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ABSTRACT 

 

Adriaan de Groot, the Dutch psychologist and chess Master, argued that “perception 

and memory are more important differentiators of chess expertise than the ability to 

look ahead in selecting a chess move” (Groot 1978). A component of expertise in 

chess has been attributed to the expert having knowledge of „chunks‟ and this 

knowledge gives the expert the ability to focus quickly on “good moves with only 

moderate look-ahead search” (Gobet and Simon 1998). The effects of chunking in 

chess are widely reported in the literature, however papers reporting the nature of 

chunks are largely based on inference from psychological experimentation. This 

thesis reports original work resulting from extensive data mining of a large number of 

chessboard configurations to explore the nature of chunks within the game of chess 

and the associated moves played by expert chess players. The research was 

informed by work in the psychology of chess and explored with software engineering 

techniques, employing large datasets consisting of transcripts from expert players 

games. The thesis reports results from an analysis of chunks throughout the game of 

chess, explores the properties of meaningful chunks and reports effects of the 

application of chunk knowledge to move searching. 
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1. INTRODUCTION 
 
The Russian mathematician Alexander Kronrod in 1965 described chess as the 

“Drosophila of artificial intelligence” (McCarthy 1997). Drosophila is a genus of fruit 

fly, one species of which is famously known for use in genetics experimentation. The 

Drosophila has as a result become synonymous with scientific experiments.  A 

sentiment similar to Kronrod‟s was expressed by Saariluoma (1998) “Chess has 

been, and to some extent still is, at the forefront of adversary problem-solving 

research. It just happens to be a well-defined task environment, which nevertheless 

provides information about complex problem-solving processes, and this is why it has 

been used for decades as the fruit fly of thought psychology”. Saariluoma (op. cit.) 

described chess as a “compact and easily controllable task environment” and the 

game “a mental contest between two individuals with each move the result of careful 

thought.”  Saariluoma (1995) also describes chess as “a two player game with 

perfect information and no chance moves. This means that a position in chess 

contains all the information that is needed to make a correct choice of move.” Chess 

therefore lends itself to studies in thinking and problem solving. For this reason chess 

has frequently been a tool for psychological research into human thinking and 

expertise  (Charness 1981, Chase and Simon 1973a, 1973b, de Groot 1965, 1978, 

1998, de Groot and Gobet 1996, Finkelstein and Markovitch 1998, McGregor and 

Howes 2002, Gobet and Jansen 1994, Gobet et al. 2001, Jongman 1968, Reynolds 

1992, Saariluoma 1998, 2001, Simon and Barenfield 1969, Simon and Gilmartin 

1973). 

This thesis reports the use of the game of chess to look at an interesting 

aspect of cognitive functionality. Miller (1956) proposes that the human short-term 

memory has the capacity to remember seven, plus or minus two, items 

simultaneously. The finding is intriguing when considering the capacity of long-term 
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memory and other capabilities of the human brain (Gilhooly and Logie 1998) and 

Saariluoma (1998) describe the union of short term and long-term memory: “the small 

capacity of the working memory can be circumvented by using long-term working 

memory” (Ericsson and Kintsch, 1995). “This collaboration of the two main memory 

systems is undoubtedly a very important mechanism” (Saariluoma op. cit.). 

Furthermore, according to Miller (op. cit.), items are grouped in long-term memory in 

„chunks‟, chunks being items that are grouped together by some common factor. 

Miller (op. cit.) illustrates the above point as follows “A man just beginning to 

learn radio telegraphic code hears each dit and dah as a separate chunk. Soon he is 

able to organise these sounds into letters and then he can deal with the letters as 

chunks. Then the letters organise themselves as words, which are still larger chunks, 

and he begins to hear whole phrases… I am simply pointing to the obvious fact that 

the dits and dahs are organised by learning into patterns and that as these larger 

chunks emerge the amount of message that the operator can remember increases 

correspondingly. In the terms I am proposing to use, the operator learns to increase 

the bits per chunk.” 

 

A person‟s learning and expertise, in this context, is therefore an exercise in 

increasing chunk knowledge. 

Chunking is not restricted to human cognition. Research on pigeons shows 

evidence that pigeons have an ability to cluster five element lists into distinct groups 

implying that the pigeon can „chunk‟ items in long term memory, albeit with a short 

term memory limitation of five items (Chase 2000, Terrace 1987). The point is also 

made by Terrace that chunking in this instance is being performed in a brain that is 

void of „linguistic competence‟. Rats (Cohen et al. 2001, Fountain and Benson 2006) 

and monkeys (Terrace 1987) also show evidence for chunking when learning. 
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Regarding human learning and expertise, chess has been used as the 

experimental „fruit fly‟ for psychological study. As a medium for research chess has 

advantages. 

The chessboard consists of just sixty-four squares with a maximum of thirty-

two chess pieces comprising of six types, each type with defined rules on how the 

piece can move and relate with other pieces. The starting point is always the same 

and the objective is clearly defined: to checkmate the opposing king. “The rules of 

chess are sufficiently simple that children can be taught them at a very young age 

(four or five years old)” (Gobet and Charness, 2006), Yet despite the small number of 

parameters that define the game, chess provides a hugely variable system with a 

vast number of possible board configurations. The number of different games that 

can be played has been estimated at about 10120. This number, known as the 

„Shannon number‟ after Claude Shannon (1950) who first estimated it, is described 

by Shannon as „conservative‟.  This hugely variable output provides a „fine grained‟ 

system that can be precisely analysed by virtue of the small number of parameters 

that define the game. 

Data from chess games are easy to acquire. Many hundreds of thousands of 

tournament games between experts, Masters and Grandmasters showing each move 

played have been recorded and catalogued, and are easily downloadable from the 

Internet in a standard file format. From this wealth of information it is possible to gain 

a glimpse into some of the processes that craft human thought.  Or put another way, 

chess research provides “good empirical evidence on some issues including the 

relation of memory and problem-solving which has very seldom, if at all, been 

researched in other task environments” (Saariluoma 2001). 

Chunking and the acquisition of expertise is an area of research that has been 

explored in chess (Charness 1981, Chase and Simon 1973a, 1973b, de Groot 1978, 
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1965, de Groot and Gobet 1996, Gobet 1998, Gobet et al. 2001, Holding 1992, 

Jongman 1968, Ross 2006, Saariluoma 1980, 1998, 2001, Simon and Barenfield 

1969, Simon and Gilmartin 1973, McGregor and Howes 2002). The skill of players is 

measured and documented in tournament games, and comparisons between players 

is relatively simple. Experiments to look for evidence of chunking in chess are also 

numerous. In addition there have been a number of computer programs that search 

for chunks or simulate chess play with chunks (Berliner and Campbell 1984, Gobet 

and Jansen 1994, Walczak 1992). There is however little detail about what actually 

constitutes a chunk with respect to chess play.  

 

1.1. Chunking and other areas of artificial intelligence 

The term „chunking‟ is used in other areas of artificial intelligence research in relation 

to machine learning, however the meaning of the term is not universal across all 

areas.  The program „Soar‟ for example, uses the term „chunking‟ for “a learning 

mechanism that acquires rules from goal-based experience” with the “acquisition and 

use of macro-operators” (Laird, Rosenbloom and Newell 1986). The use of the term 

„chunking‟ in this context is referring to the linking together of rules. ‟Chunks‟ within 

the context of Soar are solutions to sub-problems. Within Soar‟s operation “when 

Soar does not have the knowledge to provide a solution it establishes a sub-problem  

The solution to a sub-problem is saved as learned production, which can be termed 

„a Soar chunk‟ (Kennedy and Trafton 2006). By grouping together rules chunking in 

Soar “leads to performance improvements” (Laird, Rosenbloom and Newell 1984). 

Soar takes a „top down‟ approach to problem solving. Sub-rules are added 

only when there is an impasse and the higher production rules do not provide a 

solution. CLAMP on the other hand, is bottom up, building relationships between 

chunks and actions. In the context of chess chunks are configuration of chess pieces 
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on the chessboard which is different to chunks in Soar - which are the linking 

together of production rules.  

In other applications the term „Chunking‟ can be used in the context of 

breaking up complex data in to smaller components, for example chunking within the 

HTTP protocol refers to the process of breaking a large message into smaller 

messages. Within the field of natural language processing the term „chunking‟ refers 

to the breaking up of a sentence into short phrases for identification of parts of 

speech. Chunking is sometimes referred to as „shallow parsing‟ as it can break up a 

sentence, for example into noun phrases, locations and names, without constructing 

a full parse tree (Bird, Klein and Loper 2009). 

The term „Chunking‟ can therefore have various meanings, depending of the 

application or area of research. In this thesis the term „chunking‟ refers to the process 

whereby chess pieces are combined into groups. A „chunk‟ is simply a group of some 

of the chess pieces that appear on a chessboard and the action of „chunking‟ is the 

grouping together of chess pieces. The research reported in this thesis is based on 

the analysis of the chess piece chunks. 

 

 

 

 

 

 

 

 



6 
 
 

2. THE QUESTION THIS STUDY AIMS TO ANSWER 
 
“While current computers search for millions of positions a second, people hardly 

ever generate more than a hundred. Nonetheless, the best human chess players are 

still as good as the best computer programs. Although this model operates 

excellently in computer programs, it has very little realism where human thinking is 

concerned. It is probabilistic and in most task environments the generation of all 

possibilities even to the depth of one „move‟ is unrealistic. In making an investment 

decision, for example, one cannot normally generate all imaginable ways to invest 

and heuristically select the best: there simply exist too many ways to make the 

decision. This is why heuristic search models are too coarse to be realistic models of 

the mind. Much more sophisticated analysis is required in order to explain human 

problem-solving behaviour” (Saariluoma 1998). 

 

The research reported within this thesis is a study of „chunking‟ in the constellations 

of pieces on the board within the game of chess. Chase and Simon (1973b) link 

expertise in a domain, including expertise in chess, with knowledge of chunks as a 

mechanism employed by the human expert (as opposed to performing an evaluation 

of all possible moves), however, the question whether chunking can be linked to 

chess skill is open to debate.  Holding (1985) argues against the notion that chunk 

knowledge is linked to skill but maintains that master chess players are better at 

chess because they are better at looking ahead. Holding‟s „SEEK‟ (Search, EvaluatE, 

and Know) model attributes skill in chess to the player‟s ability to efficiently negotiate 

search trees by using their knowledge of chess, and in their judgements in end 

positions (Holding op. cit.).  Holding rejects what he calls 'recognition-association' 

theory as the basis of chess skill. On the other hand, Chase and Simon (1973b) 
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attribute knowledge of chunks as the major differentiator between the novice and the 

expert players. 

Much of the evidence for chunking in chess is taken from psychological 

experiments such as de Groot‟s memory test on expert and novice players. In this 

well-known experiment de Groot tested three classes of chess player: Grandmaster 

plus Master, Expert and Class „A‟ player, (a „Class A player‟ is a good chess player, 

but below expert level), by showing them a chessboard configuration from an 

unfamiliar game with twenty-two pieces on average, for a few seconds (de Groot 

1978). The subjects were then asked to reconstruct the configurations, either verbally 

or on another board. The experiment was repeated by Chase and Simon (1973b) but 

included a novice group. The results showed Masters scoring 81% correct, Class „A‟ 

players 49% and the novices 33%. But when the positions were randomised each 

group only recalled only three or four pieces correctly. This dramatic result implies 

that advanced chess players remember pieces in structured positions, and that 

pieces are remembered as groups or chunks rather than the individual pieces 

themselves. 

In this thesis the link between knowledge and use of chunks, and chess skill, 

is investigated. Within the chess community, including the psychologists who study 

chess play, a question remains: Do chunks in chess games differentiate categories of 

player? The question is posed this way because experimentally this permits the 

underlying question to be studied - at least in part: Do chess players use chunks in 

their analysis of a chessboard?  The alternative possibility is, of course, that chunking 

is a by-product of chess play, and not in any sense a driver of good chess play which 

is intentionally exploited by players. Whilst experimental differentiation of category of 

player, on the basis of chunks, would not demonstrate the value of chunking for the 

player it would offer the prospect that style of play could be shown to be linked to 
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chunking. This would be an indirect demonstration of the value of chunking in chess 

play, without the need to claim that experts use chunking explicitly. 

However, in a computational environment it is possible to go further. Large 

numbers of chess games played by different categories of chess player can be 

analysed computationally and chunks identified. The deployment of chunking in a 

computational chess environment can be used to assess the value of chunking in 

new games. 

Experiments similar to the Chase and Simon (1973b) experiment have been 

performed (and are described in the literature review section of this document) and 

suggest an expert chess player is equipped with knowledge of chunks.  Simon and 

Gilmartin (1973) claim that an expert may know the order of 50,000 chunk patterns, 

however, the parameters that define a chunk are largely unknown. CHUMP (a 

„pattern-learning move generator‟) uses eye movement information inspired by the 

gaze of chess players to extract configurations from a board based on pieces that are 

located at the eye fixation points (Gobet and Jansen 1994). By scanning a corpus of 

training games a number of eye fixation points can be compiled, with each fixation 

point limiting the area of the board from which chunks can be built, and with the 

chunks in turn being associated with a resulting move. Eye movements are simulated 

so that a large number of games can be processed, counting the frequency of 

occurrence of chunks associated with a move. CHUMP‟s extraction of chunks is 

based on the eye movements of chess players, but the actual reasons for the eye 

movements remain unknown.  

Walcaz (1992) introduced a system called IAM which restricts the board view 

to a subset of pieces in close proximity. An area of 4x4 or 5x5 pieces for example is 

viewed and the frequently occurring chess pieces compiled to make a chunk library. 

McGregor and Howes (2002) performed a series of experiments that suggest the 
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attack and defence relationships of pieces within chess play are more important than 

proximity.  

This thesis will attempt to add to existing research literature by looking at 

chunking within a computational environment. The work reported in this thesis will: 

 

 Look at chunks in chess play and attempt to define the properties of chunks 

within chess. 

 Investigate potential links between the use of chunks and a player‟s skill. 

 Isolate effective chunks. 

 Incorporate chunking as part of the move generation process within a chess 

program. 

 

The question this thesis will answer is: 

Can the utilisation of chunks in a chess-playing program provide a plausible 

model for the use of chunks by human players? 
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 
  
  
  
    
    
    
    
 
 

Figure 3.1:  A typical chessboard 

3. AN INTRODUCTION TO CHUNKING IN CHESS 
 
3.1. Literature review 

Mainstream computer chess programs use search trees with a very large number of 

nodes, exploring every possible subsequent move and counter-move, several ply1 

ahead of the current position in order to test the consequence of a proposed move. 

This method, which is known as the MINIMAX routine was proposed by Claude 

Shannon in the 1950s (Shannon 1950). The number of positions evaluated grows 

rapidly with each move ahead. For example, 

starting with the chessboard on the left of this 

page,2 and looking ahead just four ply 

(commercial chess programs would look ahead at 

least eight ply) results in 2,080,734 nodes. Yet 

despite employing optimisations (of which the 

most significant is the alpha-beta search method 

which is described in detail on page 159) the process requires several million-node 

evaluations. Human chess players however can out-perform, or at least present a 

serious challenge to even the most powerful chess computers. The chess computer 

„Deep Blue‟ for example, which famously defeated the world chess champion Garry 

Kasparov in 1997, was capable of searching up to 40 ply, working through a 

potentially huge number of nodes (Campbell, Hoane and Hsiung-Hsu 2002). The 

methods used by a human chess player are therefore of interest as the notion that 

the player mentally evaluates millions of chess configurations is generally rejected. 

Saariluoma (1998) maintains, when describing the heuristic search of all possible 

                                            
1
 A „ply‟ is a move of one chess piece, either a white piece or the corresponding move of a black piece. 

 
2
 The chessboard configuration shown in Figure 1 can be represented in Forsyth–Edwards Notation 

(or „FEN‟) as: r1bqk2r/p1pp1p1p/1pn1p1pb/3nP3/P2P3P/1P4P1/2P2P2/RNBQKBNR  w KQkq -  0 1 
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moves: “although the model operates excellently in computer programs it has very 

little realism where human thinking is concerned”. Adriaan de Groot, the Dutch 

psychologist and chess Master, argued that one of the most important aspects of skill 

in playing chess is not in the thought processes, searching through a tree of possible 

moves, but in the initial coding of relationships among the pieces on the chessboard. 

“It is not easy to appreciate fully the enormous effect of the expert‟s reproductive 

completion of the perceived situation, as his perceptual advantage might be called” 

(de Groot 1978, pp. 307). He concluded “that perception and memory are more 

important differentiators of chess expertise than the ability to look ahead in selecting 

a chess move”. 

Jongman (1968) suggested that master chess players retained the names of 

familiar piece configurations in „short term memory‟ whilst remembering the piece 

configurations, or „chunks‟, in „long term memory‟. The estimate for short-term 

memory span of seven, plus or minus two items (Miller op. cit.) is however arguably 

too generous, as the span of short-term memory is dependent on the type of material 

being remembered (Cowan 2001). Other research suggests that even Cowan‟s 

estimate of a maximum of four chunks being held in short term memory could be “an 

overestimate” (Gobet and Clarkson 2004). In any case, chunking provides a 

mechanism where a limitation, be it seven or less, can be compensated by 

remembering groups of items in long term memory thereby increasing the short term 

memory capacity from seven items to “seven groups of items” by “grouping primitive 

stimuli into larger conceptual groups” Gobet et al. (2001). The application of this 

technique is apparent when grouping letters into words, or even words into 

sentences, the memory limit of seven letters is thereby expanded considerably. With 

respect to chess, chunking theoretically expands the ability to remember 

configurations of a few pieces on the chessboard to a few groups of pieces. The 
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groups in this case being recognised configurations that occur frequently within the 

game. 

Gobet et al. (2001) describes the cognitive function of chunking as one of the 

“key mechanisms of human cognition, linking the external environment and internal 

cognitive processes”. Chunking, despite constant cognitive limitations, explains how 

greater knowledge can lead to an increased ability to extract information from the 

environment. Expertise in the visual recognition of features in x-ray imagery has also 

been attributed to chunking with claims that "a chess master performs in the same 

manner as does a radiologist" (Wood 2009). Experiments in chunking have included 

non-human animals suggesting that chunking is a cognitive process that is not limited 

to humans. Tests on pigeons by Terrance (1987) show that lists can be memorised 

by pigeons with the aid of chunking, giving evidence for the association between the 

chunked items. Similarly rats negotiating a maze show evidence for chunking when 

presented with recognisable sequences (as markings on the floor) within a maze 

(Cohen et al. 2001). Experiments with fourteen-month-old infants show chunking as a 

cognitive technique for extending memory at a young age in human development 

(Feigenson and Helberda 2004). 

A significant contribution to the debate on chunking and chess was made by 

de Groot (1978) and Chase and Simon (1973) with experiments involving the 

memory performance of chess players of varying skills. Chase and Simon claim a link 

between knowledge of chunks and the chess players‟ skill. The more skilful players 

are believed to have memorised a larger number of chunks. 

In one experiment de Groot tested three classes of chess player: Grandmaster 

plus Master, Expert and Class „A‟ player, by showing them a chessboard 

configuration from an unfamiliar game with twenty-two pieces, for a few seconds (de 
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Groot 1978). The subjects were then asked to reconstruct the configurations, either 

verbally or on another board. The results were as follows: 

 

Master/Grandmaster: 93%  Correct 

Experts 72%  Correct 

Class  „A‟  Players 51%  Correct 
 

Table 3.1: de Groot’s recall test. 

 

Chase and Simon (1973b) repeated the experiment, but with the addition of a novice 

group and their test results were as follows: 

 

Master 81%  Correct 

„A‟  Class  Player 49%  Correct 

Novice 33%  Correct 
 

Table 3.2:  Chase and Simon’s test using game piece placements 

 

But when the positions were randomised each group recalled only three or four 

pieces correctly. The conclusion of this experiment is that expert chess players 

remember groups of chess pieces in structured positions. 

In another experiment, Gobet and Simon (1996a) compare the recall ability 

between chess Masters and weaker players by presenting a chessboard to each for 

just a few seconds. Briefly presented positions are remembered better by chess 

Masters compared with weaker players when the positions are meaningful. If the 

chess positions are random then Masters, to a large degree, loose their advantage. 

The small advantage that strong chess players show when remembering random 

boards can be attributed to small chunks appearing in the random patterns. Further 

investigation by Gobet and Simon (2000) reinforced this suggestion by simulating the 
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experiment using a large chunk database acquired by the CHREST (an acronym for 

“Chunk Hierarchy and REtrieval STructures”) program (Gobet et al. 2001). Three 

groups of player (Class „A‟ player, Expert and Master) were simulated and the results 

obtained correlated with human players, indicating that chunks are present within 

random data. In this experiment, the size of the chunk database varied with the 

expertise of the chess player, 500 chunks for a class „A‟ player, 10,000 for the expert 

and 300,000 for the Master. 

Chase and Simon (1973a) investigated chunking within a chess configuration 

with another experiment. The subject was asked to reconstruct a chessboard layout 

copying from one board to another. The head movements and pieces placed were 

recorded. It was noted that if a piece had links to other pieces (a piece being under 

attack from another piece would link the two pieces together for example) then the 

piece would be placed without delaying. If the piece being placed started a new 

group, then there would be a small latency before placing. A larger than normal 

latency was given as an indication of a chunk boundary. The suggestion from this 

experiment was that the subject was using his chunk knowledge to remember groups 

of pieces and therefore the subject possessed chunk knowledge. 

In another paper Chase and Simon (1973b) conducted a number of 

experiments where the eye movements of the players were monitored. Similarly, 

Charness et al. (2001) compared the eye movements between a group of twelve 

intermediate skilled chess players with twelve experts, and twelve novices. When 

shown a board, the experts made half the number of fixations on pieces as the 

intermediate group. These findings were consistent with de Groot and Gobet (1996) 

however the experiment showed that the expert group focused on the salient pieces 

more quickly (compared with the intermediate group). The inference here is that the 

expert recognises chunks and quickly focuses on the salient moves. Recognition of 
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chunks therefore act as a trigger for an action, or as a focus to direct attention to a 

particular area of the board. The novice however may come up with the same move 

but only after examining all of the pieces, thereby taking a lot longer to work out his 

move.  

Charness et al.(2001) explored the visual span of chess players measured on 

structured (not random) board configurations. The experts used a considerably larger 

visual span of the board. When testing for a check condition the experts made fewer 

fixations on the board compared to the novice, and reported a higher fixation 

between pieces. The suggestion with this experiment was that the expert player 

employs a complex perceptual encoding in his view of the board. This suggestion is 

consistent with theories about chunking, although this experiment implies chunking 

within the visual cognitive process. 

Saariluoma (1991) conducted a number of experiments with blindfold chess 

playing. Blindfold chess is a game of chess normally conducted with the player with 

his back to the board and without any visual reference to the game, communicating 

only verbally. The player must keep track of and evaluate moves without any external 

reference whatsoever. Even harder than this is where the player conducts two or 

more games simultaneously. The record, which was set in 1985, for the number of 

simultaneous games (the „blindfold player‟ must win 50% of the games to be 

considered to be playing the games) is over fifty. One experiment in particular, which 

used blindfolded chess players involved three groups of players, master, medium 

and novice. The experiment was to read five real but unknown chess games, and five 

randomised games, where the moves do not even follow the laws of chess. After 

reading all of the games the groups would recall them. The master group recalled the 

real games with high accuracy and better than the other groups but in the random 

games all groups performed the same with players unable to remember a single 
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position. Saariluoma argues this result is evidence for chunking mechanisms within 

memory as ordered games can be remembered easily by the experts (although not 

by the novice group), but unordered games could not be remembered by any group. 

Experiments on recall of several boards by Grandmaster players show that, as 

the number of boards presented to the Grandmaster increases there is a percentage 

decrease in the number of pieces recalled (Gobet and Simon 1996). This is 

consistent with chunking theory as the effect of the limit of short-term memory. The 

result however does not exactly fit the chunking prediction but shows a slightly better 

recall than expected. The experimenter presented boards to the Grandmaster, 

gradually increasing the number in the experiment to nine boards and for as long as 

he can recall with 70% accuracy. Skilled players recalled more pieces than predicted 

by Chase and Simon‟s chunking theory. The improvement in recall is attributed to a 

phenomenon named „templates‟. Templates are attributed to a faster than expected 

ability to store information in long-term memory. Experiments with five-second 

presentation times, which are considered too brief for storage in long-term memory, 

provide evidence for a memory process in addition to chunking (Gobet and Simon 

1996). The accepted time for transfer of a chunk to long-term memory is eight 

seconds and about a minute for seven chunks. Experts in a particular domain can 

store patterns related to their domain into long-term memory with a very short 

exposure time, whereas the novice requires more time (Gobet and Jackson 2002). 

Templates are described as having a „core‟ pattern, which remains unchanged, with 

a set of „slots‟, whose values can be rapidly altered. Chunks can evolve into 

templates through extensive experience (Gobet and Simon 1996). In the chess 

domain, the chessboard or a section of it can be the basis for a template. Pieces 

positioned on the board form patterns that are quickly encoded and stored. 
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The literature also reports research arguing against chunking theory. Holding 

(1985) argues that chess skill is not attributed to the chess player‟s knowledge of 

chunks but linked to the player‟s “evaluative judgments throughout the forward 

search”. Holding conducted an experiment where sixteen chess players, consisting of 

eight strong and eight weak players, evaluated a board giving a score to the stronger 

side. Binary trees were constructed for six plies ahead from the current position and 

a piece was moved following each path on the search tree, evaluating each possible 

move. Not surprisingly the stronger players performed more accurate evaluations at 

the starting positions and were more consistent with the evaluations as the moves 

are made. However, the reasons for the skilled players performance in making good 

forward evaluations were not discussed by Holding. 

The discussion so far in this chapter has considered chess skill from a 

psychological perspective. Chase and Simon‟s work is heavily cited in the literature 

on chunking. The reason for this is due to the fact that Chase and Simon‟s theory has 

greatly motivated research in the field. However, the dominance of their work can 

also “indicate a lack of originality in the field of chess research” (de Groot and Gobet 

1996, pp 115). The advent of high power computers however has enabled new 

branches in chunking research, for example papers by Campitelli et al. (2005, 2007) 

report the use of fMRI brain scanning equipment to investigate brain activity, 

comparing Master players and the novice when viewing chess positions. Research 

into chunking has also included computer programs that simulate chunking. 

Feigenbaum and Simon (1984) developed a computer program for building chunks 

from random input data. EPAM (Elementary Perceiver And Memoriser) is a self-

organising computer model that categorises and stores information. EPAM consists 

of a set of nodes (or chunks), connected by branches, forming a tree-like structure. 

The nodes contain tests which can check features of the input (or „stimulus‟), the 



18 
 
 

outcome of which determines which branch will be taken below the node, or if a new 

branch (to a new node) is to be created. If the stimulus contains additional 

information to what is held in the node then the additional information is added to the 

node. If the stimulus fails to exhibit aspects of the information within the node then a 

new node below the node in question is added. The discrimination net therefore 

grows dynamically in response to the input. 

EPAM is not specialised to any one source of data but is a general-purpose 

tool for building a network of related information and is better known for work on 

associating words and spelling within words. CHREST is an enhancement of EPAM 

(Gobet 1998). The main difference between EPAM and CHREST is CHREST‟s ability 

to create lateral links between nodes. CHREST‟s enhancements make it perform 

better at self-organising and adaptation to complex data. CHREST was first applied 

to chunk analysis in chess programs, although is not limited to that domain. It has in 

addition an implementation of template processing. CHUMP (Gobet and Jansen 

1994) is a chess-playing program, which plays only from pattern recognition. It is 

termed “a pattern learning move generator” based on the program CHREST with 

knowledge only of patterns of chess positions and no instruction on moves, goals or 

values of positions. CHUMP learns about moves and when to make them. The 

program builds two discrimination nets; one for the chunks found on the chessboard 

and another for the move that was made. A link between the two nets allows CHUMP 

to analyse a chessboard to look for chunks and then find an associated move in the 

„moves‟ discrimination net. CHUMP‟s initial learning set consisted of three hundred 

games played by Mikhail Tal (a former world champion), however, this experience of 

games is small compared to the database a chess Master would acquire assuming 

the time needed to become expert in any domain, including chess, which is said to 

be “a decade of human practice for high skill in any non-trivial domain” (Simon 1981). 
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CHUMP is built from the following components: (1) An eye movement 

simulator, which is modelled on the eye movements of a human chess player. This 

gives focused attention to specific squares on the chessboard. It is intended that this 

filtering of pieces help generate chunks that are relevant to the configuration. (2) A 

data structure based on the EPAM memory and perception model. This structure is a 

„net‟ rather than the „tree‟ structure of EPAM. When learning, if the object is new (i.e. 

it does not match an existing chunk) then a node is added to the database. If an 

object is found then CHUMP extends the net with the new elements. (3) A database 

of moves taken by the chess player in the training data. Chunks in the net (or 

„discrimination net‟) are linked to the database of moves so that chunks on a 

chessboard can be associated with moves. 

The results produced by CHUMP are however rather unconvincing, 

presumably because of the small learning set of games. An estimate of the number 

of chunks memorised totalled 6710 achieving a 2.8% success rate in selecting the 

correct move, or 11.2% success in selecting the correct top four move suggestions. 

This success figure is actually not much better than choosing a move from a random 

selection of possible legal moves (cf. page 136), despite the fact that the training and 

testing data were taken from games by the same Grandmaster. This would have 

helped raise the success rate, as it is normal for players to stick to the same opening 

moves in most games. Further tests using the Bratko-Kopec positions3 showed 

CHUMP performing better at positional than tactical moves (Gobet and Jansen, 

1994). This result is consistent with explanations of chunking because tactical moves 

are generally unique, whereas the same positional moves frequently occur when the 

                                            
3
 The Bratko-Kopec tests are described on page 99. 
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chessboard has a similar layout, and would therefore be captured in the chunk 

building process. 

„Tactical‟ moves can be defined as “short term manoeuvres which have 

specific goals”, whereas „Positional‟ moves are “more to do with moving pieces into 

advantageous positions than with direct attacks or winning of material” 4. 

Another program named „Chunker‟ (Berliner and Campbell 1984) uses chunk 

knowledge to improve performance of the endgame. The program is limited to a 

subset of king and pawn endings. A library of chunks of all possible pawn 

configurations is used, each chunk having a property list, including the number of 

moves required to queen a pawn and the theoretical game value of the chunk. By 

using chunking it is claimed that the program plays with an equivalent power of a 45-

ply search. 

Another notable chess program that can play a complete game of chess is 

PARADISE (Wilkins 1980). PARADISE uses a set of about two hundred production 

rules to eliminate pieces from the configuration. The program narrows the search to 

just a few pieces and is then able to perform a deep search. PARADISE does not 

have knowledge of chunks but is an example of a program that uses knowledge to 

narrow the search tree. Another example of the use of production rules is the 

Capyblanca program, (Linhares 2008). Capyblanca is claimed to be a model of 

cognitive function and uses production rules to narrow the attention to an area of the 

chessboard when selecting a move to make. Despite the fact that PARADISE or 

Capyblanca do not use chunking the programs are relevant to this thesis because 

they use a combination of techniques to make a move. PARADISE uses production 

rules to narrow a search (a conventional minimax type) to select the move to play. 

                                            
4
 The definition for tactical and positional moves was taken from the web page: 

http://www.research.ibm.com/deepblue/reference/html/i.2.html 
 

http://www.research.ibm.com/deepblue/reference/html/i.2.html
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The same approach is taken in the later part of this thesis whereby the research 

application orders an alpha-beta search based on the likelihood of a move, given by 

an analysis of chunks on the chessboard (cf. page 165). 

 

 

3.2. Chapter conclusion 

The case supporting the existence of chunks within humans and other animals based 

on psychological studies is reported in numerous papers. Similarly, the application of 

chunk knowledge in relation to learning and skill is widely reported especially with 

respect to skill in chess players, with quantifiable results. A considerable amount of 

work is reported in the literature with collection of empirical data and computational 

modelling of chunking systems. This thesis seeks to complement existing research 

by looking at chunking within a computational environment, with varying chunk 

parameters, such as the number of pieces that constitute a chunk and the 

relationship of pieces within a chunk. 
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4. DEFINING A CHUNK 
 
Psychologists seem to know a chunk when they see one. A definition, however, is 

hard to come by.  Neither the large literature on chunking by humans nor the more 

modest literature on chunking by animals provides an operational definition of this 

term. (Terrace 2001). 

 

Although the existence of chunks within chess play has been discussed in various 

research papers many of the papers describe psychological experiments and these 

largely focus on measuring the effects of chunking on human behaviour rather than 

measuring the chunk properties directly (Chase and Simon 1973a, 1973b, de Groot 

1965, Simon and Chase 1973). The properties of chunks are therefore deduced by 

inference rather than direct measurement. The remainder of this chapter looks at 

some of the definitions and properties of chunks given in the literature. The 

definitions of a chunk given in this chapter will be used later in the thesis when 

chunks are extracted from actual chess games. 

 

4.1. Chunks are learnt constellations 

The chess player is said to acquire his knowledge of chunks by studying previous 

games. Constellations of pieces become associated with moves or strategies and are 

stored in long-term memory. Chess masters typically study games, or more precisely, 

parts of a game, for several hours each day over many years (Chase and Simon 

(1973) estimate that it takes to “the order of ten years to achieve expertise in any 

domain”). Chunking theory dictates that during the study of other players‟ games 

chunks are learnt and memorised by the subject.  
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4.2. Chunks are frequently occurring configurations 

Programs such as IAM (Walczak 1992) EPAM (Feigenbaum and Simon 1984) and 

CHREST (Gobet 1998) extract chunks from games by accumulating frequently 

occurring patterns. Capturing frequently occurring patterns is useful as this reduces 

the impact of random or insignificant moves, and the repetition of a chunk that is 

linked to a move eliminates false associations. CHREST uses frequency of 

appearance as a criterion for finding chunks: “objects have to be presented several 

times in order to be learned” (Groot and Gobet 1996). Similarly IAM needs to detect a 

pattern in “at least two games” for it to be considered significant. “Patterns which 

have tactical significance and are known by an adversary are typically repeated in 

multiple games” (Walczak 1992). Frequently used chunks are often present in 

positional moves as opposed to novel tactical moves and for this reason systems 

based on CHREST favour positional as opposed to tactical moves (Gobet and 

Jansen 1994). From a technical perspective the selection of chunks by frequency of 

occurrence is an easily programmable process but selection of rare tactical moves 

would be more complex as this would require an understanding of the game by the 

program.  

