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Abstract

In this paper we study the spectral gap for a family of interacting particles systems
on [−N,N ], proving that it is of the order N−2. The system arises as a natural model
for current reservoirs and Fick’s law.

1 Introduction

In this paper we study an interacting particle system whose state space is {0, 1}[−N,N ].
The dynamics is a Markov process with generator L = L0 + Lb, L0 the generator of the
stirring process (see (2.1) below), Lb the generator of a birth-death process whose events
are localized in a neighborhood of the end-points, see (3.1).

In particular we consider the case when around N there are only births while around
−N there are only deaths. The system is then “unbalanced” and in the stationary measure
µst
N there is a non-zero steady current of particles flowing from right to left. The system is

designed to model the Fick’s law which relates the current to the density gradient.
In statistical mechanics non-equilibrium is not as well understood as equilibrium, hence

the interest from a physical viewpoint to look at systems which are stationary yet in non-
equilibrium: in our case the stationary process is in fact non-reversible and the stationary
measure µst

N not Gibbsian.
There is a huge literature on stationary non-equilibrium measures, in particular on

their large deviations as they are related to “out of equilibrium thermodynamics” (see for
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instance [1, 2, 3, 8]). Here we study the spectral gap in the stationary process and the way
it depends on the system size N . Spectral gaps have been well studied in the reversible or
Gibbsian set-up, both for stirring and for more general interacting particle systems. (See
for instance [10].) The techniques used in those situations however do not seem to apply
to our non-equilibrium model. We shall rather rely on stochastic inequalities and coupling
methods, thus reducing the problem to that of bounding the extinction time of the set
of discrepancies between two coupled evolutions. The case of a single discrepancy can be
regarded as an environment dependent random walk with death rate which also depends
on the environment. Its extinction time has been studied in [7] and as we shall see here it
is closely related to the spectral gap in our model.

The main part of this paper refers to the case of “current reservoirs” (where also Lb is
multplied by a factor 1/N). Much simpler is the case when Lb fixes the different densities
at the boundaries, whose analysis is carried out sketchily in the next section mainly as an
introduction.

2 Density reservoirs

We consider in this section the Markov process on {0, 1}[−N,N ] with generator L = L0 +L′,
where, denoting by η the elements of {0, 1}[−N,N ],

L0f(η) :=
1

2

N−1∑
x=−N

[f(η(x,x+1))− f(η)] (2.1)

with η(x,x+1)(x) = η(x+ 1), η(x,x+1)(x+ 1) = η(x) and η(x,x+1) = η elsewhere;

L′f(η) = ρ+[f(η(+,N))− f(η)] + (1− ρ+)[f(η(−,N))− f(η)]

+ ρ−[f(η(+,−N))− f(η)] + (1− ρ−)[f(η(−,−N))− f(η)]

where 1 ≥ ρ+ > ρ− ≥ 0 and η+,x(x) = 1, η+,x(y) = η(y), y 6= x; analogously η−,x(x) = 0,
η−,x(y) = η(y), y 6= x.

The process corresponding to L′ alone leaves unchanged the occupations at |x| < N
while the equilibrium probabilities of occupation at ±N are equal to ρ±. Since ρ+ > ρ−,
this creates a density gradient and the full process with generator L = L0 + L′ describes
the particles flux determined by the density gradient. The process is uniformly Döblin,
in particular there is a unique stationary measure µst

N and convergence to equilibrium is
exponentially fast. The averages µst

N [η(x)] describe a linear density profile in agreement
with Fick’s law. Fluctuations in equilibrium are well characterized, [11], and the large
deviations as well, [8].

Denote by µN the initial distribution and by µNSt the distribution at time t (i.e. the
law at time t of the process with generator L starting from µN). Then, since the process
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is uniformly Döblin, for any positive integer N there are strictly positive constants cN and
bN so that

‖µNSt − µst
N‖ ≤ cNe

−bN t for any µN and t > 0 (2.2)

where for any signed measure λ on {0, 1}[−N,N ]

‖λ‖ =
∑
η

|λ(η)|. (2.3)

We shall prove that:

Theorem 1. There are c and b > 0 independent of N so that for any initial measure µN

‖µNSt − µst
N‖ ≤ cNe−bN

−2t (2.4)

Proof. Let

XN =
{
η = (η(1), η(2)) ∈ ({0, 1}×{0, 1})[−N,N ] : η 6=(x) := η(1)(x)−η(2)(x) ≥ 0,∀x

