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Signal to Noise Ratio estimation in passive correlation-based

imaging

Josselin Garnier† George Papanicolaou‡ Adrien Semin§

Chrysoula Tsogka¶

Abstract

We consider imaging with passive arrays of sensors using as illumination ambient noise
sources. The first step for imaging under such circumstances is the computation of the cross
correlations of the recorded signals, which have attracted a lot of attention recently because of
their numerous applications in seismic imaging, volcano monitoring, and petroleum prospect-
ing. Here, we use these cross correlations for imaging reflectors with travel-time migration.
While the resolution of the image obtained this way has been studied in detail, an analysis
of the signal-to-noise ratio (SNR) is presented in this paper along with numerical simulations
that support the theoretical results. It is shown that the SNR of the image inherits the SNR
of the computed cross correlations and therefore it is proportional to the square root of the
bandwidth of the noise sources times the recording time. Moreover, the SNR of the image
is proportional to the array size. This means that the image can be stabilized by increasing
the size of the array when the recorded signals are not of long duration, which is important
in applications such as non-destructive testing.

Key words:Correlation-based imaging, noise sources, resolution analysis, signal-to-noise ratio.

1 Introduction

We consider passive array imaging using as illumination ambient noise sources. We compute the
cross correlations of the signals recorded at the array of sensors and form an image by backprop-
agating or migrating them to a region of interest containing reflectors. In this paper we assess
the quality of such images in terms of several parameters that affect it. There are two types of
analyses that must be carried out. The first one is a resolution analysis of the imaging functional
[11] and the second is an analysis of the signal-to-noise ratio (SNR), which is done in this paper.
Our main result is that the SNR of the image is proportional NR

√
BT for an array of NR sensors

placed at a distance of half a central wavelength or more, with B the bandwidth of the noise
sources and T the recording time. The analysis and the numerical simulations are carried out in
two space dimensions but the result is the same in three dimensions. This result is interesting
and perhaps unexpected because of the linear increase of the SNR of the image with the number
of sensors, which can be closely spaced. Thus, when recording times are not very long, as may
be the case in non-destructive testing, the stability of the image (its SNR) can be improved by
increasing the size of the array.
Passive correlation-based imaging exploits the fact that information about the Green’s function
in the background medium can be obtained from cross-correlations of noise signals. This was first
shown experimentally in [20] where the authors observed that the Green’s function in a closed
cavity can be retrieved from passive noise recordings due to thermal noise. The analysis in [20]
is based on the modal expansion of the displacement field. Another theoretical explanation of
this phenomenon was given in [16] using stationary phase analysis. The precise result is that the
derivative of the cross-correlations of the recorded signals equals the symmetrized Green’s function
between the sensors. This can be obtained in open systems using the Helmholtz-Kirchhoff identity
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Figure 1: Schematic of passive array imaging with ambient noise sources: the grey regon is the
spatial support of the noise sources, the triangles are the sensors, and the square is the reflector.

[10, 19], provided that the noise sources surround the region of interest. In the case of closed
systems, i.e., cavities, the sources can be spatially localized provided the cavity is ergodic [1, 6].
The first application of these ideas to imaging was in helioseismology [7] and, more recently, in
passive seismic imaging of the surface velocity of the earth [13, 15]. Other potential applications
include volcano monitoring, petroleum prospecting, and structural health monitoring [17, 5, 18]. In
this paper, motivated by applications in structural health monitoring, we study theoretically and
numerically the quality of the image obtained by migrating cross correlations of noise recordings
with a passive array of sensors. A schematic of the source, array and reflector configuration is
shown on Figure 1. The support of the ambient noise sources is limited to the grey region on
the left of the image. The sources could either be natural noise sources (air, vibrations, etc)
or controlled ultrasonic sources generating noise signals on the surface of the structure under
investigation. The array of passive sensors is depicted by triangles in Figure 1 and is assumed to
be embedded in the structure. The black square represents a defect (hole, crack, etc) that we wish
to detect and image. The parameters used in our numerical simulations are given in section 5 and
are chosen to be close to the experimental ones reported in [14], where the monitoring of aircraft
fuselage and wing structures is considered.
Reflector imaging with ambient noise sources was first considered in [10] where it was shown that
it can be done by migrating cross-correlations of recorded signals. We refer also to [12] for an
experimental demonstration of passive correlation-based imaging of a buried scatterer. For the
configuration of Figure 1, stationary phase analysis shows that the cross-correlation of the signals
recorded at a pair of sensors has a peak at the sum of the travel times between the sensors and
the scatterer [10]. This is the same as for usual active array imaging and therefore the Rayleigh
resolution limits are valid [4]. This means that the cross range resolution for a linear sensor array
with aperture a is given by λLr/a. Here Lr is the distance between the sensor array and the
reflector and λ is the central wavelength. The range resolution for broadband noise sources is
given by c0B