 

4.3. Recall of chunks are separated by a two second boundary 

Chase and Simon (1973a) offer a definition of a chunk based on the time taken to 

place the chess pieces when reconstructing a chessboard. The player appeared to 

place the chess pieces in bursts of activity with a short latency between groups. A 

latency (or boundary) of two seconds or longer was considered to be the break 

between ending the placement of one chunk and the starting of another. The above 

definition of a chunk allows an estimate of the size of a chunk or the number of 
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pieces that constitute a chunk, although the measurement may be limited by the 

number of pieces that can be held in the hand (Gobet and Simon 1998).  

 

4.4. Chunks can be a tool to extend short-term memory 

According to Gobet, “a chunk is defined as long term memory (LTM) information that 

has been grouped in some meaningful way, such that it is remembered as a single 

unit. Each chunk will only take up one slot in STM5, in the form of a „label‟ pointing to 

the chunk in LTM6” (Gobet and Jackson, 2002). Miller‟s 1956 paper has been very 

influential on research that features short-term memory (Chase 1983, Chase and 

Simon 1973, Fenk-Oczlon and Fenk 2000, Gobet et al. 2001). Miller (op. cit.) used 

the term „chunking‟ to describe the mental grouping of information from low 

information content items into a smaller number of high information content items.  

Chunking has been described as the cognitive „work-around‟ for the short-term 

memory limitation by storing chunks of items in long-term memory and, in 

computational terms, indexing the items from the short-term memory. 

The analogy works well when considering the memory task of recalling a 

sentence from this page. The reader has acquired a large database of words in long-

term memory so that if required to write the sentence it is not necessary to recall the 

individual characters to spell out the words. The spelling of the words can be recalled 

from long-term memory. Rather than remembering the fifty-two characters in the 

previous sentence the reader can recall just twelve words or less (as the phrase 

„long-term memory‟ is arguably remembered as a single item, or a „chunk‟, in itself). 

The same reasoning for chunking is applied to chess configurations by grouping 

frequently used constellations of pieces and remembering these as one item. The 

                                            
5
 STM is an acronym for „Short Term Memory‟ 

6
 LTM is an acronym for „Long Term Memory‟ 
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number of items remembered in short term memory may be limited to a relatively 

small number, but the chunks themselves are not subject to the short-term memory 

limitations as they are stored in long-term memory. The number of pieces that make 

a chunk within the context of the game of chess is investigated and results reported 

in chapter 7 of this thesis. 

The above view of the significance of chunking is echoed by Terrance (2001): 

“The basic function of a chunk is to enhance STM (short term memory)”. The 

research reported in this thesis shows that the meaning associated with a chunk is 

key to understanding the usefulness of the chunk. Chunks must therefore be 

organised in meaningful ways, thereby offering the potential to extend the basic 

function (to enhance short term memory). De Groot and Gobet (1996 pp14) 

describes increasing knowledge in the terms: “The more domain knowledge and 

experience a person has, the greater and more comprehensive are the units 

(clusters, patterns, configurations) in terms of which he can encode the stimulus” (de 

Groot and Gobet op. cit.). The organisation of chunks by incrementally adding 

knowledge, or building on previously learnt experience is not included in this thesis 

but is an area for further research.  

 

4.5. Chunks contain elements that are related to each other 

A chunk is defined as “a collection of elements having strong associations with one 

another, but weak associations with elements within other chunks” (Gobet and 

Jackson 2002), and similarly “a collection of concepts that have strong associations 

to one another and much weaker associations to other chunks concurrently in use” 

(Cowan 2001). These definitions suggest that chunks are groups of pieces, and 

indeed the notion that chunks are groups of pieces is implicit in papers that describe 

the effects of chunks.  Gobet and Simon (1998) describe a chunk as a “long-term 



26 
 
 

memory symbol, having arbitrary sub parts and properties that can be used as a 

processing unit. Each chunk can be retrieved by a single act of recognition” (Gobet 

and Simon op. cit.). Some programs that extract chunks use specific relationships 

between pieces and these are discussed in the following sections. 

 

4.6. Pieces are related by proximity 

Papers by Gobet and Jansen7 (1994) and also Walczak (1992) report work done on 

analysis of boards with chess pieces that are in close proximity to each other. The 

rationale for this limitation is based on the model of human performance suggested 

by the „Principles of perceptual organization‟ proposed by the early 20th-century 

German psychologists of the Gestalt school (Walczak 1992). One aspect of the 

Gestalt principle is that local objects tend to be visually grouped together. When 

considering a board in chess play the expert may limit their attention to small areas of 

the board as opposed to all sixty-four squares.  An area of say four by four squares 

limits a chunk to a maximum size of sixteen pieces, with the pieces being in close 

proximity to each other. 

 

4.7. Pieces are related by attacking/defending relationships 

Wilkins (1980) writes: “Human masters, whose play is still much better than the best 

programs, appear to use a knowledge intensive approach to chess. They seem to 

have a huge number of stored „patterns‟ and analysing a position involves matching 

those patterns to suggested plans for attack or defence”. Experiments with chess 

players by McGregor and Howes (2002) suggest that the attack/defence relationship 

of pieces is more significant for skilled chess players than the size of the chunk on 

the board. They argued against the notion that proximity of pieces is a factor in chunk 

                                            
7
 Whilst most chunks acquired by CHREST are related by proximity, CHREST also learns chunks 

based on attack/defence relationships, following eye movement heuristics cf. page 150 
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structure and suggested that experiments on chess player‟s ability to remember 

configurations provide evidence in support of the idea that the relationship of pieces 

is the main factor in chunk selection. That is, McGregor and Howes (op. cit.) 

proposed that the pieces within a chunk are related in an attacking or defending 

fashion. This viewpoint was earlier expressed by Simon and Barenfield (1969) who 

noted that attacking and defending relationships are significant factors in the players‟ 

analysis of a board: “By analysing an expert player‟s eye movements, it has been 

shown that, among other things, he is looking at how pieces attack and defend each 

other”.  

Russian psychologists Tichomirov and Poznyanskaya (1966) studied the eye 

movements of expert chess players and showed that the eyes did not move in a way 

that would be consistent with searching through a tree of moves and with the 

corresponding replies. The eye movements did however fixate on about twenty 

points on the board, abruptly moving in „saccadic‟ movements between pieces that 

are in attacking or defending positions. The interesting point is that the eye 

movements are not random and the player must have known where to look next after 

fixating on one piece. The player would know the target square before the saccade 

began. The observation implies the player has knowledge of expected positions on 

the board based on awareness of part of the configuration. The pieces on the board 

are presumably positioned in recognisable groups, or frequently occurring 

configurations so that the chess player can expect certain pieces, or chunks, to be 

associated with some configurations. 

 

4.8. Chunks are absolutely positioned 

From a chess player‟s perspective the properties of a piece are dependent on the 

position the piece occupies on the board. The board is just eight by eight squares so 
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proximity to the edge of the board is an important factor. Generally, the centre 

squares are more highly prized as they command a greater influence on the board as 

a whole whereas the side positions provide some protection as attacks can only 

come from one direction. Attempts to generalise a chunk by making it independent of 

its position on the board (relative positioning) are not sensible (Lane and Gobet 

2010). Indeed, Linhares and Freitas (2010) cite examples of chessboard 

configurations where there is a win for White, but white cannot win in an alternate 

shifted position, and another example where shifting positions changes the board 

from a win for White to a win for Black - assuming white plays first, see figure 4.1 

below  

 

Figure 4.1: Shifting pieces from 'a' to 'b' changes winning position from White to Black 
(from Lane and Gobet, 2010) 

 

Domains such as „Go‟ however have a much larger playable area and in that case, 

the relative positioning of chunks may be more meaningful. However, Holding (1985) 

argued that chess chunks might be remembered in relative positions, with the 

relationship between the pieces of the chunk being fixed, but the position of the 

configuration on the chessboard being relative. If chunks were stored without fixed 

(absolute) positioning the number of chunks (based on Simon and Gilmartins‟s 1973 

simulations) reduce by a factor of about twenty. Holding argues that Chase and 

Simon‟s (1973) estimate of chunks held in long-term memory is too numerous. Gobet 
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and Simon (1998) argued against Holding, stating “Holding‟s criticisms either are not 

empirically founded or are based on a misunderstanding of the chunking theory and 

its role in a comprehensive theory of skill”. Chunks whose pieces are moved 

(maintaining the same relative position of the pieces with respect to each other but 

moving the group to a different area on the chessboard) or translated through a 

mirror image results in subjects having a greater difficulty recalling the configurations. 

Pieces with absolute positioning on the board were easier to encode and recall than 

pieces transposed on the chessboard (Saariluoma 1991, Gobet and Simon 1996. 

This result is consistent with Binet (1896/1996) in that “chess masters could not 

remember games unless they understood them” and changing the location of a 

chunk relatively on the chessboard would change the meaning of the chunk. In this 

thesis chunks are always processed with absolute positioning and the properties of 

chunks include meaning (the effect the chunk has within chess play). If a chunk is 

found with the same relationship between the pieces that make up the chunk, but in a 

different location on the chessboard then this constellation will be considered to be a 

different chunk and will be stored appropriately. 

 

4.9. Experts have a larger chunk knowledge than the novice 

Regarding the number of chunks of which an expert has knowledge, Chase and 

Simon (1973) stated that in order to reach expertise in any domain, including the 

chess domain, the training period might be long, corresponding to “a decade of 

human practice for high skill in any non-trivial domain”, with an estimate of the order 

of 50,000 chunks learned for expertise in the chess domain (Simon 1981). Simon‟s 

estimate is based on the similarities between vocabulary of written words for highly 

literate individuals and on experimental analysis of chessboards by using the EPAM 

program (the EPAM program is described earlier in the literature review).  Chase and 
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Simon (1973) admit that their estimate is a „best guess‟ bearing in mind the data that 

they had available at the time of writing.  Simon and Gilmartin (1973) put the number 

of chunks memorised by an expert player as between 10,000 and 100,000 based on 

results from a program „MAPP‟. MAPP (an acronym for Memory Aided Pattern 

Perceiver) acquired a relatively small number of chunks and from these replicated 

the memory recall performance of a „Class A Player‟ (a „Class A player‟ is a good 

chess player, but below expert level). The proposed number of chunks required for a 

chess master was extrapolated by Simon and Gilmartin (op. cit.) from the number 

used in the experiment at „Class A‟ level to give the estimate between 10,000 and 

100,000 chunks, with later estimates pointing to 300,000 chunks, even with the 

presence of templates (Gobet and Simon 1996). 

 

4.10. The relationship between chunk definitions 

Within the definitions of chunks described in this chapter there are several areas of 

overlap, for example, the definition „Recall of chunks are separated by a two second 

boundary‟ is a consequence of the definition that „Chunks contain elements that are 

related to each other‟, and are remembered by the subject as an item. The definition 

„Chunks are frequently occurring configurations‟ is related to the definition „Chunks 

are learnt constellations‟ as chunks are learnt by repeatedly seeing the chunks on 

chessboards, and as learnt constellations chunks would be stored in long term 

memory. The definition „Chunks can be a tool to extend short-term memory‟  is a 

consequence of the properties that „chunks are learnt constellations‟ and that chunks 

are stored in long term memory, and indeed, the property that „Experts have a larger 

chunk knowledge than the novice‟ is a consequence that chunks have to be learned.  

 The property of chunks „Pieces are related by proximity‟ is linked to the 

property: „Pieces are related by attacking/defending relationships‟ as may attacking 
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and defending configurations exist when pieces are in close proximity to each other, 

and the accessibility of an attacking piece is not blocked by another piece. Many 

attacking and defending pieces may also depend on the chunks being „absolutely 

positioned‟, which also is another property described in this chapter. 

The properties of chunks are therefore not considered as isolated entities, but 

rather as interrelating and complementary definitions. 

 

4.11. Chapter conclusion 

This chapter has defined the properties of chunks that have meaning with respect to 

chess and the research undertaken in this thesis. Chunks are simply combinations of 

chess pieces. The properties described in this chapter define chunks that are 

significant in chess play in that the chunks may be learnt by an expert player. The 

properties of significant chunks are taken from the literature on chunking in chess, 

describing the differing and overlapping properties of meaningful chunks.  
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5. INVESTIGATING THE PROPERTIES OF CHUNKS 
 
 “I will suggest that chunks have at least three important dimensions, which should be 

systematically taken into account in the planning of training for adversary problem-

solving situations. These aspects are the number of chunks, their size, and finally the 

relevance of their contents. If one of these dimensions is neglected, the outcome of 

the training will not be satisfactory” Saariluoma (1998). 

 

The results reported in this thesis take a detailed look at the nature of chunks that 

have been extracted from Grandmaster games. The chunks extracted are applied to 

chess play in various ways explained later in this thesis. The research reported adds 

detail to one form of chunking, that is, one that works in a computational 

environment. The detailed workings of the human brain are outside the scope of this 

thesis but whether chunks exist, and what form they take within the domain of chess, 

are analysed in detail. 

If chunking is significant to chess play then finding meaning within the chunk 

patterns is a major task. Chunks are simply constellations of chess pieces on the 

chessboard. Chunks that are important to this study are frequently occurring 

configurations, of which only a small subset may be significant.  

Chunks may or may not have any significance in terms of the board score. 

Computer chess programs work by evaluating the overall board score according to 

the value of pieces on the board and their relative positions. It is suggested that the 

experienced player with an awareness of chunking can outperform a chess program 

(Wilkins 1980). For this reason an analysis of the value of the pieces within the chunk 

was not considered to be worthwhile. 

This thesis reports research on the existence and properties of chunks within 

chess play. It should be noted that the same configuration of chess pieces positioned 
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on different squares on the chessboard is assumed to be a different chunk, therefore 

chunks will have absolute positions on the chessboard. The absolute positioning of 

chunks is discussed in more detail on page 59 of this thesis. 

 

The properties of chunks will be investigated by looking at the following: 

 

 Chunk size. The number of chess pieces that make up a chunk will be 

investigated. A human chess player would be expected to have the capacity to 

remember up to about nine chess pieces in a chunk (Miller 1956, Cowan 2001, 

Gobet and Clarkson 2004). Chunks however may exist as a property of the 

chessboard and the rules of the game, and their size may not be limited by 

cognitive function. The pieces in the chunk can include all of the pieces, 

including both colours, on the chessboard giving a maximum of thirty-two 

pieces. However, as a game advances beyond the opening moves the 

likelihood of finding very large chunks occurring on more than one chess game 

diminishes because the board layout becomes increasingly more unpredictable 

(cf. page 61).  

Note that a chunk may consist of a single piece, however for this research 

chunk sizes of greater than one piece will be considered. It should be noted that 

a chunk in human memory may contain more information than simply the 

„pieces on positions‟ on the chessboard, and consequently may require more 

short term memory capacity than the number of pieces constituting the chunk, 

however, this thesis will look at the variation in the effectiveness of chunks of 

different sizes in order to investigate the plausibility that knowledge of chunks 

consisting of a small number of pieces can be effective indicators in directing 
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chess play. The thesis does not attempt to define the limits of human short term 

memory capacity.  

 Piece relationships. The relationships of the pieces within chunks will be 

investigated and reported in this thesis. In particular the properties of chunks 

with pieces in close proximity and pieces in defending relationships will be 

reported. 

 Chunks and meaningfulness. Results from an investigation to what gives a 

chunk meaningfulness and usefulness for the chess player will be reported. 

 Chunk familiarity. This research assumes an arbitrary threshold such that a 

chunk must appear in at least one per cent of boards from a sample of games in 

order to qualify as a frequently occurring chunk. If a pattern found is present on 

less than one per cent of the boards then the pattern is considered too 

infrequent and is not considered to be a chunk. 

 Chunks and player‟s skill. The existence of chunks on the chessboard is in itself 

not a measure of the player's skill, as chunks may be a property of the chess 

pieces and the rules of the game, however, chunk knowledge and the 

application of this knowledge are investigated and reported in this thesis. 

 

 

5.1. What a chunk looks like 

The following chessboards show a few examples of chunks. The chunks shown were 

extracted from Grandmaster games by using the CHREST program8.  

Chunks may be composed of either or both colour pieces: 

 

 

                                            
8
 The chunk data were provided by Gobet. 
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    
            
            
          
          
            
          
      
           
    

 

A chunk may be built from smaller chunks: 

    
           
          
          
            
            
            
            
            
    

 

 

Pieces in the chunk may be unrelated (below left). 

A chunk may be part of the initial board layout (below right). 

    
            
            
            
           
            
            
           
          
    
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5.2. Chunk statistics 

From an analysis of chessboards it is clear that there are many patterns or 

constellations of pieces that occur frequently. The repeated constellations or chunks 

exist due to the properties of the chess pieces and the rules of the game. It is easy to 

extract chunks from chess games; the difficulty is finding meaning associated with 

the chunks. The existence of chunks in itself is not a measure of the player's skill as 

chunks are found across the whole range of skill sets. Therefore attempts to correlate 

the player's skill with chunks used are futile, but rather, it is the player's skill that 

recognises chunks to assist his chess play. 

 

In this chapter we worked with a large number of chunks compiled from Grandmaster 

games using CHREST. The data were provided by Gobet and comprised of 251,735 

unique chunks made up from four or more chess pieces from games starting at 

twenty ply from the beginning of the game. 

Positions earlier than twenty ply where not 

considered because the beginning of a game is 

normally dominated by conventional opening 

moves. The existence of chunks within 

chessboards of tournament games was 

investigated to measure their frequency and 

distribution using the chunks provided by Gobet.  

 

5.2.1 Why are there so many chunks on a chessboard? 

Before continuing with the reporting of results a few paragraphs follow to explain why 

so many chunks are expected to be found on chessboards. The reason why high 

numbers of chunks are counted is due to the way chunks are constructed. Each 

 
     
     
    
     
   
     
     
    
 
Figure 5.2:  A chessboard with five 

pieces 



37 
 
 

chess piece can be a member of many different chunks. To illustrate this, consider 

the chessboard figure 5.2 (above), with just five pieces. The chessboard shows five 

pieces on squares as follows: 

qd8, ke4, Kg6, Rc4, Bf1 

 

The pieces combine to produce chunks as follows: 

 

 

 

 

 

 

 

 

A chunk is shown within chevrons and pieces separated by commas. This notation is 

used de Groot and Gobet (1996). The piece is denoted by the piece name (R=Rook,  

B=Bishop, K=Knight, Q=Queen, K=King, P=Pawn), followed by the square location 

on the board. If the piece name is lowercase then the piece colour is black, otherwise 

it is white. 

The pieces combine giving a number of chunks increasing as a piece is 

added. With each piece added, the number of resulting chunks follow the series,  

1,3,7,15, 31…  

This series can be expressed as a formula: 

Combinations = (2 n) – 1     

Where „n‟ is the number of pieces on the chessboard. 

 

<qd8> <Bf1, qd8> 
<ke4> <Bf1, ke4> 
<ke4, qd8> <Bf1, ke4, qd8> 
<Kg6> <Bf1, Kg6> 
<Kg6 ,qd8> <Bf1, Kg6 ,qd8> 
<Kg6, ke4> <Bf1, Kg6, ke4> 
<Kg6, ke4, qd8> <Bf1, Kg6, ke4, qd8> 
<Rc4> <Bf1, Rc4> 
<Rc4, qd8> <Bf1, Rc4, qd8> 
<Rc4, ke4> <Bf1, Rc4, ke4> 
<Rc4, ke4, qd8> <Bf1, Rc4, <ke4, qd8> 
<Rc4, Kg6> <Bf1, Rc4, Kg6> 
<Rc4, Kg6 ,qd8> <Bf1, Rc4, Kg6 ,qd8> 
<Rc4, Kg6, ke4> <Bf1, Rc4, Kg6, ke4> 
<Rc4, Kg6, ke4, qd8> <Bf1, Rc4, Kg6, ke4, qd8> 
<Bf1>  

 

Figure 5.3 Combining five chess pieces 
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For example, a typical chessboard may have twenty-five or more pieces in play, 

yielding (225 –1) combinations, where 225 equates to 33,554,432. A large number of 

chunks are therefore present on the chessboard by virtue of the fact that a chunk is 

simply a combination of pieces. The number of chunks counted and shown on figures 

5.4 and 5.5 below are the chunks generated (by combining the pieces on the 

chessboard) and which also appear in the list of chunks compiled by CHREST. The 

list compiled by CHREST, in this instance, consists of 251,735 frequently occurring9 

chunks. A typical chessboard configuration taken from the mid-game could therefore 

contain a very large number of chunks with a proportion of them being found within 

the CHREST chunk list. 

 

5.2.2 The frequency of chunks in relation to player skill 

An analysis of games played by players of varying skill was made to see if there was 

any correlation between the number of chunks used within the game and player skill 

(the skill of the player being given as an Elo rating10). The analysis searched for the 

occurrence of any of the chunking patterns in the chunk database, for each board 

played in the game. As the length of games varied the results were normalised by 

taking from the game just the fifty ply prior to the conclusion of the game, therefore all 

game data in this analysis included at least fifty moves, with the fiftieth move being 

the conclusion of the game. 

The results were obtained for each skill group. The number of games 

examined for each skill group is shown in table 5.1. 

 

                                            
9
 „Frequently occurring‟ chunks are chunks that occur more than once within import data. 

10
 The letters Elo being the family name of the system creator „Ārpád Ėlö‟, a Hungarian born American 

physics professor. 
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The pieces on each chessboard for each game were compared with the list of 

chunks (from the chunk list supplied by Gobet) so that the number of chunks on each 

board could be counted. An average number of chunks for each position within the 

game were calculated, for all games in each skill group. The results of the analysis, 

which are displayed in figure 5.4, show an increase in the average number of chunks 

found on the board as the game progresses towards checkmate. 

The most notable observation from this analysis, which is illustrated in the 

graph shown in figure 5.4, is the fact that the number of chunks found is more or less 

the same, irrespective of the player skill. At first sight this implies that chunking is 

unrelated to the skill of the player as the number of chunks on the chessboard does 

not change with increasing player skill. This observation does not however conflict 

with chunking chess skill theory, as it is the knowledge of the chunks that is attributed 

to skill and not the mere presence of chunks. The expert player may recognise 

patterns and so pursue certain moves as a result. The novice on the other hand 

would not recognise the chunks and may look ahead through many unfruitful paths. 

Elo Range Number of 
Games 

Examined 

1400-1599 356 

1600-1799 748 

1800-1999 1021 

2000-2199 2006 

2200-2399 2003 

2400-2599 2006 

2600-2799 502 

Table 5.1:  The number of games used in each skill group. 
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Figure 5.4   The average number of chunks found on the chessboard 

 

The results shown in figure 5.4 show a steady increase in the number of chunks on 

the board as the game progresses until about fifteen moves before checkmate where 

the number of chunks increase at a slower rate until about ten moves before 

checkmate, after which the rate of chunk formation increases again. This trend is 

common to all skill sets. The change in the rate of formation of chunks indicates that 

chunk formation is significant within the game of chess and chunk formation can be 

an indicator of the stage of the game. 
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 It is curious that the number of chunks increase as the game proceeds, as 

shown in figure 5.4 above. The reason for this increase is thought to be due to the 

pieces being arranged into defensive groups, and the number of such configurations 

increasing as the game proceeds. Indeed, as the game proceeds, pieces within small 

groups can become related to other pieces within other groups, in defending and 

attacking relationships, resulting in a network of inter-related pieces over the whole 

board. As the game proceeds, the network of inter-related pieces increase, and as 

many of these relationships are frequently occurring between different games, the 

number of recognised chunks increases as the game advances. 

 

The results shown in figure 5.4 show the mean number of chunks as the game 

proceeds. The standard deviation for the data is approximately 180 at the point 

nineteen-ply before the conclusion of the game. This standard deviation is 

approximately the same for all skill groups, although the mean values show 

differences between skill groups, the differences are small compared to the 95% 

confidence interval of two standard deviations (360 chunks). The analysis that 

explores the separation of the mean values with chess skill, that follows in this 

chapter, is included for interest; however, it is acknowledged that the separation is 

not reliable. 

 
5.2.3  Removing the most common chunks 

The chunks found on the chessboard were examined in further detail to determine 

which chunks were used by each group of player. It was found that 186,297 out of 

the 251,735 chunks (74%) occur in games played by the lowest skill set (the lowest 

skill set has an Elo rating of 1200-1399). The point here is that the lowest skill-set are 

novices, who have supposedly not learnt a library of chunk patterns. The chunk 

patterns used by this group must therefore be common configurations that are 
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properties of the chess pieces and the rules of the game (such as advancing pawns). 

Many of the chunks are also insignificant, except for the property that they occur 

frequently within board layouts. 

There is therefore a base set of chunk patterns present with all skill sets. 

These chunks may include pieces in their original „start of game‟ positions for 

example. If we remove all of the chunk patterns used by the lowest skill set (Elo 

1200-1399) the difference between the groups becomes more noticeable. The 

suggestion is that there may be a subset of significant chunks that are related to 

player skill amongst the large dataset. 

By removing the base set, the number of active chunk patterns drops from 

251,735 to 65,438. Analysing the game data again with the base set of chunks 

removed shows an increase of the „non base chunks‟ with increasing player skill.  

 

The results are plotted on figure 5.5. The graph shows the variation between the 

lines which were plotted in figure 5.4 and as a result the vertical scales are very 

different between the two graphs. 
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Figure 5.5: The average number of chunks found on the chessboard excluding ‘base chunks’ 

  

The results displayed in figure 5.5 show an increase in the chunks used with the skill 

level at each point in the game. The graph shows a decline towards the game end. 

This decline is not a decline in the number of chunks present but rather a reduction in 

the variety of chunks. As the game ends the chunk patterns standardise across all 

skill groups and therefore become chunks used in the „base set‟.  There are fewer 

variations in the end game and therefore by removing the chunks used by the less 

skilled groups the number of additional chunks reduces. 
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 The results shown in figure 5.5 suggest that chunks within chess can be a 

differentiator with regard to player skill implying that at each stage in the game, 

players with higher ELO ratings construct more chunks on the chessboard than 

players with lower ELO ratings, when using a list of chunks generated by CHREST 

but excluding chunks used by the lowest skill group, however, this hypothesis will be 

investigated in more detail in the next paragraph. 

 

5.3. Testing the skill/chunk relationship using a Pearson Correlation 

The analysis in the previous sections consisted of a count of chunks as the game 

progressed. By removing the most common chunks (cf. page 41) there appears to be 

a differentiation of the number of chunks used with player skill. The differentiation is 

most noticeable at a position in the game that is twenty ply before the conclusion of 

the game, however, difference in the number of chunks between skill groups is small 

(only a few chunks), and the total number of chunks on the board numbers over one 

thousand. 

 To investigate the variation in number of chunks in greater detail, excluding 

the most common chunks, a Pearson Correlation was performed on the data. To 

obtain a more exact analysis and to evaluate the significance of the correlation, a 

number of chessboards were collated, all at a position of twenty-ply before the 

conclusion of the game. Each chessboard was examined and the number of chunks 

counted by searching the chessboards for the presence of chunks (chunks provided 

by Gobet). The data were correlated with the Elo skill rating for the players. The 

player with the lowest Elo rating in each game was recorded, together with the 

number of chunks, for each chessboard. A total of about two thousand chessboards 

from a Elo skill range between 1000 and 3000 were examined. 

 The results are displayed on the scatter plot below: 
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Figure 5.6: Scatter plot showing player skill and the number of chunks 

 

  A Pearson Correlation analysis was performed on the data. The result gave a 

correlation coefficient of 0.047, indicating that there is little or no correlation between 

chess skill and the number of chunks. 

 

 
5.4. ‘Defensive’ chunks 

This chapter introduces defensive configurations, as they are one of the types used 

in further analysis in chapter 7. As previously stated, many of the chunking patterns 

appear to have no meaning other than that they are frequently occurring 

configurations. With reference the literature on eye movements the chunk database 

was analysed to explore the relationship of pieces within the chunk. “By analysing an 

expert player‟s eye movements, it has been shown that, among other things, he is 

looking at how pieces attack and defend each other” (Simon and Barenfield, 1969).  

Using the chunk list generated by CHREST and removing all of the pieces, 

except those pieces that defend each other within the chunk, the number of chunks 
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reduces to 2,504. These chunks („defensive chunks‟) have each piece protecting 

another piece within the same chunk and in this way the group of pieces making up 

the chunk have an intrinsic value. Chunks in this case are therefore only composed 

of pieces of the same colour, yielding 972 white and 1,532 black chunks. These 

patterns are only chunks where the pieces defend each other. 

It is noted that there is a large difference in the number of defensive chunks 

composed of black pieces and chunks composed of white pieces. The reason for this 

is unknown and is a topic for further research. 
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Examples of defensive chunks are shown below: 

    
           
          
           
           
          
            
            
            
    
 
    
          
           
          
            
            
            
           
           
    
 
    
           
          
           
            
            
           
           
            
    

 

Figure 5.7: Examples of ‘defensive’ chunks 
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5.4.1  The occurrence of defensive chunks throughout a game 

The graph below shows an analysis of the use of defensive chunks throughout the 

game. Data have been normalised so that the conclusion of the game occurs at 

position sixty-four. The games used for the analysis had a span sixty-four or more 

moves. Positions before the conclusion of the game are numbered counting back 

from sixty-four, where 'ply sixty-four' is the conclusion of the game. Where a game 

had more than sixty-four moves the moves before 'ply one' are ignored. The average 

number of chunks used at each ply from a dataset of two thousand Master players 

chess games are plotted on the graph below. 

 

Figure 5.8:  The average occurrence of defensive chunks throughout the game 

 

The results displayed in figure 5.8 show that defensive chunks are frequent within the 

mid-game section. The number of defensive chunks on average increase steadily 

through the game until about fifteen moves before checkmate, after which the 
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number of defensive chunks decline. The rate of change of defensive chunks can 

therefore be an indicator of the progress of the game, the decline being indicative of 

an imminent conclusion of the game. 

 

5.4.2 The persistence of defensive chunks with player skill 

An analysis of games was undertaken to test for a correlation between the 

persistence of defensive chunks and the players‟ skill. This was achieved by 

measuring the average number of chunks on the board throughout the game. The 

analysis tests if a skilful player builds more defensive chunks into the game as part of 

a long-term strategy. The results show that there is no significant difference between 

skill groups. The lowest skill group shows a slightly higher persistence but as the 

sample number of games for this group is lower than the others the result is not 

considered reliable.  

Skill Elo Range Average 
Chunks 

throughout 
the game 

Games 
Played 

Number of 
Boards 

evaluated 

1200 – 1399 0.323787 55 22836 

1400 – 1599 0.284048 191 88890 

1600 – 1799 0.295222 343 150978 

1800 – 1999 0.276351 1134 539136 

2000 – 2199 0.278841 8714 4113450 

2200 – 2399 0.276492 18402 8827488 

2400 – 2599 0.279601 18704 8795946 

2600 – 2799 0.274532 4689 2290836 

 

Table 5.2:  A comparison of the use of defensive chunks with skill groups 

 

The results of the analysis comparing the persistence of defensive chunks shows no 

significant differences between skill groups. It was therefore not considered 

necessary to perform any further statistical analysis on these data. 
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5.5. Chapter conclusion 

A simple analysis of chess game data using chunks extracted by CHREST and 

provided by Gobet prompted a more detailed investigation into the relationship 

between the player‟s skill and the use of chunks. The analysis suggested that 

frequency of chunks throughout the game is related to the progress of the game (cf. 

figure 5.4) and that the number of non-base chunks present on the board is related to 

the skill of the player (cf. figure 5.5). However, an in-depth statistical analysis of the 

data found little or no correlation between the player‟s skill and the number of chunks 

used.  The analysis of defensive chunks (cf. figure 5.8) also show a relationship 

between defensive chunks and the progress of the game. A more detailed statistical 

analysis using a Pearson Correlation between the player‟s skill rating and the number 

of „non-base‟ chunks showed that there was in fact, little or no correlation between 

player skill and the selection of chunks on the board.  
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6. THE DEVELOPMENT OF A PROGRAM TO INVESTIGATE 
CHUNKING IN CHESS 

 
The thesis so far has reported some of the statistics that accompany chunks within 

the game of chess. Although chunks have been found to be plentiful on the 

chessboard and the use of chunks are, from the literature, related to the player‟s skill, 

however, the nature of chunks within chess remains unknown. The analysis so far 

has shown that chunks exist in very large numbers, for example a typical chessboard 

with twenty-five pieces will combine to form 33,554,431 chunks.  

The continuing investigation into chunking within chess will take into account 

the magnitude of chunk numbers but at the same time isolate chunks that are 

meaningful and are an indication of chess skill. 

The thesis continues with a detailed description of a program developed in 

order to isolate and assign meaning to chunks within chess games. 

 

 

6.1. CLAMP - ‘Chunk Learning And Move Prompting’ 

“Human chess players do not perceive a position as a static entity but as a collection 

of potential actions” (Finkelstein & Markovitch 1998) 

 

Extracting a database of chunks and the recognition thereof within a chessboard is in 

itself of little value in the same way that Ericsson and Harris‟s (1990) novice was 

trained to recall briefly presented positions to the same standard as a Master chess 

player, yet despite having this recall ability the novice was, not surprisingly, still a 

poor chess player. If however the recognition of a chunk can direct a player‟s 

attention to a move or strategy then the chunk has meaning and purpose. de Groot‟s 
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observations of Master chess players indicated that the presence of chunks had the 

effect of directing attention to specific chess pieces (de Groot 1978). 

