

associates chunks with a move of a piece to a square (the staring position of the

piece is considered to be implicit for most moves).

10.7 The size of the learning set.

The learning set used for CHUMP consisted of 300 games from just one

Grandmaster (the former world champion, Mikhail Tal). Using CHREST (cf. page 18)

to build a discrimination net of piece/positions arranged in a net (graph) object to

associate chunks with moves. The training data for CLAMP was considerably larger,

using in the order of 1.5 million games. The dataset comprised of tournament games

between numerous Grandmasters.

10.8 Test results from the Bratko-Kopec positions

CHUMP was tested on the Bratko-Kopec positions, comparing the moves suggested

by CHUMP with the „Bratko-Kopec‟ best moves. CHUMP was able to score about

50% of the test boards, with the best move being in the top four suggested moves

176

after training with just 300 games. CHUMP achieved a 4.2% success at predicting

the best move as the first choice. CLAMP was able to suggest moves for each of the

boards tested but was unsuccessful in suggesting the best move within any of the top

four moves.

As CLAMP is only able to suggest moves for „white to play‟ only twelve of the

Btatko-Kopec moves could be tested with CLAMP.

Both CLAMP and CHUMP achieved better results when scoring boards that

resulting in a pawn-lever type move.

10.9 Test results from de Groot’s Position ‘A’

CLAMP and CHUMP were both tested using de Groot‟s Position „A‟ configuration.

Neither program selected the best move (Bxd5), however, CLAMP‟s first suggestion

was Rd1, and second suggestion Re1. Both of these moves are rated highly by the

Fritz program.

CHUMP suggested g2-g3 and h2-h3 as its top two suggestion, either of which

are described as „not so bad‟ (Gobet and Jansen 1994).

10.10 Conclusion

CHUMP and CLAMP are two programs that analyse chunk patterns from expert

player‟s games, in order to suggest a move to be played, based on the board having

a similar chunk constituents. The design and function differences between CLAMP

and CHUMP because each program was designed to perform a different task.

CHUMP is a model of human memory, selecting moves using a combination of

abilities to emulate human cognition. CLAMP however is a program designed to

investigate the properties of chunking in chess. CLAMP allows a comparison of the

effectiveness of chunking methods as the chunk parameters are varied.

177

 The size of the training set used for CLAMP was substantially larger that the

training data used for CHUMP. From the results obtained from CLAMP it is likely that

a considerable improvement in the performance of CHUMP could be gained by

increasing the size of the training data appropriately. Despite the relatively small

chunk knowledge that CHUMP acquires, CHUMP performs well, suggesting moves

based on an analysis of the chunks found on the board.

 CLAMP compares the effectiveness of the proposed moves with various

chunk parameters, such as chunk size or the relationship between pieces. CLAMP is

not designed to be a chess playing program, but instead, CLAMP is a tool to

investigate the properties of chunks.

178

11. CONCLUSION

11.1 About chunking in chess

The research reported in this thesis describes original work, which seeks to gain

understanding as to the nature of „chunks‟ of chess pieces and their use by skilled

players within the game of chess. The results reported show that chunks are present

in large numbers within the piece configurations of typical chessboards. There are

many chunks that are frequently occurring within chess games, a number of which

have been isolated using CHREST (and supplied by Gobet) or by CLAMP as

described in chapter 5 of this thesis. A simple analysis of the number of chunks found

on the chessboard show that chunks can be associated with the stage of the game in

terms of the number of moves prior to checkmate. The results reported in chapter 5

investigated the connection between the skill of the player and the number of chunks

used in their chess play, however, no significant correlation between player skill and

the number of chunks could be found.

 The program CLAMPanalyser described in chapter 6 analysed chunks in more

detail by associating chunks to the next move of a piece to a position on the

chessboard. Testing the moves played by chess experts with the suggested moves

from CLAMPanalyser consistently gave results that were better than a random

choice of moves. Applying simple heuristics when extracting chunks, such as building

chunks from pieces that are in close proximity, or restricting chunks to pieces that are

in defending relationships, dramatically reduced the number of significant chunks that

were required by CLAMPanalyser to suggest a move. Furthermore, selecting the size

of the chunks (that is, the number of chess pieces that make up the chunk) can

influence the probability of an accurate prediction of the best moves.

 The results obtained from CLAMP and CLAMPanalyser showed that as the

chunk size increased the accuracy of the likelihood prediction improved, however the

179

chance of finding large chunks on a chessboard is small. Chunk sizes of above five

pieces in the mid-game section where rarely repeated from one game to another.

Smaller chunks with, for example, three pieces were prevalent between games.

 Adding additional knowledge to the chunk, such as the knowledge that many

chunks are made from pieces that are in close proximity (cf. page 98), or that many

of the pieces within a chunk are in defending relationships (cf. page 102), will, as

stated above, considerably reduce the number of chunks in the chunk libraries

without loss of accuracy of the move likelihood prediction. A „four by four‟ square

area on the board will reduce the number of chunks in the chunk library to less than

1% of the size when compared to a similar analysis for the whole board area.

Furthermore, considering chunks that consist only of pieces in defending

relationships, the number of chunks contained within the library reduces to 0.5%

compared with the number of chunks within the „whole board‟ library. We can

therefore conclude that chunks of three or four pieces that are in close proximity, or

are in defending relationships with each other, are useful for calculating the likelihood

of a piece to be moved.

 Chapter 8.3 reports a practical application of chunking. It has been possible to

use chunking to order the pieces prior to applying to an alpha-beta search with a

resulting decrease in the number of nodes searched. The reduction in search width

was confirmed with one thousand chessboards, giving credence to the notion that

chunking is an effective method to focus attention on the significant moves. The

application of chunking in this example operates without knowledge of the rules of

chess and used a chunk size of three pieces to a depth of four ply. An average

reduction of 50% in the number of leaf nodes was achieved.

