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DRAFT

Consistent Discretizations for Vanishing
Regularization Solutions to Image Processing

Problems

Theodoros D. Katsaounis1, Stephen L. Keeling2 and Michaelos Plexousakis3

Abstract. A model problem is used to represent a typical image processing problem of reconstructing

an unknown in the face of incomplete data. A consistent discretization for a vanishing regularization

solution is defined so that, in the absence of noise, limits first with respect to regularization and then

with respect to grid refinement agree with a continuum counterpart defined in terms of a saddle point

formulation. It is proved and demonstrated computationally for an artificial example and for a realistic

example with magnetic resonance images that a mixed finite element discretization is consistent in the

sense defined here. On the other hand, it is demonstrated computationally that a standard finite element

discretization is not consistent, and the reason for the inconsistency is suggested in terms of theoretical

and computational evidence.

Keywords: consistent discretization, vanishing regularization, saddle point problem, mixed finite ele-

ments

1 Introduction

Many image processing problems involve reconstructing an unknown in the face of incom-
plete data [13]. A reconstruction may be formulated in terms of an ill-posed problem which
is stabilized through a regularized minimization of the problem residual. To counter the effect
of noise in measured data, one naturally applies nontrivial regularization. For a fixed noise
level and for fixed regularization, standard discretizations of the associated optimality system
have well known convergence characteristics with respect to grid refinement [3]. Also, it is well
known in the infinite dimensional setting that a regularized solution converges to a vanishing
regularization solution provided one coordinates the rates at which regularization and noise are
simultaneously reduced [14]. As discretization of data can be seen as a type of noise, it is a
significant finding in the present work that a vanishing regularization solution to certain dis-
cretized formulations may in fact converge properly with grid refinement, but this convergence
does not hold in general. Numerical methods which do not exhibit this sensitivity to vanishing
regularization are regarded in this work as consistent discretizations of vanishing regularization
solutions. The purpose of this paper is to demonstrate a consistent and an inconsistent dis-
cretization of a vanishing regularization solution to a model problem. Also, convergence of the
consistent approach with respect to grid refinement is proved, while the reason for the failure
of the inconsistent approach is suggested in terms of theoretical and computational evidence.

Based upon the regularized imaging reconstructions and vanishing regularization solutions
presented for example in [13] and [11], the concept of consistent discretization of a vanishing
regularization solution is demonstrated here for the model problem which is illustrated in Fig. 1.
Here it is required to estimate a smooth modulation field u from a given unmodulated image κ
and a given modulated image ũ satisfying κu ≈ ũ. It is assumed that the data ũ and κ have
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(a) unmodulated κ (b) modulated ũ (c) modulation u

Figure 1: (a) An unmodulated image κ and (b) a modulated image ũ are used to estimate (c) the
smooth modulation u.

the same support
Sd ( Ω, |Ω| > |Sd| = |S◦d| > 0 (1)

with characteristic function,

χd =

{
1, Sd

0, else
(2)

so the ill-posed computation of u may be stabilized through regularization by minimizing a
functional of the form

J ε(u) =
1

2

∫
Ω

[
|κu− ũ|2 + ε|∇2u|2

]
(3)

As the focus is placed here on vanishing regularization solutions in the absence of noise, it is
assumed that there exist ũd, ud ∈ H2(Ω) and κd ∈W 2,∞(Ω) with κ−1

d ∈W 2,∞(Ω) which satisfy

χdκd = κ, χdũd = ũ, κdud = ũd. (4)

Otherwise, it is assumed that the data satisfy

0 < κ0 ≤ κ ≤ κ1, 0 < ũ0 ≤ ũ ≤ ũ1 in Sd. (5)

The measured data κh and ũh are assumed to be given as pixelwise constant approximations of
κ and ũ, respectively.

In the next sections, it is seen that the unique minimizer uε ∈ H4(Ω) of the functional J ε

in (3) is characterized by the strong necessary optimality condition,

ε∆2u+ κ2u = κũ in Ω (6)

where the domain of ∆2 is understood to impose natural boundary conditions. Also, uε con-
verges weakly in H2(Ω) to a unique limit u? as ε → 0. The unique limit u? is termed the
vanishing regularization solution and is shown below to be characterized directly as a weak
solution to the saddle point problem:{

(1− χd)λ+ κ2u = κũ
κ2λ+ ∆2u = 0

in Ω (7)

In the numerical investigations below, (6) is discretized first with a standard finite element
method in which smooth quadratic splines are applied, and second with a mixed finite element
method in which smooth quadratic splines are used for the primal variable and piecewise con-
stants are used for the dual variable. Also, the data are approximated in the usual way as
pixelwise constant. Representative results are shown in Fig. 2. Here, Sd = [2

8 ,
3
8 ]∪ [5

8 ,
6
8 ], κ = χd

and the dashed curve is ũ = χduq, where the quadratic curve uq(x) = (x− 1
2)2 is shown dotted.
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(a) ε = O(1), standard (b) ε << 1, standard (c) ε << 1, mixed

Figure 2: Results obtained with a standard finite element method are shown (a) for ε = O(1) and (b)
for ε << 1. Also, results for a mixed finite element method are shown (c) for ε << 1. Here, κ = χd and the
dashed curve is ũ = χduq, where the quadratic curve uq is shown dotted. The solid curves are numerical
solutions to (6). For ε << 1, only the mixed finite element solution accurately approximates the solution
to (6).

With χ0 being the characteristic function for [1
4 ,

3
4 ], the vanishing regularization solution satis-

fying (7) is given by u?(x) = (x − 1
2)2χ0 + (1

2 |x −
1
2 | −

1
16)(1 − χ0). Note that u? agrees with

uq in the convex hull of Sd and is linear in Ω\Sd. The solid curves are numerical solutions to
(6). For ε = O(1), all numerical solutions agree qualitatively with the standard finite element
result shown in Fig. 2a, which is noticably smoothed in relation to the vanishing regularization
solution. For ε << 1, the mixed finite element result in Fig. 2c accurately approximates u?, while
the standard finite element result in Fig. 2b departs tremendously from the correct vanishing
regularization solution. In the next sections, the accuracy of the mixed finite element approach
described here computationally is proved theoretically, and the inaccuracy of the standard finite
element is suggested in terms of the convergence framework employed.

Note that all the numerical methods considered provide results such as seen in Fig. 2c when
the data κ and ũ are integrated exactly without quadrature error. However, measured images
are universally stored using an array of values representing pixelwise averaged intensities, as
assumed for κh and ũh. Therefore, a significant result of this work is that there exist numerical
methods which accommodate the usual data format of image processing while providing con-
sistent discretizations of vanishing regularization solutions. See also [6], [9] and [10] for error
estimates for elliptic problems in the presence of quadrature errors.

2 Optimality and Saddle Point Conditions

Since the functional J ε of (3) is quadratic in u, its variational properties are given in a rather
staightforward way in terms of forms which will be used throughout this work. The Gâteaux
derivative of J ε is obtained as δJ ε/δu(u; v) = εa(u, v) + b(u, v) − d(v), where a, b and d are
given by

a(u, v) =

∫
Ω
∇2u : ∇2v (8)

b(u, v) =

∫
Ω
κ2uv (9)

d(v) =

∫
Ω
κũv (10)

The necessary optimality condition for the minimization of J ε is given by

εa(u, v) + b(u, v) = d(v), ∀v ∈ H2(Ω) (11)
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whose solvability is guaranteed by Theorem 1 below. For this, the kernel of the form a is
identified as the set of linear functions,

L = {α0 +α · x : α0 ∈ R,α ∈ Rn}.

Lemma 1 There exist constants c1 and c2 such that

c1‖v‖2H2(Ω) ≤ a(v, v) + b(v, v) ≤ c2‖v‖2H2(Ω), ∀v ∈ H2(Ω). (12)

Proof: Boundedness of the forms a and b follows readily with (5). Coercivity is established
using a Poincaré argument since (1) and (5) imply that b coerces the kernel L of a.