}
, (2.5)

and, for f : XN → R,

L0f(η) :=
1

2

N−1∑
x=−N

[f(η(x,x+1))− f(η)]

L′f(η) = ρ+[f(η(+,N))− f(η)] + (1− ρ+)[f(η(−,N))− f(η)]

+ ρ−[f(η(+,−N))− f(η)] + (1− ρ−)[f(η(−,−N))− f(η)]

where η(+,x)(x) = (1, 1), η(−,x)(x) = (0, 0), x = ±N .
It is easy to see that L0 and L′ define Markov generators on XN . Moreover, when

acting on functions that depend on only one of the two entries, η(1) or η(2), of η, we see
that L0 + L′ coincide with L, and so it defines a coupling between the processes with
generator L starting from two comparable configurations η(1) and η(2) (η(1)(x) ≥ η(2)(x) for
all x), showing that the L-evolution is attractive in the sense of [9] (i.e. preserves order).
In particular we may take η(1) ≡ 1 and η(2) ≡ 0 the configurations that are identically
1 and, respectively, 0. Moreover L0 leaves unchanged the number of discrepancies which
instead may decrease under the action of L′. Write P for the law of the process starting
from η(1) ≡ 1 and η(2) ≡ 0 and call π(x, t) = P[η6=(x, t) = 1]. We then have, recalling that
π(x, 0) = 1 for all x,

π(x, t) = 1−
∫ t

0

(
ps(x,N)π(N, t) + ps(x,−N)π(−N, t)

)
ds
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where ps(x, y) is the probability under the stirring process (with only one particle) of going
from x to y in a time s; this is the same as the probability of a simple random walk whose
jumps outside [−N,N ] are suppressed. Hence

π(x, t) = Ex
[
e−T

∗(t)
]

where Ex is the expectation of the process with transition probabilities ps(x, y) and T ∗(t)
is the time spent at {−N,N} during [0, t]. We shall prove that

Ex
[
e−T

∗(t)
]
≤ ce−bN

−2t (2.6)

which will then imply
N∑

x=−N

P
[
η 6=(x, t) = 1

]
≤ Nce−bN

−2t

and so (2.4), because µNSt and µst
N are squeezed in between the laws of the marginal of

the coupled process.
Proof of (2.6).

By an iterative argument it is enough to show that

sup
x∈[−N,N ]

Ex
[
e−τ
]
≤ p < 1, τ := T ∗(N2)

But
inf

x∈[−N,N ]
Px
[
τ ≥ 1

]
≥ δ > 0 (2.7)

as the probability of reaching {−N,N} by time N2 − 1 is bounded from below uniformly
in the starting point and the probability of not moving for a unit time interval is also
bounded away from 0. By (2.7)

Ex
[
e−τ
]

= Ex
[
e−τ ; τ < 1

]
+ Ex

[
e−τ ; τ ≥ 1

]
≤ 1− Px[τ ≥ 1] + Px[τ ≥ 1]e−1 ≤ 1− δ(1− e−1)

3 Main result

In this paper we study the process with generator L = L0 + Lb, L0 as in (2.1), Lb =
Lb,+ + Lb,− describes births and deaths near the boundaries. Namely, denoting by η the
elements of {0, 1}[−N,N ] and by f functions on {0, 1}[−N,N ],

Lb,±f(η) :=
j

2N

∑
x∈I±

D±η(x)[f(η(x))− f(η)] (3.1)

D+η(x) = (1− η(x))η(x+ 1) · · · η(N),

D−η(x) = η(x)(1− η(x− 1)) · · · (1− η(−N))
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where j > 0 is a parameter of the model, I+ = {N − 1, N} and I− = {−N,−N + 1} (in
[4], [5], [6] I± consist of K sites, here we restrict to K = 2 only for notational simplicity).
Thus Lb,+ adds a particle at rate j

2N
in the last empty site (if any) in I+ while at the same

rate Lb,− takes out the first particle (if any) in I− at same rate 1.
Motivations for this model can be found in previous papers, [4], [5], [6], where we have

studied the hydrodynamic behavior of the system and the profile of the stationary measure
as N → ∞. The analysis in the above papers does not say what happens for the process
after the hydrodynamical regime, i.e. at times longer than N2. This is the aim of the
current paper where we study the spectral gap, determining the time scale for reaching
equilibrium.