It has been established earlier in this thesis that chunks are present within 

chess configurations as a result of i) the rules of the game; ii) the properties of the 

pieces; and iii) the strategic play by the chess player. This chapter describes a 

program that uses chunks to suggest moves. If knowledge of chunks is 

advantageous to the chess player then the player must not only recognise chunks on 

the chessboard but also be able to derive an action from their presence. The 

previous chapters in this thesis have looked at chunks without any associated 

meaning. 

CLAMP (which is an acronym for „Chunk Learning And Move Prompting‟) 

extracts chunks from chess games and associates each chunk with a move. By 

analysing a large number of games CLAMP builds a library of chunks, with their 

associated „meanings‟. The library can be used to analyse a new chessboard (that is, 

a configuration that was not used in the process of building the library of chunks). 

Having found the chunks on a new chessboard, an accompanying program 

„CLAMPanalyser‟ can compare the chunks with those held in the library and look up 

their associated moves. CLAMP and CLAMPanalyser are used to test the proposal 

that a move to be made on the chessboard is supported by a high number of chunks, 

where the chunks are associated with a move on previously analysed chessboards. 

The method used by CLAMP and CLAMPanalyser is a simple recognition/ 

association process; chunks are recognised by searching the chunk libraries and are 

associated to a move, based simply on which libraries the chunks are found within. 

Chunking (within human cognition) is “often called the recognition-association theory” 

(Cooke et al. 1993). We will see later that the results obtained from CLAMP and 

CLAMPanalyser show that chunking using a simple recognition/association is a 
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viable method to direct attention to salient moves, but first we need to consider the 

building of chunk libraries. 

 

6.2. Building chunk libraries 

CLAMP acquires chunks that exist on a chessboard just prior to a move of a piece to 

a square. The chessboards used for this process are taken from Grandmaster 

games11. Grandmaster games were used as a data source for the following reasons: 

 

 It is assumed that the moves made by Grandmasters are consistently good 

moves. 

 Grandmaster games are plentiful and easily obtainable from the Internet giving 

the potential for a large data source. 

 Games played by non-Grandmasters can be assumed to be absent from this 

dataset thereby ensuring availability of chess data not included within the 

library which can be used to test CLAMP. 

 

6.3. Building chessboard collections 

The first stage of building a chunk library requires 

the compilation of collections of chessboards giving 

example configurations before each possible arrival 

of a chess piece on each square on the board. For 

example, the chessboard opposite12 shows the 

piece configuration with white to play from an actual 

chess game. After consideration the player played Rxh7 (the rook on h3 took the 

                                            
11

 A Grandmaster is defined as a player with an ELO skill rating between 2400 and 2799. 
 
12

 The board FEN is: r2q1rk1/pbpnb2p/1p4p1/3pN3/3P1Pp1/3BB2R/PPP1Q2P/R5K1 w - - 0 1 

 

 
   
  
    
    
    
   
  
     
 
Figure 6.1: Resulting move:Rxh7 
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pawn on h7). This chessboard could therefore be included in the collection for rook 

arriving on „h7‟ 

 It may be that a piece arriving on a square is also a capture of the piece on the 

square. This additional information (whether a piece is captured or not) is not 

recorded explicitly. We will see however that the chunks that are generated from the 

board configuration (cf. paragraph 6.5) can contain any of the pieces on the 

chessboard before the move is made. Chunks can therefore include the captured 

piece. If a configuration of pieces frequently results in a move that will capture a 

piece then the captured piece will also exist within chunks that are associated with 

that move.  

 

The chessboard below13 shows a configuration from another game. The move played 

was Ne5 making this configuration eligible for inclusion into the collection Knight 

arriving on „e5‟  

 

A collection of one thousand chessboards was 

compiled with board layouts immediately prior to 

the arrival of a Rook on square h7. Another 

collection of one thousand chessboards was built 

giving boards prior to the arrival of the Knight on 

e5. Similarly, collections of one thousand 

chessboards for each piece (Pawn, Rook, 

Bishop, Knight, King and Queen) arriving on each of the sixty-four squares of the 

chessboard were compiled. 

                                            
13

 The board FEN is defined r1bq1k1r/ppppbpp1/5nB1/3P2p1/3Q4/5N2/PP1N1PPP/4RK1R w - - 0 1 
 

 
   
  
    
    
     
    
   
   
 
Figure 6.2: Resulting move: Ne5 
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 Building collections of chess moves in this way has the advantage that all 

moves have the same number of observations, but the disadvantage that information 

is lost about the frequency with which the moves occur in the environment. A factor 

for the frequency of occurrence is introduced later (cf. page 89) as the significance of 

each predicted move, after analysing the chunks on a chessboard, is scaled by a 

„move rareness‟ figure. 

By compiling collections of one thousand chessboards prior to each move 

(each piece to each of the sixty-four squares on the chessboard), each move is 

supported by a large number of chunks as each chessboard observation can contain 

a different assortment of chunks. The figure of one thousand chessboards was found 

to provide a sufficient variation of chunks so that at least one chunk present on a new 

chess configuration (not one of the chessboards used in the „collections‟) can be 

found within the collection for a large percentage of cases (cf. page 94). 

Compiling collections with equal numbers of chessboards also ensures that 

each move analysis can be treated equally; with the calculations for each suggested 

move using numbers of the same order (cf. page 82).  

 

There are six types of piece (Pawn, Rook, Knight, Bishop, Queen and King), and 

sixty-four squares. According to the rules of chess, each piece can arrive onto any 

square on the board with the exception of the Pawn. The white Pawn starts in the 

second row and can only move forward and so it is impossible for a Pawn to arrive 

on the first or second row. Similarly if a Pawn arrives at row eight it is normally 

instantly promoted. Therefore rows one, two and eight are not viable positions for a 

white Pawn to arrive. 

 It should be noted CLAMP does not distinguish between the move of a pawn 

to the last row and the pawn being promoted, and with a real move of the same piece 
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(the piece that the pawn is promoted to) onto the same square. This could be a 

limitation in the operation of CLAMP when analysing moves to the last row as the 

chunks relevant to the two situations could be significantly different. 

Both white and black pieces would need to be analysed to build a library of 

chunks for white and black piece moves. For this thesis, just white moves were 

considered; allowing CLAMP to suggest only moves when white is to play. To allow 

CLAMP to suggest black moves, a library of chunks would need to be built from 

chessboards just prior to black piece moves. The process would be identical to the 

process for white pieces, however, an analysis of both black and white pieces was 

considered unnecessary, as the proof of concept would be satisfied with the analysis 

of one colour only. For this thesis, only chessboards in the position of „white to move‟ 

were considered. 

For this research chunks are defined as frequently occurring constellations of 

pieces.  In order to determine the frequency of occurrence, a number of boards were 

needed for each of the arrival squares, with a number of instances of each board 

extracted. Chessboards at move twenty ply or above were used for building the 

libraries, as the middle game is particularly interesting because it is outside the scope 

of standard openings and the board configurations are extremely varied. One 

thousand arrivals of each white piece on each square were extracted from a 

database of Grandmaster games (the database was supplied by ChessBase.com)  

requiring a total of 360,000 boards14 (of course, many more boards are examined to 

yield the required total). Some of the arrivals were rare, such as the white King 

arriving on position A8. From the collection of games used, in order to find one 

thousand instances of this move over fifty million boards (taken from 1,496,327 

                                            
14

 The number of possible moves is 6x64 (384) however as it is not legal for a pawn to arrive on rows 
1,2 or 8 the number of legal moves reduce to 360. 
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Grandmaster games) where required. A large number of Grandmaster boards were 

examined to find the required number of instances for each piece on every square; 

each piece arrival is shown in the table below.  
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Move To: Pawn Rook Knight Bishop King Queen 

A8 N/A 962602 9636907 4467304 50864607 2040445 
B8 N/A 1174639 12460136 5599671 29176446 2332073 

C8 N/A 820111 4095665 3056348 27958146 1984924 

D8 N/A 683546 5134560 3938365 27870774 1478493 

E8 N/A 935039 5050787 3800114 25795377 2066843 
F8 N/A 1260767 5454715 2165152 27207363 2850746 

G8 N/A 2113968 23639737 7782391 25396161 4042016 

H8 N/A 1884914 23366342 20582787 46281290 2701517 

A7 3521477 596916 4134549 3393952 18842186 1609270 
B7 2935805 557450 2742381 1145894 9438385 1068589 

C7 3242341 601982 1597288 2212306 9225011 1392916 

D7 3230427 630209 1320142 1669882 9062871 1323358 

E7 3582266 850656 1308897 1453806 8142512 1534606 
F7 3618273 1018496 1670824 1907198 7884365 1680755 

G7 4056859 1217361 3989406 889163 8756837 2482110 

H7 4774298 1278239 6186154 3803997 14936412 2367307 

A6 1008527 1006426 5181266 1975169 10668581 1958452 
B6 635482 957923 1294400 1874056 5023890 1704808 

C6 516532 788357 689251 674791 4138472 1082963 

D6 800271 802506 499105 934086 3438595 1256137 

E6 789274 1080382 620480 848327 3388856 1165232 
F6 634253 1126181 737972 558351 3553416 1191246 

G6 755318 1620143 1408503 2031708 901269 1600367 

H6 1363652 1672341 3063138 1086343 6383310 1496397 

A5 416995 1012265 1713427 1786855 8105232 1462195 
B5 274587 979729 505148 758460 3210255 975425 

C5 271800 757108 492546 705811 2304620 1030043 

D5 218829 748873 269886 400474 1939944 687370 

E5 201447 955100 262779 456398 1689275 836424 
F5 247797 1067330 400775 953373 1673329 986576 

G5 330288 1599027 431353 577783 2019553 1057355 

H5 473781 1573794 1589764 1571545 3867717 696422 

A4 202672 1110995 777620 2810634 7266197 568602 
B4 209680 1181848 1567814 884435 2577234 1016290 

C4 251143 835781 321433 392124 1470933 530568 

D4 172106 734475 231347 385294 1087396 596908 

E4 177802 900222 204929 374491 843087 573751 
F4 139105 875703 452396 465262 910526 814563 

G4 189311 1563035 1028113 745158 1114939 682095 

H4 193203 1606167 620131 2422522 2099493 1050261 

A3 302254 1010023 967534 516157 6448602 1452765 
B3 360627 1030745 470838 999675 1704941 316647 

C3 330105 787655 247661 364099 1075625 478525 

D3 536731 721953 593026 372405 646436 405798 

E3 498782 763272 478039 259096 433794 562873 
F3 274374 620238 223837 300180 337135 392134 

G3 326352 1141493 572883 1609019 523076 865603 

H3 240826 1345626 1465702 683675 1034394 1537984 
A2 N/A 827830 5139687 5923694 5934705 1974852 

B2 N/A 824280 2325303 467965 1414601 656674 

C2 N/A 491314 858240 1271097 955550 245706 

D2 N/A 474966 205475 345030 524542 277968 
E2 N/A 547827 343896 354055 303757 277132 
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F2 N/A 481116 1244209 1453267 237962 768195 

G2 N/A 1229702 2116174 627078 172481 1293581 
H2 N/A 1686492 2001144 10191236 307153 5005480 

A1 N/A 489915 12684118 1975657 8302218 1939527 

B1 N/A 204455 1776868 3904377 1222527 1141736 

C1 N/A 133369 1868735 596446 651583 762673 
D1 N/A 124670 1278145 1263712 933093 629093 

E1 N/A 141096 880389 1529827 776908 866834 

F1 N/A 138663 936311 484712 313351 1442860 

G1 N/A 491533 2650237 7160748 249171 6669745 
H1 N/A 980212 16876043 3893057 334234 9493423 

 
Table 6.1:  The number of chessboards required to find 1,000 instances of each piece (white 

only) moving to a square. 

 

The collections of one thousand arrivals were saved in files with the piece name and 

arrival square as components of the filename (360 files in total). 

 

 

6.4. Move asymmetry: A case against Holding (1985) 

It is interesting to note the lack of symmetry in table 6.1 (above). Considering two 

points at opposite sides of the chessboard, the number of instances of a bishop 

arriving on H6 is substantially greater than the instances of a bishop arriving on 

square A6. When building the collection 1,086,343 boards were required to find 

1,000 instances of the bishop arriving on A6 compared to 1,975,169 boards for one 

thousand instances for bishop arriving on square H6 (therefore the arrival on A6 is 

more frequent and easier to find than and arrival on H6). The lack of symmetry is an 

argument against Holding‟s suggestion that “chunks might be remembered in relative 

positions” (Holding 1985), as Holding considered Chase and Simon‟s (1973) estimate 

of chunks held in long-term memory as being too numerous (cf. page 17). The lack of 

symmetry in piece arrivals is a possible reinforcement of the view that chunks have 

different meanings depending on their absolute position on the chessboard. The lack 

of symmetry is even more pronounced when considering piece arrivals to row seven 
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and eight (the differences between left and right positions undoubtedly due to the 

initial positions of the King and Queen).  

The notion that chunks are absolutely positioned is endorsed by Saariluoma 

(1994) in a series of experiments that measured the recall ability of chunks from their 

original position on the board and the same configuration of pieces shifted from their 

original positions. Even though the forms of the chunks were unchanged the recall 

ability decreased if the chunks were moved, implying that location information is part 

of the knowledge stored with the chunk in the chess players memory. 

Gobet and Simon (1996) report similar results from experiments with recall of 

chunks using chessboards transposed to a mirror image of original configurations, 

using a computer simulation, with a version of CHREST. The number of chunks 

found on a vertical axis mirrored image chessboard is reduced compared to the 

recognition of chunks from the original board. Similar results were obtained, and 

reported in the same paper, when testing human chess players. 

To conclude, the lack of symmetry in table 6.1 can be used as another 

argument for the notion that chunks are absolutely positioned on the chessboard. 

The different frequency of moves of pieces to squares on the left and right hand 

sides of the board show that the moves of pieces have different significances on 

opposite sides of the board. As the presence a piece occurs with different 

frequencies depending of the position on the chessboard, chunks of pieces (with the 

same relative piece positions within the chunk) will have different properties 

depending on the position of the chunk on the board. A chunk will therefore have 

different properties when located on different positions on the chessboard. For this 

reason chunks of pieces can only be considered to have the same properties when 

the pieces are located on fixed positions on the chessboard. 
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6.5. Analysing chunks from collections 

Having compiled collections of boards that contextualise moves of specific pieces to 

specific squares, the next stage in the chunk library building process was to analyse 

each board within each collection to find repeated chunks. To build a „chunk library‟ 

CLAMP systematically analysed each board in each collection, extracting all chunks 

in the boards and assigning them to the move that followed. Collection Rook arriving 

on a7 for example, contains one thousand boards, each of which existed in a 

Grandmaster game immediately prior to the move of the Rook to square „a7‟. All 

chunks on each board are assigned to the move „Rook to a7‟ and the count of how 

many times each chunk was found is maintained in the chunk library. As each 

collection was examined, chunk libraries were built and the chunks associated with 

the move that defined the collection. 

A board can contain up to thirty-two chess pieces on sixty-four squares. All 

combinations of pieces (pieces with their absolute location on the board) are 

generated to create chunks. The order of pieces within the chunk is not considered 

significant and so the elements of the chunk are arranged in ascending order of 

value. Ordering the pieces within the chunk eliminates duplications of chunks where 

the pieces are arranged in a different order. As a result the number of chunks is the 

total number of combinations rather than the total permutations of pieces. 

Using the formula described on page 37, it is therefore possible for CLAMP to 

find up to 4,294,967,295 chunks for each board, with chunk sizes ranging from one to 

thirty-two pieces. The theoretical maximum number of chunks when analysing one 

thousand boards in a collection could therefore be as high as 4.2 trillion. Storing and 

processing data of this size would present serious technical difficulties, however, as a 

game precedes beyond the opening moves the likelihood of finding very large 

frequently occurring chunks diminishes as the board layout becomes increasingly 
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diverse. This is supported by data obtained by CHREST (supplied by Gobet) from 

chunks extracted from Grandmaster games; the distribution of chunks by chunk size 

is shown in table 6.2 below:- 

Chunk 
Size 

Number 
found 

Percentage 
of total 

4 58,698 23.32% 

5 63,457 25.21% 

6 54,630 21.70% 

7 36,869 14.65% 

8 20,814 8.27% 

9 10,036 3.99% 

10 7,231 2.87% 

Total: 251,735 100.00% 
 

Table 6.2: Chunk sizes from CHREST data 

 

CHREST was programmed to extract chunks 

of size between four and ten pieces. The 

number of chunks reduces as the chunk size 

increases above five pieces; the number of 

chunks present with a size of ten pieces 

reduces to less that 3% of the total chunk 

count. The research reported in this thesis 

investigates chunk sizes of 2,3,4,5,6 and 7 pieces. Chunks of size greater than seven 

pieces account (in total) for less than sixteen per cent of all chunks extracted by 

CHREST and are, compared to chunk sizes of fewer than seven pieces, considered 

too infrequent for this study. Consequently the maximum number of chunks reduces 

considerably as the combination of pieces are limited to seven rather than the 

maximum of thirty-two. 

 It should be noted that, because of the huge variation between chess games 

each chessboard can be considered unique and therefore the chance of finding a 

 
     
     
    
     
   
     
     
    
 

Figure 6.3: A simple chessboard 



63 
 
 

large group of pieces in the same configuration diminishes with increasing group 

size. 

To illustrate how the number of chunks reduce, consider the simple 

chessboard shown in figure 6.3 above. The chessboard shows five pieces on 

squares as follows: 

    qd8, ke4, Kg6, Rc4, Bf1 

 

The pieces combine to give a total of thirty-one combinations. If combinations 

with more than, for example, three pieces are removed, then the number of 

combinations reduce to twenty-four as illustrated in the table below. 

<qd8> <Bf1, qd8> 
<ke4> <Bf1, ke4> 
<ke4, qd8> <Bf1, ke4, qd8> 
<Kg6> <Bf1, Kg6> 
<Kg6 ,qd8> <Bf1, Kg6 ,qd8> 
<Kg6, ke4> <Bf1, Kg6, ke4> 
<Kg6, ke4, qd8> <Bf1, Kg6, ke4, qd8> 
<Rc4> <Bf1, Rc4> 
<Rc4, qd8> <Bf1, Rc4, qd8> 
<Rc4, ke4> <Bf1, Rc4, ke4> 
<Rc4, ke4, qd8> <Bf1, Rc4, <ke4, qd8> 
<Rc4, Kg6> <Bf1, Rc4, Kg6> 
<Rc4, Kg6 ,qd8> <Bf1, Rc4, Kg6 ,qd8> 
<Rc4, Kg6, ke4> <Bf1, Rc4, Kg6, ke4> 
<Rc4, Kg6, ke4, qd8> <Bf1, Rc4, Kg6, ke4, qd8> 
<Bf1>  

 

Table 6.3: Piece combinations with chunks of size greater than three marked with a 
strikethrough 

In order to make comparisons between chunk sizes, CLAMP processed the 

collections to build chunk libraries for distinct chunk sizes; for example, a library of 

chunks was built with four piece chunks and another library with five piece chunks. 

Building libraries for each chunk size in isolation also reduces the maximum number 

of chunks processed and stored. In the above example the number of three-piece 

chunks resulting from the combinations equate to ten. Note that chunks are made 

from both black and white pieces. 
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6.6. Chunk size and memory requirements 

The following table shows the computer memory required against chunk size: 

 Chunk Size 
(Max) 

Number of chunks after 
combining the pieces 

(Total) 

Number of 
chunks of 

selected chunk 
size 

Memory required 
for combinations 

(bytes) 

2 528 496 1552 

3 5,488 4,960 21,392 

4 41,448 35,960 201,192 

5 242,824 201,376 1,409,448 

6 1,149,016 906,192 7,752,792 

7 4,514,872 3,365,856 34,679,640 

 

Table 6.4:  Chunk Statistics and memory requirements 

 

Table 6.4 shows the maximum numbers of chunks for a chessboard with thirty-two 

pieces when limiting the chunk size to between two and seven. The table shows the 

number of chunks increases with an increasing chunks size, with a corresponding 

increase in memory required for processing and storing. Limiting the number of 

pieces in the chunk reduces the number of potential chunks that can be extracted 

from a chessboard to more manageable proportions. The potential number of chunks 

processed is the sum of the chunks extracted from each chessboard in a collection (a 

collection consists of one thousand boards). As each chunk occupies space in 

memory or on disk, careful consideration was given to the software design to 

maximise processing speed and minimise memory requirements while processing 

data.  

The following code snippet, which is written in the C++ language, shows how 

pieces are combined to produce all combinations with a size „CHUNKSIZE‟ pieces. 

The function is called, passing each piece and position to construct all combinations 

on the „List‟ array variable (the memory size required for the List variable is shown in 

table 6.4).  
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Combinations of pieces are assembled in memory pointed to by the variable „List‟. 

The memory used is allocated from the system heap as required. 

 

 

#define BLOCKCELLS 20000000 
 
BOOL CGenLibs::Combination(char piece, char pos) 
{ 
 int size; 
 short px;  
 px = piece; 
 px *=64; 
 px += pos;    //px is the 'piece-position object 
 long TheEnd = end; 
 List[end++] = px; 
 List[end++] = -1;    //add terminator (-1) 
 start = 0; 
 for(;;) {     //add px to all existing cells 
  if( start == TheEnd ) break; 
  for(size=0;size<32;size++) { 
   if(List[start+size] == -1) break;  //break out with size set to the chunk size+1 
  } 
  size++;    //include the spacer character 
  start+=size;   //move start on if we need to skip this chunk 
  if(size > CHUNKSIZE ) continue; //only consider chunks of chunk size or less  
  start-=size;   //revert back to chunk start to continue 

 
  for(;;) {    // Add piece to chunk - all 
   List[end] = List[start++]; //copy this sequence to new sequence for adding 
   if( List[end] == -1 ) break; 
   end++; 
  } 
  List[end++] = px;   //append this Piece to the sequence 
  List[end++] = -1;   //mark end of sequence 
   

//Reallocate memory if the buffer is too small 
  if( end*2 > (BLOCKCELLS*SizeMem)-1280 ) { // Memory Buffer too small! 
   SizeMem++;   //increase allocation 
   List = (short *)realloc( List,  BLOCKCELLS*SizeMem); 
   if( List == NULL ) return true;  //return on error  
  } 
 } 
 return false;     //exit ‘ok’ 

} 

Figure 6.4:  Code Snippet – Making chunks by combining pieces 
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6.7. CLAMP design, data structures and processes 

The CLAMP program processes a large amount of data when analysing piece 

constellations from many Grandmaster games. Careful consideration was given to 

the design of data structures and processes for efficient processing and data storage. 

In order to conserve memory space, a „piece-position‟ is represented by 

CLAMP as a single integer comprising of sixteen bits. The lower six bits define the 

square on the chessboard that the piece occupies (six bits have the range capacity 

for 26 or decimal sixty-four numbers). The upper ten bits of the integer define the 

chess piece. As chunks comprise of both black and white pieces there are twelve 

possible piece types (six black and six white) that need to be defined, needing at 

least four bits. The „piece‟ part of the integer and the „position‟ part require ten bits in 

total. A sixteen-bit integer was chosen, as it is the smallest integer that the compiler 

supports that accommodates ten or more bits.  

Piece-positions within chunks are sorted into ascending order, for example: 

< Nc3, Bb3, Ra2, Pa1 > 

 

… is considered to be the same chunk as: 

< Bb3, Nc3, Pa1, Ra2 > 

 

Sorting piece-positions into ascending order will: 

 Eliminate multiple representations of the same chunk where pieces 

within the chunk are combined in a different order (a similar technique 

is adopted by CHREST as a means to remove „redundant links‟ 

between chunks (Groot and Gobet 1996). 

 Facilitate forward only searching through chunk library lists. 
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struct _Node { 
 short PiecePosition;  //the Piece-Position  
 short Counter;   //count of times this node was searched 
 long Link;    //address of preceding node 
}; 
 

Figure 6.5:  Code Snippet - The 'node' structure 

Forward only searching is a fast and efficient method to search for chunks within the 

chunk libraries. The „cursor‟ (the position within the file currently being looked at) 

starts at the beginning of the library file and progresses to the end of the file, without 

the need to re-start at any point. The library is organised so that the components of a 

chunk are found in ascending order, for example Nc3 will always be positioned after 

Bb3. When searching through the library Nc3, will always succeed Bb3 so that, 

provided we search for piece-positions in the same order, we need only one pass 

through the library to find all components of the chunk.  

Piece-positions are stored in a structure called a „node‟, containing a counter, 

to record the frequency of the piece-position, and a pointer to index another node. 

When building a chunk library the pieces on a chessboard are combined to make 

chunks. Chunks are added to the library by adding piece-positions after sorting the 

piece-positions into order, and advancing through the library file from the beginning 

to the end. Chunks are stored within a library by linking nodes to construct a linked 

list data structure. 

 

The „node structure‟ is defined as follows: 
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6.8. Combining ‘nodes’ to build ‘lists’. 

Chunks are represented by a linked list of nodes, for example, a four-piece chunk will 

comprise of four nodes, with the link in each node pointing to the previous node.  

 

The chunk < Bb3, Nc3, Pa1, Ra2 > would have nodes as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

The first „piece-position‟ is always the starting node. Subsequent piece-positions are 

added to the library by adding a node with the „Link‟ pointer indexing the previous 

node (the node that contains the previous „piece-position‟). Similarly, the third piece-

position node will be added with the link indexing the second node and so on.  

A second chunk that is to be added to the library that also starts with Bb3 will 

add to the linked list. The chunk <Bb3, rc2, Pd4, Pe2> will join, omitting the first 

node, but incrementing the counter in the first node.  The counter keeps account of 

how many times the node has been referenced (this count will later be used to 

Node 1 
  PiecePosition: Bb3 
  Counter = 4 
  Link = 0 

Node 2 
  PiecePosition: Nc3 
  Counter = 3 
  Link = Node(1) 

Node 3 
  PiecePosition: Pa1 
  Counter = 2 
  Link = Node(2) 

Node 4 
  PiecePosition: Ra2 
  Counter = 1 
  Link = Node(3) 
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eliminate infrequently occurring nodes from the library so that only frequently 

occurring chunks are contained within the chunk library). 

 

The list of nodes, after adding the chunk <Bb3, rc2, Pd4, Pe2> will be as follows: 

 

 

 

 

 

 

 

 

 

 

 

The following example shows how five chunks are represented in the list structure.  

Chunks to add: 

< Bb3, Nc3, Pa2, Ra1 > 

< Bb3, Nc3, Pa2, Pg2 > 

< Bb3, Nc3, Pa2, Qd4 > 

< Bb3, Kg1, Pd4, Pg2 > 

< Bb3, Kg1, Pd4, Pc4 > 

 

 

 

 

Node 1 
  PiecePosition: Bb3 
  Counter = 7 
  Link = 0 

Node 2 
  PiecePosition: Nc3 
  Counter = 3 
  Link = Node(1) 

Node 3 
  PiecePosition: Pa1 
  Counter = 2 
  Link = Node(2) 

Node 4 
  PiecePosition: Ra2 
  Counter = 1 
  Link = Node(3) 

Node 5 
  PiecePosition: rc2 
  Counter = 3 
  Link = Node(1) 

Node 6 
  PiecePosition: Pd4 
  Counter = 2 
  Link = Node(5) 

Node 7 
  PiecePosition: Pe2 
  Counter = 1 
  Link = Node(6) 
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The chunks are represented in the list as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The representation of chunks in the list structure is necessary for two reasons.  

 

 The list will hold in a compact form a large collection of chunks. Duplicate 

piece-position sequences are eliminated, as are duplications of the same 

chunk. The example above has, for example, reduced six chunks 

consisting of thirty piece-positions to just ten nodes. 

 Each node in the list has a counter to record the frequency of the node. For 

this thesis one of the properties of a significant chunk is that it is frequently 

Node 1 
  PiecePosition: Bb3 
  Counter = 10 
  Link = 0 

Node 2 
  PiecePosition: Nc3 
  Counter = 4 
  Link = Node(1) 

Node 3 
  PiecePosition: Pa2 
  Counter = 3 
  Link = Node(2) 

Node 4 
  PiecePosition: Ra1 
  Counter = 1 
  Link = Node(3) 

Node 5 
  PiecePosition: Kg1 
  Counter = 4 
  Link = Node(1) 

Node 6 
  PiecePosition: Pd4 
  Counter = 3 
  Link = Node(5) 

Node 7 
  PiecePosition: Pg2 
  Counter = 1 
  Link = Node(6) 

Node 8 
  PiecePosition: Pc4 
  Counter = 1 
  Link = Node(6) 

Node 9 
  PiecePosition: Pg2 
  Counter = 1 
  Link = Node(3) 

Node 10 
  PiecePosition: Qd4 
  Counter = 1 
  Link = Node(3) 
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occurring. The node counter can be used as a measure of the significance 

of the chunks within a list. 

 

6.9. Building ‘lists’ from collections 

When building chunk libraries, CLAMP will take a collection (a collection is one 

thousand chessboards showing the configuration immediately prior to a specific 

move of a piece to a square), combine the pieces on each board in the collection to 

construct chunks, and save the chunks in list structures. The elements of the list 

consist of the piece (Pawn, Bishop, King Etcetera), which is represented as a 

numeric code, plus the position the piece occupies on the chessboard.  The 

combination of piece and position gives a unique numeric value that represents the 

piece on a square. Chunks are „pieces on squares‟ and are sorted in order of the 

numeric representative values. Because the chunks are sorted into ascending order 

the first element in the chunk is always the root node of a list. When building the 

chunk libraries there may be up to 768 lists in construction, each list having a 

different root node for each of the twelve chess pieces (chunks are composed of 

black and white Pawn, Rook, Knight, Bishop, King and Queen pieces) on each of the 

sixty-four squares of the board.  CLAMP will first find the list with the root node as the 

beginning piece-position of the chunk.  CLAMP then searches through the list to find 

the node that matches the second piece-position and where the „Link‟ element in the 

node points to the previously matched node. If a node is found then the counter 

element is incremented, otherwise a new node is appended to the list. CLAMP 

continues searching from the current position for the next node and so on until all 

nodes in the chunk have been found or added. 

As piece-positions within chunks are ordered in ascending value, higher value 

piece-positions will always be added to the list after lower value piece-positions. This 



72 
 
 

property of the list ensures forward only searching through the list, by virtue that 

higher value elements will always succeed lower value elements in position within the 

list. Adding a chunk to a list is therefore efficient and fast as it involves, at most, just 

one search through the list.  

All chunks from each board form a collection stored in lists using the process 

described above. Due to the large number of chunks that may be present on each 

board, and as one thousand boards in the collection are to be assimilated, the 

process of consolidation of chunks into lists needs to be efficient. When processing 

all of the data from a collection, the number of nodes stored can be large, for 

example the actual number of chunks contained in a library consisting of five piece 

chunks amounts to 45,646,773 with each node comprising of eight bytes, giving a 

potential file size of 1,825,870,929 bytes. The actual size of the library reduces to 

599,966,829 bytes (a 67% reduction in size) as a result of the elimination of duplicate 

sequences.  

The reduction in storage size by using the list is important because the lists 

are constructed in the computer‟s physical memory. If the memory required for the 

construction of lists exceeds the available physical memory then the processing time 

would be greatly extended due to the need to swap physical memory with disk 

storage and thereby incurring an associated operating system overhead. 

 

6.10. The structure of a ‘Trie’ 

The „list‟ data structure described above has the elements of the list sorted in order.  

As chunks are added, the nodes may link in ways representing „branches‟ from the 

„trunk‟ like branches in a tree. As the elements within the structure are such that the 

first node (or root) is shared by all chunks within the structure, and the elements of 

the chunks are stored in the contents of each node in the path from the root to the 
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node, rather than the node itself (refer to section 6.8 for more a more detailed 

explanation of this structure). In this thesis „lists‟ are contained in a structure named a 

„trie‟. The „trie‟ structure is the list prefixed with a header represented as a „C‟ 

program structure as follows: 

 

 

 

 

 

 

 

 

 

The trie structure has the piece-position, which is the root of the trie, as the first 

parameter. The root is the first element in the chunks that are stored in the trie. The 

„NodeMax‟ value is the number of nodes that are used in the trie. The „NodeLimit‟ is 

the memory space allocated during construction of the trie. When adding a node, if 

the NodeLimit has been exceeded then CLAMP will allocate more memory and 

increase the NodeLimit value in the trie structure. 