180

11.2 The question this thesis aims to answer

Chunking appears, even in the simplistic context described in this thesis, to yield

reasonable predictive dividends with small chunk library inventories. The results

obtained are consistent with psychological experiments that propose that human

chess players are aware (either consciously or subconsciously) of the existence of

chunks and their presence can direct an expert player to relevant moves. The

research reported adds additional material to the argument for chunking being an

aspect of an expert‟s cognitive processing. The question this thesis is trying to

answer is however more complex. It is not possible to answer the question “does the

utilization of chunks within a chess-playing program provide a plausible model for the

use of chunks by human players” (cf. page 9) with an affirmative, as it is not possible

to draw conclusions about the cognitive processes within a human player from the

experiments in this thesis. However the thesis reports original findings, and therefore

makes an original contribution to knowledge, regarding the nature of chunks within

the chess domain and the plausibility of chunking as a mechanism for directing

attention to relevant chess moves. The findings are indeed indicative, taking into

account human limitations, that chunking is a technically viable process for the

human expert.

The analysis performed and programs written were simplistic in nature,

detecting chunks based on frequency of occurrence and crude heuristics (such as

restricting the formation of chunks to a small area). These simple filters drastically

reduced the number of chunks found, without a loss in accuracy. It is possible that

the advanced „filtering‟ that human expert could perform may select even fewer, but

even more significant chunks. The results, even with the simple filtering, show that

associating chunks with moves is a viable process, albeit with a limited probability,

181

therefore showing that knowledge of chunks can direct attention to moves that are

likely to be played.

 The program „CLAMPanalyser‟ employs a software implementation of a simple

recognition-association technique. The software does not use complex search

heuristics or statistical analysis but by the simple recognition of chunks (within the

chunk libraries) and their associations with moves CLAMPanalyser selects possible

„good‟ moves. The recognition-association theory is a descriptive term used by

Holding to describe chunking as follows:

“In more detail, the recognition-association theory makes the assumption that

chess mastery stems from knowing thousands of chess patterns. Recognition of one

of these patterns during play is said to trigger the memory of an associated plausible

move, which may then be selected or investigated by the player” (Holding 1992).

The results obtained by CLAMP show that this technique is a feasible method for

associating chunks to moves. The only caveat to Holdings definition of recognition-

association is that CLAMP‟s evaluation of moves is based on the recognition of many

chunk patterns. Chunking is proposed to be a framework that “underlies many

aspects of human learning” and if CLAMP models cognitive perceptual chunking then

the research reported in this thesis shows that chunking is achievable with interlinked

and associated memories (Gobet et al. 2001).

The advantage of using a computer program as a tool to investigate chunking is

that the parameters and methods are exactly defined, as opposed to psychological

experiments where the actual cognitive process is unknown. A psychological

experiment may suggest that chunking is evident but the exact cognitive process is

unknown and can only be proposed by inference. CLAMP however shows that

frequently occurring configurations of three to six pieces can be used as an indicator

for a move. CLAMP therefore shows that a human chess player could use a similar

182

method to focus the attention of a chess player onto a few moves. Chunk sizes of

less than seven pieces have been shown to give measurable results which agree

with Miller‟s (1956) hypothesis for chunking in human subjects, indeed chunks sizes

of four or less yield a positive correlation between chunk configurations and the move

made which is consistent with Cowan‟s (2001) paper. The positive results obtained

by CLAMP using chunks of four pieces or less show that Cowan‟s measurements for

human capacity limits are viable within the domain of chess. In addition, the size of

the inventory is within a plausible range when considering the capacity of a human

expert (Gobet and Lane 2010), for example a library consisting of 147,510 five piece

„defensive‟ chunk constellations offers a 15% likelihood of predicting one of the top

four best moves. As mentioned above, the crude heuristics applied to the chunk

library building process, such as only processing pieces that are in close proximity or

pieces that are in defensive relationships, considerably reduce the number of chunks

contained within the chunk libraries. It is plausible that an expert chess player will

acquire chunk knowledge using considerably more efficient heuristics which would

reduce the inventory of chunks even further.

183

12. RECOMMENDATIONS FOR FURTHER WORK

The results reported in this thesis show that chunks are present within chessboard

configurations and, from a very simple analysis of chessboards taken from

tournament games it can be shown that chunks can be used as a differentiator of skill

groups (cf. page 44). Furthermore, by associating chessboards and their constituent

chunks to the move that follows, chunks can be associated with moves. The program

„CLAMP‟ (cf. page 51) was developed to build libraries of chunks that are associated

with moves and the program „CLAMPanalyser‟ (cf. page 82) will list all possible

moves in order of the number of chunks that support the move. In addition to

combining pieces from the entire chessboard, simple heuristics have been applied to

limit the scope of pieces that are grouped into chunks as well as the number of

pieces that make up a chunk (cf. page 92). A filter on which pieces are combined to

make chunks can reduce the number of chunks by over 99% with only a small

decrease in the effectiveness of the process. The additional filtering of chunks is, in

effect, adding knowledge to the chunk, which reduces the number of chunks by

removing many unnecessary chunks from the library without significantly reducing

the accuracy of CLAMPanalysis in selecting moves. Further work with CLAMP could

focus on improving the filtering to restrict the pieces included in building chunks. If a

human chess player performs a similar filtering process then, speculatively, the filter

parameters could for example include knowledge of the rules of the game, and

tactical experience. In this research filters were applied to chunks based on the

proximity of pieces and the defending relationship of pieces. Further work could

research the development of filters that include more aspects of chess knowledge.

 The chunk libraries produced by CLAMP include the move associations and

consequently encapsulate some domain knowledge (cf. page 76). It may be possible

to apply production rule, or expert system, processing techniques to the chunk data.

184

The chunk libraries in this context would be termed the „training set‟ (Liu and White

1991), however, as the training set consists of a very large number of items (the

chessboard contains a large number of chunks) the process may be prohibitively

complex.

 Although CLAMP was developed for chess research it would not be difficult to

modify the program for analysis in other domains, such as image processing and

context aware object recognition. It is understood from literature on “visual cognition

and cognitive neuroscience that the human and animal visual systems use these

relationships [context awareness] to improve their ability of categorization” (Perko

and Leonardis 2010). Using current techniques, image recognition is computationally

complex and is generally considered to be an unsolved problem. Recognition of an

object in the context of its surroundings can in some ways be considered a similar

problem to playing the right move in chess, as for example parallels have been made

between the work of a radiologist and the thinking of a chess master when

diagnosing an x-ray film (Wood 2009). Development of systems employing

recognition / association techniques for image analysis could have practical

applications within fields such as medical diagnosis, robotics and security.