−1 where c0 is the speed of propagation and B is the bandwidth of the noise sources.
This paper is organized as follows. Using the wave equation, we formulate in Section 2 wave
propagation with noise sources and state the basic properties of cross correlations between signals
recorded at different sensors in Section 3. The imaging problem is presented in Section 4 where we
also recall briefly the resolution analysis. We carry out in detail the signal-to-noise ratio analysis
of the image. Our numerical results presented in Section 5 are in very good agreement with the
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theory, illustrating both the imaging resolution limits and the SNR analysis.

2 Acoustic wave model with noise sources

To model wave propagation phenomena we consider the linear acoustic wave equation

1

ρ(x)

∂2u(t,x)

∂t2
− div (µ(x)∇u(t,x)) = n(t,x), (1)

in two dimensions, x = (x, z), in a medium with ρ(x) = 1 and µ(x) given by

µ(x) = c0(x)2. (2)

Here u(t,x) is the displacement field and c0(x) is the smooth and known speed of sound in the
background medium. In most of our simulations we assume that the propagation medium is
homogeneous and therefore the velocity c0 is constant. In (1) n(t,x) models the noise sources. It
is a zero-mean stationary (in time) random process with correlation function

E {n(t1,x1)n(t2,x2)} = F(t1 − t2)K(x1)δ(x1 − x2). (3)

The process n is delta-correlated in space and K characterizes the spatial support of the sources.
The time distribution of the noise is characterized by the correlation function F(t1 − t2). The
Fourier transform of F

F̂(ω) =

∫
F(t)eiωtdt

is the power spectral density of the noise sources. The details of how we simulate the noise source
n(t,x) are given in Appendix A.
The solution of (1) in a homogeneous medium can be expressed in terms of the time-harmonic
Green’s function for the wave equation which in the two-dimensional case is given by

Ĝ(ω,x,y) =
i

4
H

(1)
0

(
ωT (x,y)

)
, (4)

where T (x,y) = |x − y|/c0 is the travel time between points x and y and H
(1)
0 is the Hankel

function of first type and zero order.

3 Cross correlations of noise signals

Let u(t,x1) and u(t,x2) be the solution of equation (1) at x1 and x2 the locations of two sensors.
The quantity that we compute in practice is the empirical cross correlation of these two signals
over the time interval [0, T ] with time lag τ ,

CT (τ,x1,x2) =
1

T

∫ T

0

u(t,x1)u(t+ τ,x2)dt. (5)

Note that CT being a convolution it can be efficiently computed using the Discrete Fourier Trans-
form as we explain in Appendix B. What is important for imaging is that the empirical cross
correlation CT is a statistically stable quantity, in the sense that for a large integration time T it
is independent of the realization of the noise sources. More precisely, we have the following results
(the first two items are proved in [10]).
1. The expectation of the empirical cross correlation CT (with respect to the distribution of the
sources) is independent of T :

〈CT (τ,x1,x2)〉 = C(1)(τ,x1,x2), (6)
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where the statistical cross correlation C(1) is given by

C(1)(τ,x1,x2) =
1

2π

∫
D̂(ω,x1,x2)F̂(ω)e−iωτdω, (7)

D̂(ω,x1,x2) =

∫
Ĝ(ω,x1,y)Ĝ(ω,x2,y)K(y)dy, (8)

and Ĝ(ω,x,y) is the time-harmonic Green’s function given by (4) when the medium is homoge-
neous.
2. The empirical cross correlation CT is a self-averaging quantity:

CT (τ,x1,x2)
T→∞−→ C(1)(τ,x1,x2), (9)

in probability with respect to the distribution of the sources.
3. If the noise sources have Gaussian statistics, then the covariance of the empirical cross corre-
lation CT is:

Cov
(
CT (τ,x1,x2), CT (τ ′,x3,x4)

)
=

1

2πT

∫
D̂(ω,x1,x3)D̂(ω,x2,x4)F̂(ω)2e−iω(τ ′−τ)dω

+
1

2πT

∫
D̂(ω,x1,x4)D̂(ω,x2,x3)F̂(ω)2e−iω(τ ′+τ)dω, (10)

when BT � 1 (here B is the bandwidth of the noise sources, i.e. the width of the power spectral

density F̂). Therefore errors may occur when the averaging time is not sufficient to ensure that time
averages approximate statistical mean values. The signal-to-noise ratio of the cross correlation is
proportional to

√
T . This error will propagate in migration formula in reflector imaging.

4 Passive sensor imaging with cross correlations

In this section, we assume that the background medium is homogeneous or smoothly varying and
that there is a point reflector embedded in the medium at zr. We consider an array of NR passive
sensors located at (xj)16j6NR . The recorded signals are denoted by u(t,xj) for 1 6 j 6 NR.
We consider here the configuration where the noise sources are spatially localized and the sensors
are located between the sources and the reflectors (see Figure 1). This configuration is called
daylight and for this case the high-frequency analysis carried out in Appendix C shows that there
is a peak in the cross correlation between the receivers xj and xl at the sum of travel times
between xj and zr and between xl and zr. Using this result, the appropriate imaging functional
migrates the array data with the sum of travel times to the search point z:

ID(z) =

NR∑
j,l=1

CT (T (z,xl) + T (z,xj),xj ,xl). (11)

4.1 Resolution analysis

We consider here the behavior of the mean of the imaging functional ID. Note that the empirical
imaging functionals are equal to their means when the integration time T is very long so that
CT = C(1).
The resolution analysis of the daylight imaging functional is carried out in [11] when there is
a point reflector at zr. The cross range resolution for a linear sensor array with aperture a is
given by λLr/a. Here Lr is the distance between the sensor array and the reflector and λ is the
central wavelength. The range resolution for broadband noise sources is equal to c0B

−1 where B
is the bandwidth of the noise sources (i.e. the width of the function F̂). The range resolution for
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narrowband noise sources is λL2
r/a

2. The peak of the imaging functional is obtained at z = zr.
It is independent of T and the peak amplitude is proportional to N2

R in terms of the number of

receivers NR and proportional to
∫
F̂(ω)dω in terms of the power spectral density [11].

The resolution analysis [11] shows that the results obtained in the case of noise sources are basically
the same as the ones obtained for array imaging with deterministic sources [3, 2] always under the
hypothesis that the integration time T is long enough.

4.2 Fluctuation analysis

Here we consider the behavior of the variance of the imaging functional ID. This means that we
study the fluctuations of ID when the integration time T is not long enough to ensure the validity
of the self-averaging relation CT = C(1).
When migrating the cross correlations, the fluctuations come from CT − C(1) and we have

Var
(
ID(z)

)
=

NR∑
j,l,j′,l′=1

Cov
(
CT (T (z,xl) + T (z,xj),xj ,xl),

CT (T (z,xl′) + T (z,xj′),xj′ ,xl′)
)

'
NR∑

j,l,j′,l′=1

Cov
(
CT,0(T (z,xl) + T (z,xj),xj ,xl),

CT.0(T (z,xl′) + T (z,xj′),xj′ ,xl′)
)
,

where CT,0 is the cross correlation of the signals recorded when there is no reflector. The last
approximate equality comes from the fact that the fluctuations of the cross correlations due to the
finite integration time are dominated by the contributions of the waves that have not interacted
with the reflector (the waves scattered by the reflector are much weaker in our regime). Using
(10) we find