Theorem 1 There exists a unique uε ∈ H2(Ω) satisfying (11) which is the unique minimizer
for J ε in (3).

Proof: Boundedness of the form d follows with (5). By Lemma 1, the left side of (11) is bounded
in terms of and coerces the H2(Ω)-norm. By the Lax-Milgram Lemma [3], (11) is uniquely
solvable. For an arbitrary v ∈ H2(Ω), it follows with (11) and (12) that 2[J ε(uε+v)−J ε(uε)] =
εa(v, v) + b(v, v) ≥ c1‖v‖2H2(Ω). Thus, J ε(uε + v) > J ε(uε) for every nontrivial v ∈ H2(Ω).

The following vanishing regularization result can be established by verifying conditions of
results in [14] in the more general setting, but the result can be established more directly as
follows.

Theorem 2 The solutions {uε} to (11) converge weakly in H2(Ω) to a unique limit u? as ε→ 0.

Proof: It will be first be shown that {uε} is bounded in H2(Ω) independently of ε. By (4),
ud satisfies b(v, ud) = d(v), ∀v ∈ H2(Ω), which can be subtracted from (11) with v = wε =
uε−ud to obtain εa(wε, wε) + b(wε, wε) = −εa(ud, w

ε). It follows that a(wε, wε) ≤ |a(ud, w
ε)| or

a(wε, wε) ≤ a(ud, ud) and that b(wε, wε) ≤ ε|a(ud, w
ε)| or b(wε, wε) ≤ 1

2a(ud, ud) + 1
2a(wε, wε)

for ε ≤ 1. Hence, 1
2a(wε, wε) + b(wε, wε) ≤ 3

2a(ud, ud), and with (12), wε is bounded in H2(Ω).
Thus, uε is bounded in H2(Ω) in terms of wε and ud. Therefore, as ε→ 0, there is a subsequence
{uεl} which converges weakly in H2(Ω) to a limit u? ∈ H2(Ω).

If there were another weak limit, ûε̂l ⇀ û?, then according to (11), w? = u? − û? would

satisfy b(w?, w?)
l→∞←− b(w?, uεl − uε̂l) = ε̂la(uε̂l , w?) − εla(uεl , w?)

l→∞−→ 0. By (1) and (5),
w? = 0 holds in Sd. Hence, d(w?) = 0 and b(w?, φ) = 0, ∀φ ∈ L2(Ω). It follows that

a(w?, w?)
l→∞←− a(uεl −uε̂l , w?) = {ε−1

l [d(w?)− b(w?, uεl)]=0− ε̂−1
l [d(w?)− b(uε̂l , w?)]=0} = 0. By

(12), ‖w?‖H2(Ω) = 0, and therefore the weak limit u? = û? is unique.

A direct characterization of the limit u? to which the primal variables {uε} converge is
facilitated by writing the optimality condition for the minimization of Jε as (15) below based
upon Fenchel Duality [4]. This approach also allows a characterization of the limit λ? to which
the dual variables {λε} converge. The following spaces emerge naturally:

L2
d(Ω) = {v ∈ L2(Ω) : (1− χd)v = 0} (13)

H0(∆2) = {w ∈ H2(Ω) : ∆2w ∈ L2(Ω), a(w, φ) = (∆2w, φ)L2(Ω), ∀φ ∈ H2(Ω)} (14)

Note that the conditions specified for H0(∆2) guarantee that the boundary conditions of (6)
are satisfied in the sense seen below in (16).

Theorem 3 There exists a unique solution (λε, uε) ∈ L2
d(Ω)×H0(∆2) to{

−εb(µ, λε) + b(µ, uε) = d(µ), ∀µ ∈ L2
d(Ω)

b(λε, v) + a(u, v) = 0, ∀v ∈ H2(Ω)
(15)

where uε is the unique solution to (11).
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Proof: For any µ ∈ L2(Ω), decompose µ = µ1 + µ2 with µ1 ∈ L2
d(Ω) and µ2 ∈ L2

d(Ω)⊥. Then
d(µ2) = 0 and b(µ2, v) = 0, ∀v ∈ H2(Ω), imply that the first equation in (15) must hold
∀µ ∈ L2(Ω) and in particular ∀µ ∈ H2(Ω). Setting µ = v and eliminating λε from (15) shows
that uε must be the unique solution to (11) guaranteed by Theorem 1. Recalling (4) and setting
µ = ελε+χd(ud−uε) in the first equation of (15) shows that λε ∈ L2

d(Ω) is uniquely determined
by λε = χd(uε − ud)/ε. Again, writing the first equation for arbitrary µ ∈ H2(Ω) ⊂ L2(Ω) and
combining this with (11) shows that (λε, uε) also satisfies the second equation in (15). According
to elliptic regularity results [8], the solution to (11) satisfies uε ∈ H4(Ω). Also, the traces in the
following integration of (11) by parts are adequately defined:

ε

{
(∆2uε, φ)L2(Ω) +

∫
∂Ω

[∇φ · ∂n∇uε − φ∂n∆uε]

}
= d(φ)− b(uε, φ), ∀φ ∈ H2(Ω) (16)

Choosing φ in (16) to be concentrated on ∂Ω shows that the boundary integral in (16) must
vanish. Subtracting the result from (11) shows that a(uε, φ) = (∆2uε, φ), ∀φ ∈ H2(Ω), and
hence uε ∈ H0(∆2).

It will next be shown that in the limit of vanishing regularization, solutions to (15) suffer a
loss of regularity as they converge to a unique limit characterized by (18) below. Specifically,
while {uε} ⊂ H0(∆2) and {λε} ⊂ Ld(∆2) hold, the limits satisfy only u? ∈ H2(Ω) and λ? ∈
H−2

d (Ω), where the Hilbert space H−2
d (Ω) is a subspace of H−2(Ω) defined here as the completion

of L2
d(Ω) with respect to the norm

‖µ‖H−2
d (Ω) = sup

v∈H2(Ω)

∫
Ω χdµv

‖v‖H2(Ω)
(17)

Theorem 4 The unique solution (λε, uε) to the system (15) converges weakly in H−2
d (Ω) ×

H2(Ω) as ε→ 0 to a unique limit (λ?, u?) satisfying{
b(µ, u) = d(µ) ∀µ ∈ H−2

d (Ω)
b(λ, v) + a(u, v) = 0 ∀v ∈ H2(Ω)

(18)

Proof: By Theorem 3, uε is the unique solution to (11), so it follows with Theorem 2 that the
sequence {uε} converges weakly in H2(Ω) to the limit u?. With this weak convergence of {uε},∫

Ω
χdλ

εφ = b(λε, φ/κ2
d) = −a(uε, φ/κ2

d)
ε→0−→ −a(u?, φ/κ2

d), ∀φ ∈ H2(Ω)

where (4) has been used. It follows that {λε} converges weakly in H−2
d (Ω), so let λ? ∈ H−2

d (Ω)
denote the weak limit, where

∫
Ω χdλ

?φ agrees with the rightmost term in the last equation.
Thus, λ? is given uniquely in terms of u?. Furthermore,

b(λ?, ψ) =

∫
Ω
κ2λ?ψ =

∫
Ω
χdλ

?(ψκ2
d) = −

∫
Ω
∇2u? : ∇2ψ = −a(u?, ψ) ∀ψ ∈ H2(Ω)

shows that (λ?, u?) satisfies the second equation in (18). Using the weak convergence of {uε},
then the first equation of (15) and finally the weak convergence of {λε}, it follows that∫

Ω
κ2(u? − ud)v = lim

ε→0

∫
Ω
κ2(uε − ud)v = lim

ε→0
ε

∫
Ω
χdλ

ε(κ2
dv) =

∫
Ω
χdλ

?(κ2
dv) lim

ε→0
ε = 0

∀v ∈ H2(Ω).