185

13. APPENDICES

13.1. Appendix 1: Summary of results

Library
Type

From
board
area

Chunk
Size

Library size
(chunks)

50% null
hypothesis
%Success

Chunk
success

probability

Top 4
%Success

Top 4
success

‘adjusted’

%
Effect

SE

Area 3x3 2 114943 57.9% 85.1% 12.9% 15.2% 68.0% 7.16%

Area 3x3 3 80819 57.9% 82.0% 16.0% 19.5% 70.6% 9.21%

Area 3x3 4 23855 42.4% 54.2% 16.2% 29.9% 78.2% 11.38%

Area 3x3 5 3944 20.5% 22.3% 10.2% 45.7% 91.9% 20.01%

Area 3x3 6 - - - -

Area 3x3 7 - - - -

Area 4x4 2 253476 57.7% 87.2% 15.7% 18.0% 66.2% 7.81%

Area 4x4 3 343409 59.0% 84.0% 17.7% 21.1% 70.2% 8.87%

Area 4x4 4 210120 52.1% 68.2% 18.5% 27.1% 76.4% 11.39%

Area 4x4 5 85679 39.3 % 49.9% 15.2% 30.5% 78.8% 12.19%

Area 4x4 6 26139 18.6% 21.0% 9.0% 42.9% 88.6% 17.17%

Area 4x4 7 - - - -

Area 5x5 2 453492 63.9% 90.5% 14.5% 16.0% 70.6% 7.16%

Area 5x5 3 998254 59.0% 84.9% 14.8% 17.4% 69.5% 8.62%

Area 5x5 4 1057802 57.5% 78.6% 15.3% 19.5% 73.2% 9.33%

Area 5x5 5 726212 48.1% 65.6% 15.8% 24.1% 73.3% 9.57%

Area 5x5 6 388865 39.0% 51.8% 16.9% 32.6% 75.3% 12.07%

Area 5x5 7 - - -

Area 6x6 2 721550 58.5% 87.5% 12.4% 14.2% 66.9% 7.25%

Area 6x6 3 2593877 61.1% 85.5% 13.1% 15.3% 71.5% 8.34%

Area 6x6 4 4918042 58.7% 84.3% 12.9% 15.3% 69.6% 8.33%

Area 6x6 5 6179518 53.5% 76.3% 14.2% 18.6% 70.1% 8.95%

Area 6x6 6 4621214 39.0% 54.9% 13.0% 23.7% 71.0% 10.78%

Area 6x6 7 - - - -

Area 7x7 2 - - - -

Area 7x7 3 - - - -

Area 7x7 4 14525807 61.2% 84.5% 13.7% 16.2% 72.4% 8.12%

Area 7x7 5 43904506 - - -

Area 7x7 6 - - - -

Area 7x7 7 - - - -

All Board 8x8 2 1261864 69.7% 99.5% 17.0% 17.1% 70.1% 6.27%

All Board 8x8 3 7596060 70.1% 99.5% 16.2% 16.3% 70.5% 7.11%

All Board 8x8 4 27127049 69.7% 99.5% 17.3% 17.4% 70.1% 7.88%

All Board 8x8 5 45646773 39.6% 56.7% 13.9% 24.5% 69.8% 10.72%

All Board 8x8 6 - - - -

All Board 8x8 7 - - - -

Defensive 8x8 2 44266 69.6% 99.5% 12.9% 13.0% 69.9% 6.38%

Defensive 8x8 3 45096 64.4% 95.4% 14.2% 14.9% 67.5% 7.04%

Defensive 8x8 4 119857 66.6% 96.5% 15.0% 15.5% 69.0% 7.57%

Defensive 8x8 5 147510 59.3% 82.5% 15.1% 18.3% 71.9% 8.54%

Defensive 8x8 6 158275 53.8% 71.4% 15.6% 21.8% 75.4% 9.32%

Defensive 8x8 7 129313 33.8% 42.7% 12.4% 29.0% 79.2% 12.07%

Table 12.1: A summary of results from various chunk library scenarios

186

Library
Type

From
board
area

Chunk
Size

(p-1)
percentage

(p-2)
percentage

(p-3)
percentage

(p-4)
percentage

(p-4)
Adjusted

Area 3x3 2 3.9 6.8 9.4 12.9 15.2%

Area 3x3 3 5.3 10.1 13.6 16.0 19.5%

Area 3x3 4 5.8 10.4 14.2 16.2 29.9%

Area 3x3 5 4.0 7.6 8.7 10.2 45.7%

Area 3x3 6 - - - -

Area 3x3 7 - - - -

Area 4x4 2 4.1 9.1 12.3 15.7 18.0%

Area 4x4 3 4.8 9.4 14.1 17.7 21.1%

Area 4x4 4 5.3 10.4 14.1 18.5 27.1%

Area 4x4 5 5.0 8.8 11.7 15.2 30.5%

Area 4x4 6 3.3 5.7 7.4 9.0 42.9%

Area 4x4 7 - - - -

Area 5x5 2 3.5 7.0 10.8 14.5 16.0%

Area 5x5 3 5.0 8.1 10.7 14.8 17.4%

Area 5x5 4 3.8 8.3 11.7 15.0 15.5%

Area 5x5 5 4.7 8.9 12.3 15.8 24.1%

Area 5x5 6 4.0 9.6 13.1 16.9 32.6%

Area 5x5 7 - - - -

Area 6x6 2 3.3 5.9 9.8 12.4 14.2%

Area 6x6 3 3.7 6.5 10.1 13.1 15.3%

Area 6x6 4 3.5 6.0 9.8 12.9 15.3%

Area 6x6 5 4.0 7.8 10.5 14.2 18.6%

Area 6x6 6 4.6 7.6 10.2 13.0 23.7%

Area 6x6 7 - - - -

Area 7x7 2 - - - -

Area 7x7 3 - - - -

Area 7x7 4 3.7 7.1 10.1 13.7 16.2%

Area 7x7 5 - - - -

Area 7x7 6 - - - -

Area 7x7 7 - - - -

All Board 8x8 2 5.2 8.6 12.5 17.0 17.1%

All Board 8x8 3 5.2 9.5 13.2 16.2 16.3%

All Board 8x8 4 5.2 9.7 13.5 17.3 17.4%

All Board 8x8 5 4.2 7.6 10.7 13.9 24.5%

All Board 8x8 6 - - - -

All Board 8x8 7 - - - -

Defensive 8x8 2 3.5 6.2 9.9 12.9 13.0%

Defensive 8x8 3 3.6 7.4 10.2 14.2 14.9%

Defensive 8x8 4 3.8 8.3 11.7 15.0 15.5%

Defensive 8x8 5 4.9 8.6 12.7 15.1 18.3%

Defensive 8x8 6 5.0 9.0 11.7 15.6 21.8%

Defensive 8x8 7 4.0 7.4 10.4 12.4 29.0%

Table 12.2: A summary of 'Top4' moves by analysis type

187

13.2. Appendix 2: The key for the axis: ‘Move to piece/position’.

1 Pg8 41 Pg3 81 Rg4 121 Nd5 161 Bd8 201 Bd3 241 Kd6 281 Kd1 321 Qd4

2 Ph8 42 Ph3 82 Rh4 122 Ne5 162 Be8 202 Be3 242 Ke6 282 Ke1 322 Qe4

3 Pa7 43 Ra8 83 Ra3 123 Nf5 163 Bf8 203 Bf3 243 Kf6 283 Kf1 323 Qf4

4 Pb7 44 Rb8 84 Rb3 124 Ng5 164 Bg8 204 Bg3 244 Kg6 284 Kg1 324 Qg4