 

The following code snippet from the CLAMP program15 shows how the trie structure 

is constructed when a chunk is added to a list: 

  

                                            
15

 The full source code for CLAMP is provided on the disks that are attached to the back cover of this 
thesis. 
 

struct _Trie {  
short PeicePos;  //Root Piece-Position 
long NodeMax;  //Number of nodes in this trie 
long NodeLimit;  //Maximum nodes allocated to this trie 
long Address;  //Address of starting node 
struct _Node 

short PiecePosition; //Piece-Position of this node 
short Count  //node frequency 
long Link  //this contains address of preceding node 

 } [NodeLimit];   //there are ‘NodeLimit’ node structures 
} 
 

Figure 6.6:  Code Snippet - The ‘trie’ structure 
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int CGenLibs::AddNode(int size, short Tchunk[]) 
{ 
    int Base; 
    int exists = 0; 
    int LinkPos; 
    char buf[80]; 
    struct _Node * Node; 
    int PrevLink = -1;    // set for first Piece (no previous links)   
 
    for(Base=0;Base<MAXTREES;Base++) { 
        if( TreeStart[Base].PeicePosition == -1) {  // make a new tree if necessary 
            TreeStart[Base].PeicePosition = Tchunk[0]; 
            TreeStart[Base].chunklimit = 1000; 
            TreeStart[Base].Tree = 
             (struct _Node *)malloc( sizeof(struct _Node) * TreeStart[Base].chunklimit ); 
            if( TreeStart[Base].Tree == NULL) return;      // Insufficient memory! 
            TreeStart[Base].chunkmax = 0; 
        }        // Have we seen this before? If so add to the tree 
        if( TreeStart[Base].PeicePosition == Tchunk[0]) break; 
    } 
 
    for(int p=0;p<size;p++) { 
        LinkPos = 0; 
        Node = TreeStart[Base].Tree; 
        for(;;) { 
            if( LinkPos == TreeStart[Base].chunkmax ) { 
                if( TreeStart[Base].chunkmax == TreeStart[Base].chunklimit ) { 
                    TreeStart[Base].chunklimit += 1000; 
 

           TreeStart[Base].Tree = (struct _Node *)realloc( TreeStart[Base].Tree,  
                 sizeof(struct _Node) * TreeStart[Base].chunklimit);   //increase allocated memory 

                     if( TreeStart[Base].Tree == NULL ) return -1; 
                } 
                Node = TreeStart[Base].Tree; 
                Node += LinkPos; 
            } 
            Node->Piece = Tchunk[p]; 
            Node->Count = 1; ///# 
            Node->Link = PrevLink; 
            PrevLink = LinkPos++; 
            TreeStart[Base].chunkmax++; 
            Node++;     //always add to the new node after adding a node 
            if( ++p < size ) continue; 
            break; 
        } 
        if( Node->Piece == Tchunk[p] ) {   //most unlikely first 
            if( Node->Link == PrevLink ) { 
 
                     // just for information on chunks 
                Node->Count++;    //found again 
                if(p == size-1) {    // 
                    if( Node->Count > THRESHOLD ) exists = 1; 
                } 
                PrevLink = LinkPos; 
                break; 
                } 
            } 
        LinkPos++; 
        Node++; 
    } 
} 
return exists;    //return the number of times this chunk exists 

}
Figure 6.7:  Code Snippet – CLAMP function to construct ‘trees’ 



75 
 
 

6.11. Combining ‘tries’ to make a ‘library’ 

A chunk library consists of a group of files, each file being composed of the tries 

compiled from the processing of one collection and associated with the move that 

generated the collection. Each file is given a name that is linked to the move of the 

piece to the square that was the basis for the collection. 

One of the definitions of a chunk (cf. page 23) is that chunks are frequently 

occurring configurations. In order to remove infrequent chunks from the libraries, 

infrequent nodes are removed from the tries before saving in the library. The number 

of times a node has been found is recorded in the counter (an element of the node 

structure). An arbitrary threshold of a chunk existing on one per cent of the total 

boards within the collection was assumed so, as one thousand boards were 

processed in each collection, all nodes with a counter value less than ten were 

removed from the tries before copying to the library file.  

Rather than having each trie as an individual file (there are 768 tries resulting 

from each collection), which would generate a total of 276,480 files for all collections, 

the tries from a collection are concatenated into a single „library‟ file. The library 

therefore consists of 360 files, corresponding to one file for each white piece arriving 

on each of the sixty-four squares of the chessboard. One file results from each 

collection. The library file contains chunks that are associated with a move of a piece 

to a square on the chessboard. 
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The library file has a structure shown in the „C‟ code snippet below:   

 

 

 

 

 

 

 

 

 

 

 

 

The library file is associated with an arrival of one chess piece type to a specific 

square on the chessboard. The file contains all of the tries associated with the move, 

with an index to facilitate rapid access to the part of the file containing the trie of 

interest. A header section records the size of chunks that were processed to make 

the library, the number of items that are indexed and the number of tries within the 

file. The index includes the starting piece-position of the chunk that is the root of the 

trie, with the starting position as a byte offset to the start of the trie, and the number 

of nodes that make up the trie. The index is sorted in ascending order of starting 

piece-positions. 

 

6.12.  A graphical representation of a chunk 

This chapter has described how chunk libraries were built. A chunk library 

encapsulates domain knowledge by associating chunks with moves. A chunk can be 

associated with a number of moves. Each move that the chunk is associated to is 

long IndexSize  //this contains the number of index items 
long ChunkSize;  //this contains the chunk size 
long TreeSize  //this contains the size of the tree data 
 
struct _index {  //index structure 
 short PiecePos; //this contains the tree root item 
 long StartPos; //this contains the address of the tree structure 
 long Size;  //this contains the size of the tree structure 
}[ IndexSize ];  //there are ‘IndexSize’ items, sorted by ‘PiecePos’ 
 
struct _Tree { 

short PeicePos;  //Root Piece-Position 
long NodeMax;  //Number of nodes in this tree 
long NodeLimit;  //Maximum nodes allocated to this tree 
long Address;  //Address of starting node 
struct _Node 

short PiecePosition; //Piece-Position of this node 
short Count  //node frequency 
long Link   //this contains address of preceding node 

 } [NodeLimit];   //there are ‘NodeLimit’ node structures 
} [TreeSize];  //there are ‘TreeSize’ tree structures 

 
 

Figure 6.8:  Code snippet - The Library file format 
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„scored‟ with the number of occurrences that the chunk is present within a sample 

collection of chessboards that precede the move. The „move‟ is a composite of the 

piece and the square it is moved to. The number of possible moves is therefore 

three-hundred and sixty as there are sixty-four squares and six piece types but minus 

twenty-four illegal moves which include a pawn arriving on the first, second and 

eighth rows (cf. page 56).  A chunk can be represented in graphical form with the „x‟ 

axis labelled 1-360, representing the piece/position combination of the move and the 

„y‟ axis as the score for the move. 

 

 

Figure 6.9:  Graphical representation of chunk < Nc3, Ph2, nf6, ph7 > 

 

The key for the axis „Move To piece/position‟ for the graphs shown in figures 6.9, 

6.10 and 6.11 is given in appendix 13.2 on page 187.  
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Figure 6.10:  Graphical representation of chunk < Ph2, kg8, nf6, pf7 > 

Figure 6.11:  Graphical representation of chunk < Pd4, Pb2, kg8, pf7 > 
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A four-piece chunk compiled from pieces on the whole board area and consisting of 

pieces < Nc3, Ph2, nf6, ph7 > is represented in the graph shown in figure 6.9 

(above). A typical chessboard would contain approximately 36,000 chunks (cf. page 

64) each with a unique profile.  Figures 6.10 and 6.11 show the profiles for two more 

four-piece chunks(compiled from pieces on the whole board area). Chunk < Ph2, 

kg8, nf6, pf7 > was found on chessboard configurations prior to a number of moves. 

Chunk < Nc3, Ph2, nf6, ph7 > however was found on fewer configurations. 

 
 
6.13. Hardware considerations 

The building of library files requires a large amount of processing despite careful 

consideration being given to the relevance of data, the size of the chunks, data 

structures and searching techniques. Several variations of libraries were built (the 

variants are discussed later in the thesis cf. page 92) which required CLAMP to run 

numerous times. The software was written in C++ and designed to exploit physical 

available memory on the processor to minimise operating system overheads. The 

process was run on a cluster computer (The Birmingham University BlueBEAR 

cluster
16

) employing 128 processors for parallel processing under MPI (Message 

Passing Interface), the program being written to exploit the parallel processing 

properties of the cluster and as a result the program execution, compared with 

running CLAMP on a PC, was increased by a factor of about one hundred times. 

CLAMP is a compiled C++ program using efficient techniques to maximise the speed 

of execution, however, some library builds required a lot of processing, for example 

building a chunk library from pieces from the entire board space, for a chunk size of 

five pieces would take approximately five months on a high performance stand-alone 

                                            
16 BlueBEAR is equipped with 1536 cores with 8GB memory per node (each node has four cores) and 

150 TB of disk space. 
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P.C. Using 128 processors on BlueBEAR the processing time reduced to twenty-

eight hours.  

The research required for this thesis necessitated the compilation of thirty 

chunk libraries. 

 

 

Figure 6.12:  The BlueBEAR Cluster computer.
17

 

 

 

6.14. Chapter conclusion 

This chapter has described the program „CLAMP‟, a software program designed to 

compile „libraries‟ of chunks that can be associated with chess piece moves within 

the game of chess. CLAMP is designed so that it can compile libraries according to 

various specifications, to build libraries made from chunks with specified numbers of 

                                            
17

 This photograph is shown with permission from the IT Services, The University of Birmingham. 
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chess pieces, or with specific relationships between the pieces of the chunk (such as 

pieces in close proximity, or pieces in defensive relationships). The chunk libraries 

link chunks that are present on a chessboard to moves that are commonly made by a 

chess player. Chunk libraries therefore encapsulate the knowledge of commonly 

played chess moves following the presence of specific chunks on a chessboard. The 

next chapter describes the program „CLAMPanalyser‟ which will use the knowledge 

contained within the chunk libraries to suggest chess moves. 
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7. USING ‘CLAMPANALYSER’ TO SUGGEST MOVES 
 
“Human masters, whose play is still much better than the best programs, appear to 

use a knowledge intensive approach to chess. They seem to have a huge number of 

stored „patterns‟ and analysing a position involves matching those patterns to 

suggested plans for attack or defence” (Wilkins 1980). 

 

The previous chapter described how CLAMP built „chunk libraries‟ by analysing 

Grandmaster games. This chapter will describe how the program „CLAMPanalyser‟ 

uses the chunk library to select a move. CLAMPanalyser will analyse a chessboard 

(a chessboard that was not used in the process to build the libraries) by extracting 

chunks in the same manner as used for the „library building‟ process (cf. page 61). 

Each possible move on the test board is examined and the chunks searched for, in 

each of the appropriate libraries. A library file is associated with a move of a piece to 

a square. If the chunk from the chessboard being analysed is found within the library 

then the score for this move is increased. The move score is the total of the number 

of chunks from the chessboard that are found to exist in the appropriate library file for 

that move. 

In order to suggest a move CLAMPanalyser will combine all of the pieces on a 

test chessboard to build chunks. The pieces on the test chessboard are combined to 

make chunks with the same chunk size as the chunks within the library, the 

„compatible chunk size‟ being read from the first byte in the library file. The pieces 

and their positions on the chessboard are combined and sorted into order using the 

same method that was used when building the library files. 

Considering each piece on the chessboard and all possible moves for that 

piece, CLAMPanalyser will compile a list of all of the pieces and their arriving 

squares. The chunk library consists of a set of files with each file corresponding to 
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each piece arriving on each square. To calculate a score for the move 

CLAMPanalyser will count how many of the chunks are present within each of the 

corresponding library files. For example, if the test board can make the move: 

 

„Bishop to square A5‟ 

 

CLAMPanalyser will examine the library file associated with this move (Bishop to 

square A5). CLAMPanalyser will search for each chunk that has been generated 

from the test board, to see if it exists in this library file. Each time a chunk from the 

test board is found in the library file the score for that move (in this case Bishop to 

square A5) is incremented. 

 

Using the same procedure, every possible move for each chess piece on the 

chessboard can be scored. If the analysis of a move gives a high score then a lot of 

the chunks on the test board match the chunks within the collections of boards that 

are associated with that move. A high score is therefore an indication that the move 

was frequently played in the set of Grandmaster games (the games that were used to 

build the library) when similar chunks were present on the chessboards. Assuming 

that Grandmasters make good moves the score can be an indication of likelihood 

that the move is also a good move.  

CLAMPanalyser does not possess any knowledge of the relative value of 

pieces or tactics that could determine which out of all the possible moves would be a 

better move. The program has no knowledge of the effect of a move, for example, if 

moving one piece would expose another (break a defensive relationship), or even if a 

move onto a square occupied by an opponent‟s piece would result in the opponent‟s 

piece being taken. The score assigned to each piece is based purely on the 
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comparison of chunk patterns from the test chessboard with those stored in the 

library files. CLAMPanalyser performs an assessment of the board without look-

ahead or the sophisticated scoring methods that are common in conventional chess 

programs.  

The results that follow in this chapter show a correlation between the score 

assigned from CLAMPanalyser and the score calculated by a conventional chess 

program. Moves which are assigned a high score by CLAMPanalyser are therefore 

suggested as likely candidates for the move to be made by the player.  

 

7.1. An evaluation of scores for a move to a position.  

The chessboard18 shown opposite is taken from a 

tournament game between two expert players, 

Kenneth Coates (white) and James Parkin (black), 

on 5th May 2001. White is to play the next move. 

 

CLAMPanalyser calculated a score for each piece 

move on the chessboard by combining the pieces 

to make chunks and then, by searching the chunk 

library, counting the frequency of each chunk in 

each of the library files. On the configuration opposite white has fourteen pieces 

made up from six piece types (Rook, Queen, King, Pawn, Bishop and Knight).  As 

CLAMPanalyser has no knowledge of the rules of chess many of the moves, even 

though they are given a score, are illegal. Each piece will be given a score for a 

move to each of the sixty-four squares on the chessboard.  

                                            
18

 The board taken from a tournament game can be represented by the Fen:  
r3k2r/pp3ppp/2nqpn2/7b/1b1P4/2N1BN1P/PP2BPP1/R2Q1RK1 w kq - 3 12 
 

 
   
  
   
    
     
   
  
   
 

Figure 7.1: 

Coats v Parkin 5
th

 May 2001 
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Using knowledge of how a chess piece can legally move on the board and 

considering the configuration above (Coats v Parkin), white can make one of forty-

one possible moves. In order to compare the CLAMPanalyser score with the score 

from a commercial chess program illegal moves have been removed from the output 

and the resulting moves are shown in the table 7.1 (below), with each move assigned 

the score output by CLAMPanalyser after analysing the board for four-piece chunks. 

The score from CLAMPanalyser is a count of the number of chunks that have been 

found in the library for the move to the positions shown.  Against the CLAMPanalyser 

score is shown the score produced by Fritz (a commercial chess program), based on 

an evaluation of the move and looking twelve-ply deep. The „Fritz score‟ equates to 

the gain resulting from the move in terms of a pawn value. 

The table below shows the CLAMPanalyser score and Fritz score for each 

possible moves in the „Coats v Parkin‟ chessboard. 

MOVE 
FROM: 

MOVE 
TO: 

CLAMP 
SCORE 

FRITZ 
SCORE 

 
MOVE 
FROM: 

MOVE 
TO: 

CLAMP 
SCORE 

FRITZ 
SCORE 

Be2 Bd3 231657 -0.41  Nf3 Ng5 216931 -0.44 

Be2 Bc4 212682 -0.37  Pa2 Pa3 417532 -0.06 

Be2 Bb5 192263 -0.44  Pa2 Pa4 248241 -0.5 

Be2 Ba6 85221 -3.34  Pb2 Pb3 222510 -0.47 

Be3 Bg5 274531 -0.25  Pd4 Pd5 192147 -0.91 

Be3 Bd2 205979 -0.31  Pg2 Pg3 152032 -0.47 

Be3 Bf4 197600 -3.62  Pg2 Pg4 85885 -0.19 

Be3 Bh6 129318 -3.03  Ph3 Ph4 38088 -0.62 

Be3 Bc1 76306 -0.5  Qd1 Qb3 327807 -0.12 

Kg1 Kh1 115648 -0.34  Qd1 Qc2 290939 -0.34 

Nc3 Na4 329186 -0.28  Qd1 Qa4 288587 0 

Nc3 Nb5 221909 -0.06  Qd1 Qd2 265918 -0.41 

Nc3 Ne4 199718 -3.16  Qd1 Qc1 205312 -0.44 

Nc3 Nd5 151850 -3.59  Qd1 Qe1 193843 -0.37 

Nc3 Nb1 128618 -0.5  Qd1 Qb1 156168 -0.5 

Nf3 Nh4 351078 -0.53  Qd1 Qd3 150672 -0.28 

Nf3 Nd2 344666 -0.41  Ra1 Rc1 206116 -0.06 

Nf3 Ne5 280526 -0.19  Ra1 Rb1 120512 -0.25 

Nf3 Ne1 272470 -0.44  Rf1 Re1 191577 -0.25 

Nf3 Nh2 244546 -0.53      

 

Table 7.1: – Move ‘To’ CLAMP and Fritz score comparison 
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A linear least squares fit between the score from CLAMPanalyser and the score 

obtained by Fritz gave a correlation coefficient of 0.31. Although this is not a strong 

correlation19 the result shows some correlation between CLAMPanalyser and Fritz 

move scores. The result is interesting because as previously stated, CLAMPanalyser 

is not using any chess knowledge, for example CLAMPanalyser has no knowledge if 

a move would result in the loss of a piece or be a disastrous tactical blunder, yet 

CLAMPanalyser has produced a score for each move that correlates, albeit with a 

correlation coefficient of 0.31, with the score produced by a chess engine which uses 

conventional minimax methods to evaluate a move looking twelve-ply ahead.  

 The Coats v Parkin example is a typical chessboard configuration. However, 

to evaluate the effectiveness of CLAMP a simple test was performed on a number of 

chessboard configurations from a sample of mid-game positions. The boards were 

taken from tournament games between expert chess players, and from games that 

were not in the dataset used to build the library files. Inclusion of games that were 

used to build the libraries would distort the results as the board configuration and the 

move outcome will certainly match. The aim of the experiment is rather to test 

unfamiliar chessboard configurations to see if the „chunk composition‟ of the board 

can be associated with the resulting move. The actual move made by the player 

resulting from the configuration was compared with the output from CLAMPanalyser, 

with a „success‟ attributed to the players move being in the top 50% of 

CLAMPanalyser‟s ordered list.  The null hypothesis for the test is that 

CLAMPanalyser‟s list is random and CLAMPanalyser will place the player‟s move in 

equal proportions within the top and bottom 50% positions. If the move played is 

above the 50% point on CLAMPanalyser‟s list then the test will be assigned a 

                                            
19

 The correlation coefficient is an indication of the closeness of linear fit between two sets of 
variables. A coefficient of „one‟ is a perfect fit whereas „zero‟ is no fit at all. 
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„success‟, if the move is on the 50% point, or below, within CLAMPanalyser‟s list then 

the test is assigned „failure‟. 

After analysing a number of configurations, the number of „successes‟ can be 

divided by the number of boards tested to give a „percentage success‟ figure. The 

percentage success figure can then be used to compare the effectiveness of different 

scenarios. A percentage success greater than 50% is an indication that the process 

is significant and not random; the higher the percentage the more significant the 

process, and the better the scenario is for „predicting‟ which piece will be chosen by 

the player for the next move.  

A percentage of „success‟ figure for all of the test chessboards was calculated 

as follows: 

%Success = (number of successes)/(number of boards tested) 

 

In order to test CLAMPanalyser, a sample of chessboards that were used in the 

process of building the chunk libraries was analysed. This analysis is included 

because it is a standard step in machine learning systems, and was provided in order 

to validate the process.  

 

A chunk size of four pieces was used for the analysis. The results are tabulated 

below: 

Analysis using a chunk size of four pieces Result 

Number of pieces making a chunk 4 

Number of chessboards analysed 250 

Number of boards with one or more chunks on the 
board found within one or more chunk libraries: 

241 

Number of „Successes‟ according to the hypothesis 
cf. page 86. 

166 

Number of „failures‟ 84 

Standard deviation of score results 64.5 

Percentage success 66.4% 

Results from the verification of CLAMPanalysis using a sample from the ‘training’ 
chessboards. 
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The results of the verification test show that in 66.4% of cases the chess player 

selected a move that was within the top 50% of the move list which was ordered in 

„likelihood of being played‟ by the CLAMPanalyser program. CLAMPanalyser 

therefore produces a result that is better than a random selection 

 

Having verified CLAMPanalyser using a sample of chessboards from the training set 

further analysis was performed using chessboards that were not included within the 

training data. The results based on chunk sizes of two to five pieces using a sample 

of one thousand chessboards are listed as follows: 

  

Chunk 
size 

Number of 
Successes 

Number 
of 

Failures 

Number 
scored 
boards 

%Success 
 

2 piece 657 343 995 65.7% 

3 piece 661 339 995 66.1% 

4 piece 668 332 995 66.8% 

5 piece 393 603 567 39.3% 

 

Table 7.2:  ‘Percentage Success’ comparison for the whole board area. 

 

7.2. A few large chunks or many small chunks? 

Suppose a chess expert moved a piece on a particular chessboard within a game 

and, at another time, exactly the same board configuration was seen in another 

game. Assuming the move made in the first instance was the best move we can also 

assume that exactly the same move would be chosen for the other game. If the 

chunk size were such to encompass all of the pieces on the chessboard then the 

configuration would be encapsulated into the one chunk. Very large chunks are 

therefore more influential in directing moves but at the same time, as the chunks 

enlarge in size they become increasingly rare. The likelihood of seeing exactly the 

same board configuration in the mid-game is unlikely as the number of possible 

games within the domain of chess is very large (Shannon 1950).  
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 The approach taken with this research was to work with distinct chunk sizes 

(chunks consisting of the same number of pieces). The reason for this was to obtain 

insight into the effectiveness of chunks as the number of pieces that make up the 

chunk change. Chunks with a large size are rare but specific whereas small chunks 

are frequent and general. Therefore, if CLAMPanalyser is working with a library of 

small chunks we can expect to find a large number of chunks from the chessboard 

being associated with moves in the library files; the suggested moves that 

CLAMPanalyser generate being the consensus of scores from all chunks. On the 

other hand, when working with large chunk sizes, a smaller number of more 

influential chunks will be available. 

There is therefore a „trade-off‟ in performance as the chunk size increases. In 

some cases, when working with large chunk sizes CLAMPanalyser will be unable to 

find any of the chunks in the library, and will be unable to suggest moves. Table 7.2 

(above) shows the number of boards scored with chunk sizes two to five. Chunks 

with two, three and four pieces had almost all of the boards successfully scored; 

however, when using a chunk size of five only 567 out of the one thousand boards 

(56.7%) were successfully scored. 

 

Although a full analysis of chunk sizes above five pieces was not possible due to the 

computational complexities in processing, indications were that the number of boards 

scored continued to decline as the chunk size increased above five pieces. 

 

7.3. Adjusting for ‘move rareness’ 

Some moves in chess occur more frequently than others. A piece may, for example 

often move to the centre positions of the board and during the course of several 

games a piece may move to the same position numerous times. The actual 
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distribution of move frequencies are systematically presented in table 6.1 on page 

59. On inspection of table 6.1, the arrival of a Knight on square „D6‟ is relatively 

common such that to find one thousand instances of this move 499,105 chessboards 

were required, whereas the arrival of the Knight on H8 is rare, requiring 23,366,342 

different chessboards to find one thousand instances of this occurrence. A move of a 

piece to a square can therefore be accompanied by a „rareness‟ figure.  

 CLAMP ignores the „rareness‟ of moves when building the chunk libraries. 

Each library file was compiled using a collection consisting of one thousand arrivals 

of each piece on each square. Each move, when building the chunk library, is 

presented to CLAMP in equal significance with no information as to how frequently 

the move occurs in the game of chess. To compensate for this, when 

CLAMPanalyser is calculating the likelihood of a move from a chessboard, an 

adjustment for the „rareness of a move‟ can be applied to the score from 

CLAMPanalyser by dividing the chunk count by a factor of the „move rareness‟ figure. 

Unlikely moves have a high „rareness‟ value. If CLAMPanalyser suggests a 

move that is rare, dividing the „move score‟ by the rareness figure decreases the 

significance of the move. Dividing the number of chunks associated with each move 

by the „move rareness‟ figure improves the score by a small percentage. The 

adjusted scores for two, three, four and five piece chunks are shown in the table 

below: 

Chunk 
size 

%Success 
 

%Success 
with ‘move 
rareness’ 

adjustment 

2 piece 65.7% 69.7% 

3 piece 66.1% 70.1% 

4 piece 66.8% 69.7% 

5 piece 39.3% 39.6% 

 
Table 7.3:  Percentage Success comparison for the whole board area. 
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Unless otherwise stated, the move rareness adjustment is included as part of the 

success score calculations in the results in this thesis from this point forward.  

 

7.4. Changing the ‘success’ threshold  

Comparing CLAMPanalyser‟s output to test if the chosen move appears within the 

top 50% of CLAMPanalyser‟s ordered list will test to see if CLAMP‟s move ordering is 

significant compared to a random ordered list. The results displayed in table 7.2 (cf. 

page 88) show that for chunks sizes two, three and four CLAMP performs better than 

a random ordering. The following table shows the results from an analysis of one 

thousand chessboards with the „success‟ threshold set between 40% and 90% and 

with move rareness adjustment applied to the results.  

Chunk Size 2 3 4 5 

40% threshold 77.7% 78.9% 79.5% 45.1% 

50% threshold 69.7% 70.1% 69.7% 39.6% 

60% threshold 62.3% 61.6% 59.9% 34.9% 

70% threshold 52.3% 50.5% 49.6% 28.7% 

80% threshold 28.9% 28.3% 28.8% 19.5% 

90% threshold 15.1% 15.5% 15.2% 10.2% 

 

Table 7.4: Percentage success figures with various thresholds 
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The percentage success against threshold data are plotted below: 

 

Figure 7.2: Effect of change in threshold on percentage success
20

. 

 

Figure 7.2 illustrates that similar results are obtained for each chunk size (with the 

exception of chunk size five, for the reasons given above) across the range of 

„success thresholds‟. 

 

Unless stated otherwise, a success threshold of 50% is assumed for all results 

documented in this thesis. 

 

7.5. The relationship between pieces within chunks 

The analysis so far has focused on chunks that have been extracted from the whole 

area of the chessboard. To explore the properties of chunks, chunks were extracted 

                                            
20

 Five piece chunks do not perform as well as other chunk sizes shown in figure 7.2 because five 
piece chunks score only 56.7% of the boards in the sample. 
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from the board using a variety of methods. For each extraction method CLAMP 

produced a chunk library. Using each library in turn, the comparison between 

methods was made using a large number of test chessboards, in the mid-game 

section of tournament games between experts or Master players. One thousand test 

chessboards were scored in each case. By using a large sample of games as 

opposed to considering a single chessboard, a more statistically reliable result was 

achieved. 

Three different methods were used to refine the compilation of chunks. The 

first method combined all of the chess pieces from the entire board. This is a 

systematic analysis of the board and assumes no knowledge of the rules of the 

game. The second method combines pieces from a subset of the board so that 

pieces within the chunk are restricted to being in close proximity. With this method all 

pieces on the board are combined but, using a visual analogy, the chessboard was 

viewed through a sliding window that moved over the entire board. The analysis of a 

subset of the board assumes that the pieces that combine to make effective chunks 

exist in close proximity. 

The third method was to only combine pieces that are in defending 

relationships with each other. This method requires knowledge of how pieces move 

and the significance of the colour of the pieces. Pieces on the board that are not 

„protected‟ by a piece of the same colour are ignored. Pieces on the chessboard are 

combined to make chunks with the caveat that the pieces within the chunks are in 

defending relationships with each other - they have the property that they are 

defending another piece within the same chunk. 

For each of the above methods the size of the chunk, or in other words, the 

number of pieces being combined to make the chunks was varied. For each scenario 

CLAMP produced a chunk library and the library was used to analyse a number of 
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test boards. A figure was obtained for the effectiveness of the chunk library at 

predicting the next piece to be played for each of the test boards. The aim of this 

analysis was to find the most effective method and chunk size, for selecting the piece 

to be moved. 

 

7.5.1 The number of chunks in a chunk library 

Table 7.5 (below) shows results for the analysis when using chunk sizes of two, 

three, four and five pieces. The results show a chunk size of three being slightly 

better than a chunk size of two and four. The number of chunks within the chunk 

library increases with the chunk size. The reason for this is, as the chunk size 

becomes larger the number of combinations of pieces making up the chunk also 

increase, and therefore, when building the chunk library a larger number of chunks 

will be stored in the library. However, when analysing a chessboard as the chunk 

size increases, the number of chunks matched within the library decreases because 

the chunks become more specialised. The chance of finding a large chunk is less 

likely as that chunk may not have been seen in the sample of chessboards that made 

the collection during the process to build the library. 

 

 

7.5.2 The ‘effectiveness’ of a chunk 

Table 7.5 (below) shows a low „success‟ score for the chunk size „five.‟ The low score 

is largely due to the absence of matching chunks from the test boards being present 

within the five-piece chunk library. The number of successes is limited to the number 

of boards that match at least one chunk from the chunk library, and in the five-piece 

case shown in the table only 567 boards out of the one thousand samples achieved 

this. If however CLAMP had constructed the libraries using a larger collection of 
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moves then the number of scored boards in this analysis would increase accordingly. 

Therefore, a more appropriate measure of the effectiveness of a chunk should be 

based on the score divided by the number of scored boards. In this thesis this 

measure is referred to as the „effect‟. 

In the results reported in this section the „effect‟ value generally increases with 

increasing chunk size, which is consistent with section 7.2 (above). In practical 

situations however, when analysing a single chessboard, it may not be possible to 

match any chunks from the chessboard to chunks in the chunk library, particularly 

when using large chunk sizes. A practical example of how chunking with large chunk 

sizes and the „number of boards scored‟ figure can be used with confidence when 

analysing just one chessboard is described in section 7.11  (cf. page 147).  

 

7.5.3 Analysis of the whole board area. 

Analysis of the whole board for piece configurations that frequently exist prior to a 

piece move (cf. page 88) was performed considering chunks sizes of 2,3,4 and 5 

pieces with move rareness applied and a „50% success‟ threshold. The results are 

summarised below: 

 

Chunk 
size 

Chunks 
In 

Library 

Number of 
Successes 

Number 
of 

Failures 

Number 
scored 
boards 

% 
Success 

 

% 
Effect 

 

%Standard 
Error 

2 piece 1261864 697 303 995 69.7% 70.1% 6.27% 

3 piece 7596060 701 299 995 70.1% 70.5% 7.11% 

4 piece 27127049 697 303 995 69.7% 70.1% 7.88% 

5 piece 45646773 396 604 567 39.6% 69.8% 10.72% 

Table 7.5:  Percentage success comparison for the whole board area. 
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Note: The values shown in table 7.5 are taken from results presented in tables 7.2 
and 7.3. The columns in table 7.5 are as follows: 
 

Chunk size. The number of pieces that make up a chunk.  

Chunks In 
Library 

The number of chunks that make up the library. 

Number of 
Successes 

The number of instances where the actual move taken was 
one of the pieces in the highest 50% CLAMP score values. 

Number of 
Failures 

The number of instances where the actual move taken was 
not one of the pieces in the highest 50% CLAMP score 
values. 

Number scored 
boards 

The number of boards that were successfully scored. A 
„scored board‟ is a board that has at least one chunk 
associated with a move. 

% Success  
The number of successes divided by the number of sample 
boards.  

% Effect 
The number of successes divided by the number of scored 
boards. 

Standard Error 

The Standard Error shown in the above table shows the 
adjustment, plus or minus, and applied to the „percentage 
effect‟. The Standard Error is reported with all similar results 
in this thesis and denoted by „SE‟. 
 

Table 7.6:  An explanation of the columns shown in table 7.5 

 

The following table shows the percentage success with 95% confidence limits. The 

table, and the graph below, shows that the percentage success is comfortably in 

excess of two standard deviations of the 50% null hypothesis for chunk sizes 2,3,4 

and five pieces.  

Chunk 
Size 

% 
effect 

(mean) 

% Standard 
Error 

low 95% 
confidence limit 

high 95% 
confidence limit 

2 piece 70.1 6.27 63.83 76.37 

3 piece 70.5 7.11 63.39 77.61 

4 piece 70.1 7.88 62.22 77.98 

5 piece 69.8 10.72 59.08 80.52 

Table 7.7:  Chunk ‘effect’ with 95% confidence limits. 

 

It is noted that a chunk size of five pieces show a small decrease in the mean 

compared to sizes of two, three and four pieces. The decrease is attributed to the 
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reduction in the number of large (five piece) chunks found on the chessboards that 

are frequently occurring within the training data (cf. page 88). 

 

Figure 7.3:  Percentage success comparison for the whole board area. 
(The error bars represent a 95% confidence interval). 

 

 

7.5.4 Chunks and meaning 

CLAMP‟s criterion for recognition of a chunk, when considering the whole board, is 

based simply on the frequency of occurrence of piece constellations. A human player 

is likely to be a lot more discriminating in his recognition of chunks and as a result 

may remember fewer configurations, but the configurations may have a greater 

significance. An example of being more discriminating could be by only selecting 

chunks that are related in other ways, such as chunks with pieces that are in close 

proximity, or chunks with pieces that are in attacking or defending relationships with 

each other. The thesis continues with an analysis of chunks that includes pieces in 

close proximity and pieces that are in defending relationships. 
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7.5.5 Analysis of chunks in small grouped areas on the chessboard 

Papers by Gobet and Jansen (1994) and also Walczak (1992) report work done on 

analysis of boards with chess pieces that are in close proximity to each other (cf. 

Page 26). Papers by Simon and Gilmartin (1973) and also Gobet and de Groot 

(1996) with respect to eye movement show that expert chess play conforms to this 

notion and in addition the player examines attacking and defending positions. 

Limiting the view to a small area on the board considerably reduces the number of 

possible combinations of pieces. The original analysis for the whole board area was 

repeated but limiting the scope of a chunk to, for example, a 4x4 square area on the 

board. In this mode all combinations of pieces were obtained but only pieces that 

were located within an area of sixteen squares were significant. The chessboard was 

viewed with a 4x4 window, which scanned over the board and pieces within the 

„window‟ at each juncture were combined to make chunks. Considerably fewer 

chunks were found with this limitation. Windows sizes of 3x3, 4x4, 5x5, 6x6 and 7x7 

squares were processed and results compared.  