We use the same notation as in the previous section with µNSt, t ≥ 0, the law at time
t of the process with generator L starting from µN :

µNSt [f ] = µN
[
eLtf

]
. (3.2)

If j = 0 i.e. L = L0 the sets {
∑
η(x) = M}, 0 ≤M ≤ 2N +1, are invariant so that the

process is not even ergodic. However, the presence of Lb, even if “small” due to the rate
j/2N , changes drastically the long time behavior of the system and it is therefore crucial
in the computation of the spectral gap. Our process, like the one in the previous section,
is uniformly Döblin; there is therefore a unique stationary measure µst

N and (2.2) holds in
the present context as well. We prove the analogue of Theorem 1:

Theorem 2. There are c and b > 0 independent of N so that

‖µNSt − µst
N‖ ≤ cNe−bN

−2t, for all initial measures µN and all t > 0

Theorem 2 is the main result in this paper and it will be proved in the next sections.
The rate N−2 in the exponent in (3.3) cannot be improved, as can be easily seen

by bounding from below the probability that an initially existing discrepancy does not
disappear by the time N2.

The result is in several respects surprising: the spectral gap in fact scales as N−2 just
like in the stirring process (i.e. with j = 0) restricted to any of the invariant subspaces
{η :

∑
η(x) = M}. The result says that in a time of the same order the full process

manages to equilibrate among all the above subsets according to µstN ; also, the time for this
to happen scales in the same way as for the process of the previous section, where however
the birth-death events are not scaled down with N as in Theorem 2.

We do not have sharp information on µst
N . In [6] we have proved that the set M of

all probability measures on {0, 1}[−N,N ] shrinks after a time of order N2 to a smaller set
MN but we have no information on the way it further shrinks at later times. All measures
in MN are close to a product measure γN , meaning that the expectation of products
η(x1) · · · η(xn) are close (the accuracy increasing with N) to those of γN , for all n-tuples
of distinct sites xi; n is given but it can be taken larger and larger as N increases. We also
know that the expectations γN [η(x)] are close to ρst(x/N), where ρst(r), r ∈ [−1, 1], is the
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stationary solution of the limit hydrodynamic equation; it is an increasing linear function
and ρst(−1) = 1− ρst(1) > 0.

We thus know that µst
N is close (in the above sense) to the product measure γN , but

that is all, which does not seem detailed enough to apply the usual techniques for the
investigation of the spectral gap using equilibrium estimates. We proceed differently, our
proof of Theorem 2 follows along the lines of the much simpler Theorem 1. It relies
on a careful analysis of the time evolution, exploiting stochastic inequalities, as in the
previous section. We thus consider a coupled process on XN , see (2.5), which again starts
from η(1)(x, 0) = 1 and η(2)(x, 0) = 0 for all x ∈ [−N,N ]. The process is defined in
such a way that the marginal distributions of η(1) and η(2) have the law of process with
generator L. By the definition of XN , η(1) ≥ η(2) at all times (order is preserved) and the
proof of Theorem 2 follows from an estimate on the extinction time of the “discrepancy
configuration” η6= = η(1)−η(0). We shall in fact prove that there are c and b > 0 independent
of N so that

N∑
x=−N

P[η 6=(x, t) = 1] ≤ cNe−bN
−2t (3.3)

4 The coupled process

Throughout the sequel we shall use the following:

Notation. ε := N−1; for η = (η(1), η(2)) ∈ XN as defined in (2.5), and x ∈ [−N,N ],

η 6=(x) = η(1)(x)− η(2)(x), η1(x) = η(1)(x)η(2)(x), η0(x) = (1− η(1)(x))(1− η(2)(x)),
(4.1)

η 6=, η1, η0 are all in {0, 1}[−N,N ] and η6= + η1 + η0 ≡ 1. Thus (4.1) establishes a one to one
correspondence between XN and {6=, 1, 0}[−N,N ] and. By an abuse of notation, we shall
denote again by η the elements of {6=, 1, 0}[−N,N ], thinking of η 6=, η1, η0 as functions of η.
We may then say that a 6=, 1 or 0-particle is at x according to the value of η(x).

Definition. Call L′0 the stirring generator acting on functions on XN (defined as in (2.1)
with η replaced by η) and let Lc = L′0 + j

2N
L1, L1 = Lr + Ll, be the generator acting on

functions on XN , where Lrf is defined as

Lrf(η) =
N∑

i=N−1

D(η, i)[f(η 6=,1,i)− f(η)]

+A(η,N)[f(η 6=,1,N ;0, 6=,N−1)− f(η)] +
N∑

i=N−1

B(η, i)[f(η0,1,i)− f(η)] (4.2)
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and where ηa,b,i changes from a to b the value of η at site i if η(i) = a, and ηa,b,i = η

otherwise, and η 6=,1,N ;0, 6=,N−1 = (η 6=,1,N)0, 6=,N−1,

D(η,N) = η6=(N)[1− η0(N − 1)], D(η,N − 1) = η6=(N − 1)η1(N)

A(η,N) = η6=(N)η0(N − 1)

B(η,N) = η0(N), B(η,N − 1) = η0(N − 1)η1(N).