5 Pc7 45 Rc8 85 Rc3 125 Nh5 165 Bh8 205 Bh3 245 Kh6 285 Kh1 325 Qh4

6 Pd7 46 Rd8 86 Rd3 126 Na4 166 Ba7 205 Ba2 246 Ka5 286 Qa8 326 Qa3

7 Pe7 47 Re8 87 Re3 127 Nb4 167 Bb7 207 Bb2 247 Kb5 287 Qb8 327 Qb3

8 Pf7 48 Rf8 88 Rf3 128 Nc4 168 Bc7 208 Bc2 248 Kc5 288 Qc8 328 Qc3

9 Pg7 49 Rg8 89 Rg3 129 Nd4 169 Bd7 209 Bd2 249 Kd5 289 Qd8 329 Qd3

10 Ph7 50 Rh8 90 Rh3 130 Ne4 170 Be7 210 Be2 250 Ke5 290 Qe8 330 Qe3

11 Pa6 51 Ra7 91 Ra2 131 Nf4 171 Bf7 211 Bf2 251 Kf5 291 Qf8 331 Qf3

12 Pb6 52 Rb7 92 Rb2 132 Ng4 172 Bg7 212 Bg2 252 Kg5 292 Qg8 332 Qg3

13 Pc6 53 Rc7 93 Rc2 133 Nh4 173 Bh7 213 Bh2 253 Kh5 293 Qh8 333 Qh3

14 Pd6 54 Rd7 94 Rd2 134 Na3 174 Ba6 214 Ba1 254 Ka4 294 Qa7 334 Qa2

15 Pe6 55 Re7 95 Re2 135 Nb3 175 Bb6 215 Bb1 255 Kb4 295 Qb7 335 Qb2

16 Pf6 56 Rf7 96 Rf2 136 Nc3 176 Bc6 216 Bc1 256 Kc4 296 Qc7 336 Qc2

17 Pg6 57 Rg7 97 Rg2 137 Nd3 177 Bd6 217 Bd1 257 Kd4 297 Qd7 337 Qd2

18 Ph6 58 Rh7 98 Rh2 138 Ne3 178 Be6 218 Be1 258 Ke4 298 Qe7 338 Qe2

19 Pa5 59 Ra6 99 Ra1 139 Nf3 179 Bf6 219 Bf1 259 Kf4 299 Qf7 339 Qf2

20 Pb5 60 Rb6 100 Rb1 140 Ng3 180 Bg6 220 Bg1 260 Kg4 300 Qg7 340 Qg2

21 Pc5 61 Rc6 101 Rc1 141 Nh3 181 Bh6 221 Bh1 261 Kh4 301 Qh7 341 Qh2

22 Pd5 62 Rd6 102 Rd1 142 Na2 182 Ba5 222 Ka8 262 Ka3 302 Qa6 342 Qa1

23 Pe5 63 Re6 103 Re1 143 Nb2 183 Bb5 223 Kb8 263 Kb3 303 Qb6 343 Qb1

24 Pf5 64 Rf6 104 Rf1 144 Nc2 184 Bc5 224 Kc8 264 Kc3 304 Qc6 344 Qc1

25 Pg5 65 Rg6 105 Rg1 145 Nd2 185 Bd5 225 Kd8 265 Kd3 305 Qd6 345 Qd1

26 Ph5 66 Rh6 106 Rh1 146 Ne2 186 Be5 226 Ke8 266 Ke3 306 Qe6 346 Qe1

27 Pa4 67 Ra5 107 Nf7 147 Nf2 187 Bf5 227 Kf8 267 Kf3 307 Qf6 347 Qf1

28 Pb4 68 Rb5 108 Ng7 148 Ng2 188 Bg5 228 Kg8 268 Kg3 308 Qg6 348 Qg1

29 Pc4 69 Rc5 109 Nh7 149 Nh2 189 Bh5 229 Kh8 269 Kh3 309 Qh6 349 Qh1

30 Pd4 70 Rd5 110 Na6 150 Na1 190 Ba4 230 Ka7 270 Ka2 310 Qa5

31 Pe4 71 Re5 111 Nb6 151 Nb1 191 Bb4 231 Kb7 271 Kb2 311 Qb5

32 Pf4 72 Rf5 112 Nc6 152 Nc1 192 Bc4 232 Kc7 272 Kc2 312 Qc5

33 Pg4 73 Rg5 113 Nd6 153 Nd1 193 Bd4 233 Kd7 273 Kd2 313 Qd5

34 Ph4 74 Rh5 114 Ne6 154 Ne1 194 Be4 234 Ke7 274 Ke2 314 Qe5

35 Pa3 75 Ra4 115 Nf6 155 Nf1 195 Bf4 235 Kf7 275 Kf2 315 Qf5

36 Pb3 76 Rb4 116 Ng6 156 Ng1 196 Bg4 236 Kg7 276 Kg2 316 Qg5

37 Pc3 77 Rc4 117 Nh6 157 Nh1 197 Bh4 237 Kh7 277 Kh2 317 Qh5

38 Pd3 78 Rd4 118 Na5 158 Ba8 198 Ba3 238 Ka6 278 Ka1 318 Qa4

39 Pe3 79 Re4 119 Nb5 159 Bb8 199 Bb3 239 Kb6 279 Kb1 319 Qb4

40 Pf3 80 Rf4 120 Nc5 160 Bc8 200 Bc3 240 Kc6 280 Kc1 320 Qc4

Table 12.3: Key for the axis ‘Move to piece/position’ for figures 6.9, 6.10 and 6.11.

188

13.3. Appendix 3: Supplementary media

A disc is attached to this thesis25 containing the following components:

 Source files

 Data (including chunk libraries)

 Executable programs

The folders and their contents are described below.

13.4. CLAMPanalyser

The CLAMPanalyser folder contains an application „CLAMPanalyser.exe‟ which runs

on a PC under the Windows operating system. The program allows the user to enter

a chessboard configuration in FEN format and select a chunk library.

CLAMPanalyser will assemble the chunks on the chessboard and score each move.

The program lists all possible moves26, in order of moves with the highest number of

supporting chunks, and scaled by the „move rareness‟ figure. Moves are listed in

descending order in the area named „Moves scored here‟.

To use the program do the following:

1. Enter a chessboard in FEN format in the text box under the heading:

Enter the chessboard FEN here:

2. Use the scroll bar on the right of the list box titled:

Double click on the library file here:

To select a library file double click on the file to begin the analysis.

25

 Instructions on how to obtain the data are available via an Internet search for the string:
„CHUNKING-DATA-ANDREWCOOK‟
26

 For simplicity en passant pawn moves, promotions and castling are not supported in CLAMPs
repertoire of possible moves.

189

3. Wait for the progress bar to complete. The results of the analysis showing

each move is listed within the list box entitled:

Moves scored here:

A screen-shot of CLAMPanalyser program is show below:

Figure 12.1: CLAMPanalyser program screen-shot

The results displayed in the „moves scores here‟ window show each move starting