The results are tabulated below. The points of interest are the positions of 

maximum percentage success. Areas start with the 3x3 size but where the 

percentage success shows a decline the analysis was stopped. Uncalculated 

scenarios are shown with x‟.  
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Local 
areas 

Chunks 
In 

Library 

Number of 
Successes 

Number 
of 

Failures 
%Success 

%Boards 
scored 

Effect SE 

local 3x3 
Size 2 

114943 579 421 57.9% 85.1% 68.4% 7.16% 

local 3x3 
Size 3 

80819 579 421 57.9% 82.0% 70.6% 9.21% 

local 3x3 
Size 4 

23855 424 576 42.4% 54.2% 78.2% 11.38% 

local 3x3 
Size 5 

3944 205 795 20.5% 22.3% 91.9% 20.01% 

local 3x3 
Size 6 

x x x x x x x 

local 3x3 
Size 7 

x x x x x x x 

        

local 4x4 
Size 2 

253476 577 423 57.7% 87.2% 66.2% 7.81% 

local 4x4 
Size 3 

343409 590 410 59.0% 84.0% 70.2% 8.87% 

local 4x4 
Size 4 

210120 521 479 52.1% 68.2% 76.4% 11.39% 

local 4x4 
Size 5 

85679 393 607 39.3% 49.9% 78.8% 12.19% 

local 4x4 
Size 6 

26139 186 814 18.6% 21.0% 88.6% 17.17% 

local 4x4 
Size 7 

x x x x x x x 

        

local 5x5 
Size 2 

453492 639 361 63.9% 90.5% 70.6% 7.16% 

local 5x5 
Size 3 

998254 590 410 59.0% 84.9% 69.5% 8.62% 

local 5x5 
Size 4 

1057802 575 425 57.5% 78.6% 73.2% 9.33% 

local 5x5 
Size 5 

726212 481 519 48.1% 65.6% 73.3% 9.57% 

local 5x5 
Size 6 

388865 390 610 39.0% 51.8% 75.3% 12.07% 

local 5x5 
Size 7 

x x x x x x x 

        

local 6x6 
Size 2 

721550 585 415 58.5% 87.5% 58.5% 7.25% 

local 6x6 
Size 3 

2593877 611 389 61.1% 88.5% 71.5% 8.34% 

local 6x6 
Size 4 

4918042 587 413 58.7% 84.3% 69.6% 8.33% 

local 6x6 
Size 5 

6179518 535 465 53.5% 76.3% 70.1% 8.95% 

local 6x6 
Size 6 

4621214 390 610 39.0% 54.9% 71.0% 10.78% 

local 6x6 
Size 7 

x x x x X x x 

 

Table 7.8:  Analysis of chunks in small local areas 
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The graph below shows a comparison of the percentage effect figures against chunk 

size, for each board area listed above. The graph shows each area achieving a 

percentage effect increasing as the chunk size increases. 

 

 

Figure 7.4: A comparison of small area analysis and chunk size 
(The error bars represent a 95% confidence interval). 

   

 

The results shown in table 7.8 show that as the percentage effect increases with 

increasing chunk size the number of chunks found within the chunk library (the 

percentage success) decreases. This result is consistent with the argument given in 

paragraph 7.5.1.  It can also be seen from table 7.8 that the number of chunks found 

(the number of successes) in small local areas on the chessboard increases with a 

larger board area. Walczak (1992) reported in an analysis of chessboards that “most 

chess patterns are contained within a sixteen squares area on the board. An analysis 

of eighty games from a former world chess champion eighty-six chunks were 

acquired within a 4x4 area. Increasing to 5x5 resulted in just one extra chunk, the 
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chunk being one of the existing eighty-six chunks plus two additional pieces”. 

However, the analysis reported in this thesis, which is based on a much larger 

sample of games showed a significantly higher number of chunks present in a 5x5 as 

opposed to a 4x4 square area. 

The percentage effect when restricting chunks to a small area on the board is 

comparable to results obtained from an analysis of the whole board area, however, 

the number of chunks in the respective chunk libraries can be dramatically different 

(cf. table 7.5 and 7.8). When analysing a chessboard, CLAMPanalyser compiles all 

chunks for the whole of the board under test, the difference in each method is the 

choice of chunk library that is searched. The „local area‟ libraries contain a smaller 

number of chunks than those contained in the „whole board‟ libraries, for example, for 

a chunk size of four pieces the whole board library has 27,127,049 chunks giving a 

percentage effect of 70.1%, whereas when limiting the pieces with chunks to a 5x5 

area reduces the percentage effect to just 69.0% but the number of chunks in the 

corresponding library reduce to 1,057,802 (a reduction to approximately 4% of the 

original size).  

As all of the 1,057,802 chunks within a local area library are contained in the 

„whole board‟ library by virtue of the systematic way the libraries are constructed, it is 

possible that the chunks within the 5x5 local area chunk library make up a high 

proportion of the chunks that are found when searching the whole board libraries. 

The chunks contained in the „local area‟ libraries can therefore be considered to be 

„more salient‟ as comparable results are obtained to the „whole board‟ libraries 

despite having considerably fewer chunks within the libraries. 

It is therefore possible that a property of many of the chunks that are 

significant (in that they can be indicators of a move to make) within the game of 

chess is that they are composed of pieces that are in close proximity to each other. A 
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chunk library that has been built with the addition of this knowledge is therefore 

smaller as it contains fewer chunks, but the chunks that are contained are more 

salient. The theoretical implications of this result, on a computer system, are that 

smaller chunk libraries can be produced requiring less storage space and enabling a 

faster searching through the library to find specific chunks. The result also shows the 

implication of additional knowledge (that effective chunks normally consist of pieces 

in close proximity) can produce a result where a higher number of chunks are 

meaningful in terms of moves made. 

It can be seen from figure 7.3 that a chunk size of four pieces within a 3x3 

square archives the highest percentage success for the scenarios shown on the 

chart. The mean percentage success for this mode is 78.2% and with a standard 

error of 11.4%,   

 

 

7.5.6 Analysis of chunks comprising of pieces in defensive relationships 

An analysis of configurations that include only pieces that were in defensive 

relationships with each other (cf. page 26) was performed and the results compared 

with results from the „whole board‟ and „local area‟ analysis. „Defensive relationships‟ 

with respect to the pieces within a chunk are defined such that each piece within the 

chunk is protecting another piece within the same chunk (cf. page 46). If the 

opponent were to take the „protected‟ piece then the opponent could in turn be taken 

by the „protecting‟ piece. In practice many of the pieces on the chessboard are 

arranged in clusters so that each piece protects another. The rationale behind 

analysing chunks in defensive relationships is based on papers by Wilkins (1980) 

“Human Masters, whose play is still much better than the best programs, appear to 

use a knowledge intensive approach to chess. They seem to have a huge number of 
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stored „patterns‟ and analysing a position involves matching those patterns to 

suggested plans for attack or defence”. Experiments with chess players by McGregor 

and Howes (2002) propose that the attack/defence relationship of pieces is more 

significant to skilled chess players than the size of the chunk on the board. McGregor 

and Howes (op. cit.) argue against the notion that proximity of pieces is a factor in 

chunk structure and by experiments on chess player‟s ability to remember 

configurations, gives evidence in favour of the relationship of pieces being the main 

factor in chunk selection. CLAMP was modified to build chunk libraries based on 

boards that consisted only of pieces in defending relationships to each other; the 

analysis ignored all „passive‟ pieces on the board, that is, within a chunk, any pieces 

that did not defend another piece where ignored. Chunk patterns with two, three, 

four, five, six and seven pieces in defensive relationships where analysed. 

It should be noted that the recognition of defensive chunks in a board being 

examined is only approximate as it fails to take account of the fact that some or all 

defence relationships in the chunks could be suppressed by intervening pieces. 

In order for CLAMP to extract chunks that contained pieces in defensive 

relationships, some knowledge of how pieces move and their scope, was required, 

for example, a bishop requires a diagonal which is not blocked by a piece between 

itself and the piece it is defending, however, the knight can jump over an obstructing 

piece. This knowledge was required when building the chunk library so that only 

pieces in defensive relationships were processed and ultimately stored in the library, 

however, when using the libraries to analyse a board CLAMPanalyser simply 

combines all pieces on the whole chessboard, without any knowledge of chess 

semantics, and searches for the chunks within the library. Knowledge of how a piece 

defends another is therefore not required when analysing a chessboard. 

The results of the analysis of defending chunks are tabulated below: 
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Chunk 
size 

(pieces) 

Chunks 
In 

Library 

Number of 
Successes 

Number 
of 

Failures 

Number 
of boards 

scored 
%Success % Effect SE 

2 44266 696 304 995 69.6% 69.9% 6.38% 

3 45096 644 356 954 64.4% 67.5% 7.04% 

4 119857 666 334 965 66.6% 69.0% 7.57% 

5 147510 593 407 825 59.3% 71.9% 8.54% 

6 158275 538 462 714 53.8% 75.4% 9.32% 

7 129313 338 662 427 33.8% 79.2% 12.07% 

 
Table 7.9: A comparison of chunk library size and percentage success (defensive chunks) 

 

The results are shown in the graph below: 

 

Figure 7.5: Percentage Success using ‘defensive chunks’ 
(The error bars represent a 95% confidence interval). 

 

 

Using the same argument as used for chunks in local areas in paragraph 7.5.5, all of 

the chunks in the defensive libraries are contained within the „all board‟ libraries, 

however, the percentage success figure is comparable between the two methods, 

moreover, the number of chunks when using pieces in defending relationships 

reduce to less that 0.5% of the number of chunks in the whole board library (the 

number of chunks in the library for whole board, four piece chunks is 27,127,049, 
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whereas the number of chunks in the four piece defending library is 119,857, the 

defending chunk library is 0.44% of the size of the library for the whole board). 

It is therefore possible that a property of many of the chunks that are 

significant within the game of chess is that they are composed of pieces that are in 

defensive relationships with each other. It is also possible as the percentage success 

figures for the „local area‟ and the „defensive‟ methods give similar results so many of 

the defensive chunks have pieces that are in close proximity and are therefore also 

present within the „local area‟ libraries. 

 

A comparison of the „percentage effect‟ for each chunk size was made for 

chunks extracted from the whole board and chunks extracted from pieces restricted 

to defending relationships. The results are show in the graph below: 

 

 

Figure 7.6:  A comparison between ‘defending’ and ‘all board’ methods 
(The error bars represent a 95% confidence interval). 
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The following table compares the chunk libraries for three methods that give a similar 

percentage success figure: 

 

Chunk 
Type 

Chunks 
In 

Library 

Number of 
Successes 

Number 
of 

Failures 

Percentage 
of boards 

scored 

Standard 
Deviation 

%Success 
Including 
no-score 
boards 

Effect 

Whole 
Board: 
Size 4 

27127049 697 303 99.5% 26.4% 69.7% 70.1% 

local 5x5: 
Size 4 

1057802 666 334 96.5% 23.1% 66.6% 69.0% 

Defending: 
Size 4 

119857 666 334 96.5% 26.0% 66.6% 69.0% 

 

Table 7.10:  A comparison of three methods using four piece chunks 
 

 

The results presented in this section compare the effectiveness of methods. When 

analysing the whole board area all pieces are combined. The „whole board‟ analysis 

is therefore comprehensive, including all chunks on the chessboard. The number of 

chunks found is therefore larger than the „local group‟ and „defensive‟ methods, which 

restrict the pieces that can be included within chunks. The whole board „method‟ may 

also contain a large number of chunks that are not relevant, or significant, to the 

move to be played. Local group and defensive analysis do not capture all of the 

significant chunks, but still achieve a high percentage success figure because the 

„local group‟ and „defensive‟ libraries have a high percentage of significant chunks. 

„Defensive‟ and „local‟ chunks can therefore archive good results when suggesting a 

move to be played even though libraries consisting of a small number of the total 

chunks that are present within the „whole board‟ chunk library.  

 

7.6. Changing the ‘success’ threshold with defensive chunks 

Setting the „success‟ threshold (or the „null hypothesis‟ point (cf. page 86)) so that if 

the actual move taken appears within the top 50% of CLAMPanalyser‟s ordered list 
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will test CLAMP against a random ordering, whereas, changing the threshold from 

50% to other values can be used to compare the methods employed by CLAMP. The 

following table shows the results from an analysis of one thousand chessboards, 

using defensive chunks of various sizes, with the „success‟ threshold set between 

40% and 90%.  

 

Chunk size: 3 SE 4 SE 5 SE 6 SE 7 SE 

40% threshold 73.4% 6.38% 7.04% 7.57% 67.3% 8.54% 59.5% 9.32% 37.1% 12.07% 

50% threshold 64.4% 6.38% 66.6% 7.57% 59.3% 8.54% 53.8% 9.32% 33.8% 12.07% 

60% threshold 56.1% 6.38% 56.8% 7.57% 50.8% 8.54% 46.4% 9.32% 29.3% 12.07% 

70% threshold 46.5% 6.38% 46.1% 7.57% 41.4% 8.54% 37.6% 9.32% 24.0% 12.07% 

80% threshold 28.0% 6.38% 28.1% 7.57% 25.4% 8.54% 22.9% 9.32% 13.9 % 12.07% 

90% threshold 12.3% 6.38% 12.9% 7.57% 12.4% 8.54% 11.9% 9.32% 7.6% 12.07% 

% boards scored 95.4% - 96.5% - 82.5% - 71.4% - 42.7% - 

 

Table 7.11:  Percentage success with varying ‘success threshold’ for defensive chunks 
 

 

The results are displayed on the graph below: 

 

Figure 7.7: Graph of percentage success with varying threshold settings (defensive chunks). 
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The results displayed in figure 7.7 show, when the threshold value is low, a varying 

percentage success result with differences in chunk size. A chunk size of four pieces 

gave the highest percentage success when the threshold values are less that 60%.  

Higher threshold values yielded a lower percentage success, and less of a distinction 

between chunk sizes. 

 

7.7. An analysis of de Groot’s Position ‘A’ 

Adriaan de Groot presented the chess configuration which has become known as „de 

Groot‟s Position A‟ to five Grandmaster players, including Alekhine, Keres, Euwe and 

Flohr, and also to other expert players at the 1938 AVRO tournament21.  

 

 
   
  
  
    
     
    
   
    
 

Figure 7.8:  de Groot Position 'A' 

 

All Grandmasters except Flohr chose the move:  Bxd5. Move Nxc6 was also 

considered and was thought to be equally strong by Alekhine and was preferred by 

Flohr. Other players chose weaker, but safe moves: Rfe1 or Bh6. 

 An analysis of the chessboard by CLAMPanalyser (an analysis of the „Position 

A‟ configuration) produced a list of moves in order of the number of chunks that 

                                            
21

 The „Position A‟ FEN is: 2r2rk1/pp2bp1p/1qb1pnp1/3nN1B1/3P4/P1NQ4/BP3PPP/2R2RK1 w - - 0 1 
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support the move to be played, based on the four-piece chunks found on the whole 

board. The move Bxd5 did not score well at position forty-ninth on the list of moves 

out of possible fifty-seven moves. Move Nxc6 fared better at position twenty, and 

Bh6 was at position twenty-four. The „safe‟ move Rfe1 however, was positioned 

second. 

The safe moves, and in particular Rfe1, are therefore frequently occurring 

moves for similar piece configurations, whereas Bxd5 is probably a rare tactical 

move which is not normally seen with pieces similar to this configuration. However, it 

should be noted that the Grandmasters were able to find the move Bxd5 within a 

short space of time suggesting that chunking could be present within the 

Grandmasters thinking process for this move, but clearly, CLAMP‟s chunking process 

is very simplistic when compared with human cognition. 
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The table below shows the „Score‟ from CLAMPanalyser for each move. Column „F‟ 

shows the order in which the Fritz chess program (searching to a depth of twelve ply) 

assigns moves and is shown for comparison with the CLAMPanalyser ordering.22  

From To Score F From To Score F From To Score F 

Rf1 Rd1 693558 4 Ne5 Nc6 257060 3 Qd3 Qb5 157609  

Rf1 Re1 685485 2 Ba2 Bc4 256227  Ne5 Ng6 157215  

Nc3 Na4 522029  Ne5 Nc4 254717  Qd3 Qd1 155330  

Qd3 Qc2 407274  Bg5 Bf6 252325  Qd3 Qf3 148540  

Ph2 Ph3 395134 5 Bg5 Bh6 248520  Qd3 Qh3 109353  

Ne5 Nd7 362237  Pf2 Pf4 244847  Ne5 Ng4 109217  

Qd3 Qe2 349526 6 Bg5 Bd2 244450  Rc1 Ra1 105196  

Pa3 Pa4 337046  Qd3 Qb1 240452  Qd3 Qa6 104852  

Pd4 Pd5 330458  Pf2 Pf3 225081 9 Qd3 Qg3 99011  

Nc3 Ne6 327255  Nc3 Nd1 223866  Qd3 Qe4 93798  

Ba2 Bb1 321210  Nc3 Nb1 209507  Ba2 Bd5 89228 1 

Nc3 Nb5 317700  Bg5 Bf4 208938  Pg2 Pg4 87402  

Pb2 Pb4 316133  Pg2 Pg3 208047  Qd3 Qe3 86611  

Qd3 Qd2 309224  Rc1 Rb1 204788 8 Ph2 Ph4 72047 7 

Bg5 Be3 306666  Kg1 Kh1 186945  Ne5 Nf7 64672  

Pb2 Pb3 289354  Ne5 Nf3 175799  Qd3 Qf5 56125  

Nc3 Nd5 283839  Ba2 Bb3 175405  Qd3 Qg6 15466  

Bg5 Bh4 282060  Qd3 Qc4 167558      

Nc3 Ne2 258413  Rc1 Rc2 160796 10     

 
Table 7.12:  de Groot Position 'A' move scores 

(compiled using the four-piece whole board chunk library) 

 

Comparing the list of moves ordered by the CLAMP score, and the order of moves 

output by Fritz, CLAMP successfully identifies a number of good moves within the top 

seven positions of the CLAMPanalyser list. The top seven moves „identified‟ by 

CLAMP include Rfe1, Rfd1, h3 and Qe2, all of which are not unreasonable. Table 

7.13 (below) shows the top five CLAMP scores with the position of the move in order 

of preference from an analysis by the Fritz chess engine, with „1‟ being the best move 

and „57‟ being the worst move. 

 

  

                                            
22

 Results were obtained by the Chess program „Fritz version 10‟ using the „explain all moves‟ feature. 
Analysis was to a depth of 10 ply. 
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Table 7.13 

 

The moves associated with the top five CLAMP scores three out of the moves 

compare favourably with the analysis of the same configuration by the Fritz chess 

engine. The exceptions are the move to Na4 which, although this move is supported 

by a high proportion of chunks the move is tactically poor as it could result in the loss 

of the knight, similarly the move Qc2 could result in the loss of the pawn on „d4‟. 

 

The analysis of „Position A‟ by CLAMP is included in this thesis for general interest 

although few conclusions can be drawn from the performance of CLAMP on one 

chessboard considered in isolation. 

From To 
Fritz move 
preference 

Rf1 Rd1 4 

Rf1 Re1 2 

Nc3 Na4 47 

Qd3 Qc2 30 

Ph2 Ph3 5 
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7.8. The Bratko/Kopec tests 

The Bratko/Kopec test consists of twenty-four chessboard configurations designed by 

Dr. Ivan Bratko and Dr. Danny Kopec in 1982 to test a player‟s ability at the game of 

chess. The tests are used to rate a player‟s knowledge of chess and in addition have 

been used to test the power of computer chess programs. The tests consist of a 

chessboard configuration and the corresponding „best‟ moves for each of the twenty-

four tests. The moves are classed as either a „tactical move‟ or a „pawn lever‟ type 

move. 

A „pawn lever‟ move is a move by a pawn that ultimately damages the 

opponent‟s pawn structure by capturing an opposing pawn. The player‟s pawn is put 

in a position where it can be taken by the opponent and so the pawn is often 

sacrificed. In some instances the player‟s pawn structure may also be improved, as a 

result of a pawn lever move. 

CLAMP does not perform very well with many of the Bratko/Kopec tests. The 

poor performance is believed to be partly due to the tactical nature of many of the 

„best moves‟, as „tactical moves‟ normally require knowledge of the game of chess - 

which CLAMP does not possess. Tactical moves are generally not related to chess 

pieces being in frequently occurring positions, as is the case with positional moves, 

but normally require knowledge of the semantics of the game. Tactical moves tend to 

be more rare and less repeatable than positional moves. 

The results below show only the Bratko/Kopec tests where white is to play (a 

total of twelve tests) as the libraries compiled for this research work were for „white to 

move‟ only configurations. CLAMPanalyser used the library with four-piece chunks 

„whole board area‟ for this analysis. In the twelve tests only one scenario has the 

„best move‟ within the top four of CLAMPanalyser‟s rank-ordered list of suggested 

moves. If however the test configurations are analysed by the Fritz chess engine 
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then it can be seen that many of the top ordered moves are highly rated by Fritz. In 

five out of the seven pawn-lever tests CLAMPanalyser suggested within its top four 

choices moves that are within Fritz top four moves. In two out of five tactical tests 

CLAMP suggested within its top four choices moves that are within Fritz top four 

moves. The fact that CLAMP performed slightly better with ordering pawn lever 

configurations as opposed to tactical configurations is consistent with chunking 

theory. The results of each test are reported in the following pages. 

 

 

7.8.1. Bratko/Kopec Test 4 (best move: pawn lever) 

 
  
   
     
    
     
     
 
   
 
 

 

The table below shows all possible moves, with the score assigned by CLAMP, for 

configuration test 4. Column „F‟ shows the ordering of the move assigned by Fritz.  

 

 

 

 

 

 

Result: The „best move‟ (marked with „<‟ alongside 

in the table below) for „test 4‟ according to the 

Bratko/Kopec test is rated the 38th choice out of a 

possible thirty-eight scored positions, however the 

sixth choice in CLAMP‟s rank order (Nf3) is actually 

the second highest scoring move (shown with „2‟ 

alongside) when the chessboard is analysed by 

Fritz. 
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From To Score F From To Score F From To Score F 

Bc1 Bg5 474395  Pg2 Pg3 264308  Qe2 Qg4 152290  

Bc1 Bd2 434346  Qe2 Qd2 254985  Pb2 Pb4 147631  

Pa2 Pa3 398470  Qe2 Qh5 247290 5 Ra1 Rb1 146494  

Bc1 Be3 369474  Ke1 Kd1 244264  Pf2 Pf4 145460  

Bc1 Bf4 367386  Bc1 Bh6 212982  Ph2 Ph4 121797  

Nd4 Nf3 364672 2 Nd4 Nc6 205980  Qe2 Qd1 117279  

Ph2 Ph3 309563  Pf2 Pf3 205363  Rh1 Rg1 104693  

Pb2 Pb3 304146  Nd4 Nf5 204345  Qe2 Qa6 101879  

Pa2 Pa4 298771  Qe2 Qd3 201949  Qe2 Qe3 96046  

Pc3 Pc4 297073  Qe2 Qb5 195325  Ke1 Kd2 78482  

Nd4 Nb3 291897 3 Qe2 Qc4 177933  Pg2 Pg4 76638  

Nd4 Nb5 284993 4 Nd4 Ne6 164475  Pe5 Pe6 70692 < 

Qe2 Qf3 277261  Qe2 Qe4 164306      

 

Table 7.14:  Bratko/Kopec Test 4 CLAMP Scores. 

 

Table 7.15 (below) shows the top five CLAMP scores with the position of the move in 

order of preference from an analysis by the Fritz chess engine, with „1‟ being the best 

move and „38‟ being the worst move. 

 

From To 
Fritz move 
preference 

Bc1 Bg5 8 

Bc1 Bd2 13 

Pa2 Pa3 19 

Bc1 Be3 11 

Bc1 Bf4 12 

Table 7.15 

 

The moves associated with the top five CLAMP scores compare reasonably 

favourably with the analysis of the same configuration by the Fritz chess engine, with 

all moves being in the top 50% of Fritz‟s move preference list. 

 

  



115 
 
 

7.8.2. Bratko/Kopec Test 5 (best move: tactical) 

 
  
    
   
    
    
    
  
    
 
 

The table below shows all possible moves, with the score assigned by CLAMP, for 

configuration test 5. The second move in CLAMP‟s ordered list is rated as the third 

best move by Fritz. 

 

From To Score F From To Score F From To Score F 

 Ra1   Re1 796082   Be3   Bd2 257942   Bb3   Be6 69954  

 Ra1   Rd1 621528 3  Kg1   Kh1 257438   Qd4   Qb6 65762  

 Ra1   Rc1 618780   Nc3   Nb1 206836   Qd4   Qd6 65616  

 Pa2   Pa3 484378   Bb3   Bc4 191401   Ph2   Ph4 62558  

 Qd4   Qd2 471313   Qd4   Qa4 187782   Qd4   Qd5 61251  

 Nc3   Na4 457269   Qd4   Qd3 178713   Bb3   Bd5 52083  

 Pa2   Pa4 400196 4  Rf1   Rf3 155701 2  Qd4   Qe5 46331  

 Nc3   Nd1 367210   Be3   Bf2 152375   Qd4   Qc5 41655  

 Ph2   Ph3 365476   Pg2   Pg3 139519   Rf1   Rf5 34233  

 Be3   Bg5 354725   Rf1   Rf2 129534   Rf1   Rf6 31065  

 Rf1   Rb1 352371   Bb3   Ba4 123158   Qd4   Qf6 28678  

 Nc3   Ne2 334226   Pg2   Pg4 121429   Qd4   Qa7 24340  

 Pe4   Pe5 328682   Qd4   Qc4 109192   Kg1   Kf2 7690  

 Nc3   Nd5 314926 <  Be3   Bc1 103979      

 Be3   Bh6 300975   Qd4   Qd1 99096      

 Be3   Bf4 277532   Rf1   Rf4 87873 5     

 Nc3   Nb5 258640   Qd4   Qb4 71385      

 

Table 7.16: Bratko/Kopec Test 5 CLAMP Score. 

 

Result: The „best move‟ (marked with „<‟ alongside 

in the table below) according to the Bratko/Kopec 

test is rated the 14th choice out of a possible forty-

seven moves scored by CLAMP (note that not all of 

the moves scored by CLAMP are legal moves) 
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Table 7.17 (below) shows the top five CLAMP scores with the position of the move in 

order of preference from an analysis by the Fritz chess engine, with „1‟ being the best 

move and „47‟ being the worst move. 

 

From To 
Fritz move 
preference 

Ra1 Re1 7 

Ra1 Rd1 3 

Ra1 Rc1 8 

Pa2 Pa3 6 

Qd4 Qd2 18 

Table 7.17 

 

The moves associated with the top five CLAMP scores compare reasonably 

favourably with the analysis of the same configuration by the Fritz chess engine, with 

all moves being in the top 40% of Fritz‟s move preference list. 
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7.8.3. Bratko/Kopec Test 6 (best move: pawn lever) 

 
   
  
    
     
     
    
   
     
 
 

The table below shows all possible moves, with the score assigned by CLAMP, for 

configuration test 6: 

 

From To Score F From To Score F From To Score F 

Pa2 Pa3 27157 5 Pe5 Pe6 4033  Rd7 Re7 805  

Pc2 Pc3 27067 6 Rd7 Rd3 3168  Kg3 Kf3 640  

Pc2 Pc4 19742  Rd7 Rd4 2966  Kg3 Kh3 621  

Pa2 Pa4 15659 4 Rd7 Rd8 2831  Kg3 Kh4 439  

Rd7 Rd1 11307  Pg5 Pg6 2479 < Rd7 Rc7 426  

Pf4 Pf5 11054  Kg3 Kg2 2350  Rd7 Rf7 276  

Pb3 Pb4 6364 3 Kg3 Kf2 2327  Kg3 Kg4 141  

Rd7 Rd2 4658  Rd7 Rd5 1885  Rd7 Re7 805  

Kg3 Kh2 4374  Rd7 Rd6 1099  Kg3 Kf3 640 2 

 

Table 7.18: Bratko/Kopec Test 6 CLAMP Scores 

 
Table 7.19 (below) shows the top five CLAMP scores with the position of the move in 

order of preference from an analysis by the Fritz chess engine, with „1‟ being the best 

move and „27‟ being the worst move. 

From To 
Fritz move 
preference 

Pa2 Pa3 5 

Pc2 Pc3 6 

Pc2 Pc4 7 

Pa2 Pa4 4 

Rd7 Rd1 15 

Table 7.19 

 

Result: The „best move‟ is Pg6. which is rated 14th 

out of twenty-seven moves which have been 

scored by CLAMP. The fourth move in CLAMP‟s 

ordered list is fourth in the list of moves ordered by 

Fritz. 
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The moves associated with the top five CLAMP scores compare reasonably 

favourably with the analysis of the same configuration by the Fritz chess engine, with 

all moves being in the top 50% of Fritz‟s move preference list. 
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7.8.4. Bratko/Kopec Test 7 (best move: tactical) 

 
  
   
    
  
   
    
  
    
 
 

The table below shows all possible moves, with the score assigned by CLAMP, for 

configuration test 7: 

 

From To Score F From To Score F From To Score F 

Be2 Bd3 135498  Ra1 Rb1 70620  Qd1 Qf1 27036  

Be2 Bc4 122895  Nh5 Ng3 67850  Nh5 Nf6 23082 < 

Ph2 Ph3 117367  Ba3 Bd6 62818 2 Pg2 Pg4 22770  

Rf3 Rf1 111055  Qd1 Qb1 61194  Rf3 Rg3 20997  

Qd1 Qe1 107875  Ba3 Bb4 55295 5 Pe5 Pe6 16931  

Pg2 Pg3 106605  Ba3 Be7 53064  Ph2 Ph4 16406  

Ra1 Rc1 104592  Rf3 Rh3 49238  Rf3 Re3 13655  

Ba3 Bb2 90278  Rf3 Rf2 44530  Nh5 Ng7 13325  

Pd4 Pd5 85219  Pf4 Pf5 42641  Kg1 Kf1 8934  

Qd1 Qc1 83908 3 Ba3 Bc1 40721  Kg1 Kf2 6368  

Qd1 Qd3 77919  Ra1 Ra2 38956  Rf3 Rd3 6327  

Qd1 Qd2 76942 4 Be2 Bf1 30657      

Kg1 Kh1 71114  Ba3 Bc5 28512      

 

Table 7.20:  Bratko/Kopec Test 7 CLAMP Scores 

 
 
Table 7.21 (below) shows the top five CLAMP scores with the position of the move in 

order of preference from an analysis by the Fritz chess engine, with „1‟ being the best 

move and „38‟ being the worst move. 

 

 

Result: The „best move‟ (marked with „<‟ 

alongside in the table below) according to the 

Bratko/Kopec test is rated the 29th choice out of a 

possible thirty-eight moves on CLAMP‟s list. 
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From To 
Fritz move 
preference 

Be2 Bd3 32 

Be2 Bc4 30 

Ph2 Ph3 21 

Rf3 Rf1 24 

Qd1 Qe1 7 

Table 7.21  

 

The moves associated with the top five CLAMP scores compare poorly with the 

analysis of the same configuration by the Fritz chess engine. The moves associated 

with the top two CLAMP scores are tactically poor as they could result in a loss of the 

piece. 
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7.8.5. Bratko/Kopec Test 8 (best move: pawn lever) 

 
    
    
    
   
    
     
   
     
 
 

The table below shows all possible moves, with the score assigned by CLAMP, for 

configuration test 8: 

 

From To Score F From To Score F 

Pa2 Pa3 12393 4 Ph2 Ph4 4386  

Ph2 Ph3 12248 3 Pe5 Pe6 2486  

Ne2 Nc1 8533  Ke3 Kf2 1335  

Ne2 Nc3 8291 2 Ke3 Kd2 577  

Pa2 Pa4 8201  Ke3 Ke4 232  

Pf4 Pf5 5902 < Ke3 Kd3 228  

Ne2 Ng1 4831  Ke3 Kf3 220  

Pg3 Pg4 4538      

 

Table 7.22:  Bratko/Kopec Test 8 CLAMP Scores 

 
 
Table 7.23 (below) shows the top five CLAMP scores with the position of the move in 

order of preference from an analysis by the Fritz chess engine, with „1‟ being the best 

move and „16‟ being the worst move. 

 

 

 

 

 

Result: The „best move‟ is Pf5. which is rated 7th 

out of sixteen moves which have been scored by 

CLAMP however the second choice in CLAMP‟s 

rank order (Ph3) is actually the fourth highest 

scoring move when the chessboard is analysed by 

Fritz. 
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From To 
Fritz move 
preference 

Pa2 Pa3 4 

Ph2 Ph3 3 

Ne2 Nc1 9 

Ne2 Nc3 2 

Pa2 Pa4 11 

Table 7.23 

 

The moves associated with the top five CLAMP scores compare reasonably 

favourably with the analysis of the same configuration by the Fritz chess engine, 

however the move „a4‟ is tactically poor as it could result in the loss of the piece. 
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7.8.6. Bratko/Kopec Test 9 (best move: pawn lever) 

 
   
   
   
   
     
   
  
  
 
 

The table below shows all possible moves, with the score assigned by CLAMP, for 

configuration test 9: 

 

From To Score F From To Score F From To Score F 

Kc1 Kb1 108828 5 Nc3 Nd5 21820  Nc3 Nb1 9960  

Bf1 Be2 46424  Nc3 Ne4 21089  Rd1 Re1 9585 < 

Bf1 Bd3 44442 3 Bh4 Bg5 19113  Nf3 Ng1 8591  

Pa2 Pa3 41596  Pd4 Pd5 19044  Qh3 Qg4 8137  

Nc3 Na4 31204  Pb2 Pb3 17426  Rh1 Rg1 7879  

Bf1 Bb5 31076 2 Bf1 Bc4 16789  Pb2 Pb4 7449  

Nf3 Ne5 29965  Bf1 Ba6 14564  Qh3 Qf5 5310  

Bh4 Bg3 29565  Pa2 Pa4 14318  Bh4 Be1 4994  

Nc3 Ne2 27934  Qh3 Qg3 13747  Kc1 Kd2 4804  

Nc3 Nb5 27766 6 Nf3 Ne1 13736  Rd1 Rd2 4444  

Nf3 Nd2 27201  Bh4 Bf2 12715  Qh3 Qe6 3525  

Nf3 Ng5 26756  Bh4 Bf6 10138  Pg2 Pg4 3459  

Pg2 Pg3 21972 4 Pf4 Pf5 10010  Rd1 Rd3 2883  

 

Table 7.24: Bratko/Kopec Test 9 CLAMP Scores 

 
Table 7.25 (below) shows the top five CLAMP scores with the position of the move in 

order of preference from an analysis by the Fritz chess engine, with „1‟ being the best 

move and „38‟ being the worst move. 

 

 

Result: Result: The „best move‟ is Pf5. which is 

rated 28th out of thirty-eight moves which have 

been scored by CLAMP however the first choice in 

CLAMP‟s rank order (Kb1) is actually the fith 

highest scoring move when the chessboard is 

analysed by Fritz. 