Thus Lr describes three type of events all occurring in I+:

• D-events: a 6=-particle becomes a 1-particle.

• A events: a 6=-particle becomes a 1-particle and simultaneously a 0-particle becomes
a 6=-particle.

• B-events: a 0-particle becomes a 1-particle.

Ll is defined analogously by changing I+ into I− and η0 with η1. One can easily check
that

Lcf = Lg, whenever f(η) = g(η(i)), i = 1, 2, (4.3)

L the generator in Section 3. Thus the process generated by Lc is a coupling of two
processes both with generator L and that L preserves order. (This is just the standard
basic coupling, as in [9]; see also Proposition 3.1 of [6].)

5 Graphical construction

Following the so called Harris graphical construction, we realize the coupled process in a
probability space (Ω, P ) which is a product of several Poisson processes.

Definition. The probability space (Ω, P ). The elements ω ∈ Ω have the form

ω =
(
t(x), x ∈ [−N,N − 1]; t(A,±N) t(D,±N); t(D,±(N−1)); t(B,±N); t(B,±(N−1))

)
where each entry is a sequence in R+ whose elements are interpreted as times. The entries
are independent Poisson processes: each one of the t(x) has intensity 1/2, all the others
have each intensity εj/2.

With probability 1 all times are different from each other and there are finitely many
events in a compact. For any such ω ∈ Ω we construct piecewise constant functions
η1(x, t;ω), η0(x, t;ω), η6=(x, t;ω), as follows. The jump times are a subset of the events in

the above Poisson processes, more specifically at the times t = t
(x)
n we exchange the content

of the sites x and x+ 1 (i.e. we do a stirring at (x, x+ 1)); the other jumps are:
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• At the times t = t
(A,±N)
n the configuration is updated only if η6=(±N, t−) = 1 and

η0(±(N − 1), t−) = 1 and the new configuration has η6=(±(N − 1), t+) = 1 and
η1(±N, t+) = 1; the values at other sites remain unchanged.

• At the times t = t
(D,±N)
n then the configuration is updated only if η6=(±N, t−) = 1

and η0(±(N − 1), t−) = 0 and the new configuration has η1(±N, t+) = 1; the values
at other sites unchanged.

• At the times t = t
(D,±(N−1))
n the configuration is updated only if η 6=(±(N−1), t−) = 1

and η1(±N, t−) = 1, the new configuration having η1(±(N − 1), t+) = 1; the values
at other sites unchanged.

• At the times t = t
(B,±N)
n the configuration is updated only if η0(±N, t−) = 1, the new

configuration having η1(±N, t+) = 1; the values at other sites unchanged.

• At the times t = t
(B,±(N−1))
n the configuration is updated only if η1(N, t

−) = 1 and
η0(±(N − 1), t−) = 1, the new configuration having η1(±(N − 1), t+) = 1; the values
at other sites unchanged.

We take initially η6=(x, 0) = 1 for all x, then the variables η(x, t;ω) defined as above on
(Ω, P ) have the law of the coupled process defined in Section 4.

Definition. Labeling the discrepancies. By realizing the process in the space (Ω, P ) we
can actually follow the discrepancies in time. Indeed consider the discrepancy initially at
a site z ∈ [−N,N ]. Then the discrepancy will move following the marks of ω. Namely it
moves at the stirring times, i.e. it jumps from x to x+ 1 (or from x+ 1 to x) at the times
t ∈ t(x). Moreover it jumps from N to N − 1 at the times in t(A,N) (if η0(N − 1) = 1) and
analogously from −N to −N + 1 at the times in t(A,−N) (if η1(−N + 1) = 1). Finally we
say that the discrepancy dies (and goes to the state ∅) at the times t(D,±N), t(D,±(N−1)) (if
the conditions for the event are satisfied, as explained in the previous paragraphs).