and ending position and the number of chunks that support this move. The score is

based on the number of chunks supporting the move divided by the move rareness-

scaling factor.

190

13.4.1. The library naming convention for the CLAMPanalyser program

A library is a set of files, each file corresponding with the arrival of a piece to a

square. The set of files are contained within a folder and the folder name describes

the type of library.

A typical folder name is as follows:

_08x08_area_02_piece_defending_Library_44266

The folder name is constructed as follows:

1. _08x08_area denotes the board area used to restrict the pieces that make up

a chunk. An „08x08_area’ denotes the whole board area.

2. _02_piece denotes the number of pieces that make up the chunks. _02_piece

indicates that the library is composed of two-piece chunks.

3. _Defending, (if present) denotes that the chunks within the library are made

from pieces in defending relationships with each other.

4. _Library denotes that this folder is a library.

5. _44266 (if present) shows the total number of chunks that make up the library.

191

13.4.2. Counting the number of chunks in a chunk library

A copy of executable program „CountCks.exe‟ is present in each of the library folders.

The program will count the number of chunks in the library folders. To use the

program enter the chunk size used by the library and click on the „count‟ button. The

program will count the number of chunks in each library file and display the sum.

Note that within the library file chunks are not duplicated however some of the same

chunks may appear in several of the library files within a library folder.

Figure 12.2: Screen-shot of the program CountCks.exe

192

13.4.3 The LibraryComparator

The LibraryComparator folder contains two executable programs that can be used to

compare the output from the CLAMPanalyser program. The executable programs are

designed to run on a PC under the Windows operating system. The

LibraryComparator program compares the move scores from one thousand sample

typical chessboard configurations from the mid-game of tournament games between

Master players, with the actual move that was played. Move scores for each of the

test chessboards and the actual move played were previously compiled by

CLAMPanalyser using each of the chunk libraries, with a naming convention for the

analysis files similar to the convention adopted for the libraries.

 In addition to comparing the libraries the „move rareness‟ (cf. page 89) scalar

can be enabled. To analyse a file simply „double-click‟ on the required file. The

process will run and results reported in the text box at the bottom of the form.

 A screen shot of the LibraryComparator program is shown below:

Figure 12.3: The LibraryComparator screen shot

193

The percentage success point (otherwise known as the „null hypothesis‟ point (cf.

page 86)) can be adjusted by entering a percentage into the box at the top right of

the form.

13.4.4 The output from the LibraryComparator program

The results shown in the text box at the bottom of the form show the following fields:

Sample The number of test chessboard configurations tested

Scored: The number of test chessboards that had one or more chunks
associated with a move.

Success The number of instances that the ordered list from CLAMP
placed the actual move played above the „percentage success
point.

Failed The number of instances that the ordered list from CLAMP
placed the actual move played on or below the „percentage
success point.

%Success The number of successes / the number of the sample boards

Adjusted The number of successes / the number of boards scored

Table 12.4: The output fields from the LibraryComparator program.

194

13.4.5 The ‘TopMovesComparator’ program

The TopMovesComparitor program will show the results of the analysis of one

thousand sample typical chessboard configurations from the mid-game of

tournament games between Master players, displaying the number of boards were

that the actual move played was one of the moves in the top positions of

CLAMPanalyser‟s ordered list.