124 
 
 

From To 
Fritz move 
preference 

Kc1 Kb1 5 

Bf1 Be2 8 

Bf1 Bd3 3 

Pa2 Pa3 10 

Nc3 Na4 23 

Table 7.25 

 

The moves associated with the top five CLAMP scores compare reasonably 

favourably with the analysis of the same configuration by the Fritz chess engine. 
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7.8.7. Bratko/Kopec Test 11 (best move: pawn lever) 

 
  
  
    
    
  
    
   
    
 
 

 

 

The table below shows all possible moves, with the score assigned by CLAMP for 

configuration test 11: 

 

From To Score F From To Score F From To Score F 

Ra1 Rc1 823028  Pf2 Pf3 255594  Ra1 Ra3 161908  

Rf1 Rd1 744714 5 Be3 Bd2 253801  Qe2 Qd1 158106  

Rf1 Re1 721288 4 Qe2 Qb2 246547  Ng3 Nh5 154676 2 

Rf1 Rb1 539637 3 Ng3 Nf5 227789  Qe2 Qh5 137465  

Qe2 Qc2 435685  Kg1 Kh1 219768  Be3 Bc5 135898  

Ph2 Ph3 422464  Qe2 Qe1 218067  Qe2 Qa2 117778  

Pa4 Pa5 388034  Be3 Bd4 204563  Ph2 Ph4 90527  

Qe2 Qd2 355413  Bd3 Bc2 193701  Pd5 Pd6 83222  

Pf2 Pf4 324268 < Ng3 Nh1 189365      

Bd3 Bb1 307055  Be3 Bc1 178688      

Pc4 Pc5 305381  Qe2 Qg4 177824      

Be3 Bg5 304848  Qe2 Qf3 177389      

Be3 Bh6 271174  Ra1 Ra2 172697      

Pe4 Pe5 259295  Be3 Bf4 163758      

 

Table 7.26:  Bratko/Kopec Test 11 CLAMP Scores 

 
 
Table 7.27 (below) shows the top five CLAMP scores with the position of the move in 

order of preference from an analysis by the Fritz chess engine, with „1‟ being the best 

move and „36‟ being the worst move. 

 

Result: The „best move‟ (marked with „<‟ 

alongside in the table below) according to the 

Bratko/Kopec test is rated the 9th choice out of a 

possible thirty-six, however the third choice in 

CLAMP‟s rank order (Re1) is actually the fourth 

highest scoring move when the chessboard is 

analysed by Fritz. Fritz also scored Rb1 as its 

third choice, which is fourth in CLAMP‟s ordered 

list. 
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From To 
Fritz move 
preference 

Ra1 Rc1 17 

Rf1 Rd1 5 

Rf1 Re1 4 

Rf1 Rb1 3 

Qe2 Qc2 22 

Table 7.27 

 

The most of the moves associated with the top five CLAMP scores compare 

reasonably favourably with the analysis of the same configuration by the Fritz chess 

engine. 
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7.8.8. Bratko/Kopec Test 13 (best move: pawn lever) 

 
   
   
    
    
    
    
   
     
 
 

 

Rd1 is scored second in CLAMP‟s list and third by Fritz; Rb1 is scored fourth in both 

CLAMP‟s list and Fritz. The table below shows all possible moves, with the score 

assigned by CLAMP, for configuration test 13: 

 

From To Score F From To Score F From To Score F 

Re1 Rc1 702832 2 Bd2 Bc3 287573  Qd3 Qh3 131406  

Re1 Rd1 650142 3 Pe4 Pe5 283595  Ph2 Ph4 123786  

Pa2 Pa3 505598 5 Pb2 Pb4 263487 < Pg2 Pg4 118111  

Re1 Rb1 442731 4 Pf2 Pf3 249974  Bd2 Ba5 110389  

Pa2 Pa4 426944  Qd3 Qb1 191949  Pd5 Pd6 110010  

Bd2 Be3 418787  Kg1 Kh1 189124  Qd3 Qe3 106982  

Ph2 Ph3 417401  Pg2 Pg3 188708  Qd3 Qa6 97372  

Qd3 Qc2 404200  Qd3 Qf3 188322  Re1 Re2 78894  

Bd2 Bg5 394022  Qd3 Qc4 172607  Re1 Re3 73430  

Pb2 Pb3 388613  Qd3 Qd4 170358  Qd3 Qf1 70316  

Qd3 Qe2 374733  Qd3 Qb5 158894  Kg1 Kf1 38174  

Qd3 Qb3 328366  Qd3 Qa3 142002  Re1 Rd1 0  

Bd2 Bh6 321539  Bd2 Bc1 136577  Re1 Rc1 0  

Bd2 Bf4 317416  Qd3 Qc3 134305  Re1 Rb1 0  

Re1 Rf1 308866  Qd3 Qg3 133948      

Pf2 Pf4 300562  Bd2 Bb4 132266      

 

Table 7.28:  Bratko/Kopec Test 13 CLAMP Scores 

 
 

Result: The „best move‟ (marked with „<‟ alongside 

in the table below) according to the Bratko/Kopec 

test is rated the 19th choice out of a possible forty-

six positions scored by CLAMP, however the first 

choice in CLAMP‟s rank order (Rc1) is actually the 

second highest scoring move when the chessboard 

is analysed by Fritz. 
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Table 7.29 (below) shows the top five CLAMP scores with the position of the move in 

order of preference from an analysis by the Fritz chess engine, with „1‟ being the best 

move and „46‟ being the worst move. 

 

From To 
Fritz move 
preference 

Re1 Rc1 2 

Re1 Rd1 3 

Pa2 Pa3 5 

Re1 Rb1 4 

Pa2 Pa4 17 

Table 7.29 

 

The moves associated with the top five CLAMP scores compare reasonably 

favourably with the analysis of the same configuration by the Fritz chess engine. 

 
 
 
 
7.8.9. Bratko/Kopec Test 14 (best move: tactical) 

 
   
   
   
   
     
   
  
   
 
 

The table below shows all possible moves, with the score assigned by CLAMP, for 

configuration test 14: 

 

 

 

Result: The „best move‟ (marked with „<‟ 

alongside in the table below) according to the 

Bratko/Kopec test is rated the 3rd choice out of a 

possible thirty-two positions scored by CLAMP. 
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From To Score F From To Score F From To Score F 

Nf3 Nd2 939370  Pb3 Pb4 573087  Bb2 Bc1 227328  

Bg2 Bh1 937629  Qd1 Qc1 532626 5 Pd5 Pd6 177277  

Qd1 Qd2 865691 < Nf3 Ne5 499241  Pg3 Pg4 156525  

Pa2 Pa3 856011  Bb2 Ba3 492595  Ph2 Ph4 138197  

Qd1 Qc2 827568 4 Nf3 Ng5 486776      

Rf1 Re1 770952  Ra1 Rb1 405579      

Nf3 Ne1 752782  Bb2 Bc3 391611 3     

Pe2 Pe3 716420  Qd1 Qe1 367372 2     

Nf3 Nh4 710429  Pd5 Pc6 356273      

Nf3 Nd4 709700  Bg2 Bh3 327054      

Pe2 Pe4 693070  Kg1 Kh1 324048      

Pa2 Pa4 678859  Qd1 Qd3 267610      

Ph2 Ph3 665722  Qd1 Qb1 263978      

Ra1 Rc1 600505  Qd1 Qd4 250290      

 

Table 7.30:  Bratko/Kopec Test 14 CLAMP Scores 

 

 
Table 7.31 (below) shows the top five CLAMP scores with the position of the move in 

order of preference from an analysis by the Fritz chess engine, with „1‟ being the best 

move and „32‟ being the worst move. 

 

From To 
Fritz move 
preference 

Nf3 Nd2 7 

Bg2 Bh1 23 

Qd1 Qd2 1 

Pa2 Pa3 16 

Qd1 Qc2 4 

Table 7.31 

 

The moves associated with the top five CLAMP scores compares reasonably with the 

analysis of the same configuration by the Fritz chess engine with the exception of 

„Bh1‟ and „a3‟, both of which are tactically poor as they can lose material 
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7.8.10. Bratko/Kopec Test 15 (best move: tactical) 

 
   
   
   
    
    
   
  
    
 
 

The table below shows all possible moves, with the score assigned by CLAMP, for 

configuration test 15: 

 

From To Score F From To Score F From To Score F 

Pd3 Pd4 223143  Qg4 Qa4 113440  Rg3 Rh3 46603  

Pa2 Pa3 208251  Nd2 Ne4 112631  Rf1 Rf4 43089 4 

Rf1 Rc1 196072  Rf1 Rd1 105747  Qg4 Qe4 31980  

Rf1 Rf3 192680 3 Kg1 Kh1 95824  Qg4 Qf5 31528  

Pe3 Pe4 185806  Rf1 Rb1 93952  Qg4 Qg7 27861 < 

Pa2 Pa4 181244 5 Qg4 Qh5 69711  Qg4 Qf4 27514  

Pc2 Pc4 175453  Qg4 Qh4 61205  Qg4 Qg5 25921  

Nd2 Nb1 161104  Qg4 Qc4 61082  Ph2 Ph4 24606  

Ph2 Ph3 160948  Rf1 Ra1 60010  Qg4 Qe6 23843  

Pc2 Pc3 144831  Pb3 Pb4 57138  Rf1 Rf5 22876  

Rf1 Re1 144465  Qg4 Qd4 56975  Qg4 Qg6 15730  

Qg4 Qe2 133627  Qg4 Qf3 54747  Rf1 Rf6 15647 2 

Nd2 Nf3 129613  Qg4 Qb4 54614  Kg1 Kf2 5583  

Nd2 Nc4 124816  Rf1 Rf2 50575  Rf1 Rf3 0  

Qg4 Qh3 116050  Qg4 Qd1 49575      

 

Table 7.32:  Bratko/Kopec Test 15 CLAMP Scores 

 
Table 7.33 (below) shows the top five CLAMP scores with the position of the move in 

order of preference from an analysis by the Fritz chess engine, with „1‟ being the best 

move and „44‟ being the worst move. 

 

 

Result: The „best move‟ (marked with „<‟ alongside 

in the table below) according to the Bratko/Kopec 

test is rated the 35th choice out of a possible forty-

four, however the fourth choice in CLAMP‟s rank 

order (Rf3) is actually the fourth highest scoring 

move when the chessboard is analysed by Fritz. 
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From To 
Fritz move 
preference 

Pd3 Pd4 10 

Pa2 Pa3 9 

Rf1 Rc1 13 

Rf1 Rf3 3 

Pe3 Pe4 11 

Table 7.33  

 

The moves associated with the top five CLAMP scores compare reasonably with the 

analysis of the same configuration by the Fritz chess engine, with all five moves 

being within the top 25% of top moves scored by Fritz. 
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7.8.11. Bratko/Kopec Test 16 (best move: tactical) 

 
  
    
   
   
     
    
  
   
 
 

The table below shows all possible moves, with the score assigned by CLAMP, for 

configuration test 16: 

From To Score F From To Score F From To Score F 

Pa2 Pa3 450075  Nd2 Nc4 238246  Pf2 Pf3 146347  

Pc2 Pc3 425795  Bg5 Bf4 237652 3 Bb3 Bc4 142428  

Pa2 Pa4 362787  Nd2 Nf3 225476  Kg1 Kh1 140785  

Ph2 Ph3 307219  Bg5 Be7 218320 4 Qd1 Qb1 134311  

Qd1 Qe2 301220  Qd1 Qe1 208300  Nd2 Nb1 132277  

Pc2 Pc4 293176  Qd1 Qf3 207369  Qd1 Qg4 124560  

Rf1 Re1 291386  Qd1 Qh5 196826 2 Bb3 Ba4 116872  

Bg5 Bh4 277750  Pf2 Pf4 190494  Pg2 Pg4 61992  

Bg5 Be3 256595 5 Qd1 Qc1 188446  Ph2 Ph4 55419  

Nd2 Ne4 249521 < Pg2 Pg3 167577  Bb3 Bd5 51565  

Ra1 Rc1 248032  Bg5 Bh6 150211  Pe5 Pe6 42097  

Bg5 Bf6 240372  Ra1 Rb1 149180      

 

Table 7.34:  Bratko/Kopec Test 16 CLAMP Scores 

 
 
Table 7.35 (below) shows the top five CLAMP scores with the position of the move in 

order of preference from an analysis by the Fritz chess engine, with „1‟ being the best 

move and „35‟ being the worst move. 

  

Result: The „best move‟ (marked with „<‟ alongside in 

the table below) according to the Bratko/Kopec test is 

rated the 10th choice out of a possible thiry-five. 
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From To 
Fritz move 
preference 

Pa2 Pa3 17 

Pc2 Pc3 13 

Pa2 Pa4 7 

Ph2 Ph3 25 

Qd1 Qe2 19 

Table 7.35 

 

The moves associated with the top five CLAMP scores compare with the analysis of 

the same configuration by the Fritz chess engine, however, most of the moves are 

tactically weak as they can result in a loss of material. 
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7.8.12. Bratko/Kopec Test 20 (best move: pawn lever) 

 
    
  
    
   
     
     
  
    
 
 

The table below shows all possible moves, with the score assigned by CLAMP, for 

configuration test 20: 

 

From To Score F From To Score F From To Score F 

Pa2 Pa3 84625  Pb2 Pb4 30689  Qe2 Qg4 13398  

Nc3 Na4 68029  Ne5 Ng4 29452  Qe2 Qb5 13173  

Kc1 Kb1 66919 5 Qe2 Qf2 28335  Qe2 Qa6 12912  

Ne5 Nd7 66588  Ne5 Nc4 27783  Qe2 Qe4 12532  

Pb2 Pb3 64061  Nc3 Nb1 27695  Qe2 Qf1 11185  

Pa2 Pa4 51168  Re1 Rf1 25535  Ne5 Nf7 10504  

Ph2 Ph3 50834 < Ne5 Nd3 25137  Qe2 Qc4 9856  

Pd4 Pd5 49339  Ne5 Ng6 23082  Rd1 Rd3 8689  

Qe2 Qd2 47589  Qe2 Qf3 20987  Qe2 Qg2 8209  

Nc3 Nd5 47109  Pg3 Pg4 20157 3 Re1 Rg1 7212 2 

Nc3 Ne4 46971  Qe2 Qd3 19475  Re1 Rh1 2274  

Nc3 Nb5 37886  Ph2 Ph4 18430  Kc1 Kd2 2249  

Ne5 Nc6 37618  Qe2 Qh5 17029 4     

Ne5 Nf3 32087  Qe2 Qe3 15390      

Pf4 Pf5 30969  Rd1 Rd2 15104      

 

Table 7.36:  Bratko/Kopec Test 20 CLAMP Scores 

 

 
Table 7.37 (below) shows the top five CLAMP scores with the position of the move in 

order of preference from an analysis by the Fritz chess engine, with „1‟ being the best 

move and „42‟ being the worst move. 

 

Result: The „best move‟ (marked with „<‟ alongside 

in the table below) according to the Bratko/Kopec 

test is rated the 25th choice out of a possible forty-

two. 
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From To 
Fritz move 
preference 

Pa2 Pa3 19 

Nc3 Na4 16 

Kc1 Kb1 5 

Ne5 Nd7 34 

Pb2 Pb3 26 

Table 7.37 

 

The moves associated with the top five CLAMP scores compare poorly with the 

analysis of the same configuration by the Fritz chess engine. The move‟Nd7‟ is 

tactically poor as it could result in a loss of the piece. 

 

7.9. An analysis of the top moves 

The analysis described so-far in this thesis has tested if the move played by the 

chess player was one of the suggested moves (suggested by CLAMP) appearing in 

the top half of the list of all possible moves which had been sorted in descending 

order of „likelihood to be played‟ by CLAMP. This chapter has reported results from 

the comparison of methods using the whole board areas, sub-sections of the board 

and pieces in defending positions, for various chunks sizes. The analysis focused on 

the piece type and the position that a piece is moved to. 

Another comparison method (which was used by Gobet and Jansen (1994) to 

test the „CHUMP‟ program), is to quantify the percentage of cases that give a correct 

move within the top few „predictions‟ (in this instance a „prediction‟ is a move that is 

supported by the highest number of chunks, and the „correct move‟ is the move that 

was actually played by the chess player). This analysis will therefore focus on the 

moves that CLAMP attributes the highest scores; low-scoring moves and chessboard 

configurations that give no scores are treated similarly. The chessboards were taken 



136 
 
 

from tournament games that were not used in the process to build the libraries and 

had an average 40.47 possible moves on the board with a standard deviation 5.86. 

If move predictions were a result of a random selection then each move would 

have a uniform probability of approximately 1/40 of being selected. This estimate 

ignores the small variation in the number of possible moves in the sample of 

chessboards used for the evaluation. The probability of selecting a move and this 

being the best move therefore equates to 2.5% or 25 from a sample of one thousand 

chessboards. The chance of a random move being in the top two positions is 

similarly 5%, or 50 from a sample of one thousand chessboards (by adding the 

probabilities of the two positions), and 10%, or 100 from a sample of one thousand 

boards for the move to within the top four positions.  

Table 7.37 (below) shows the probability that a randomly selected move will 

appear within the top „n‟ best moves,  

Where: 

„p-1‟ is the best move. 

„p-2‟ the move is within the top two positions. 

„p-3‟ the move is within the top three positions. 

„p-4‟ the move is within the top four positions. 

 

p-1 p-2 p-3 p-4 

25 50 75 100 

Table 7.38: The probability of random moves from a sample of 1000 boards 

 

If CLAMP suggests a „best move‟ then, to be significant (that is, better than a random 

selection), the percentage of best moves that match the player‟s chosen move must 

occur more than 2.5% of the time. Similarly, for „p-2‟ a better than random selection 

would be a percentage better than 5% and so on. 
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7.9.1. Using ‘Whole Board’ chunk libraries 

The results from the analysis of one thousand chessboards, in the mid-game section 

of tournament games (games that were not used to build the chunk libraries), using 

chunk libraries based on the whole board area are shown in the table below. The 

table reports the number of actual moves played that matched the move associated 

with the highest score from CLAMP (p-1). In addition, the number of actual moves 

played that were within the top two scoring outputs (p-2), top three scoring outputs 

(p-3) and top four scoring outputs (p-4) from CLAMP.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7.39:  Chunks from entire board area 

 

The „low‟ and „high‟ figures show the 95% confidence limits for each result. The 

results shown in table 7.39 (above) are based on a sample („N‟) of one thousand 

  number 
of actual 

moves 
played 

low high 

Chunk size 2 p-1 52 42 62 

 p-2 86 72 100 

 p-3 125 109 141 

 p-4 170 151 189 

     

Chunk size 3 p-1 52 42 62 

 p-2 95 81 109 

 p-3 132 116 148 

 p-4 162 143 181 

     

Chunk size 4 p-1 52 42 62 

 p-2 97 83 111 

 p-3 135 119 151 

 p-4 173 154 192 

     

Chunk size 5 p-1 42 32 52 

 p-2 76 62 90 

 p-3 107 91 123 

 p-4 139 120 158 
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games. As the number of samples are high, a binomial distribution is approximately 

equal to the standard deviation for the data. Assuming that each game will select one 

move from a possible („p‟) of forty options, the standard deviation for column „p-1‟can 

be estimated:  

             (SD) = √ (Np(1-p) )  

= √  (1000 *1/40 *39/40) 

= 4.937   

Subtracting two standard deviations from the results shown in the column „p-1‟ shows 

that the results reported in table 7.38 are comfortably are in excess of two standard 

deviations (the results exist within a 95% confidence interval) from the random 

probability of 2.5%. Similarly, the standard deviations for the other columns are as 

follows: 

 

Chunk 
Size 

Standard 
deviation 

p-1 4.93 

p-2 6.892 

p-3 7.888 

p-4 9.747 
Table 7.40:  Standard deviations for each column 

  

The results for p-1, p-2, p-3 and p-4 reported in table 7.39 show figures that are 

above the random percentage figures, indicating that the results from CLAMP are 

significant, albeit by a small amount. All of the results are in excess of two standard 

deviations, from the random positions for each column. As the size of the chunk 

increases to five pieces, the percentage of boards that were successfully scored 

decreases (cf. page 88). The highest p-1, p-2, p-3 and p-4 percentages were found 

when a chunk size of four was used.  
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7.9.2. Using ‘Defensive’ chunk libraries 

The following table shows the scores when using libraries that were built from chunks 

with pieces in defensive relationships: 

  number 
of actual 

moves 
played 

Low high 

Chunk size 2 p-1   35 25.14 44.86 

 p-2 62 48.22 75.78 

 p-3 99 83.22 114.78 

 p-4 129 109.51 148.49 

     

Chunk size 3 p-1 36 26.14 45.86 

 p-2 74 60.22 87.78 

 p-3 102 86.22 117.78 

 p-4 142 122.51 161.49 

     

Chunk size 4 p-1 38 28.14 47.86 

 p-2 83 69.22 96.78 

 p-3 117 101.22 132.78 

 p-4 150 130.51 169.49 

     

Chunk size 5 p-1 49 39.14 58.86 

 p-2 86 72.22 99.78 

 p-3 122 106.22 137.78 

 p-4 151 131.51 170.49 

     

Chunk size 6 p-1 50 40.14 59.86 

 p-2 90 76.22 103.78 

 p-3 117 101.22 132.78 

 p-4 156 136.51 175.49 

     

Chunk size 7 p-1 40 30.14 49.86 

 p-2 74 60.22 87.78 

 p-3 104 88.22 119.78 

 p-4 124 104.51 143.49 

Table 7.41:  Analysis using defensive chunks 
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All of the results shown in table 7.41 (above) show that when using chunk sizes of 

3,4,5,6 or 7 pieces the results are in excess of two standard deviations from the 

random positions for each column (cf. table 7.38). The results when using a chunk 

size of two shows a lower 95% confidence interval which is very close to the random 

distribution value (cf. page 136). 

 

The number of moves played shown in table 7.41 are slightly lower than but 

comparable to, results obtained when using the whole board area. However, the 

defending libraries are considerably smaller in size (cf. 104). 
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7.9.3. Using small grouped area chunk libraries 

The tables below show results obtained from using libraries generated from chunks 

in small local areas on the chessboard: 

 

  number 
of actual 

moves 
played 

low high 

Chunk size 2 p-1 39 29 49 

  p-2 68 54 82 

  p-3 94 78 110 

  p-4 129 110 148 

          

Chunk size 3 p-1 53 43 63 

  p-2 101 87 115 

  p-3 136 120 152 

  p-4 160 141 179 

          

Chunk size 4 p-1 58 48 68 

  p-2 104 90 118 

  p-3 142 126 158 

  p-4 162 143 181 

          

Chunk size 5 p-1 40 30 50 

  p-2 76 62 90 

  p-3 87 71 103 

  p-4 102 83 121 

Table 7.42:  Chunks with pieces in 3x3 local areas 

 

All of the results shown in table (above) show that when using chunk sizes of 2, 3,4 

or 5 pieces the results are in excess of two standard deviations from the random 

distribution value (cf. page 136). 
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  number 
of actual 

moves 
played 

low high 

Chunk size 2 p-1 41 31 51 

  p-2 91 77 105 

  p-3 123 107 139 

  p-4 157 138 176 

          

Chunk size 3 p-1 48 38 58 

  p-2 94 80 108 

  p-3 141 125 157 

  p-4 177 158 196 

          

Chunk size 4 p-1 53 43 63 

  p-2 104 90 118 

  p-3 141 125 157 

  p-4 185 166 204 

          

Chunk size 5 p-1 50 40 60 

  p-2 88 74 102 

  p-3 117 101 133 

  p-4 152 133 171 

          

Chunk size 6 p-1 33 23 43 

  p-2 57 43 71 

  p-3 74 58 90 

  p-4 90 71 109 

Table 7.43:  Chunks with pieces in 4x4 local areas 

 

All of the results shown in table (above) show that when using chunk sizes of 2, 3,4 

or 5 pieces the results are in excess of two standard deviations from the random the 

random distribution (cf. page 136). When using a chunk size of six pieces, the lower 

95% confidence limit is below the value for the random distribution value (cf. page 

136). 
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  number of 
actual moves 

played 

low high 

Chunk size 2 p-1 35 25 45 

  p-2 70 56 84 

  p-3 108 92 124 

  p-4 145 126 164 

          

Chunk size 3 p-1 50 40 60 

  p-2 81 67 95 

  p-3 107 91 123 

  p-4 148 129 167 

          

Chunk size 4 p-1 44 34 54 

  p-2 83 69 97 

  p-3 121 105 137 

  p-4 153 134 172 

          

Chunk size 5 p-1 47 37 57 

  p-2 89 75 103 

  p-3 123 107 139 

  p-4 158 139 177 

          

Chunk size 6 p-1 40 30 50 

  p-2 96 82 110 

  p-3 131 115 147 

  p-4 169 150 188 

Table 7.44:  Chunks with pieces in 5x5 local areas 

 

 

All of the results shown in table (above) show that when using chunk sizes of 2, 3,4,6 

or 6 pieces the results are in excess of two standard deviations from the random 

distribution value (cf. page 136). 
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  number 
of actual 

moves 
played 

low high 

Chunk size 2 p-1 33 23 43 

  p-2 59 45 73 

  p-3 98 82 114 

  p-4 124 105 143 

          

Chunk size 3 p-1 37 27 47 

  p-2 65 51 79 

  p-3 101 85 117 

  p-4 131 112 150 

          

Chunk size 4 p-1 35 25 45 

  p-2 60 46 74 

  p-3 98 82 114 

  p-4 129 110 148 

          

Chunk size 5 p-1 40 30 50 

  p-2 78 64 92 

  p-3 105 89 121 

  p-4 142 123 161 

          

Chunk size 6 p-1 46 36 56 

  p-2 76 62 90 

  p-3 102 86 118 

  p-4 130 111 149 

Table 7.45:  Chunks with pieces in 6x6 local areas 

 

 

 

All of the results shown in table 7.45 (above) are close to or  in excess of two 

standard deviations with respect to the lower confidence limits, from the random 

distribution values (cf. page 136). 
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7.10. Top move analysis and the number of boards scored 

When considering chunks within a small area on the board, a chunk size of four 

within a local area of 4x4 squares gives the best overall results with 18.5% of moves 

played, being within the top four of CLAMP‟s output. With this configuration, the 

highest scoring move from CLAMP is the actual move played 5.3% of the time. The 

„4x4 area – four piece chunks‟ chunk library is not only slightly better than the „whole 

board – four piece chunk‟ library but it contains 210,120 chunks, which is a fraction of 

the 27,127,049 chunks contained in the „whole board – four piece chunk‟ library, 

equating to a 99.8% reduction in chunks within the library. The 4x4, 4 piece chunk 

however only found chunks on 682 out of the sample one thousand boards. 

 As the chunk size increases, the number of boards that are successfully 

scored decreases. As reported earlier in this thesis, large chunks are rare but specific 

(cf. page 88) so if CLAMP can find large chunks in the configuration and match these 

to a move in the library then the move has a high likelihood of being the „best‟ move. 

Using large chunks however, will fail to score many boards, for example in the above 

analysis the „3x3 – five piece chunk‟ analysis only scored 223 chessboards out of the 

one thousand in the test. However, if at least one chunk from the chessboard is 

found within the chunk library then the accuracy of CLAMP‟s prediction is higher 

when using large chunk sizes than for chunks made up from a small number of 

pieces.  

The percentage probability that CLAMP will correctly score a move within the 

top four positions provided the board has at least one chunk matching a move within 

the chunk library can be calculated by dividing the p-4 score by the „Number of 

boards scored‟ value, and then multiplying the result by 1000,  in the above tables. 

The adjusted scores for each of the scenarios are shown below: 
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Chunk 
Size 

p-4 
Number of boards 

scored (#) 
Adjusted 

p-4 

2 17.0% 995 17.1% 

3 16.2% 995 16.3% 

4 17.3% 995 17.4% 

5 13.9% 567 24.5% 

Table 7.46:  ‘Adjusted p-4' percentage - Whole board 

 
 
 

 

 

 

 

Table 7.47:  ‘Adjusted 'p-4' percentage - Defending chunk libraries 
 

 

Local area 
(squares)  

Chunk 
size 

p-4 
Number of boards 

scored 
Adjusted 

p-4 

3x3 2 12.9% 851 15.2% 

3x3 3 16.0% 820 19.5% 

3x3 4 16.2% 542 29.9% 

3x3 5 10.2% 223 45.7% 

     

4x4 2 15.7% 872 18.0% 

4x4 3 17.7% 840 21.1% 

4x4 4 18.5% 682 27.1% 

4x4 5 15.2% 499 30.5% 

4x4 6 9.0% 210 42.9% 

     

5x5 2 14.5% 905 16.0% 

5x5 3 14.8% 849 17.4% 

5x5 4 15.3% 786 19.5% 

5x5 5 15.8% 656 24.1% 

5x5 6 16.9% 518 32.6% 

     

6x6 2 12.4% 875 14.2% 

6x6 3 13.1% 855 15.3% 

6x6 4 12.9% 843 15.3% 

6x6 5 14.2% 763 18.6% 

6x6 6 13.0% 549 23.7% 

Table 7.48:  ‘Adjusted p-4' percentage – Local area chunk libraries 

 
 

Chunk 
Size  

p-4 
Number of boards 

scored 
Adjusted 

p-4 

2 12.9% 995 13.0% 

3 14.2% 954 14.9% 

4 15.0% 965 15.5% 

5 15.1% 825 18.3% 

6 15.6% 714 21.8% 

7 12.4% 427 29.0% 
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7.11. Using chunks to suggest a move: a design strategy 

This section is included to illustrate how libraries with large chunks can be used in a 

practical scenario, taking into consideration that large chunks are rarely repeated 

between chessboards and, as a result, many large chunks may be absent from the 

chunk libraries.   

Suppose a program has to be written to suggest the best chess move with a 

„confidence‟ percentage, how could such a program be written? A good strategy 

when applying chunking to practical applications would be to use the libraries with 

the smallest number of chunks (so that searching through the library is faster) to find 

associated moves, and starting with a library that gives the highest „Adjusted p-4‟ 

percentage, and then iterate through numerous chunk libraries until a move is 

predicted. 

If the hypothetical program can make four guesses when analysing a 

chessboard the probability of the correct move being within the four guesses can be 

calculated for each of the chunk libraries by using column labelled „Adjusted p-4‟ in 

tables 7.46, 7.47 and 7.48. The probability that a score will be assigned by the chunk 

library is calculated from the column labelled „number of boards scored‟ from the 

above tables. 

In order to maximise the program speed, where possible, the smallest chunk 

libraries should be used to minimise the search. 

With reference to the results reported in section 7.9, the process could, for 

example, use chunk libraries in the sequence shown in the table below: 
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Sequence 
Board area 
(squares) 

Chunk 
Size 

(pieces) 

Number of 
chunks in 

library 

Number of 
boards 
scored 

Probability 
of getting a 

score 

Probability of the 
‘correct move’ being 

in top 4 scores 

1 4x4 6 26139 210 21.0% 42.9% 

2 5x5 6 388865 518 51.8% 32.6% 

3 4x4 4 210120 682 68.2% 27.1% 

4 3x3 3 80819 820 82.0% 19.5% 

5 8x8 3 7596060 995 99.5% 16.3% 

 

Table 7.49:  Iteration sequence to predict top moves. 

 

The move predictor program will perform the following steps in the order below: 

1. Using the „4x4 six-piece chunk‟ library will score approximately 21% of boards; 

if a score is obtained then the first four moves will contain the best move with a 

probability of approximately 43%. The chunk library is small with 26139 

chunks and so searching this library will be fast. 

2. If no score is obtained from step 1 (above) then the „5x5 six-piece chunk‟ 

library should be tried. The „5x5 six-piece chunk‟ library will score 

approximately 52% of boards and will predict the best move being within the 

top four outputs with a probability of approximately 33%. 

3. If no score is obtained from step 2 (above) then the „4x4 four-piece chunk‟ 

library should be tried. The „4x4 four-piece chunk‟ library will score 

approximately 68% of boards and will predict the best move being within the 

top four outputs with a probability of approximately 27%. 

4. If no score is obtained from step 3 (above) then the „3x3 three-piece chunk‟ 

library should be tried. The „3x3 three-piece chunk‟ library will score 

approximately 82% of boards and will predict the best move being within the 

top four outputs with a probability of approximately 20%. 

5. If no score is obtained from step 4 (above) then the „whole board three-piece 

chunk‟ library should be tried. The „whole board three-piece chunk‟ library will 
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score approximately 99% of boards and will predict the best move being within 

the top four outputs with a probability of approximately 16%. 

 

The above sequence will search for moves associated with chunks, starting with 

large (six piece) chunks and decreasing to three-piece chunks. The sequence 

attempts to find rare but specific chunks first, with each step moving increasingly 

towards frequent and general chunks. The final stage (whole board, three piece 

chunk library) will score 99% of boards albeit with an accuracy probability of 16% that 

the best move is in the four suggested outputs. 

 

7.12. Chapter conclusion 

This chapter has reported results from the analysis of chunks produced by the 

program CLAMP. The results show that chunk patterns can be used to suggest 

chess moves with a probability that is higher than a random selection. Results 

reported compared the effectiveness of different sizes of chunk and various filters 

used in the procurement of chunks, including restricting chunks to pieces in close 

proximity or restricting chunks to pieces in defending relationships. The 

corresponding reduction in chunk library size without significant loss of accuracy 

intimating that many of the effective chunks exist as pieces in defending positions or 

with close proximity. 

 This chapter tested the effectiveness of the selection of a move to play by 

comparing the output of CLAMPanalyser with one thousand sample games. The 

games comprised of tournament transcripts between master chess players (games 

that were not used by CLAMP to build the chunk libraries) with CLAMPanalyser 

matching the human player‟s moves with a „better than random‟ result comfortably 

with a 95% confidence limit.  
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 Specific chessboard configurations were also tested, such as de Groot‟s 

Position „A‟ and the Bratko/Kopec configurations, with results compared with the 

output form a commercial chess program. The Bratko/Kopec test showed that 

CLAMPanalyser performed slightly better with positional as opposed to tactical 

moves.  