For a given µ ∈ H−2
d (Ω), choose {µk} ⊂ L2

d(Ω) to converge to µ in H−2
d (Ω) as k → ∞, and

then choose {vkl} ⊂ H2(Ω) to converge to µk in L2(Ω) as l → ∞. Setting v = vkl and
φ = κ2

d(u? − ud) ∈ H2(Ω) in the last equation and then recalling (4), (9) and (10) gives

0 =

∫
Ω
κ2(u? − ud)vkl =

∫
Ω
χdφvkl

l→∞−→
∫

Ω
χdφµk

k→∞−→
∫

Ω
χdφµ = b(µ, u?)− d(µ)

5



which shows that (λ?, u?) satisfies the first equation in (18).

Note that (18) may be seen as a condition for a saddle point of the Lagrangian functional,

L(v, µ) = 1
2a(v, v) + b(µ, v)− d(µ), v ∈ H2(Ω), µ ∈ H2

d(Ω)

which solves
min

v∈H2(Ω)
a(v, v) subject to b(µ, v) = d(µ), ∀µ ∈ H−2

d (Ω) (19)

Before proceeding to the numerical analysis of vanishing regularization solutions, it is first
indicated that the theory of saddle points in [7] is only partially applicable in this work. In
particular, the loss of regularity in the limit of vanishing regularization is not obtained with
the alternative theory. Furthermore, in the approximation of saddle points by regularization
on p. 65 of [7], the term −εb(µ, λε) above in (15) is replaced by a term −εc(µ, λε) where c is a
coercive bilinear form on the space containing λ?. The simplest choice for this bilinear form c
in the present context is the inner product on H−2

d (Ω), which can be given explicitly as follows.
For a given λ ∈ H−2

d (Ω) define the operator C so that Cλ ∈ H2(Ω) is the solution to

(Cλ, v)H2(Ω) = (λ, v)H−2
d (Ω),H2(Ω), ∀v ∈ H2(Ω). (20)

Then
(µ, λ)H−2

d (Ω) = (Cλ,Cµ)H2(Ω) = c(µ, λ), λ, µ ∈ H−2
d (Ω) (21)

However, if (15) is so modified, then the new equation is the optimality condition for a functional
J̃ ε(v) = εa(v, v) + b(C−1(v − ud), (v − ud)), which does not agree with J ε. Thus, the approach
of this section has been used. Nevertheless, the theory of [7] is applied later for the convergence
of numerical approximations.

3 Analysis of a Mixed Finite Element Method

For Ω = (0, 1) and with cell interfaces xi = ih, i = 0, . . . , N , h = 1/N , the following spline
bases are defined,

S
(k)
h (Ω) =

{
s ∈ Pk([xi−1, xi]), i = 1, . . . , N, s ∈ Ck−1(Ω)

}
, k = 0, 1, . . . (22)

where Pk(D) is the set of polynomials of degree k on D and cellwise constant functions are

meant for the case k = 0. For Ω = (0, 1)n, n > 1, S
(k)
h (Ω) is understood as tensor products

of such spline bases. Also, S
(k)
h,d(Ω) is the subspace of splines in S

(k)
h (Ω) which are supported

purely on Sd. As seen above in the analysis of the saddle point formulation of optimality, the
spaces H2(Ω) and H−2

d (Ω) are the suitable settings for the primal variable and the dual variable,
respectively. For the mixed finite element method analyzed here, H2(Ω) is approximated by

S
(2)
h (Ω) and H−2

d (Ω) is approximated by S
(0)
h,d(Ω). It is assumed that the data are approximated

with pixelwise averages

χd, κh, ũh ∈ S
(0)
h,d(Ω) (23)

which converge in L∞(Ω),

‖κ− κh‖L∞(Ω)
k→∞−→ 0, ‖ũ− ũh‖L∞(Ω)

k→∞−→ 0. (24)

and also satisfy the bounds of (5). With these data the integrals (9) and (10) are approximated
according to

bh(u, v) =

∫
Ω
κ2
huv (25)
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and

dh(v) =

∫
Ω
κhũhv. (26)

Then a mixed finite element discretization of the primal dual problem (15) is to compute

(λh, uh) ∈ S(0)
h,d(Ω)× S(2)

h (Ω) so that{
−εbh(µh, λ

ε
h) + bh(µh, u

ε
h) = dh(µh), ∀µh ∈ S

(0)
h,d(Ω)

bh(λεh, vh) + a(uεh, vh) = 0, ∀vh ∈ S
(2)
h (Ω)

(27)

The following technical lemmas are used below.

Lemma 2 bh is symmetric and positive definite on S
(0)
h,d(Ω).

Proof: bh is clearly symmetric on S
(0)
h (Ω). Since κh and ũh satisfy the bounds of (5), bh(µh, µh) ≥

κ0‖µh‖2L2(Ω) holds ∀µh ∈ S
(0)
h (Ω).

With Lemma 2, define the solution operator Bh : L2(Ω)→ S
(0)
h,d(Ω) by

v ∈ L2(Ω), bh(µh, Bhv) = bh(µh, v), ∀µh ∈ S
(0)
h,d(Ω) (28)

Since for an arbitrary µ̃h ∈ S
(0)
h,d(Ω) a corresponding µh = µ̃h/κ

2
h ∈ S

(0)
h,d(Ω) may be chosen for

(28), it follows that Bhv is the L2(Ω) projection of v ∈ L2(Ω) into S
(0)
h,d(Ω). Thus, let σ(h)

satisfy σ(h)
h→0−→ 0 and

‖χd(Bhv − v)‖L2(Ω) ≤ σ(h)‖v‖L2(Ω) (29)

The next lemma shows that the restriction of Bh to S
(2)
h (Ω) maps onto S

(0)
h,d(Ω).

Lemma 3 For every νh ∈ S
(0)
h,d(Ω) there is a uh ∈ S

(2)
h (Ω) satisfying bh(Bhuh, µh) = bh(νh, µh),

∀µh ∈ S
(0)
h,d(Ω).

Proof: Let χi be the characteristic function for the ith cell so that {χi} is a basis for S
(0)
h (Ω).

Given a (tensor product of a) canonical spline supported on three adjacent cells, let translations

{sj} form a basis for S
(2)
h (Ω), which is higher dimensional that S

(0)
h (Ω). Define the matrices

B = {
∫

Ω κ
2
hχisj}, P = {

∫
Ω χisj} and C = {

∫
Ω κ

2
hχiχj} which satisfy B = CP . For νh =

∑
i νiχi

and uh =
∑

j ujsj with coefficient vectors ν = {νi} and u = {uj}, the equation to solve for

u is CPu = Cν. For this, define a square submatrix of P by P̃ = {
∫

Ω χisj : j ∈ J} where
splines {sj : j ∈ J} have the bulk of their mass in some ith cell, i.e., not outside Ω. A
direct calculation shows that for n = 1 the submatrix is given with the lexicographical ordering
by P̃ = tridiag{1

6 ,
2
3 ,

1
6}, which is diagonally dominant and hence invertible. For n > 1 the

submatrix is given by a product of diagonally dominant matrices, e.g., for n = 2, P̃ = P̃yP̃x
P̃x = tridiag{1

6 ,
2
3 ,

1
6}, P̃y = tridiag{1

6 , 0, . . . , 0,
2
3 , 0, . . . , 0,

1
6}. Define ũ = P̃−1ν and pad ũ with

zeros for the indices j 6∈ J to construct a u satisfying Pu = ν and hence CPu = Cν.

It is further assumed that κhũh approximates κũ = κ2ud sufficiently, so let τ(h) satisfy

τ(h)
h→0−→ 0 and:

sup
µh∈S

(0)
h,d(Ω)

|d(µh)− dh(µh)|
‖µh‖H−2

d (Ω)

= sup
µh∈S

(0)
h,d(Ω)

‖µh‖−1

H−2
d (Ω)

∫
Ω
µh(κ2ud−κhũh) ≤ τ(h)‖ud‖H2(Ω). (30)

It will be proven in this section that there exists a (λ?h, u
?
h) ∈ S(0)

h,d(Ω) × S(2)
h (Ω) such that the

solution (λεh, u
ε
h) to (27) satisfies (λεh, u

ε
h)

ε→0−→ (λ?h, u
?
h), and that (λ?h, u

?
h)

h→0−→ (λ?, u?), where
(λ?, u?) is given by Theorem 4.