 TopMovesComparator allows analysis with, or without, the „move rareness‟

scaling factor.

Figure 12.4 The 'TopMovesComparator' program screen-shot

195

13.4.6 The output from the TopMovesComparator program

The results shown in the text box at the bottom of the form show the following fields:

Sample The number of test chessboard configurations tested.

p-1 The number of instances where the move played by the chess
player is within the top position in CLAMPanalyser‟s ordered
list output.

p-2 The number of instances where the move played by the chess
player is within the top two positions in CLAMPanalyser‟s
ordered list output.

p-3 The number of instances where the move played by the chess
player is within the top three positions in CLAMPanalyser‟s
ordered list output.

p-4 The number of instances where the move played by the chess
player is within the top four positions in CLAMPanalyser‟s
ordered list output.

Table 12.5: The output fields from the LibraryComparator program

13.4.7 SourceCode

The SourceCode folder contains the C++ source files for the CLAMP program. The

project compiles under the mpiCC compiler to run on a cluster computer under the

UNIX operating system.

Two sub-folders exist within this folder:

_CLAMP

The source files to build CLAMP are as follows:

clamp.cpp

CalcMoves.cpp

GenLibs.cpp

clamp.h

prototypes.h

GenLibs.h

CalcMoves.h

196

A makefile is included, the contents of which is as follows:

Makefile

SRC = clamp.cpp GenLibs.cpp CalcMoves.cpp

TRG = clamp

$(TRG): $(SRC)

 mpiCC -Wall -O2 $(SRC) -o $(TRG)

all:

 $(MAKE) $(TRG)

clean:

 rm -f *~ core *.o *.s $(TRG)

_CLAMPanalysis

The source files to build CLAMPanalysis are as follows:

analyse.cpp

analyse.h

stats.cpp

stats.h

A makefile is included, the contents of which is as follows:

Makefile
SRC = analyse.cpp stats.cpp
TRG = analyse

$(TRG): $(SRC)
 mpiCC -Wall -O2 $(SRC) -o $(TRG)

all:
 $(MAKE) $(TRG)

clean:
 rm -f *~ core *.o *.s $(TRG)

197

13.4.8 Collections_MoveTo

This folder contains the collection of one thousand chessboards for all moves to a

position. The file names of the contents reflect the position that the piece was moved

to after the piece was played, for example, a move of the Bishop to square 09

(numbering the chessboard from the top left corner as shown in table 12.6 below)

would be:

B09_SOURCE.MAP

The format of the file is shown below:

Q........B...bk....q.np...p.nr.....p...PP..P...P.rP.R.N.....R..K

......k.pBpbrn.p.p.p..p...........P........P..P.P.P...KP..B..R..

....rrk.pB....pp.p.......Pp..pQ.P.........q.n.P...P....P....RRK.

.........B..rp.....k..p........p.......P...P.KP......P..........

.........B......p.....k..p....p.rP....K..R............P.........

.........B......p........pK.....kP..............................

.r.q.rk.pB.....p.n..npp..pp.p.........NP..PP..P.PP.QNP..R....RK.

..

Each line represents a chessboard. The period character represents a blank square.

Pieces are represented as follows:

P=Pawn, R=Rook, N=knight, B=Bishop, K=King, Q=Queen

Upper-case characters are white pieces and lowercase characters are black pieces.

The squares are sequenced from the top left corner reading to the right and then

down as shown in table 12.6:

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

Table 12.6: Chess square numbering

198

13.4.9 Collections_MoveFrom

This folder contains the collection of one thousand chessboards for all moves from a

position. The file names of the contents reflect the position that the piece was moved

from. The file naming convention and format of the contents is identical to the

Collections_MoveTo collection.

199

14. BIBLIOGRAPHY

Berliner H. and Campbell M., (1984) “Using Chunking to solve chess pawn endgames”.
Artificial Intelligence, Volume 23, Issue 1, May 1984, pp. 97-120

Beverly P. Wood M. D., MS (2009) Visual Expertise, Radiology, September 2009, 252 (3)

Bilalic, M., McLeod, P., & Gobet , F. (2009). Specialization effect and its influence on memory and
problem solving in expert chess players. Cognitive Science, 33, 1117-1143.

Binet A. (1896/1996) Psychologie des grands calculateurs et joururs d‟echecs. Paris: Hachette.

Bird. S., Klein E., Loper E. Natural language processing with Pytho, O'Reilly Media, Inc., 2009, ISBN:
0596516495, 9780596516499. Page 264

Campbell M, Hoane A. J. Jr. and Hsiung-Hsu F., (2002) “Deep Blue”, Artificial Intelligence, Volume
134, Issues 1-2, January 2002, pp. 57-83

Campitelli G, Gobet F, and Amanda Parker A. (2005), Structure and Stimulus Familiarity: A Study of
Memory in Chess-Players with Functional Magnetic Resonance Imaging, The Spanish Journal of
Psychology 2005, Vol. 8, No. 2, 238-245, ISSN 1138-7416

Campitelli G, Gobet F, Head K, Buckley M, and Parker A., (2007), Brain Localization Of Memory
Chunks In Chess players, International Journal Of Neuroscience, 2007, Vol. 117, No. 12, Pages 1641-
1659

Charness N, Reingold, Pomplun, Stampe, (2001) The Perceptual Aspect Of Skilled Performance In
Chess: Evidence From Eye Movements, Memory & Cognition, 2001, 29 (8), 1146-1152

Charness N. Reingold E. M., Pomplun M. and Stampe D. M., (2001) “Visual Span in Expert Chess
Players: Evidence From Eye Movements”, Psychological Science, Volume 12 Issue 1 pp. 48 (January
2001)

Chase S., (2000) Pigeons and the Magical Number Seven, Papiere zur Linguistik 62/63, 2000, pp 3-
14. The magical number seven in language and cognition: empirical evidence and prospects of future
research, Gertraud Fenk-Oczlon and August Fenk, University of Klagenfurt

Chase W. G. and Simon H. A., (1973a) “Perception in chess”. Cognitive Psychology, Vol 4, Issue 1,
January 1973, pp. 55-81

Chase W. G. and Simon H. A., (1973b) The mind's eye in chess. W. Chase (ed.), Visual information
processing. New York: Academic Press, 215-281.