 The final section illustrated how a hypothetical program could use several 

chunk libraries to select a move, based on the probability that a library will „score‟ a 

chessboard and the likelihood that the best move is in the top four suggestions. 

The results of the tests on CLAMPanalyser show that knowledge of chunks 

within a computer system can be used to suggest good chess moves from an 

analysis of the piece constellations on the board. The result is consistent with human 

chunking theory that suggests that an expert human chess player has knowledge of 

chunks, and that this knowledge, or “perceptual advantage”, can direct attention to 

relevant moves (de Groot 1978, pp. 307). 
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8. AN EVALUATION OF PIECES MOVED FROM A POSITION 
 
The analysis reported so far in this thesis was based on libraries built from collections 

that were compiled from pieces arriving on squares. This chapter examines the 

results when CLAMP was configured to produce libraries using collections of 

departures from squares. In this case the collections (cf. page 53) are compiled from 

board configurations that exist immediately prior to the move of a piece. The result of 

this process is that CLAMPanalyser will produce a list of pieces in order of their 

likelihood of being moved from their current positions. Pieces from a position are less 

useful when suggesting a chess move as the destination of where the piece is moved 

to is unknown. The number of possible moves is reduced to the number of pieces on 

the board of the colour who is to move. Only „white‟ moves are considered in this 

chapter, as this is sufficient for proof of concept. 

When building a chunk library, the name of the collection includes the 

piece/position of the chess piece prior to the move. This method generates a score 

for each (white) piece on the board, for example, the „Coats v Parkin‟ configuration 

(cf. page 84) results in fourteen scores, one for each white piece.  No knowledge of 

the rules of chess, or how pieces move, is used and in some instances a score is 

allocated to a piece even if the piece cannot legally move (for example, in the „Coats 

v Parkin‟ configuration (cf. page 84), the pawn on f2 is blocked by the white knight on 

square f3).  

The analysis using departures gave a score for a move from a position for 

each piece on the chessboard. In the same way as the process described in chapter 

6 gave indicators for moves to a square, analysis of moves from squares gave an 

indication of which pieces were likely candidates to be moved.  

With the „analysis of departures from a square‟ the CLAMPanalyser score is 

the total of the number of chunks that exist on the chessboard that can be found in 
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the library file that is associated with a move of the piece from the square. The 

following table shows CLAMPanalyser scores based on four piece chunks, for piece 

departures and the corresponding Fritz score. The Fritz score is based on the best 

(the highest scoring move) that the piece can make. 

 

MOVE 
FROM: 

CLAMP 
SCORE 

FRITZ 
SCORE 

 
MOVE 
FROM: 

CLAMP 
SCORE 

FRITZ 
SCORE 

Be2 237562 -0.37  Pd4 189049 -0.91 

Be3 131419 -0.25  Pg2 107479 -0.19 

Kg1 036547 -0.34  Ph3 035862 -0.62 

Nc3 207605 -0.06  Qd1 303675 -0.12 

Nf3 254543 -0.19  Ra1 148715 -0.06 

Pa2 233678 -0.06  Rf1 127730 -0.25 

Pb2 165369 -0.47  Pf2 094086 N/A 

 

Table 8.1:  – Move ‘From’ CLAMP and Fritz score comparison 

 

The scatter graph below shows the CLAMP score compared with the Fritz score. The 

line drawn on the graph shows the linear least squares analysis with a correlation 

coefficient of 0.307 

 

Figure 8.1:  Move ‘From’ CLAMP and Fritz score comparison 
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8.1. ‘Move From’ scores by using ‘Move To’ analysis 

When considering moves from a square in the above procedure, no consideration is 

given as to the number of positions that a piece can move to, for example, if there 

are no viable moves for a piece on the chessboard under examination then the piece 

should not be considered for a move. Similarly, if there are just a few viable positions 

a piece can be moved to, then it may be advantageous to take this into account when 

calculating the score for the piece. A piece departing from a square may move to 

several alternative positions with varying merit. An enhancement to the „Move To‟ 

method is to attribute the „best‟ score, from the possible destination squares. By 

calculating the chunk move score for pieces moving to a position a more meaningful 

result can be achieved. 

The „Coats v Parkin‟ configuration (cf. page 84) has thirteen possible white 

piece moves.  Table 7.1 shows the scores for all available squares a piece can move 

to. By taking the move with the highest CLAMPanalyser score and assigning this 

score to the piece, CLAMPanalyser will assign scores to pieces based on the most 

frequently played move according to the chunks that exist on the chessboard. This 

method assumes that if a piece is moved then it will be moved to its highest scoring 

position. The score assigned to a piece is therefore the highest potential score for 

that piece. 

The table below shows the scores from table 7.1 by assigning the highest 

scores to each piece (the highest CLAMP score and the highest Fritz score for a 

piece moving from a position). Similarly the table shows the „Fritz Score‟ as the 

highest scores that a piece can acquire by selecting the best move for each piece 

calculated by Fritz. 
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MOVE 
FROM: 

CLAMP 
SCORE 

FRITZ 
SCORE 

 
MOVE 
FROM: 

CLAMP 
SCORE 

FRITZ 
SCORE 

Be2 231657 -0.37  Pd4 192147 -0.91 

Be3 274531 -0.25  Pg2 152032 -0.19 

Kg1 115648 -0.34  Ph3 38088 -0.62 

Nc3 329186 -0.06  Qd1 327807 0 

Nf3 351078 -0.19  Ra1 206116 -0.06 

Pa2 417532 -0.06  Rf1 191577 -0.25 

Pb2 222510 -0.47     

 

Table 8.2:  – Move ‘From’ using highest ‘Move To’ CLAMP and Fritz score comparison 

 

The scatter graph below shows the CLAMP score compared with the Fritz score. The 

line drawn on the graph shows the linear least squares analysis with a correlation 

coefficient of 0.616 

 

 

Figure 8.2 Move ‘From’ using highest ‘Move To’ CLAMP and Fritz score comparison 

 

 

When considering a piece move from a position, the correlation between CLAMP and 

Fritz is higher using move from scores by using „Move To‟ analysis than with „Move 

From‟ method reported in this section (although the comparison of methods reported 

in this section was based on just one chess configuration - the „Coats v Parkin‟ 

configuration (cf. page 84)). 
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8.2. Combining the likelihood of a Move To with the Move From score 

The „Move From‟ and „Move To‟ methods each produce a likelihood score for a piece 

departure from a square and a piece arrival on a square. The „Move From‟ score 

gives no indication of where the piece is moved to, and similarly the „Move To‟ score 

no indication of the source. In some circumstances, for example where there is more 

than one piece of the same type on the board, the „Move To‟ analysis cannot 

differentiate the actual move from source to destination. 

This section shows how the two methods can be combined to give a score for 

the move of a piece from its old position to the new position. 

 

Table 8.3 (below) lists the move scores based on „Move From‟ and „Move To‟ 

analysis. The „Move From‟ and „Move To‟ likelihood percentages are combined (as 

the product from the two methods) to give an overall likelihood score. The „Fritz 

score‟ is included for comparison with the combined score. 
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MOVE 
FROM 

MOVE 
FROM 

SCORE 

MOVE FROM 
LIKELIHOOD 

% 

MOVE 
TO 

MOVE TO  
SCORE 

MOVE TO 
LIKELIHOOD 

% 

COMBINED 
LIKELIHOOD 

% 

FRITZ 
SCORE 

Be2 237562 78.2% Bd3 231657 55.5% 43.4% -0.41 

Be2 237562 78.2% Bc4 212682 50.9% 39.9% -0.37 

Be2 237562 78.2% Bb5 192263 46.1% 36.0% -0.44 

Be2 237562 78.2% Ba6 85221 20.4% 16.0% -3.34 

Be3 131419 43.3% Bg5 274531 65.8% 28.5% -0.25 

Be3 131419 43.3% Bd2 205979 49.3% 21.4% -0.31 

Be3 131419 43.3% Bf4 197600 47.3% 20.5% -3.62 

Be3 131419 43.3% Bh6 129318 31.0% 13.4% -3.03 

Be3 131419 43.3% Bc1 76306 18.3% 7.9% -0.5 

Kg1 36547 12.0% Kh1 115648 27.7% 3.3% -0.34 

Nc3 207605 68.4% Na4 329186 78.8% 53.9% -0.28 

Nc3 207605 68.4% Nb5 221909 53.2% 36.3% -0.06 

Nc3 207605 68.4% Ne4 199718 47.8% 32.7% -3.16 

Nc3 207605 68.4% Nd5 151850 36.4% 24.9% -3.59 

Nc3 207605 68.4% Nb1 128618 30.8% 21.1% -0.5 

Nf3 254543 83.8% Nh4 351078 84.1% 70.5% -0.53 

Nf3 254543 83.8% Nd2 344666 82.6% 69.2% -0.41 

Nf3 254543 83.8% Ne5 280526 67.2% 56.3% -0.19 

Nf3 254543 83.8% Ne1 272470 65.3% 54.7% -0.44 

Nf3 254543 83.8% Nh2 244546 58.6% 49.1% -0.53 

Nf3 254543 83.8% Ng5 216931 52.0% 43.6% -0.44 

Pa2 233678 77.0% Pa3 417532 100.0% 77.0% -0.06 

Pa2 233678 77.0% Pa4 248241 59.5% 45.8% -0.5 

Pb2 233678 77.0% Pb3 222510 53.3% 41.0% -0.47 

Pd4 189049 62.3% Pd5 192147 46.0% 28.7% -0.91 

Pg2 107479 35.4% Pg3 152032 36.4% 12.9% -0.47 

Pg2 107479 35.4% Pg4 85885 20.6% 7.3% -0.19 

Ph3 35862 11.8% Ph4 38088 9.1% 1.1% -0.62 

Qd1 303675 100.0% Qb3 327807 78.5% 78.5% -0.12 

Qd1 303675 100.0% Qc2 290939 69.7% 69.7% -0.34 

Qd1 303675 100.0% Qa4 288587 69.1% 69.1% 0 

Qd1 303675 100.0% Qd2 265918 63.7% 63.7% -0.41 

Qd1 303675 100.0% Qc1 205312 49.2% 49.2% -0.44 

Qd1 303675 100.0% Qe1 193843 46.4% 46.4% -0.37 

Qd1 303675 100.0% Qb1 156168 37.4% 37.4% -0.5 

Qd1 303675 100.0% Qd3 150672 36.1% 36.1% -0.28 

Ra1 148715 49.0% Rc1 206116 49.4% 24.2% -0.06 

Ra1 148715 49.0% Rb1 120512 28.9% 14.1% -0.25 

Rf1 127730 42.1% Re1 191577 45.9% 19.3% -0.25 

 
Table 8.3:  'Move From' and 'Move To' analysis results 

 
 
The moves shown as a scatter graph on the graphs below: 
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Figure 8.3: CLAMP / Fritz comparison (‘Move To’ analysis) 

 

 
 

 
Figure 8.4:  CLAMP / Fritz comparison (move from analysis) 

 
 
 

 

Figure 8.5:  CLAMP and Fritz move likelihood comparison
23

 

 

                                            
23

 The correlation coefficient for the Fritz score and CLAMP move likelihood percentage is 0.314 
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Combing the „Move To‟ and „Move From‟ likelihood has little effect on the correlation 

coefficient between Fritz and CLAMPanalyser scores, however, this process reduces 

the ambiguity of a move where a type of piece could move to a position from more 

than one origin. The top ten move-likelihood‟s for Fritz, „Move To‟ and combined 

„Move To/Move From‟ scores are different in each case as shown in table 8.4 below: 

 
Move 

ordering 
Fritz Move To 

Move To and 
Move From 

1 Qa4 Pa3 Qb3 

2 Nb5 Nh4 Pa3 

3 Pa3 Nd2 Nh4 

4 Rc1 Na4 Qc2 

5 Qb3 Qb3 Nd2 

6 Ne5 Qc2 Qa4 

7 Pg4 Qa4 Qd2 

8 Bg5 Ne5 Ne5 

9 Rb1 Bg5 Ne1 

10 Re1 Ne1 Na4 

 
Table 8.4:  Move ordering comparison 

 

 

8.3. Chapter conclusion 

This chapter has introduced the method for suggesting the move of a piece from a 

square on the chessboard by analysing the component chunks on the board and 

using knowledge in a chunk library based on the frequently played moves from a 

piece on the chessboard. The suggested move from a piece can then be combined 

with the suggested move to a square, by using the chunk libraries compiled as 

described in earlier chapters of this thesis. The resulting move ordering has less 

ambiguity regarding which piece is moved in situations where two chess pieces of 

the same type can access the same destination.  

  
 
 
 



159 
 
 

9. AN APPLICATION OF CHUNKING TO A CHESS PLAYING 
PROGRAM 

 
“Put one pound of Alpha Beta Prunes in a jar or dish that has a cover. Pour one quart 

of boiling water over the prunes. The longer the prunes soak, the plumper they get. – 

Alpha Beta Acme Markets, Inc, La Habra, California” – Knuth and Moore, 1975 

 
 
9.1. A brief look at the MINIMAX routine 

The vast majority of chess programs use a variation on the MINIMAX search to select 

the move to make. The MINIMAX algorithm, which was proposed by Claude 

Shannon (Shannon 1950), is essentially a simple process that „moves‟ each piece on 

the board, trying every possible legal position for the piece. The MINIMAX algorithm 

can be used to explore domains where an action results in a number of 

consequential responses, each response then evokes a further action and so on, 

resulting in an ever expanding tree of possible solutions with increasing depth of 

search. MINIMAX (or more normally the alpha-beta routine which is an enhancement 

to the MINIMAX routine) is commonly used in games to test possible moves and 

responses between two players, in particular the alpha-beta search is used 

extensively within the game of chess where all possible moves and counter-moves 

are evaluated many positions in advance. The routine starts with a move with its own 

colour (for example, Black), moving one piece one position. The program then moves 

each white piece, trying every legal position in turn. Each move requires the 

opponent to move all of his pieces through all possible moves, resulting in a huge 

branching structure illustrated below: 
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Figure 9.1: An example of the MINIMAX function to explore all moves and counter moves to a 
depth of three ply. 

 

The diagram shows the black pieces having two possible moves, „A‟ and „I‟. The 

program will make move „A‟ (a black piece) and then corresponding move „B‟ (a white 

piece) . Following this, a black piece is moved and so on. The game is played out by 

alternating black and white moves in turn to the depth required (typically between 

eight and sixteen) by the program. 

Having reached the maximum depth (in the above diagram this is shown as a 

depth of three), the program backtracks to the previous move („B‟) and tries an 

alternative response („D‟). Every legal response is tried, but in the above example „B‟ 

is shown to have two possible moves. 

Having exhausted all responses to move „B‟ the program backtracks to move 

„A‟ and tries the next white move „E‟. 

The program plays all possible moves of both black and white pieces for 

several turns. This gives all of the possible scenarios for the game looking ahead by 

the number of turns. Each of the final scenarios are scored, with the highest scoring 

result being passed back to the root level so that the program can choose a move 

(either „A‟ or „I‟ in the above diagram) to achieve the best result. 

A simple scoring method could be to count the number of black pieces on the 

board minus the number of white pieces. From blacks point of view, the higher the 
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number then the stronger black is. Black will favour moves that increase the score 

and white will favour moves to decrease it. 

Having evaluated all scenarios for the deepest levels, the program can assign 

values to each node (each of the moves taken) according to the rule: 

 

 If the move was taken by white then select the lowest score 

 If the move was taken by black then select the highest score. 

 

Consider the following example, which shows the score at each node: 

 

 

Figure 9.2: A simple MINIMAX example with the score at each node. 

 

For example, node „B‟ has two possible moves („C‟ or „D‟).  Move „C‟ results in a 

score of „6‟ and move „D‟ results in a score of „9‟. As this is white‟s node the lowest 

score („6‟) will be assigned to the node „B‟ 

Node „A‟ has two possible moves,  „B‟ and „E‟. As node „A‟ is a black move the 

highest score will be taken from nodes „B‟ and „E‟, and in this case, black will chose 

to make the move „I‟. 

The algorithm assumes both „Black‟ and White‟ always play their best moves. 

 

6 7 

6 2 7 4 

6 9 2 5 7 8 7 4 7 

B E J 

A I 

M 

C D 
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9.2. Optimising the MINIMAX search with alpha-beta pruning. 

A mid-game chessboard may allow typically thirty-five legal moves. As each one of 

the possible moves will have roughly the same number of counter moves on each 

level of the search, the search tree will rapidly expand as the depth of search 

increases. A commercial chess program would search typically between eight and 

sixteen ply deep giving a potentially huge number of nodes. Alpha-beta pruning is an 

optimisation to MINIMAX that can dramatically reduce the number of nodes, thereby 

reducing the processing requirement for a chess computer.  

Considering the search tree in shown in figure 9.2 above, if the minimum score 

for all child nodes is returned to a „white‟ node and the maximum score of all child 

nodes is returned to a „black‟ node, a white node will select „6‟ from the two resulting 

child nodes „6‟ and „9‟ as „6‟ is the lowest number. 

If black nodes on the same level return values less than „6‟ then a value of 

less than „6‟ will be returned to the white parent node. In the above example a value 

of „2‟ is returned by the deepest level. The black level above the white node will 

select the highest value from its child nodes, and in the example the value „6‟ will be 

selected. Knowing the value in the white node, when more scores are calculated on 

the deepest level (referring to the diagram above) they can be compared against this 

value. If a value less than the value in the first white node is found then this new 

value, or a value less than this, will be returned to the white node. It is not necessary 

to continue processing any more nodes because they will not be considered and 

additional branches are „pruned‟. The alpha-beta search tree therefore reduces to the 

following: 
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Figure 9.3: The Alpha Beta search tree after ‘pruning’. 

 

In the above example, if a value of „2‟ is returned to node „E‟ It is not necessary to 

find other scores because only a lower score than „2‟ will be passed back to node „E‟. 

But as node „A‟ will choose the highest score (as it is a black node) from nodes „B‟ 

and „E‟, node „A‟ will select „6‟. 

Nodes „G‟ and „H‟ can be skipped as whatever their score is it will have no 

influence on the selection. By optimising in this way considerable savings can be 

made, depending on the order in which the nodes are examined.  

The advantage of the alpha-beta algorithm over the MINIMAX routine is that 

instead of evaluating every possible solution alpha-beta will „prune‟ some branches 

“to speed up the search processes without loss of information” (Knuth & More 1979), 

resulting in a saving in processing time. However, the order in which branches are 

processed is crucial to the efficiency of the alpha-beta process. If the branches are 

processed „worst move first‟ then no branches will be pruned, exploring all branches 

at each depth. Assuming a search depth of „d‟ and a branching factor 24 of „b‟, the 

number of tip nodes will be: 

                                            
24

 In relation to chess, the „branching factor‟ is the number of moves that can be made on the 
chessboard. 
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        nodes = b x b x b x b x b …  

                   = bd 

 

If however the branches are processed „best move first‟ then the first level consists of 

just one branch (the best move). Depth „two‟ explores all possible positions resulting 

from the first move. Depth „three‟ selects the perfect move for each configuration; 

depth „four‟ explores all possible moves resulting from the previous move and so on. 

Assuming a search depth of „d‟ and a branching factor of „b‟ the number of tip nodes 

will be: 

 

        nodes = 1 x b x 1 x b x 1 … 

                  = bd/2  
(assuming an even search depth)

 

                  = √ bd 

 

By sorting the order in which branches are processed to „best move first‟ the number 

of tip nodes reduce to the square root of the number of nodes evaluated in the „worst 

move first‟ case. The number of nodes in practice lies somewhere between the two 

extremes as the order of processing is normally between the „best‟ and „worst‟ cases. 

A randomly ordered search would, on average, achieve a mid-position between best 

and worse. It can be shown that “a random ordered search reduces the average 

branching factor by approximately  4√ b3”  (Nilsson 1998). Most chess programs apply 

heuristics that are specific to the rules of chess to order the moves applied to the 

alpha-beta search to improve the efficiency of the process. The research reported in 

this thesis uses chunking to sort the moves into an order of likelihood to be played. 

The chunking method has no intrinsic knowledge of the rules of chess but from 



165 
 
 

matching chunks (or groups) of chess pieces with similar chunks found on previously 

analysed chessboards the likelihood of a move can be estimated. This thesis uses 

the game of chess as an example of how chunking, without any knowledge of the 

domain, can improve the efficiency of an alpha-beta search. 

 

9.3. Using CLAMP to optimise the alpha-beta search 

“While current computers search for millions of positions a second, people hardly 

ever generate more than a hundred. Nonetheless, the best human chess players are 

still as good as the best computer programs” (Saariluoma 1995, pp 116). 

 

The quotation from Saariluoma‟s 1995 paper (op. cit.) suggests that expert human 

chess players employ a narrow search when selecting a move. This chapter attempts 

to emulate this (the narrowing of the search) by using chunking to optimise the alpha-

beta search process within a conventional chess program. The chess program will 

model human behaviour by recognising chunk patterns, focusing on just a few pieces 

from the entire board. This approach, when describing human expert chess players, 

was documented by Adriaan de Groot (1978): 

“Four distinct stages in the task of choosing the next move were noted. The 

first stage was the phase of orientation, in which the subject assessed the situation 

and determined a very general idea of what to do next. The second stage, the phase 

of exploration was manifested by looking at some branches of the game tree. The 

third stage, or phase of investigation, resulted in the subject choosing a probable 

best move. Finally, in the fourth stage, the phase of proof, saw the subject convince 

himself or herself that the results of the investigation were correct.” 
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The aim is to test whether chunk knowledge within a chess program improves the 

efficiency of a chess engine by reducing the width of a search tree. Chunk knowledge 

can be used to optimise the chess program by restricting move look-ahead to a 

selected subset of pieces and thereby narrowing the search tree of an alpha-beta 

routine. The chess program would model the expert player by restricting look-ahead 

to just some branches of the game tree. To find the best move, a chess program will 

test each possible move with the corresponding counter moves several ply ahead. 

The order in which moves are tried will have a very significant influence on the 

effectiveness of alpha-beta cut-offs. 

        The chess program „Beowulf‟ (a version of which was used in the ChessBrain 

project (Frayn 2006)) was modified to include move ordering from an analysis of 

chunks. The hybrid of Beowulf and CLAMP was then used to calculate chess moves. 

When making a move the chess engine compiled a list of three-piece chunks and 

then scored each legal move based on the starting configuration of the chessboard. 

The scores were used to order the sequence in which moves where applied to the 

alpha-beta search routine.  

        The chess engine was programmed to look ahead by four-ply and count the 

number of branches produced. The alpha-beta search in normal operation will move 

a piece to model moves and counter-moves, changing the original chessboard 

configuration, and therefore the chunks contained therein, with each depth of search. 

As the depth of search was limited to four-ply the impact of the changing 

configuration was small as the majority of pieces stayed in their original positions. 

The same move ordering was therefore applied at every node in the search. 

        A sample of one thousand chessboards from the mid-game section from 

tournament games were processed by the chess engine and the number of branches 

recorded. Care was taken to ensure that the sample chessboards were taken from a 
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dataset that was not used to build the chunk libraries. The same chessboards were 

processed again but this time with a random order applied to the move ordering. The 

random ordering should, on average, give a middle position between a „best move 

first‟ and „worst move first‟ move ordering. A comparison between the numbers of 

nodes searched when using „chunking ordered‟ as opposed to a „randomly ordered‟ 

sequence in which branches were processed was performed. 

 

The examples in table 9.1 show typical example chessboard configurations and the 

number of nodes searched with random and sorted moves. 

 

 

Chessboard 
configuration: 

Random 
ordered 

Chunk-
sorted 

ordering 

Saving in 
branches 

processed 

 
   
 
    
     
   
   
  
  
 

601996  270000 55.15% 

 
 
  
    
   
    
    
   
    
 

83376 50413 39.54% 

 
  
  
    
    
    
     
   
   
 

175607 64594 63.22% 
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 
   
  
    
   
    
     
   
    
 

352044 300572 12.15% 

 

Table 9.1: Sample results from comparison analysis 

 

The percentage decrease in the number of branches searched was calculated for 

each of the one thousand sample chessboards used in the analysis reported in 

chapter 7 and the results collated in grouped intervals. The results are reported in 

table 9.2 below. 

 

 

Reduction Frequency  Reduction Frequency  Reduction Frequency 

-150 % 1  -65 % 3  20 % 18 

-145 % 1  -60 % 3  25 % 22 

-140 % 0  -55 % 0  30 % 25 

-135 % 0  -50 % 3  35 % 32 

-130 % 2  -45 % 2  40 % 30 

-125 % 0  -40 % 2  45 % 42 

-120 % 0  -35 % 8  50 % 48 

-115 % 2  -30 % 8  55 % 41 

-110 % 0  -25 % 7  60 % 48 

-105 % 1  -20 % 6  65 % 74 

-100 % 2  -15 % 12  70 % 80 

-95 % 1  -10 % 9  75 % 84 

-90 % 3  -5 % 13  80 % 84 

-85 % 2  0 % 11  85 % 95 

-80 % 4  5 % 15  90 % 67 

-75 % 4  10 % 19  95 % 31 

-70 % 1  15 % 25  100 % 0 

 
Table 9.2: Results of analysis of chessboards showing the number of chessboards (Frequency) 

against each percentage reduction category. 
 

 

 Table 9.2 shows the results from the analysis of one thousand chessboards showing 

the percentage reduction in intervals and the number of instances (Frequency) within 
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each interval. Considering the results overall, the „chunk ordered‟ process performed 

better than the „random ordered‟ process. The graph in figure 9.4 shows the number 

of chessboards collated in each percentage interval. 

 

Figure 9.4:  Graph showing the number of chessboards in each percentage interval 
 

Using chunking based on three-piece chunks (from an analysis of the whole board 

area and without move rareness adjustment) to order the processing of branches in 

an alpha-beta search, a significant reduction in the number of branches searched 

was achieved when compared with a search based on random ordered moves. The 

majority (over 80%) of cases gave a decrease in the number of branches searched 

when using chunk ordered moves compared with a random ordering. The results 

show the highest number of cases (ninety-five chessboards, or 9.5% of the sample) 

giving a percentage decrease within the interval range of 85% to 90%. The mean 

percentage decrease for all one thousand cases was found to be 50.8%  

The results shown above are based on an analysis using three-piece chunks. 

The chessboards were analysed using four and five piece chunks and the results 

tabulated as follows: 
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 3 Piece chunk 4 Piece chunk 5 Piece chunk 

Mean % decrease: 50.75% 48.77% 49.58% 

 

Table 9.3: Comparison of chunk size on search improvement 

 

The same analysis was performed with three piece chunks but applying the output 

from CLAMP in reverse order, resulting in an increase of branches searched by a 

factor of 880 times.  

 

9.4. Chapter conclusion 

This chapter reported an application of chunking to optimise an alpha-beta search 

routine. It should be noted that the chunks were built without any knowledge of the 

rules of chess or properties of the pieces, yet despite this a significant reduction in 

the number of nodes searched was achieved when compared with an alpha-beta 

search using random ordered pieces. It is possible that similar techniques could be 

applied to searching algorithms in other domains where the parameters that define 

the domain are unknown. 
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10. CLAMP AND CHUMP: A COMPARISON 
 

This chapter will make a comparison between CLAMP (cf. page 51) and CHUMP 

(CHUnking of Moves and Patterns - Gobet and Jansen 1994). As both programs 

analyse chess games to extract chunks and associate the chunks with moves, and 

use chunk knowledge to select chess moves, it was considered appropriate to 

include a chapter within the thesis to highlight the differences and similarities 

between the two programs. 

 A number of key points are discussed in the following paragraphs. 

 

10.1. The aims of the programs 

CLAMP was designed to investigate the properties of chunks that can be associated 

with chess moves. The size of chunks was varied to investigate the effectiveness of 

chunk size on the effectiveness of the chunks with respect to selecting a likely move. 

In addition, the relationship of the pieces within a chunk were investigated to 

compare the effectiveness of chunks compiled under various scenarios. CHUMP on 

the other hand, uses a combination of chunk sizes and filter methods to select the 

pieces which constitute a chunk. CHUMP is described as “a chess program”, which 

“models human „computational‟ mechanisms” (Gobet and Jansen op. cit.). The 

discussion of CHUMP in the aforementioned paper seeks to aid understanding of the 

chunking mechanism in humans, and propose these methods as possible additions 

to competitive game playing programs. 

 

10.2. Chunk acquisition 

Both CHUMP and CLAMP acquire knowledge by the examination of experts‟ chess 

games, analysing the chunks (chess piece constellations) on the board and 
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associating the chunks to the move that was played. There are, however, a number 

of differences in methods between CHUMP and CLAMP. 

 

CLAMP has three basic methods to find the chunks that are present on the board as 

follows: 

 

10.2.1 Analysis of the whole board.  

All of the pieces on each of the sixty-four squares on the chessboard are 

combined. Frequently occurring combinations are saved as chunks. This method 

ensures that all possible chunk patterns are found but it has the disadvantage that 

a large number of chunks are processed, many of which may not relevant to the 

chess move to be played (cf. page 95). In this mode, CLAMP has no prior 

knowledge of the rules of chess 

 

10.2.2 Analysis of local areas on the board 

As many effective chunks consist of pieces that are in close proximity to each 

other CLAMP can analyse the chessboard to build chunks of pieces that exist 

within an area of 3x3, 4x4, 5x5, 6x6 or 7x7 squares (cf. page 98). 

 

10.2.3 Analysis of pieces in ‘defensive’ relationships to each other. 

In this mode, CLAMP will build chunks consisting only of pieces that are in 

defensive relationships with each other (cf. page 102). 

  

Only one of the above options can be selected at a time. CLAMP can therefore 

compare the analysis of the same chessboards to measure the effectiveness of each 

method. 
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CHUMP uses a combination of methods to select the pieces on the chessboard 

which are processed as chunks as follows: 

 

10.2.4 The ‘eye-movement-simulator’. 

CHUMP uses an „eye-movement-simulator‟ to scan the chessboard directing 

„attention‟ to twenty positions on the chessboard where pieces are expected to 

exist, based on the saccades of expert chess players. The eye-movement-

simulator aims to give more meaning to chunks by applying expert‟s knowledge of 

expected chess piece positions on the board. 

 

10.2.5 Attack, defence and proximity relationships 

In addition to eye movement knowledge, CHUMP uses knowledge of attack, 

defence and proximity relationships to select relevant pieces to build meaningful 

chunks. 

 
 

10.3 Chunk repository 

In both CHUMP and CLAMP, chunks are associated with moves to be played. With 

CLAMP the association of a chunk and a move is the presence of a chunk within a 

„library file‟. CLAMP builds a library file for every possible move for each piece on the 

chessboard; if a chunk is associated with the move then the chunk will exist within 

the file, or indeed, within several files. CHUMP uses two discrimination nets based on 

the EPAM model of memory and perception (Feigenbaum and Simon, 1984). One 

discrimination net, containing the chunk information, with the chunks referencing a 

second net which contains the proposed moves. 
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10.4 Chunk Size 

CHUMP recognised chunks with up to twenty pieces, although it has been found 

earlier in this thesis that frequently occurring observations of chunks with a size 

greater than ten pieces are rare within chess games (cf. page 62), indeed, estimates 

for the maximum number of items retained in human short-term memory are thought 

to be considerably lower than twenty (but excluding chunks recalled as a result of 

template learning). 

CHUMP uses a combination of all chunk sizes at the same time. CLAMP, on 

the other hand, only works with one chunk size and, for technical reasons, the largest 

chunk size investigated as part of this research is seven pieces. Chunks of discrete 

sizes between three and seven were processed. A comparison of the effectiveness 

of chunk sizes has enabled inferences to be made about the number of pieces that 

make effective chunks. 

The different approach regarding use of multiple chunk sizes between 

CHUMP and CLAMP is consistent with the purpose of the respective programs, that 

being as a model of human memory (CHUMP) or as a tool to investigate chunking 

parameters (CLAMP). 

 
 

10.5 Move proposals 

Normally when analysing a chessboard several relevant chunks will be found. Each 

chunk will be associated to one or more moves. CLAMP will propose the move to 

play that is supported simply by the highest number of chunks. CHUMP is more 

complex in the move proposal method, selecting on the move that is also supported 

by the highest number of chunks, but also by the number of times the chunk has 

been „activated‟ within the training data (a chunk is activated each time the chunk is 

„seen‟ within the training data). 
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 It is possible that the performance of CLAMP would be improved if CLAMP 

similarly used the chunk activation as a factor in the move proposal logic.  CLAMP 

uses a simple Boolean method with regard to chunk activation in that for a chunk to 

be significant it number have been activated on at least one per cent of the training 

board data. Infrequent chunks are not considered in the move proposal process if the 

chunk does not appear on at least one per cent of the training boards. 

 The implementation of CLAMP for this thesis is able to suggest moves where 

white is to play only as only „white‟ moves were analysed (cf. page 56). CHUMP is 

able to suggest moves for both White and Black to play. 

 
10.6 The move start and end squares 

CHUMP associates chunks with a move of a piece from a starting square. CLAMP 

associates chunks with a move of a piece to a square (the staring position of the 

piece is considered to be implicit for most moves).  

  
10.7 The size of the learning set. 

The learning set used for CHUMP consisted of 300 games from just one 

Grandmaster (the former world champion, Mikhail Tal). Using CHREST (cf. page 18) 

to build a discrimination net of piece/positions arranged in a net (graph) object to 

associate chunks with moves. The training data for CLAMP was considerably larger, 

using in the order of 1.5 million games. The dataset comprised of tournament games 

between numerous Grandmasters. 

 

10.8 Test results from the Bratko-Kopec positions 

CHUMP was tested on the Bratko-Kopec positions, comparing the moves suggested 

by CHUMP with the „Bratko-Kopec‟ best moves. CHUMP was able to score about 

50% of the test boards, with the best move being in the top four suggested moves 



176 
 
 

after training with just 300 games. CHUMP achieved a 4.2% success at predicting 

the best move as the first choice. CLAMP was able to suggest moves for each of the 

boards tested but was unsuccessful in suggesting the best move within any of the top 

four moves. 