7



Lemma 4 For h sufficiently small there exist constants c̃1 and c̃2 independent of h such that

c̃1‖v‖2H2(Ω) ≤ a(v, v) + bh(Bhv,Bhv) ≤ c̃2‖v‖2H2(Ω), ∀v ∈ H2(Ω). (31)

Proof: By (28), |bh(Bhv,Bhv)| = |bh(v,Bhv)| ≤ [bh(v, v)]
1
2 [bh(Bhv,Bhv)]

1
2 so

|bh(Bhv,Bhv)| ≤ bh(v, v), ∀v ∈ H2(Ω) (32)

With the bounds (5) for κh and ũh, (12) and (32) give c̃2 = c2 in (31). Then using (24), (28),
(29) and (32),

|bh(Bhv,Bhv)− b(v, v)| ≤ |bh(v,Bhv)− b(v,Bhv)|+ |b(v,Bh)− b(v, v)|
≤ ‖κ2

h − κ2‖L∞(Ω)‖v‖L2(Ω)‖Bhv‖L2(Ω)

+‖κ2‖L∞(Ω)‖v‖L2(Ω)‖χd(Bhv − v)‖L2(Ω)

≤ ‖κ2
h − κ2‖L∞(Ω)‖v‖L2(Ω)[‖v‖L2(Ω) + ‖χd(Bhv − v)‖L2(Ω)]

+‖κ2‖L∞(Ω)‖v‖L2(Ω)‖χd(Bhv − v)‖L2(Ω)
h→0−→ 0

and coercivity follows with (12) for h sufficiently small and c̃1 ∈ (0, c1).

Theorem 5 There exists a unique (λεh, u
ε
h) ∈ S(0)

h,d(Ω)× S(2)
h (Ω) satisfying (27).

Proof: Applying (28) to the first equation of (27) gives bh(µh, u
ε
h) = bh(µh, Bhu

ε
h) or

− εbh(µh, λ
ε
h) + bh(µh, Bhu

ε
h) = dh(µh), ∀µh ∈ S

(0)
h,d(Ω) (33)

Applying (28) to the second equation of (27) gives bh(λεh, vh) = bh(λεh, Bhvh), and it follows
with µh = Bhvh in (33) that

bh(Bhvh, Bhu
ε
h)− dh(Bhvh) + εa(uεh, vh) = εbh(Bhvh, λ

ε
h) + εa(uεh, vh)

= εbh(vh, λ
ε
h) + εa(uεh, vh) = 0, ∀vh ∈ S

(2)
h (Ω)

where the second equation of (27) gives the last equality. Hence uεh must satisfy

bh(Bhu
ε
h, Bhvh) + εa(uεh, vh) = dh(Bhvh), ∀vh ∈ S

(2)
h (Ω) (34)

By (4), (5), (26) and (29),

|dh(Bhvh)| ≤ κ1ũ1‖χdBhvh‖L2(Ω) ≤ κ1ũ1[‖χdvh‖L2(Ω) + ‖χd(Bhvh − vh)‖L2(Ω)]

≤ κ1ũ1[1 + σ(h)]‖vh‖H2(Ω), ∀v ∈ S(2)
h (Ω).

Thus, with Lemma 4, it follows with the Lax-Milgram Lemma [3] that uεh is uniquely defined
by (34). So with Lemma 2, λεh is uniquely determined by (33).

The vanishing regularization solution u?h, whose existence is established next in Theorem 6,
is characterized precisely below in (36).

Theorem 6 The solutions {uεh} to (27) converge to a unique limit u?h ∈ S
(2)
h (Ω) as ε→ 0.

Proof: It will be first be shown that {uεh} is bounded in H2(Ω) independently of ε. By Lemma

2, let νh ∈ S
(0)
h,d(Ω) be chosen so that bh(νh, µh) = dh(µh), ∀µh ∈ S

(0)
h,d(Ω), and then by Lemma

3, let uh,d be chosen to satisfy bh(Bhuh,d, µh) = bh(νh, µh) = dh(µh), ∀µh ∈ S
(0)
h,d(Ω). Setting

µh = Bhvh, vh ∈ S
(2)
h (Ω), in this equation and subtracting from (34) with vh = wεh = uεh − uh,d

8



gives εa(wεh, w
ε
h) + bh(Bhw

ε
h, Bhw

ε
h) = −εa(uh,d, w

ε
h). It follows that a(wεh, w

ε
h) ≤ |a(uh,d, w

ε
h)|

or a(wεh, w
ε
h) ≤ a(uh,d, uh,d) and that bh(Bhw

ε
h, Bhw

ε
h) ≤ ε|a(uh,d, w

ε
h)| or bh(Bhw

ε
h, Bhw

ε
h) ≤

1
2a(uh,d, uh,d) + 1

2a(wεh, w
ε
h) for ε ≤ 1. Hence, 1

2a(wεh, w
ε
h) + bh(Bhw

ε
h, Bhw

ε
h) ≤ 3

2a(uh,d, uh,d),
and with (31), wεh is bounded in H2(Ω). Thus, uεh is bounded in H2(Ω) in terms of wεh and uh,d.

Since S
(2)
h (Ω) is finite dimensional, there is a subsequence {uεlh } which converges in H2(Ω) to a

limit u? ∈ S(2)
h (Ω) as ε→ 0.

If there were another limit, ûε̂lh → û?h, then according to (34), w?h = u?h − û?h would

satisfy bh(Bhw
?
h, Bhw

?
h)

l→∞←− bh(Bhw
?
h, Bhu

εl
h − uε̂lh ) = ε̂la(uε̂lh , w

?
h) − εla(uεlh , w

?
h)

l→∞−→ 0. By

Lemma 2, Bhw
?
h = 0. It follows that a(w?h, w

?
h)

l→∞←− a(uεlh − uε̂lh , w
?
h) = {ε−1

l [dh(Bhw
?
h) −

bh(Bhw
?
h, Bhu

εl
h )]=0 − ε̂−1

l [dh(w?h) − bh(Bhu
ε̂l
h , Bhw

?
h)]=0} = 0. With (31), ‖w?h‖H2(Ω) = 0, and

therefore the weak limit u?h = û?h is unique.

For Theorem 7 below, the following constructions analogous to (20) are used. For a given

µh ∈ S
(0)
h,d(Ω) define the operator Ch so that Chµh ∈ S

(2)
h (Ω) is the solution to

(Chµh, vh)H2(Ω) = (µh, vh)L2(Ω), ∀vh ∈ S
(2)
h (Ω) (35)

Then

sup
vh∈S

(2)
h (Ω)

(µh, vh)L2(Ω)

‖vh‖H2(Ω)
= sup

vh∈S
(2)
h (Ω)

(vh, Chµh)H2(Ω)

‖vh‖H2(Ω)
≤ ‖Chµh‖H2(Ω)

where equality holds for vh = Chµh. As seen in the proof of Lemma 3, the matrix P has
maximal rank, and hence Chµh = 0 if and only if µh = 0. Thus, the following is a norm on

S
(0)
h,d(Ω),

‖µh‖S(0)
h,d(Ω)

= sup
vh∈S

(2)
h (Ω)

(µh, vh)L2(Ω)

‖vh‖H2(Ω)
= ‖Chµh‖H2(Ω)

with associated scalar product,

(µh, λh)
S
(0)
h,d(Ω)

= (Chλh, Chµh)H2(Ω) = (µh, Chλh)L2(Ω), λh, µh ∈ S
(0)
h,d(Ω).

Next, the vanishing regularization solution is characterized.