Cohen J. S., Westlake K. and Pepin M., (2001) ”High order chunking in serial pattern learning by rats
in the T-maze”, Learning and Motivation, 32, pp. 409-433,

Cooke N. J. Atlas R. S. Lane D. M., Berger R, C, (1993) “Role of High-Level Knowledge in Memory for
Chess Positions “ The American Journal of Psychology, Vol. 106, No. 3 (Autumn, 1993), pp. 321-351,
University of Illinois Press

Cowan N. (2001) The magical number 4 in short-term memory: A reconsideration of mental storage
capacity. Behavioural Brain Sciences 24:87–114.

de Groot A. and Gobet F., (1996) Perception and Memory in Chess, Studies in the Heuristics of the
Professional Eye, Van Gorcum 1996, ISBN 90 232 2949 5, pp 153

de Groot, A. D., (1965, 1978) Thought and choice in chess, (2nd Edition) Mouton and Co, The Hague,
Paris. (Original edition 1965)

de Groot A. D. Gobet F., (1996) Perception and Memory in Chess, Van Gorcum & Comp. B.V., P.O.
Box 43, NL-9400 AA Assen, The Netherlands. ISBN 90 2332 2949 5 (pp. 220)

200

Ericsson K. A., & Harris M. S., (1990, November). Expert chess memory without chess knowledge: A
training study. Paper presented at the 31st Annual Meeting of the Psychonomic Society, New Orleans,
Louisiana.

Ericsson K. A. and Kintsch W., (1995) Long-term working memory. Psychological review, 102, 211-
245.

Feigenbaum E. A. and Simon H. A., (1984) "EPAM-like models of recognition and learning", Cognitive
Science, Volume 8, Issue 4, October-December 1984, pp. 305-336

Feigenson L. and Halberda J., (2004) “Infants chunk object arrays into sets of individuals”. Cognition
91 pp. 173-190

Fenk-Oczlon and Fenk, (2000) pp 3-14. The magical number seven in language and cognition:
empirical evidence and prospects of future research, Gertraud Fenk-Oczlon and August Fenk,
University of Klagenfurt

Finkelstein L. and Markovitch S., (1998) Learning to play chess selectively by acquiring move
patterns. Computer Science Department, Technion, Haifa 32000, Israel.

Fountain S. and Benson D., (2006) Chunking, rule learning, and multiple item memory in rat
interleaved serial pattern learning , Learning and Motivation, Volume 37, Issue 2, May 2006, Pages
95-112

Frayn C., Justiniano C., Lew K., (2006) ChessBrain II – A Hierarchical Infrastructure for Distributed
Inhomogeneous Speed-Critical Computation, 2006 IEEE Symposium on
Computational Intelligence and Games (CIG06)

Gobet, F. and Charness N., (2006) Chess and games. Cambridge handbook on expertise and expert
performance (pp. 523-538). Cambridge, MA: Cambridge University Press. (http://www.cambridge.org/)

Gobet F. and Clarkson G. (2004) Chunks in expert memory: evidence for the magical number four ...
or is it two? Memory. 2004 Nov;12(6):732-47.

Gobet F., (1998) Pattern Recognition Makes Search Possible: Comments on Holding (1992), ESRC
Centre for Research in Development, Instruction and Training, University of Nottingham

Gobet F. and Jansen P., (1994) Towards a chess program based on a model of human memory. In H.
J. van den Herik, I. S. Herschberg, & J. W.Uiterwijk (Eds.), Advances in Computer Chess 7.
Maastricht: University of Limburg Press.

Gobet F. and Simon H. A., (1996) Recall of random and distorted positions: Implications for the theory
of expertise. Memory & Cognition, 24, 493-503.

Gobet F. and Simon H. A., (1996) The roles of recognition processes and look-ahead search in time-
constrained expert problem solving: Evidence from grandmaster level chess. Psychological Science,
7, 52-55.

Gobet, F., & Simon, H. A. (1996). Templates in chess memory: A mechanism for recalling several
boards. Cognitive Psychology, 31, 1-40.

Gobet F. and Simon H. A. (1998) Expert chess memory: Revisiting the chunking hypothesis. Memory,
6, 225-255.

Gobet, F. and Simon, H. A. (2000) Five seconds or sixty? Presentation time in expert memory.
Cognitive Science, 24, 651-682.

Gobet F., Peter C. R., Lane Steve Croker, Peter C-H. Cheng, Gary Jones, Iain Oliver and Julian M.
Pine, (2001) Chunking mechanisms in human learning, TRENDS in Cognitive Sciences, Vol 5, No 6,
June 2001, ESRC Centre for Research in Development, Instruction and Training, School of
Psychology, University Park, Nottingham, UK NG7 2RD

http://www.cambridge.org/

201

Gobet, F. (2001). Is experts' knowledge modular? In Proceedings of the 23rd Meeting of the Cognitive
Science Society (pp. 336-431). Mahwah, NJ: Erlbaum.

Gobet F. and Jackson S., (2002) “In search of templates”, Cognitive Systems Research, Volume 3, pp.
35-44, (2002)

Gobet F., (1998) Pattern Recognition Makes Search Possible: Comments on Holding (1992), ESRC
Centre for Research in Development, Instruction and Training, University of Nottingham.

Gobet F. and Jansen P., (1994) “Towards a chess program based on a model of human memory”. In
H. J. van den Herik, I. S. Herschberg, and J. W.Uiterwijk (Eds.), Advances in Computer Chess 7.
Maastricht: University of Limburg Press.