As CLAMP is only able to suggest moves for „white to play‟ only twelve of the 

Btatko-Kopec moves could be tested with CLAMP. 

Both CLAMP and CHUMP achieved better results when scoring boards that 

resulting in a pawn-lever type move. 

 
 

10.9 Test results from de Groot’s Position ‘A’ 

CLAMP and CHUMP were both tested using de Groot‟s Position „A‟ configuration. 

Neither program selected the best move (Bxd5), however, CLAMP‟s first suggestion 

was Rd1, and second suggestion Re1. Both of these moves are rated highly by the 

Fritz program. 

CHUMP suggested g2-g3 and h2-h3 as its top two suggestion, either of which 

are described as „not so bad‟ (Gobet and Jansen 1994). 

  
 

10.10  Conclusion 

CHUMP and CLAMP are two programs that analyse chunk patterns from expert 

player‟s games, in order to suggest a move to be played, based on the board having 

a similar chunk constituents. The design and function differences between CLAMP 

and CHUMP because each program was designed to perform a different task. 

CHUMP is a model of human memory, selecting moves using a combination of 

abilities to emulate human cognition. CLAMP however is a program designed to 

investigate the properties of chunking in chess. CLAMP allows a comparison of the 

effectiveness of chunking methods as the chunk parameters are varied.  
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 The size of the training set used for CLAMP was substantially larger that the 

training data used for CHUMP. From the results obtained from CLAMP it is likely that 

a considerable improvement in the performance of CHUMP could be gained by 

increasing the size of the training data appropriately. Despite the relatively small 

chunk knowledge that CHUMP acquires, CHUMP performs well, suggesting moves 

based on an analysis of the chunks found on the board. 

 CLAMP compares the effectiveness of the proposed moves with various 

chunk parameters, such as chunk size or the relationship between pieces. CLAMP is 

not designed to be a chess playing program, but instead, CLAMP is a tool to 

investigate the properties of chunks. 
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11. CONCLUSION 
 

11.1 About chunking in chess 

The research reported in this thesis describes original work, which seeks to gain 

understanding as to the nature of „chunks‟ of chess pieces and their use by skilled 

players within the game of chess.  The results reported show that chunks are present 

in large numbers within the piece configurations of typical chessboards. There are 

many chunks that are frequently occurring within chess games, a number of which 

have been isolated using CHREST (and supplied by Gobet) or by CLAMP as 

described in chapter 5 of this thesis. A simple analysis of the number of chunks found 

on the chessboard show that chunks can be associated with the stage of the game in 

terms of the number of moves prior to checkmate. The results reported in chapter 5 

investigated the connection between the skill of the player and the number of chunks 

used in their chess play, however, no significant correlation between player skill and 

the number of chunks could be found. 

 The program CLAMPanalyser described in chapter 6 analysed chunks in more 

detail by associating chunks to the next move of a piece to a position on the 

chessboard. Testing the moves played by chess experts with the suggested moves 

from CLAMPanalyser consistently gave results that were better than a random 

choice of moves. Applying simple heuristics when extracting chunks, such as building 

chunks from pieces that are in close proximity, or restricting chunks to pieces that are 

in defending relationships, dramatically reduced the number of significant chunks that 

were required by CLAMPanalyser to suggest a move. Furthermore, selecting the size 

of the chunks (that is, the number of chess pieces that make up the chunk) can 

influence the probability of an accurate prediction of the best moves. 

 The results obtained from CLAMP and CLAMPanalyser showed that as the 

chunk size increased the accuracy of the likelihood prediction improved, however the 
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chance of finding large chunks on a chessboard is small. Chunk sizes of above five 

pieces in the mid-game section where rarely repeated from one game to another. 

Smaller chunks with, for example, three pieces were prevalent between games. 

 Adding additional knowledge to the chunk, such as the knowledge that many 

chunks are made from pieces that are in close proximity (cf. page 98), or that many 

of the pieces within a chunk are in defending relationships (cf. page 102), will, as 

stated above, considerably reduce the number of chunks in the chunk libraries 

without loss of accuracy of the move likelihood prediction. A „four by four‟ square 

area on the board will reduce the number of chunks in the chunk library to less than 

1% of the size when compared to a similar analysis for the whole board area. 

Furthermore, considering chunks that consist only of pieces in defending 

relationships, the number of chunks contained within the library reduces to 0.5% 

compared with the number of chunks within the „whole board‟ library. We can 

therefore conclude that chunks of three or four pieces that are in close proximity, or 

are in defending relationships with each other, are useful for calculating the likelihood 

of a piece to be moved.  

 Chapter 8.3 reports a practical application of chunking. It has been possible to 

use chunking to order the pieces prior to applying to an alpha-beta search with a 

resulting decrease in the number of nodes searched. The reduction in search width 

was confirmed with one thousand chessboards, giving credence to the notion that 

chunking is an effective method to focus attention on the significant moves. The 

application of chunking in this example operates without knowledge of the rules of 

chess and used a chunk size of three pieces to a depth of four ply. An average 

reduction of 50% in the number of leaf nodes was achieved. 
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11.2 The question this thesis aims to answer 

Chunking appears, even in the simplistic context described in this thesis, to yield 

reasonable predictive dividends with small chunk library inventories. The results 

obtained are consistent with psychological experiments that propose that human 

chess players are aware (either consciously or subconsciously) of the existence of 

chunks and their presence can direct an expert player to relevant moves. The 

research reported adds additional material to the argument for chunking being an 

aspect of an expert‟s cognitive processing. The question this thesis is trying to 

answer is however more complex. It is not possible to answer the question “does the 

utilization of chunks within a chess-playing program provide a plausible model for the 

use of chunks by human players” (cf. page 9) with an affirmative, as it is not possible 

to draw conclusions about the cognitive processes within a human player from the 

experiments in this thesis. However the thesis reports original findings, and therefore 

makes an original contribution to knowledge, regarding the nature of chunks within 

the chess domain and the plausibility of chunking as a mechanism for directing 

attention to relevant chess moves. The findings are indeed indicative, taking into 

account human limitations, that chunking is a technically viable process for the 

human expert. 

The analysis performed and programs written were simplistic in nature, 

detecting chunks based on frequency of occurrence and crude heuristics (such as 

restricting the formation of chunks to a small area). These simple filters drastically 

reduced the number of chunks found, without a loss in accuracy. It is possible that 

the advanced „filtering‟ that human expert could perform may select even fewer, but 

even more significant chunks. The results, even with the simple filtering, show that 

associating chunks with moves is a viable process, albeit with a limited probability, 
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therefore showing that knowledge of chunks can direct attention to moves that are 

likely to be played.  

 The program „CLAMPanalyser‟ employs a software implementation of a simple 

recognition-association technique. The software does not use complex search 

heuristics or statistical analysis but by the simple recognition of chunks (within the 

chunk libraries) and their associations with moves CLAMPanalyser selects possible 

„good‟ moves.  The recognition-association theory is a descriptive term used by 

Holding to describe chunking as follows: 

“In more detail, the recognition-association theory makes the assumption that 

chess mastery stems from knowing thousands of chess patterns.  Recognition of one 

of these patterns during play is said to trigger the memory of an associated plausible 

move, which may then be selected or investigated by the player” (Holding 1992). 

The results obtained by CLAMP show that this technique is a feasible method for 

associating chunks to moves. The only caveat to Holdings definition of recognition-

association is that CLAMP‟s evaluation of moves is based on the recognition of many 

chunk patterns. Chunking is proposed to be a framework that “underlies many 

aspects of human learning” and if CLAMP models cognitive perceptual chunking then 

the research reported in this thesis shows that chunking is achievable with interlinked 

and associated memories (Gobet et al. 2001).  

The advantage of using a computer program as a tool to investigate chunking is 

that the parameters and methods are exactly defined, as opposed to psychological 

experiments where the actual cognitive process is unknown. A psychological 

experiment may suggest that chunking is evident but the exact cognitive process is 

unknown and can only be proposed by inference. CLAMP however shows that 

frequently occurring configurations of three to six pieces can be used as an indicator 

for a move. CLAMP therefore shows that a human chess player could use a similar 
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method to focus the attention of a chess player onto a few moves. Chunk sizes of 

less than seven pieces have been shown to give measurable results which agree 

with Miller‟s (1956) hypothesis for chunking in human subjects, indeed chunks sizes 

of four or less yield a positive correlation between chunk configurations and the move 

made which is consistent with Cowan‟s (2001)  paper. The positive results obtained 

by CLAMP using chunks of four pieces or less show that Cowan‟s measurements for 

human capacity limits are viable within the domain of chess.  In addition, the size of 

the inventory is within a plausible range when considering the capacity of a human 

expert (Gobet and Lane 2010), for example a library consisting of 147,510 five piece 

„defensive‟ chunk constellations offers a 15% likelihood of predicting one of the top 

four best moves. As mentioned above, the crude heuristics applied to the chunk 

library building process, such as only processing pieces that are in close proximity or 

pieces that are in defensive relationships, considerably reduce the number of chunks 

contained within the chunk libraries. It is plausible that an expert chess player will 

acquire chunk knowledge using considerably more efficient heuristics which would 

reduce the inventory of chunks even further. 
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12. RECOMMENDATIONS FOR FURTHER WORK 
 
The results reported in this thesis show that chunks are present within chessboard 

configurations and, from a very simple analysis of chessboards taken from 

tournament games it can be shown that chunks can be used as a differentiator of skill 

groups (cf. page 44). Furthermore, by associating chessboards and their constituent 

chunks to the move that follows, chunks can be associated with moves. The program 

„CLAMP‟  (cf. page 51) was developed to build libraries of chunks that are associated 

with moves and the program „CLAMPanalyser‟ (cf. page 82) will list all possible 

moves in order of the number of chunks that support the move. In addition to 

combining pieces from the entire chessboard, simple heuristics have been applied to 

limit the scope of pieces that are grouped into chunks as well as the number of 

pieces that make up a chunk (cf. page 92). A filter on which pieces are combined to 

make chunks can reduce the number of chunks by over 99% with only a small 

decrease in the effectiveness of the process. The additional filtering of chunks is, in 

effect, adding knowledge to the chunk, which reduces the number of chunks by 

removing many unnecessary chunks from the library without significantly reducing 

the accuracy of CLAMPanalysis in selecting moves. Further work with CLAMP could 

focus on improving the filtering to restrict the pieces included in building chunks. If a 

human chess player performs a similar filtering process then, speculatively, the filter 

parameters could for example include knowledge of the rules of the game, and 

tactical experience. In this research filters were applied to chunks based on the 

proximity of pieces and the defending relationship of pieces. Further work could 

research the development of filters that include more aspects of chess knowledge. 

 The chunk libraries produced by CLAMP include the move associations and 

consequently encapsulate some domain knowledge (cf. page 76). It may be possible 

to apply production rule, or expert system, processing techniques to the chunk data. 
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The chunk libraries in this context would be termed the „training set‟ (Liu and White 

1991), however, as the training set consists of a very large number of items (the 

chessboard contains a large number of chunks) the process may be prohibitively 

complex. 

 Although CLAMP was developed for chess research it would not be difficult to 

modify the program for analysis in other domains, such as image processing and 

context aware object recognition. It is understood from literature on “visual cognition 

and cognitive neuroscience that the human and animal visual systems use these 

relationships [context awareness] to improve their ability of categorization” (Perko 

and Leonardis 2010). Using current techniques, image recognition is computationally 

complex and is generally considered to be an unsolved problem. Recognition of an 

object in the context of its surroundings can in some ways be considered a similar 

problem to playing the right move in chess, as for example parallels have been made 

between the work of a radiologist and the thinking of a chess master when 

diagnosing an x-ray film (Wood 2009). Development of systems employing 

recognition / association techniques for image analysis could have practical 

applications within fields such as medical diagnosis, robotics and security.   
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13. APPENDICES 
 

13.1. Appendix 1: Summary of results 

Library 
Type 

From 
board 
area 

Chunk 
Size 

Library size 
(chunks) 

50% null 
hypothesis 
%Success 

Chunk 
success 

probability 

Top 4 
%Success 

Top 4 
success 

‘adjusted’ 

% 
Effect 

SE 

Area 3x3 2 114943 57.9% 85.1% 12.9% 15.2% 68.0% 7.16% 

Area 3x3 3 80819 57.9% 82.0% 16.0% 19.5% 70.6% 9.21% 

Area 3x3 4 23855 42.4% 54.2% 16.2% 29.9% 78.2% 11.38% 

Area 3x3 5 3944 20.5% 22.3% 10.2% 45.7% 91.9% 20.01% 

Area 3x3 6 - - - -      

Area 3x3 7 - - - -      

Area 4x4 2 253476 57.7% 87.2% 15.7% 18.0% 66.2% 7.81% 

Area 4x4 3 343409 59.0% 84.0% 17.7% 21.1% 70.2% 8.87% 

Area 4x4 4 210120 52.1% 68.2% 18.5% 27.1% 76.4% 11.39% 

Area 4x4 5 85679 39.3 % 49.9% 15.2% 30.5% 78.8% 12.19% 

Area 4x4 6 26139 18.6% 21.0% 9.0% 42.9% 88.6% 17.17% 

Area 4x4 7 - - - -      

Area 5x5 2 453492 63.9% 90.5% 14.5% 16.0% 70.6% 7.16% 

Area 5x5 3 998254 59.0% 84.9% 14.8% 17.4% 69.5% 8.62% 

Area 5x5 4 1057802 57.5% 78.6% 15.3% 19.5% 73.2% 9.33% 

Area 5x5 5 726212 48.1% 65.6% 15.8% 24.1% 73.3% 9.57% 

Area 5x5 6 388865 39.0% 51.8% 16.9% 32.6% 75.3% 12.07% 

Area 5x5 7 - -  -      

Area 6x6 2 721550 58.5% 87.5% 12.4% 14.2% 66.9% 7.25% 

Area 6x6 3 2593877 61.1% 85.5% 13.1% 15.3% 71.5% 8.34% 

Area 6x6 4 4918042 58.7% 84.3% 12.9% 15.3% 69.6% 8.33% 

Area 6x6 5 6179518 53.5% 76.3% 14.2% 18.6% 70.1% 8.95% 

Area 6x6 6 4621214 39.0% 54.9% 13.0% 23.7% 71.0% 10.78% 

Area 6x6 7 - - - -      

Area 7x7 2 - - - -      

Area 7x7 3 - - - -      

Area 7x7 4 14525807 61.2% 84.5% 13.7% 16.2% 72.4% 8.12% 

Area 7x7 5 43904506 - - -      

Area 7x7 6 - - - -      

Area 7x7 7 - - - -      

All Board 8x8 2 1261864 69.7% 99.5% 17.0% 17.1% 70.1% 6.27% 

All Board 8x8 3 7596060 70.1% 99.5% 16.2% 16.3% 70.5% 7.11% 

All Board 8x8 4 27127049 69.7% 99.5% 17.3% 17.4% 70.1% 7.88% 

All Board 8x8 5 45646773 39.6% 56.7% 13.9% 24.5% 69.8% 10.72% 

All Board 8x8 6 - - - -      

All Board 8x8 7 - - - -      

Defensive 8x8 2 44266 69.6% 99.5% 12.9% 13.0% 69.9% 6.38% 

Defensive 8x8 3 45096 64.4% 95.4% 14.2% 14.9% 67.5% 7.04% 

Defensive 8x8 4 119857 66.6% 96.5% 15.0% 15.5% 69.0% 7.57% 

Defensive 8x8 5 147510 59.3% 82.5% 15.1% 18.3% 71.9% 8.54% 

Defensive 8x8 6 158275 53.8% 71.4% 15.6% 21.8% 75.4% 9.32% 

Defensive 8x8 7 129313 33.8% 42.7% 12.4% 29.0% 79.2% 12.07% 

 
Table 12.1: A summary of results from various chunk library scenarios  
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Library 
Type 

From 
board 
area 

Chunk 
Size 

(p-1) 
percentage 

(p-2) 
percentage 

(p-3) 
percentage 

(p-4) 
percentage 

(p-4) 
Adjusted 

Area 3x3 2 3.9 6.8 9.4 12.9 15.2% 

Area 3x3 3 5.3 10.1 13.6 16.0 19.5% 

Area 3x3 4 5.8 10.4 14.2 16.2 29.9% 

Area 3x3 5 4.0 7.6 8.7 10.2 45.7% 

Area 3x3 6 - - - -  

Area 3x3 7 - - - -  

Area 4x4 2 4.1 9.1 12.3 15.7 18.0% 

Area 4x4 3 4.8 9.4 14.1 17.7 21.1% 

Area 4x4 4 5.3 10.4 14.1 18.5 27.1% 

Area 4x4 5 5.0 8.8 11.7 15.2 30.5% 

Area 4x4 6 3.3 5.7 7.4 9.0 42.9% 

Area 4x4 7 - - - -  

Area 5x5 2 3.5 7.0 10.8 14.5 16.0% 

Area 5x5 3 5.0 8.1 10.7 14.8 17.4% 

Area 5x5 4 3.8 8.3 11.7 15.0 15.5% 

Area 5x5 5 4.7 8.9 12.3 15.8 24.1% 

Area 5x5 6 4.0 9.6 13.1 16.9 32.6% 

Area 5x5 7 - - - -  

Area 6x6 2 3.3 5.9 9.8 12.4 14.2% 

Area 6x6 3 3.7 6.5 10.1 13.1 15.3% 

Area 6x6 4 3.5 6.0 9.8 12.9 15.3% 

Area 6x6 5 4.0 7.8 10.5 14.2 18.6% 

Area 6x6 6 4.6 7.6 10.2 13.0 23.7% 

Area 6x6 7 - - - -  

Area 7x7 2 - - - -  

Area 7x7 3 - - - -  

Area 7x7 4 3.7 7.1 10.1 13.7 16.2% 

Area 7x7 5 - - - -  

Area 7x7 6 - - - -  

Area 7x7 7 - - - -  

All Board 8x8 2 5.2 8.6 12.5 17.0 17.1% 

All Board 8x8 3 5.2 9.5 13.2 16.2 16.3% 

All Board 8x8 4 5.2 9.7 13.5 17.3 17.4% 

All Board 8x8 5 4.2 7.6 10.7 13.9 24.5% 

All Board 8x8 6 - - - -  

All Board 8x8 7 - - - -  

Defensive 8x8 2 3.5 6.2 9.9 12.9 13.0% 

Defensive 8x8 3 3.6 7.4 10.2 14.2 14.9% 

Defensive 8x8 4 3.8 8.3 11.7 15.0 15.5% 

Defensive 8x8 5 4.9 8.6 12.7 15.1 18.3% 

Defensive 8x8 6 5.0 9.0 11.7 15.6 21.8% 

Defensive 8x8 7 4.0 7.4 10.4 12.4 29.0% 

 
Table 12.2: A summary of 'Top4' moves by analysis type 
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13.2. Appendix 2: The key for the axis: ‘Move to piece/position’. 

1 Pg8 41 Pg3 81 Rg4 121 Nd5 161 Bd8 201 Bd3 241 Kd6 281 Kd1 321 Qd4 

2 Ph8 42 Ph3 82 Rh4 122 Ne5 162 Be8 202 Be3 242 Ke6 282 Ke1 322 Qe4 

3 Pa7 43 Ra8 83 Ra3 123 Nf5 163 Bf8 203 Bf3 243 Kf6 283 Kf1 323 Qf4 

4 Pb7 44 Rb8 84 Rb3 124 Ng5 164 Bg8 204 Bg3 244 Kg6 284 Kg1 324 Qg4 

5 Pc7 45 Rc8 85 Rc3 125 Nh5 165 Bh8 205 Bh3 245 Kh6 285 Kh1 325 Qh4 

6 Pd7 46 Rd8 86 Rd3 126 Na4 166 Ba7 205 Ba2 246 Ka5 286 Qa8 326 Qa3 

7 Pe7 47 Re8 87 Re3 127 Nb4 167 Bb7 207 Bb2 247 Kb5 287 Qb8 327 Qb3 

8 Pf7 48 Rf8 88 Rf3 128 Nc4 168 Bc7 208 Bc2 248 Kc5 288 Qc8 328 Qc3 

9 Pg7 49 Rg8 89 Rg3 129 Nd4 169 Bd7 209 Bd2 249 Kd5 289 Qd8 329 Qd3 

10 Ph7 50 Rh8 90 Rh3 130 Ne4 170 Be7 210 Be2 250 Ke5 290 Qe8 330 Qe3 

11 Pa6 51 Ra7 91 Ra2 131 Nf4 171 Bf7 211 Bf2 251 Kf5 291 Qf8 331 Qf3 

12 Pb6 52 Rb7 92 Rb2 132 Ng4 172 Bg7 212 Bg2 252 Kg5 292 Qg8 332 Qg3 

13 Pc6 53 Rc7 93 Rc2 133 Nh4 173 Bh7 213 Bh2 253 Kh5 293 Qh8 333 Qh3 

14 Pd6 54 Rd7 94 Rd2 134 Na3 174 Ba6 214 Ba1 254 Ka4 294 Qa7 334 Qa2 

15 Pe6 55 Re7 95 Re2 135 Nb3 175 Bb6 215 Bb1 255 Kb4 295 Qb7 335 Qb2 

16 Pf6 56 Rf7 96 Rf2 136 Nc3 176 Bc6 216 Bc1 256 Kc4 296 Qc7 336 Qc2 

17 Pg6 57 Rg7 97 Rg2 137 Nd3 177 Bd6 217 Bd1 257 Kd4 297 Qd7 337 Qd2 

18 Ph6 58 Rh7 98 Rh2 138 Ne3 178 Be6 218 Be1 258 Ke4 298 Qe7 338 Qe2 

19 Pa5 59 Ra6 99 Ra1 139 Nf3 179 Bf6 219 Bf1 259 Kf4 299 Qf7 339 Qf2 

20 Pb5 60 Rb6 100 Rb1 140 Ng3 180 Bg6 220 Bg1 260 Kg4 300 Qg7 340 Qg2 

21 Pc5 61 Rc6 101 Rc1 141 Nh3 181 Bh6 221 Bh1 261 Kh4 301 Qh7 341 Qh2 

22 Pd5 62 Rd6 102 Rd1 142 Na2 182 Ba5 222 Ka8 262 Ka3 302 Qa6 342 Qa1 

23 Pe5 63 Re6 103 Re1 143 Nb2 183 Bb5 223 Kb8 263 Kb3 303 Qb6 343 Qb1 

24 Pf5 64 Rf6 104 Rf1 144 Nc2 184 Bc5 224 Kc8 264 Kc3 304 Qc6 344 Qc1 

25 Pg5 65 Rg6 105 Rg1 145 Nd2 185 Bd5 225 Kd8 265 Kd3 305 Qd6 345 Qd1 

26 Ph5 66 Rh6 106 Rh1 146 Ne2 186 Be5 226 Ke8 266 Ke3 306 Qe6 346 Qe1 

27 Pa4 67 Ra5 107 Nf7 147 Nf2 187 Bf5 227 Kf8 267 Kf3 307 Qf6 347 Qf1 

28 Pb4 68 Rb5 108 Ng7 148 Ng2 188 Bg5 228 Kg8 268 Kg3 308 Qg6 348 Qg1 

29 Pc4 69 Rc5 109 Nh7 149 Nh2 189 Bh5 229 Kh8 269 Kh3 309 Qh6 349 Qh1 

30 Pd4 70 Rd5 110 Na6 150 Na1 190 Ba4 230 Ka7 270 Ka2 310 Qa5    

31 Pe4 71 Re5 111 Nb6 151 Nb1 191 Bb4 231 Kb7 271 Kb2 311 Qb5    

32 Pf4 72 Rf5 112 Nc6 152 Nc1 192 Bc4 232 Kc7 272 Kc2 312 Qc5    

33 Pg4 73 Rg5 113 Nd6 153 Nd1 193 Bd4 233 Kd7 273 Kd2 313 Qd5    

34 Ph4 74 Rh5 114 Ne6 154 Ne1 194 Be4 234 Ke7 274 Ke2 314 Qe5    

35 Pa3 75 Ra4 115 Nf6 155 Nf1 195 Bf4 235 Kf7 275 Kf2 315 Qf5    

36 Pb3 76 Rb4 116 Ng6 156 Ng1 196 Bg4 236 Kg7 276 Kg2 316 Qg5    

37 Pc3 77 Rc4 117 Nh6 157 Nh1 197 Bh4 237 Kh7 277 Kh2 317 Qh5    

38 Pd3 78 Rd4 118 Na5 158 Ba8 198 Ba3 238 Ka6 278 Ka1 318 Qa4    

39 Pe3 79 Re4 119 Nb5 159 Bb8 199 Bb3 239 Kb6 279 Kb1 319 Qb4    

40 Pf3 80 Rf4 120 Nc5 160 Bc8 200 Bc3 240 Kc6 280 Kc1 320 Qc4    

 
Table 12.3:  Key for the axis ‘Move to piece/position’ for figures 6.9, 6.10 and 6.11. 
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13.3.   Appendix 3: Supplementary media 

A disc is attached to this thesis25 containing the following components: 

 Source files 

 Data (including chunk libraries) 

 Executable programs 

The folders and their contents are described below. 

 

13.4. CLAMPanalyser 

The CLAMPanalyser folder contains an application „CLAMPanalyser.exe‟ which runs 

on a PC under the Windows operating system. The program allows the user to enter 

a chessboard configuration in FEN format and select a chunk library. 

CLAMPanalyser will assemble the chunks on the chessboard and score each move. 

The program lists all possible moves26, in order of moves with the highest number of 

supporting chunks, and scaled by the „move rareness‟ figure.  Moves are listed in 

descending order in the area named „Moves scored here‟. 

 

To use the program do the following: 

1. Enter a chessboard in FEN format in the text box under the heading:  

Enter the chessboard FEN here: 

2. Use the scroll bar on the right of the list box titled: 

Double click on the library file here: 

To select a library file double click on the file to begin the analysis. 

 

                                            
25

 Instructions on how to obtain the data are available via an Internet search for the string: 
„CHUNKING-DATA-ANDREWCOOK‟  
26

 For simplicity en passant pawn moves, promotions and castling are not supported in CLAMPs 
repertoire of possible moves. 
 



189 
 
 

3. Wait for the progress bar to complete. The results of the analysis showing 

each move is listed within the list box entitled: 

Moves scored here: 

A screen-shot of CLAMPanalyser program is show below: 

 

Figure 12.1:  CLAMPanalyser program screen-shot 

 

The results displayed in the „moves scores here‟ window show each move starting 

and ending position and the number of chunks that support this move. The score is 

based on the number of chunks supporting the move divided by the move rareness-

scaling factor.  
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13.4.1. The library naming convention for the CLAMPanalyser program 

A library is a set of files, each file corresponding with the arrival of a piece to a 

square. The set of files are contained within a folder and the folder name describes 

the type of library. 

A typical folder name is as follows: 

_08x08_area_02_piece_defending_Library_44266  

 

The folder name is constructed as follows: 

1. _08x08_area denotes the board area used to restrict the pieces that make up 

a chunk. An „08x08_area’ denotes the whole board area. 

2. _02_piece denotes the number of pieces that make up the chunks. _02_piece 

indicates that the library is composed of two-piece chunks. 

3. _Defending, (if present) denotes that the chunks within the library are made 

from pieces in defending relationships with each other. 

4. _Library denotes that this folder is a library. 

5. _44266 (if present) shows the total number of chunks that make up the library. 
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13.4.2. Counting the number of chunks in a chunk library 

A copy of executable program „CountCks.exe‟ is present in each of the library folders. 

The program will count the number of chunks in the library folders. To use the 

program enter the chunk size used by the library and click on the „count‟ button. The 

program will count the number of chunks in each library file and display the sum. 

Note that within the library file chunks are not duplicated however some of the same 

chunks may appear in several of the library files within a library folder. 

 

 

Figure 12.2:  Screen-shot of the program CountCks.exe 
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13.4.3 The LibraryComparator 

 
The LibraryComparator folder contains two executable programs that can be used to 

compare the output from the CLAMPanalyser program. The executable programs are 

designed to run on a PC under the Windows operating system. The 

LibraryComparator program compares the move scores from one thousand sample 

typical chessboard configurations from the mid-game of tournament games between 

Master players, with the actual move that was played. Move scores for each of the 

test chessboards and the actual move played were previously compiled by 

CLAMPanalyser using each of the chunk libraries, with a naming convention for the 

analysis files similar to the convention adopted for the libraries. 

 In addition to comparing the libraries the „move rareness‟ (cf. page 89) scalar 

can be enabled. To analyse a file simply „double-click‟ on the required file. The 

process will run and results reported in the text box at the bottom of the form. 

 A screen shot of the LibraryComparator program is shown below: 

 

 

Figure 12.3:  The LibraryComparator screen shot 
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The percentage success point (otherwise known as the „null hypothesis‟ point (cf. 

page 86)) can be adjusted by entering a percentage into the box at the top right of 

the form. 

 

13.4.4 The output from the LibraryComparator program 

The results shown in the text box at the bottom of the form show the following fields: 

 

Sample The number of test chessboard configurations tested 

Scored: The number of test chessboards that had one or more chunks 
associated with a move. 

Success The number of instances that the ordered list from CLAMP 
placed the actual move played above the „percentage success 
point. 

Failed The number of instances that the ordered list from CLAMP 
placed the actual move played on or below the „percentage 
success point. 

%Success The number of successes / the number of the sample boards 

Adjusted The number of successes / the number of boards scored 
 

Table 12.4:  The output fields from the LibraryComparator program. 
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13.4.5  The ‘TopMovesComparator’ program 

The TopMovesComparitor program will show the results of the analysis of one 

thousand sample typical chessboard configurations from the mid-game of 

tournament games between Master players, displaying the number of boards were 

that the actual move played was one of the moves in the top positions of 

CLAMPanalyser‟s ordered list.  

 TopMovesComparator allows analysis with, or without, the „move rareness‟ 

scaling factor. 

 

Figure 12.4  The 'TopMovesComparator' program screen-shot 
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13.4.6  The output from the TopMovesComparator program 

The results shown in the text box at the bottom of the form show the following fields: 

Sample The number of test chessboard configurations tested. 

p-1 The number of instances where the move played by the chess 
player is within the top position in CLAMPanalyser‟s ordered 
list output. 

p-2 The number of instances where the move played by the chess 
player is within the top two positions in CLAMPanalyser‟s 
ordered list output. 

p-3 The number of instances where the move played by the chess 
player is within the top three positions in CLAMPanalyser‟s 
ordered list output. 

p-4 The number of instances where the move played by the chess 
player is within the top four positions in CLAMPanalyser‟s 
ordered list output. 

 
Table 12.5:  The output fields from the LibraryComparator program 

 

 

13.4.7  SourceCode 

The SourceCode folder contains the C++ source files for the CLAMP program. The 

project compiles under the mpiCC compiler to run on a cluster computer under the 

UNIX operating system. 

 

Two sub-folders exist within this folder: 

_CLAMP 

The source files to build CLAMP are as follows: 

clamp.cpp 

CalcMoves.cpp 

GenLibs.cpp 

clamp.h 

prototypes.h 

GenLibs.h 

CalcMoves.h 
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A makefile is included, the contents of which is as follows: 

##### 

##### Makefile 

SRC = clamp.cpp GenLibs.cpp CalcMoves.cpp 

TRG = clamp 

##### 

$(TRG): $(SRC) 

 mpiCC -Wall -O2 $(SRC) -o $(TRG) 

##### 

all: 

 $(MAKE) $(TRG) 

##### 

clean: 

 rm -f *~ core *.o *.s $(TRG) 
##### 

 

 

_CLAMPanalysis 

The source files to build CLAMPanalysis are as follows: 

analyse.cpp 

analyse.h 

stats.cpp 

stats.h 

A makefile is included, the contents of which is as follows: 

##### 
##### Makefile 
SRC = analyse.cpp stats.cpp 
TRG = analyse 
 
######################################################## 
 
$(TRG): $(SRC) 
 mpiCC -Wall -O2 $(SRC) -o $(TRG) 
 
######################################################## 
all: 
 $(MAKE) $(TRG) 
######################################################## 
clean: 
 rm -f *~ core *.o *.s $(TRG) 
######################################################## 
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13.4.8  Collections_MoveTo  

This folder contains the collection of one thousand chessboards for all moves to a 

position. The file names of the contents reflect the position that the piece was moved 

to after the piece was played, for example, a move of the Bishop to square 09 

(numbering the chessboard from the top left corner as shown in table 12.6 below) 

would be: 

B09_SOURCE.MAP 

The format of the file is shown below:  

Q........B...bk....q.np...p.nr.....p...PP..P...P.rP.R.N.....R..K 

......k.pBpbrn.p.p.p..p...........P........P..P.P.P...KP..B..R.. 

....rrk.pB....pp.p.......Pp..pQ.P.........q.n.P...P....P....RRK. 

.........B..rp.....k..p........p.......P...P.KP......P.......... 

.........B......p.....k..p....p.rP....K..R............P......... 

.........B......p........pK.....kP.............................. 

.r.q.rk.pB.....p.n..npp..pp.p.........NP..PP..P.PP.QNP..R....RK. 

.. 

 

Each line represents a chessboard. The period character represents a blank square. 

Pieces are represented as follows: 

P=Pawn, R=Rook, N=knight, B=Bishop, K=King, Q=Queen  

Upper-case characters are white pieces and lowercase characters are black pieces. 

The squares are sequenced from the top left corner reading to the right and then 

down as shown in table 12.6:  

 
 

1 2 3 4 5 6 7 8 

9 10 11 12 13 14 15 16 

17 18 19 20 21 22 23 24 

25 26 27 28 29 30 31 32 

33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 

49 50 51 52 53 54 55 56 

57 58 59 60 61 62 63 64 

 
Table 12.6:  Chess square numbering 
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13.4.9  Collections_MoveFrom 

This folder contains the collection of one thousand chessboards for all moves from a 

position. The file names of the contents reflect the position that the piece was moved 

from. The file naming convention and format of the contents is identical to the 

Collections_MoveTo collection. 
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