Theorem 7 The unique solution (λεh, u
ε
h) to the system (27) converges as ε → 0 to a unique

limit (λ?h, u
?
h) ∈ S(0)

h,d(Ω)× S(2)
h (Ω) satisfying{

bh(µh, u
?
h) = dh(µh) ∀µh ∈ S

(0)
h,d(Ω)

bh(λ?h, vh) + a(u?h, vh) = 0 ∀vh ∈ S
(2)
h (Ω)

(36)

Proof: By Theorem 6, {uεh} converges to the limit u?h. Using this convergence of {uεh} in (27),

(κ2
hλ

ε
h, µh)

S
(0)
h,d(Ω)

= (κ2
hλ

ε
h, Chµh)L2(Ω) = bh(λεh, Chµh) =

−a(uεh, Chµh)
ε→0−→ −a(u?h, Chµh), ∀µh ∈ S

(0)
h,d(Ω)

Thus, due to the the finite dimensionality of S
(0)
h,d(Ω), {κ2

hλ
ε
h} converges to some κ2

hλ
?
h ∈ S

(0)
h,d(Ω).

Furthermore,

−a(u?h, vh) = − lim
ε→0

a(uεh, vh) = lim
ε→0

bh(λεh, vh) = bh(λ?h, vh), ∀vh ∈ S
(2)
h (Ω)

shows that the second equation of (36) is satisfied and

(κ2
hλ

?
h, µh)

S
(0)
h,d(Ω)

= bh(λ?h, Chµh) = −a(u?h, Chµh), ∀µh ∈ S
(0)
h,d(Ω)
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together with (5) imply that λ?h is uniquely determined in terms of u?h. Using the convergence
of {uεh}, then the first equation of (27) and finally the convergence of {λεh}, it follows that

∀µh ∈ S
(0)
h,d(Ω),

bh(µh, u
?
h)− dh(µh) = lim

ε→0
bh(µh, u

ε
h)− dh(µh) = lim

ε→0
εbh(µh, λ

ε
h) = bh(µh, λ

?
h) lim

ε→0
ε = 0

which shows that (λ?, u?) satisfies the first equation in (36).

Note that (36) may be seen as a condition for a saddle point of the Lagrangian functional,

L(vh, µh) = 1
2a(vh, vh) + bh(µh, vh)− dh(µh), vh ∈ S

(2)
h (Ω), µ ∈ S(0)

h,d(Ω) (37)

which solves

min
vh∈S

(2)
h (Ω)

a(vh, vh) subject to bh(µh, vh) = dh(µh), ∀µh ∈ S
(0)
h,d(Ω) (38)

Due to the approximation of data, the forms bh and dh may not be subtracted directly from
their counterparts b and d for estimations of identical arguments. In particular, the conditions
seen below in Lemma 6 evidently do not hold for bh. For the analysis, it is crucial that (18)
and (36) can be reformulated below as (42) and (45). For this, define

b̂(µ, u) =

∫
Ω
χdµu (39)

satisfying b̂(µ, u) = (µ, u)H−2
d (Ω),H2(Ω) and

d̂(µ) =

∫
Ω
χdudµ (40)

satisfying d̂(µ) = b̂(µ, ud). Then set

λ̂? = κ2λ? ∈ H−2
d (Ω) (41)

and µ̂ = κ2µ ∈ H−2
d (Ω) in (18) so that (λ?, u?) satisfies (18) if and only if (λ̂?, u?) satisfies{

b̂(µ̂, u?) = d̂(µ̂) ∀µ̂ ∈ H−2
d (Ω)

b̂(λ̂?, v) + a(u?, v) = 0 ∀v ∈ H2(Ω)
(42)

Similarly, with

d̂h(v) =

∫
Ω
κ−1
h ũhv (43)

set
λ̂?h = κ2

hλ
?
h ∈ S

(0)
h,d(Ω) (44)

and µ̂h = κ2
hµh ∈ S

(0)
h,d(Ω) in (36) so that (λ?h, u

?
h) satisfies (36) if and only if (λ̂?h, u

?
h) satisfies{

b̂(µ̂h, u
?
h) = d̂h(µ̂h) ∀µ̂h ∈ S

(0)
h,d(Ω)

b̂(λ̂?h, vh) + a(u?h, vh) = 0 ∀vh ∈ S
(2)
h (Ω)

(45)

To show that the solution (u?h, λ̂
?
h) to (45) converges with grid refinement to the solution (u?, λ̂?)

to (42), it will be shown that the conditions of Theorem 1.1 on p. 114 of [7] are met, but the
proof will be modified to accommodate the approximation of data. Note that b̂ now appears in
both (42) and (45), so the only new term to be estimated is d̂ − d̂h. The first condition to be
proved is that the form a is coercive on

V = {u ∈ H2(Ω) : b̂(µ, u) = 0, ∀µ ∈ H−2
d (Ω)} (46)

and on its approximation

Vh = {uh ∈ S
(2)
h (Ω) : b̂(µh, uh) = 0, ∀µh ∈ S

(0)
h,d(Ω)}. (47)
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Lemma 5 There exists a constant α independent of h such that,

a(u, u) ≥ α‖u‖2H2(Ω), ∀u ∈ V (48)

and,
a(uh, uh) ≥ α‖uh‖2H2(Ω), ∀uh ∈ Vh (49)

Proof: First, (48) is proved with a a Poincaré argument since b̂ coerces the kernel L of a. For
(49), note that Vh ⊂ V does not hold since a function vh ∈ Vh need not to vanish in Sd but
rather only to have average value zero in every cell of Sd. To prove (49), suppose ∃uh ∈ Vh such
that a(uh, uh) = 0. Thus, uh ∈ L is linear. Since uh ∈ Vh, its average value on every cell in Sd

is zero. These two conditions imply that uh = 0, and it follows that a is positive definite on Vh.
To show that α in (49) is independent of h, suppose for the sake of contradiction that there

exists a sequence {uhk} with uhk ∈ Vhk satisfying ‖uhk‖H2(Ω) = 1 while hk = 2−kh1
k→∞−→ 0 and

a(uhk , uhk)
k→∞−→ 0. Then the sequence is bounded in H2(Ω) according to ‖uhk‖H2(Ω) = 1, and

weak (subsequential) convergence in H2(Ω) follows. For convenience, let {uhk} again denote the
subsequence. By compactness of H1(Ω) in H2(Ω), the sequence converges strongly in H1(Ω).

With a(uhk , uhk)
k→∞−→ 0, it follows that the sequence converges strongly in H2(Ω) to some u0.

Since a(u0, u0) = limk→∞ a(uhk , uhk) = 0, u0 ∈ L. As S
(0)
hk+1,d

(Ω) ⊂ S(0)
hk,d

(Ω), it follows that ∀l,

b̂(µhl , u0) = lim
k→∞

b̂(µhl , uk) = 0, ∀µhl ∈ S
(0)
hl,d

(Ω)

Since ∪∞l=1S
(0)
hl,d

(Ω) is dense in L2
d(Ω), the linear function u0 vanishes in Sd and hence u0 = 0.

However, this contradicts ‖u0‖H(2)(Ω) = limk→∞ ‖uhk‖H2(Ω) = 1. The contradiction shows that
(48) holds for an α independent of h.

The next condition to be demonstrated is that the form b̂ satisfies the Ladysenskaja-Babuska-

Brezzi (LBB) condition on H2(Ω)×H−2
d (Ω) and on S

(2)
h (Ω)× S(2)

h,d(Ω).

Lemma 6 There exists a constant β independent of h such that

sup
v∈H2(Ω)

b̂(µ, v)

‖v‖H2(Ω)
≥ β‖µ‖H−2

d (Ω), ∀µ ∈ H−2
d (Ω) (50)

and

sup
vh∈S

(2)
h (Ω)

b̂(µh, vh)

‖vh‖H2(Ω)
≥ β‖µh‖H−2

d (Ω), ∀µh ∈ S
(0)
h,d(Ω) (51)

The solution operator C defined by (20) is an isomorphism from (H−2
d (Ω), ‖ · ‖H−2

d (Ω)) onto

(V ⊥, ‖ · ‖H2(Ω)). Similarly, the solution operator Ch defined by (35) is an isomorphism from

(S
(0)
h,d(Ω), ‖ · ‖H−2

d (Ω)) onto (V ⊥h , ‖ · ‖H2(Ω)).