Gobet F., Lane P., (2010) The CHREST Architecture of Cognition: The Role of Perception in General
Intelligence. Advances in Intelligent System Research, March 2010. ISBN: 978-90-78677-36-9

Grover C. and Tobin R., Rule-Based Chunking and Reusability, School of Informatics University of
Edinburgh

Holding D. H., (1985) The Psychology of Chess Skill Lawrence Erlbaum Assoc. 1985

Holding D. H., (1989) The American Journal of Psychology, Vol 102, No 1 (Spring 1989), pp 103 –
108, University of Illinois Press

Holding D. H., (1992) Theories of chess skill, Psychological Research, March Vol 54(1) pp. 10 - 16

Jongman R. W. (1968) Het oog van de meester [The eye of the master]. Assen, The Netherlands: Van
Gorcum.

Kennedy, W.G., & Trafton, J.G. (2006) Long-term Learning in Soar and ACT-R. In Proceedings of the
Seventh International Conference on Cognitive Modeling (pp. 166-171). Trieste, Italy.

Knuth and Moore. (1975), An Analysis of the Alpha-Beta Pruning, Artificial Intelligence, vol 6 pp 293-
326

Laird J. E., Rosenbloom, P.S., Newell, Towards Chunking as a General Learning Mechanism. AAAI-
84 Proceedings. 1984

Laird J. E., Rosenbloom, P.S., Newell A., Chunking in Soar: The Anatomy of a General Learning
Mechanism, Machine Learning 1: 11-46, Kluwer Academic Publishers, Boston. Manufactured in The
Netherlands. 1986,

Lane. P. C. R., Gobet. F., Perception in chess and beyond: Commentary on Linhares and Freitas
(2010), New Ideas in Psychology (20 September 2010)

Linhares A. (2008) Decision-making and strategic thinking through analogies (unpublished)

Linhares and Freitas, 2010 A. Linhares and A.E.T.A. Freitas, Questioning Chase and Simon‟s (1973)
„„perception in chess‟‟: the „„experience recognition‟‟ hypothesis, New Ideas in Psychology 28 (2010),
pp. 64–78.

Liu W.Z. and White A.P., (1991) A Review of Inductive Learning, in I.M.Graham and R.W. Milne,
Research and Development in Expert Systems VIII, Proc. of Expert Systems 91, Cambridge Univ.
Press, London, pp.112-126,1991.

Logie and Gilhooly K. (eds.), Working memory and thinking. Hove: Psychology Press. 1998, pp 115 -
138

Markovitch. (1998), ICCA Journal, Volume 21: Number 2 (June 1998) Learning to Play Chess
Selectively by Acquiring Move Patterns. Lev Finkelstein and Shaul Markovitch. pp 100-119.

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VD4-512DD3G-1&_user=122868&_coverDate=09%2F20%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1615140765&_rerunOrigin=google&_acct=C000010083&_version=1&_urlVersion=0&_userid=122868&md5=157d916c2ae1f36549485b685c4a1a98&searchtype=a#bbib27

202

McCarthy J., (1997). AI as sport. Science, vol 276, June 1997, pp.1518-1519

McGregor S. J. and Howes, (2002) The role of attack and defence semantics in skilled players'
memory for chess positions. Memory and Cognition. Vol 30 No 5, pp. 707-717

Miller G. A., (1956) The magic number seven, plus or minus two: some limits in our capacity for
processing information. Psychological Review 1956, 61, pp. 81-97

Nilsson N. J., (1998), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers Inc, San
Francisco. ISBN 1-55860-535-5, pp 207

Perko R., Leonardis A., (2010), A framework for visual-context-aware object detection in still images,
Computer Vision and Image Understanding 114 (2010) 700–711

Reynolds R., (1992), Recognition of Expertise in Chess Players, The American Journal of Psychology,
Vol. 105, No. 3 (Autumn, 1992), pp. 409-415 University of Illinois Press.

Ross, Philip E., (2006), The Expert Mind, Scientific American Magazine (August).

Saariluoma P., (1991), Aspects of skilled imagery in blindfold chess. Acta Psychologica, 77(1), 65-89.

Saariluoma P., (1994), Location coding in chess. Quarterly Journal of Experimental

Saariluoma P. (1995), Chess Players' Thinking: A Cognitive Psychological Approach, Routledge,
1995, ISBN 0415120799, 9780415120791

Saariluoma, P. (1998), Adversary problem solving and working memory. In R. Logie & K. Gilhooly
(eds.), Working memory and thinking. Hove: Psychology Press. pp 115 – 138

Saariluoma P. (2001), Psicológica (2001), 22, 143-164. Chess and content-oriented psychology of
thinking, Pertti Saariluoma, University of Helsinki, Finland.

Servan-Schreiber E. and Anderson J. R., Learning Artificial Grammars with Competitive Chunking,
Journal of Experimental Psychology: Copyright 1990 by the American Psychological Association, Inc.
Learning, Memory, and Cognition 0278-7393/90 1990, Vol. 16, No. 4, 592-608

Shannon C. E. (1950) Programming a Computer for Playing Chess. Philosophical Magazine, Ser.7,
Vol 41, No. 314 - March 1950. XXII.

Simon and Barenfield., (1969) Information-processing analysis of perceptual. processes in problem
solving. Psychological Review, 76, 473-483.

Simon H. A. and Gilmartin K., A Simulation for chess positions, Cognitive Psychology, 5 (1973) pp. 29-
46

Simon H. A. (1981). The sciences of the artificial, MIT Press Cambridge MA.

Terrace HS, (1987), Chunking by a pigeon in a serial learning task, Nature. January 1987, pp. 8-14

Terrace, H. (2001). Chunking and Serially Organized Behaviour in Pigeons, Monkeys and Humans. In
R. G. Cook (Ed.), Avian visual cognition. [On-line]. Medford, MA: Comparative Cognition Press;
available: www.pigeon.psy.tufts.edu/avc/

Tichomirov G. K., and Poznyanskaya E. D., (1966) An investigation of visual search as a means of
analyzing heuristics. Voprosy Psikhologii, 1966, 12, 39-53.

Walczak S. (1992). Pattern Based Tactical Planning, International Journal of Pattern Recognition and
Artificial Intelligence (IJPRAI) Volume 6 No 5, Year 1992, pp 955-988

Wilkins D. (1980). Using patterns and plans in chess, Artificial Intelligence, Vol 14. pp. 165-203