We thus label the initial discrepancies by assigning with uniform probability a label in
{1, .., 2N + 1} to each site in [−N,N ] and call (z1, . . . , z2N+1) the sites corresponding to
the labels 1, . . . , 2N + 1. This is done independently of ω and by an abuse of notation we
still denote by P the joint law of ω and the labeling. Since initially all sites are occupied
by discrepancies we may interpret zi as the position at time 0 of the discrepancy with
label i. In particular at time 0 the probability that zi = x is equal to 1/(2N + 1). Given
ω ∈ Ω we follow the motion of the labeled discrepancies as described above and define
accordingly the variables zi(t, ω) which takes value in {[−N,N ]∪ ∅}. Thus the set Z(t, ω)
of all zi(t, ω) 6= ∅ is equal to {x : η 6=(x, t;ω) = 1}, so that:

P
[∑

x

η6=(x, t) > 0
]

= P
[
there is i : zi(t, ω) 6= ∅

]
≤

∑
i

P [zi(t, ω) 6= ∅]

= (2N + 1)P [z1(t, ω) 6= ∅] (5.1)
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the last equality by symmetry.
Obviously P [z1(t, ω) 6= ∅] does not depend on the labels of the other z-particles so

that we may and shall describe the system in terms of a random walk zt = z1(t, ω) in a
random environment ηt ∈ {6=, 0, 1}[−N,N ]\zt when zt 6= ∅ (i.e. it is alive); when zt = ∅ then
ηt ∈ {6=, 0, 1}[−N,N ], but since we want to study P [z1(t, ω) 6= ∅] what happens after the
death of z is not relevant.

We have reduced the problem to the analysis of the extinction time of a random walk
in a random environment: the problem looks now very similar to the one considered in [7],
the only difference being that the environment has a more complex structure with three
rather than two states per site. But the procedure is essentially the same as we briefly
sketch in the sequel.

6 The auxiliary random walk process

Once the initial condition (z, η∗) has been fixed, we can consider an auxiliary time depen-
dent Markov process (z̃t) as in [7], whose extinction time has the same law as that of the
true process (z1(t)) of the previous section. The transition rates for z̃t are given by the
conditional expectation of the transition rates of (z1(·)) conditioned on z1(t). Thus they
depend on the law of the full process and hence on the initial datum (z, η∗). This time
dependent generator Lt is given in (6.3) below, and satisfies:

Ẽz[Ltf(z̃t)] = Ez,η∗
[
Lφ(z1(t), ηt)

]
=

d

dt
Ez,η∗

[
φ(z1(t), ηt)

]
,

where φ(z, η) = f(z) and f : ΛN ∪ ∅ → R.
Since

Lrφ =
j

2N

{
1z=N(1− η0(N − 1))[f(∅)− f(N)] + 1z=N−1η1(N)[f(∅)− f(N − 1)]

}
+

j

2N
1z=Nη0(N − 1)[f(N − 1)− f(N)]

Llφ =
j

2N

{
1z=−N(1− η1(−N + 1))[f(∅)− f(−N)] + 1z=−N+1η0(−N))[f(∅)− f(−N + 1)]

}
+

j

2N
1z=−Nη1(−N + 1)[f(−N + 1)− f(−N)]

9



we set

d(N, t) =
j

2N
Ez0,η∗ [1− η0(N − 1, t) | zt = N ],

d(N − 1, t) =
j

2N
Ez0,η∗ [η1(N, t) | zt = N − 1]

d(−N, t) =
j

2N
Ez0,η∗ [(1− η1(−N + 1, t)) | zt = −N ],

d(−N + 1, t) =
j

2N
Ez0,η0 [η0(−N, t) | zt = −N + 1] (6.1)

a(N, t) =
j

2N
Ez0,η∗ [η0(N − 1, t) | zt = N ],

a(−N, t) =
j

2N
Ez0,η∗ [η1(−N + 1, t) | zt = −N ] (6.2)

and d(z, t) = 0 if |z| < N − 1. Thus for t ≥ 0 we have

Ltf(z) = L0f(z) + d(z, t)[f(∅)− f(z)] + 1z=Na(N, t)[f(N − 1)− f(N)]

+ 1z=−Na(−N, t)[f(−N + 1)− f(−N)] (6.3)

The process z̃t is a simple random walk with extra jumps from N to N − 1 and −N to
−N + 1 with time-dependent intensity a(±N, t); moreover it has death rate d(z, t) (rate
to go to ∅). Observe that

d(z, t) ≥ j

2N
Ez0,η∗ [η1(N − 1, t) | zt = N ]1z=N ,

and the analysis becomes very similar to the case treated in [7]. From the same argument
leading to Theorem 1 therein, we have that for any initial configuration η∗ and z0:

P [z1(t) 6= ∅] ≤ ce−bN
−2t,

which completes the proof.
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