Proof: The condition (50) follows immediately with (17). To demonstrate (51), the approach is
to use Lemma 1.1 on p. 117 of [7]. For this, it must be shown that two conditions below, (54)

and (55), are satisfied for an operator Πh from H2(Ω) into S
(0)
h,d(Ω) defined by (53) below.

With P
(2)
h defined as the projection of H2(Ω) onto S

(2)
h (Ω), note that the operators C and

Ch of (20) and (35) satisfy Ch = P
(2)
h C on S

(0)
h,d(Ω) according to

(P
(2)
h Cµh, vh)H2(Ω) = (Cµh, vh)H2(Ω) = b̂(µh, vh) = (Chµh, vh)H2(Ω),

∀µh ∈ S
(0)
h,d(Ω), ∀vh ∈ S

(2)
h (Ω)

(52)
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With the approximation property of the projection, ‖(I − P (2)
h )v‖H2(Ω)

h→0−→ 0, ∀v ∈ H2(Ω), it
follows for h sufficiently small, ∃c > 0 such that

‖Chµh‖H2(Ω) ≥ ‖Cµh‖H2(Ω) − ‖(1− P
(2)
h )Cµh‖H2(Ω) ≥ c‖Cµh‖H2(Ω) > 0, 0 6= µh ∈ S

(0)
h,d(Ω)

where the last inequality follows with (20) and (50). Hence, C∗hCh is symmetric and positive

definite on S
(0)
h,d(Ω). So for a given v ∈ H2(Ω), let λh ∈ S

(2)
h,d(Ω) solve (Chλh, Chµh)H2(Ω) =

(v, Cµh)H2(Ω), ∀µh ∈ S
(0)
h,d(Ω). Then define the operator Πh from H2(Ω) into S

(2)
h (Ω) by Πhv =

Chλh so that

(Πhv, Chµh)H2(Ω) = (v, Cµh)H2(Ω), ∀µh ∈ S
(0)
h,d(Ω), ∀v ∈ H2(Ω). (53)

With (20), (35) and (53),

b̂(µh,Πhv) = (Πhv, Chµh)H2(Ω) = (Cµh, v)H2(Ω) = b̂(µh, v), ∀µh ∈ S
(0)
h,d(Ω), ∀v ∈ H2(Ω)

(54)
Thus, (54) is the first condition to be demonstrated. Setting Chµh = Πhv in (53) gives

‖Πhv‖2H2(Ω) = (v,Πhv)H2(Ω) ≤ ‖v‖H2(Ω)‖Πhv‖H2(Ω) or ‖Πhv‖H2(Ω) ≤ ‖v‖H2(Ω) (55)

and (55) is the second condition to be demonstrated. The condition (51) follows now from
Lemma 1.1 on p. 117 of [7]. The characterizations of the operators C and Ch of (20) and (35)
as isomorphisms follow from Lemma 4.1 on p. 58 of [7].

The final conditions for Theorem 8 below are given as follows.

Lemma 7 The forms b̂, d̂ and d̂h of (39), (40) and (43) satisfy

sup
vh∈S

(2)
h (Ω),µh∈S

(0)
h,d(Ω)

|b̂(µh, vh)|
‖vh‖H2(Ω)‖µh‖H−2

d (Ω)

≤ sup
v∈H2(Ω),µ∈H−2

d (Ω)

|b̂(µ, v)|
‖v‖H2(Ω)‖µ‖H−2

d (Ω)

≤ 1 (56)

sup
µ∈H−2

d (Ω)

|d̂(µ)|
‖µ‖H−2

d (Ω)

≤ ‖ud‖H2(Ω) (57)

and

sup
µh∈S

(2)
h,d(Ω)

|d̂h(µh)|
‖µh‖H−2

d (Ω)

≤ [1 + τ(h)]‖ud‖H2(Ω). (58)

Proof: Since S
(2)
h (Ω) ⊂ H2(Ω) and S

(0)
h,d(Ω) ⊂ H−2

d (Ω), (56) follows immediately with the

definition (17) of the norm on H−2
d (Ω) constructed in terms of b̂ in (39). Similarly, (57) follows

from (17) and (40). For (58), (30) and (57) are combined to give

|d̂h(µh)| ≤ |d̂(µh)|+ |d̂(µh) + d̂h(µh)| ≤ (1 + τ(h))‖ud‖H2(Ω)‖µh‖H−2
d (Ω) (59)

and (58) follows.

Thus, all the conditions of Theorem 1.1 on p. 114 of [7] are met, and the result is summarized
in Theorem 8 below, with the proof adapted for data approximation.
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Theorem 8 Under the conditions (48), (49), (50), (51), (56) and (57), the solution (λ?h, u
?
h)

to (36) converges to the solution (λ?, u?) to (18) according to

‖u? − u?h‖H2(Ω) + ‖λ? − λ?h‖H−2
d (Ω) ≤ K

 inf
vh∈S

(2)
h (Ω)

‖u? − vh‖H2(Ω) + inf
µh∈S

(0)
h,d(Ω)

‖λ? − µh‖H−2
d (Ω)


+τ(h)‖ud‖H2(Ω)

(60)
for a constant K independent of h.

Proof: Define the inhomogeneous counterpart to Vh in (47) as

Vh,d = {uh ∈ S
(2)
h (Ω) : b̂(µh, uh) = d̂h(µh), ∀µh ∈ S

(0)
h,d(Ω)}.

For an arbitrary but fixed vd
h ∈ Vh,d, set v0

h = u?h − vd
h so that by (36), v0

h ∈ Vh, b̂(λ?h, v
0
h) = 0

and
a(v0

h, v
0
h) = a(u?h, v

0
h)− a(vd

h, v
0
h) = −b̂(λ?h, v0

h)− a(vd
h, v

0
h) = −a(vd

h, v
0
h).

Then take v = v0
h in the second equation of (42) and add the result to the right side of the last

equation to obtain
a(v0

h, v
0
h) = a(u? − vd

h, v
0
h) + b̂(λ?, v0

h).

Moreover, since v0
h ∈ Vh, b̂(µh, v

0
h) = 0 holds ∀µh ∈ S

(0)
h,d(Ω), and so

a(v0
h, v

0
h) = a(u? − vd

h, v
0
h) + b̂(λ? − µh, v0

h), ∀µh ∈ S
(0)
h,d(Ω).

The Vh-coercivity of a (48) and the continuity of a and b̂ yield:

α‖v0
h‖H2(Ω) ≤ ‖u? − vd

h‖H2(Ω) + ‖λ? − µh‖H−2
d (Ω), ∀µh ∈ S

(0)
h,d(Ω).

Thus,

‖u? − u?h‖H2(Ω) ≤ ‖u? − vd
h‖H2(Ω) + ‖v0

h‖H2(Ω)

≤ (1 + α−1)‖u? − vd
h‖H2(Ω) + α−1‖λ? − µh‖H−2

d (Ω)

∀µh ∈ S
(0)
h,d(Ω)

and since vd
h ∈ Vh,d is arbitrary it follows that

‖u? − u?h‖H2(Ω) ≤ (1 + α−1) inf
wd

h∈Vh,d
‖u? − wd

h‖H2(Ω) + α−1 inf
µh∈S

(0)
h,d(Ω)

‖λ? − µh‖H−2
d (Ω). (61)

It will next be shown that the Vh,d term in (61) can be so estimated,

inf
wd

h∈Vh,d
‖u? − wd

h‖H2(Ω) ≤ (1 + β−1) inf
vh∈S

(2)
h (Ω)

‖u? − vh‖H2(Ω) + β−1τ(h)‖ud‖H2(Ω). (62)

Now let ûh ∈ S
(2)
h (Ω) be fixed but arbitrary. By Lemma 3, choose z0

h + zh = z̃h ∈ S
(2)
h (Ω),

z0
h ∈ Vh, zh ∈ V ⊥h , so that

b̂(µh, zh) = b̂(µh, z̃h) = b̂(µh, u
?
h − ûh), ∀µh ∈ S

(0)
h,d(Ω). (63)

By Lemma 6, Ch is an isomorphism from (S
(0)
h,d(Ω), ‖ · ‖H−2

d (Ω)) onto (V ⊥h , ‖ · ‖H2(Ω)). Hence the

estimate,

‖Chµh‖H2(Ω) = sup
vh∈V ⊥h

(Chµh, vh)H2(Ω)

‖vh‖H2(Ω)
= sup

vh∈V ⊥h

b̂(µh, vh)

‖vh‖H2(Ω)
≥ β‖µh‖H−2

d (Ω)

∀µh ∈ S
(0)
h,d(Ω)
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is equivalent to

‖C∗hvh‖H−2
d (Ω) = sup

µh∈S
(0)
h,d(Ω)

(µh, C
∗
hvh)H−2

d (Ω)

‖µh‖H−2
d (Ω)

= sup
µh∈S

(0)
h,d(Ω)

(Chµh, vh)H2(Ω)

‖µh‖H−2
d (Ω)

= sup
µh∈S

(0)
h,d(Ω)

b̂(µh, vh)

‖µh‖H−2
d (Ω)

≥ β‖vh‖H2(Ω), ∀vh ∈ V ⊥h .

Since zh ∈ V ⊥h , it follows from the last estimate together with (42), (45), (30) and (63) that

β‖zh‖H2(Ω) ≤ sup
µh∈S

(0)
h,d(Ω)

b̂(µh, zh)

‖µh‖H−2
d (Ω)

= sup
µh∈S

(0)
h,d(Ω)

b̂(µh, u
?
h − ûh)

‖µh‖H−2
d (Ω)

= sup
µh∈S

(0)
h,d(Ω)

b̂(µh, u
? − ûh) + b̂(µh, u

?
h − u?)

‖µh‖H−2
d (Ω)

= sup
µh∈S

(0)
h,d(Ω)

b̂(µh, u
? − ûh) + d̂h(µh)− d̂(µh)

‖µh‖H−2
d (Ω)

≤ ‖u? − ûh‖H2(Ω) + τ(h)‖ud‖H2(Ω).

Thus, with wd
h = zh + ûh and (45),

b̂(µh, w
d
h) = b̂(µh, u

?
h − ûh) + b̂(µh, ûh) = b̂(µh, u

?
h) = d̂h(µh), ∀µh ∈ S

(0)
h,d(Ω)

so wd
h ∈ Vh,d. Furthermore,

‖u? −wd
h‖H2(Ω) ≤ ‖u? − ûh‖H2(Ω) + ‖zh‖H2(Ω) ≤ (1 + β−1)‖u? − ûh‖H2(Ω) + β−1τ(h)‖ud‖H2(Ω).

Since ûh ∈ S
(2)
h (Ω) is arbitrary, (62) follows. It remains to estimate ‖λ? − λ?h‖H−2

d (Ω). From the

second equation in (42) and the second equation in (45),

b̂(λ?h − µh, vh) = a(u? − u?h, vh) + b̂(λ? − µh, vh), ∀vh ∈ S
(2)
h (Ω), ∀µh ∈ S

(0)
h,d(Ω)

Using (51) for the left side and the continuity of a and b for the right side,

β‖λ?h − µh‖H−2
d (Ω) ≤ ‖u

? − u?h‖H2(Ω) + ‖λ? − µh‖H−2
d (Ω)

Hence,

‖λ? − λ?h‖H−2
d (Ω) ≤ β

−1‖u? − u?h‖H2(Ω) + (1 + β−1) inf
µh∈S

(0)
h,d(Ω)

‖λ? − µh‖H−2
d (Ω) (64)

Thus, (60) follows from (61), (62) and (64).

Note that S
(2)
h (Ω) is dense in H2(Ω), and S

(0)
h,d(Ω) is dense in L2

d(Ω) and hence in H−2
d (Ω).

Therefore, the desired convergence is obtained from (60).

4 Computational Results

The standard finite element method considered here for the approximation of the primal

problem (11) is to compute uh ∈ S
(2)
h (Ω) so that

εa(uh, vh) + bh(vh, uh) = dh(vh), ∀vh ∈ S
(2)
h (Ω) (65)
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where a, bh and dh are given by (8), (25), (26), respectively. With {si} denoting a basis for

S
(2)
h (Ω), define the matrices and vectors,

A = {a(si, sj)} , B = {bh(si, sj)} , D = {dh(si)} , uε = {uεi}

where uεh =
∑

i u
ε
isi. The linear algebraic formulation of (65) is given by

(εA+B)uε = D (66)

which can also be written in primal-dual form as follows with the dual variable λεh =
∑

i λ
ε
isi,

λε = {λεi}, [
−εB B
B A

] [
λε

uε

]
=

[
D
0

]
(67)

Representative results are shown in Fig. 2 for the one-dimensional case discussed there. Solutions
to (66) are shown in Fig. 2a for ε = O(1) and in Fig. 2b for ε << 1. The result for ε << 1
evidently exhibits discontinuous derivatives, and it retains this appearance robustly with respect
to h. These discontinuous derivatives apparently depart from a theoretical result analogous

to Theorem 8 above that the limit function uεh
ε→0−→ u?h converges to the continuum solution

u? ∈ H2(Ω) with grid refinement. This hypothesis may be tested directly with counterparts
to (36) – (38) instead of choosing ε vanishingly small in (66). For this, let u?h =

∑
i u

?
i si,

u? = {u?i } be the primal variable and λ?h =
∑

i λ
?
i si, λ

? = {λ?i } the dual variable in the saddle
point problem [

(I −BB†) B
B ωA

] [
λ
u

]
=

[
D
0

]
(68)

which characterizes the stationary point for the Lagrangian functional,

L(u,λ) = 1
2u

TAu+ λT(Bu−D), (I −BB†)λ = 0

while u? solves
min
u
uTAu subject to Bu = D.

Here, B† denotes the pseudo-inverse of B. Since (I − BB†) is the orthogonal projector onto
the kernel K of B = BT, the complementarity condition (I − BB†)λ = 0 ensures that λ has
no component on K. The numerical result is identical to that shown in Fig. 2b. On the other
hand, when the data are approximated at least with pixelwise linear functions, solutions to (65)
(ε << 1) and (68) are identical to that shown in Fig. 2c.

The implementation of (27) will now be considered computationally. With bases for S
(0)
h,d(Ω)

and S
(2)
h (Ω) denoted by {χi} and {si}, respectively, define the matrices,

A = {a(si, sj)} , B = {bh(χi, sj)} , C = {bh(χi, χj)}

and vectors,
D = {dh(χi)} , uε = {uεi} , λε = {λεi}

with uεh =
∑

i u
ε
isi and λεh =

∑
i λ

ε
iχi so that (27) may be written as[
−εC B
BT A

] [
λε

uε

]
=

[
D
0

]
(69)

Since B = CP , where
P = {(χi, sj)L2(Ω)}

is the projection of S
(2)
h (Ω) onto S

(0)
h (Ω), λ can be eliminated from (69) in the following form,

(εA+ PTCP )u = PTD (70)
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Representative results are shown in Fig. 2 for the one-dimensional case discussed there. Solutions
to (69) are shown in Fig. 2a for ε = O(1) and in Fig. 2c for ε << 1. The result for ε << 1 evidently
agrees with the vanishing regularization solution u?, and it retains this appearance robustly with
respect to h. This result is apparently consistent with the theoretical result of Theorem 8 above

that the limit function uεh
ε→0−→ u?h converges to the continuum solution u? ∈ H2(Ω) with grid

refinement. This hypothesis may be tested directly with counterparts to (36) – (38) instead
of choosing ε vanishingly small in (69). For this, let u?h =

∑
i u

?
i si, u

? = {u?i } be the primal
variable and λ?h =

∑
i λ

?
i si, λ

? = {λ?i } the dual variable in the saddle point problem[
(I −BB†) B

BT A

] [
λ?

u?

]
=

[
D
0

]
(71)

which characterizes the stationary point for the Lagrangian functional,

L(u,λ) = 1
2u

TAu+ λT(Bu−D), (I −BB†)λ = 0

while u? solves
min
U
uTAu subject to Bu = D

Here, B† denotes the pseudo-inverse of B. Since (I − BB†) is the orthogonal projector onto
the kernel K of BT, the complementarity condition (I − BB†)λ = 0 ensures that λ has no
component on K. The numerical result is identical to that shown in Fig. 2c.

The standard finite element method (66) and the mixed finite element method (69) are
now compared for the two-dimensional example of Figs. 1 and 3. So that an exact answer

(a) standard (b) mixed

Figure 3: Vanishing regularization (ε � 1) estimations of u in Fig. 1c using (a) the standard finite
element method (66) and (b) the mixed finite element method (69).

may be known, ũ in Fig. 1b is given by the product of κ in Fig. 1a with u in Fig. 1c. For
vanishingly small regularization, ε� 1, the solutions to (66) and (69) are shown in Figs. 3a and
3b, respectively. Quantitative measures of the estimation error are several orders of magnitude
larger for the result in Fig. 3a in relation to that in Fig. 3b, but the advantage of the mixed
method in relation to the standard method is visually evident.

In an effort to understand the success of the mixed method in relation to the standard
method, one notes especially the following important clue. As reported above, the results
from the standard method mimic those of the mixed method if the data are represented as
piecewise linear. Apparently, if the data are represented with sufficient accuracy, convergence of
a regularized solution to a vanishing regularization solution can be obtained, which is consistent
with the well-known result cited in Section 1 concerning the rates at which regularization and
noise may be simultaneously reduced [14]. Evidently, when the data are approximated as
piecewise constant, the standard method senses this approximation in the forms bh and dh
unavoidably as inaccurate data. On the other hand, the mixed method does not sense the
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cellwise constant approximation of data as inaccurate, particularly in the forms dh or d̂h, because
the test functions are cellwise constant and satisfy

d̂(µh) =

∫
Ω
µhχdud =

∫
Ω
µhũ/κ =

∫
Ω
µhP

(0)
h,d(ũ/κ) ≈

∫
Ω
µhũh/κh = d̂h(µh), ∀µh ∈ S

(0)
h,d(Ω)

(72)

Here P
(0)
h,d is the L2(Ω) projection onto S

(0)
h,d(Ω) and the approximation of the data P

(0)
h,d(ũ/κ) ≈

P
(0)
h,dũ/P

(0)
h,dκ = ũh/κh for (30) and (72) is apparently excellent. Although the projection P

(0)
h,d

cannot be used similarly for the form bh, the mixed method permits (18) and (36) with bh and
dh to be reformulated as (42) and (45) with b̂ and d̂h, where b̂ contains no data approximation.
For the standard method, the forms bh and dh in (65) cannot be reformulated in a way which
mimics (39) and (43). Yet, for the example presented in Fig. 2, bh = b holds for all methods
presented and thereby emphasizes the importance of the approximation seen in (72). For the
standard method, a counterpart to (72) cannot be written in terms of a projection which is
friendly to a cellwise constant approximation of data. As a result, the counterpart to (30)
apparently does not hold for the standard method, which prevents the desired convergence.

In light of these observations, penalized discontinuous Galerkin methods have also been
considered for this work. The general weak formulation follows that of [2], where the boundary
integrals are not included here because of the natural boundary conditions. Specifically, for
the one-dimensional example of Fig. 2, Ω = (0, 1) is discretized with cell interfaces xi = ih,
i = 0, . . . , N , h = 1/N as described in Section 3, and the bilinear form a is modified to obtain
a0 + aγ , defined as follows using the notation {u} ≡ 1

2(u− + u+) and [v] ≡ v− − v+,

a0(u, v) =

N∑
k=1

∫ xk

xk−1

uxxvxx +

N−1∑
k=1

{
{uxxx}[v] + {vxxx}[u]− {uxx}[vx]− {vxx}[ux]

}
xk

aγ(u, v) = γ
N−1∑
k=1

{
h−3[u][v] + h−1[ux][vx]

}
xk

While other polynomial bases have also been tested with identical results, let the Chebychev
polynomials

P0(t) = 1, P1(t) = t, P2(t) = 2x2 − 1, P3(t) = 2x(2x2 − 1)− x,

define the piecewise polynomial basis,

{βk : k = 1, . . . , 4N} = {Pj(2(x− xi)/h− 1) : i = 1, . . . , N, j = 0, . . . , 3}

With this basis define the matrices

A = A0 +Aγ = {a0(βi, βj)}+ {aγ(βi, βj)} ∈ R4N×4N ,

and in terms of (25) and (26),

B = {bh(βi, βj)} ∈ R4N×4N , D = {dh(βi)} ∈ R4N

so that the approximation uεh =
∑4N

k=1 u
ε
kβk, u

ε = {uεk}4Nk=1, to uε is determined as the solution
to

[εA+B]uε = D.

Since the cellwise constant data are in the span of P0 and orthogonal to {Pj}3j=1, only the P0

modes are non-trivial in the form D. Also, only the P0 modes are excited in the solution uε

when ε is especially small and γ is just large enough for εA+B to be positive definite. In this
case, uε is roughly in the kernel of A0, and Aγ becomes the discrete Laplacian with natural
boundary conditions. As a result, regularization is effectively only first order, and the numerical
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solution uεh is constant on Ω\Sd, departing from all results shown in Fig. 2. On the other hand,
if the data are approximated as piecewise linear, i.e., in the span of {P0, P1} and orthogonal to
{Pj}3j=2, then the P0 and P1 modes are non-trivial in the form D and excited in the solution for
ε and γ as described above. As a result, the data approximation is sufficiently accurate and the
numerical solution resembles the correct one shown in Fig. 2c. If the data are only approximated
as cellwise constant, then γ can be chosen sufficiently large to obtain a correct result such as
seen in Fig. 2c. However, the correct γ for such a result depends upon ε. Furthermore, as
γ is increased ever larger, then the discontinuous Galerkin method converges to the standard
finite element method, and the result resembles that shown in Fig. 2a. Instead of choosing
ε vanishingly small to approximate the vanishing regularization solution, the primal-dual and
saddle point formulations may be used as for the standard and mixed finite element methods,
but the results agree with the cases described here for ε chosen vanishingly small.

5 Conclusions

The model problem demonstrated in Fig. 1 and formulated in (6) has been used to repre-
sent a typical image processing problem of reconstructing an unknown in the face of incomplete
data. A discretization of (6) is defined to be consistent with respect to vanishing regularization

if the numerical solution uεh exhibits the convergence uεh
ε→0−→ u?h as well as u?h

ε→0−→ u?, where the

continuum solution uε to (6) exhibits the convergence uε
ε→0−→ u?. Since vanishing regularization

is of interest only when data fidelity is sufficient, it is assumed that the data are smooth enough
that the continuum limit u? has at least the regularity of the space for the weak formulation
in (11). As the primal characterization of uε in (11) permits a primal-dual formulation in (15),
the vanishing regularization limit u? may be characterized explicitly with the saddle point for-
mulation in (18). A mixed finite element discretization of (15) is given in (27), whose vanishing
regularization limit is given in (36), the counterpart to (15). The numerical solutions uεh and u?h
for the mixed method are shown in Theorem 8 to be consistent in the sense defined here. This
consistency is also demonstrated computationally in Section 4 in terms of an artificial example
and a realistic example with magnetic resonance images. On the other hand, it is demonstrated
computationally that a standard finite element discretization is not consistent. The reason for
the relative success of the mixed method is explained by a projection property which is friendly
to cellwise constant data approximation, making the forms used for the method nearly exact.
Since the counterpart forms used for the standard method suffer from significant approximation
errors, the method requires that grid refinement be coordinated with the reduction of regular-
ization. Experiments with a penalized discontinuous Galerkin method are consistent with these
observations for the mixed and standard methods.
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