Var
(
ID(z)

)
= VI + VII , (12)

VI =
1

2πT

∫
F̂(ω)2

[ NR∑
j,l=1

eiω[T (z,xl)−T (z,xj)]D̂(ω,xl,xj)
]

×
[ NR∑
j,l=1

e−iω[T (z,xl)−T (z,xj)]D̂(ω,xl,xj)
]
dω, (13)

VII =
1

2πT

∫
F̂(ω)2

[ NR∑
j,l=1

eiω[T (z,xl)+T (z,xj)]D̂(ω,xl,xj)
]2
dω. (14)

In order to estimate the order of magnitude of the variance, we assume from now an ideal situation
in which the noise sources surround the region of interest and they cover the surface of a large
ball Ω that contains the reflector and the array. We will discuss later on (both with theoretical
and numerical arguments) the robusteness of the results. In this ideal situation we can use the
Helmholtz-Kirchhoff identity:

Im
(
Ĝ(ω,xl,xj)

)
=
ω

c0

∫
∂Ω

Ĝ(ω,xl,y)Ĝ(ω,xj ,y)dS(y),

which is an asymptotic identity valid when the radius of the ball Ω goes to infinity and which
follows from the second Green’s identity and the Sommerfeld radiation condition [10]. We get

VI =
c20

2πT

∫
F̂(ω)2

ω2

∣∣∣ NR∑
j,l=1

eiω[T (z,xl)−T (z,xj)]Im
(
Ĝ(ω,xl,xj)

)∣∣∣2dω, (15)

VII =
c20

2πT

∫
F̂(ω)2

ω2

[ NR∑
j,l=1

eiω[T (z,xl)+T (z,xj)]Im
(
Ĝ(ω,xl,xj)

)]2
dω. (16)
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If the medium is homogeneous, then

Im
(
Ĝ(ω,xl,xj)

)
=

1

4
J0

(
ωT (xl,xj)

)
,

where J0 is the zero-order Bessel function. In the following we carry out calculations in two cases
and then we discuss the main results.

Case 1 If the distance between sensors is larger than the wavelength, then only the diagonal
terms j = l contribute in the expressions of VI and VII , which gives

VI '
c20

32πT

∫
F̂(ω)2

ω2

∣∣∣ NR∑
j=1

eiω0
∣∣∣2dω =

c20N
2
R

32πT

∫
F̂(ω)2

ω2
dω, (17)

VII '
c20

32πT

∫
F̂(ω)2

ω2

∣∣∣ NR∑
j=1

e2iωT (z,xj)
∣∣∣2dω, (18)

which is smaller than VI . More precisely,

VII '
c20

32πT

NR∑
j,l=1

∫
F̂(ω)2

ω2
e2iω[T (z,xj)−T (z,xl)]dω =

c20
16T

NR∑
j,l=1

Ψ
(

2[T (z,xj)− T (z,xl)]
)
,

where Ψ is the inverse Fourier transform of ω → F̂(ω)2/ω2, whose width is of the order of the
bandwidth B. If distance between sensors is larger than c/B, then only the diagonal terms j = l
contribute to the double sum and we find

VII '
c20NR
32πT

∫
F̂(ω)2

ω2
dω. (19)

Case 2 If the array is dense (i.e. the distance between sensors is smaller than the wavelength)
and occupies the line [−a, a], the search point z is at distance L with L� a� λ, then

NR∑
j,l=1

eiω[T (z,xl)−T (z,xj)]Im
(
Ĝ(ω,xl,xj)

)
' N2

R

16a2

∫ a

−a

∫ a

−a
ei

ω
c0

x2−y2
2L J0

( ω
c0
|x− y|

)
dxdy

' N2
R

16a2

∫ 2a

−2a

ds

∫ a−|s|/2

−a+|s|/2
duei

ω
c0

us
L J0

( ω
c0
|s|
)

' N2
R

4

∫ 1

0

sin
(

2ωa2

c0L
s(1− s)

)
ωa2

c0L
s

J0

(2ωa

c0
s
)
ds

' N2
Rc0

4aω
=
N2
R

8π

λ

a
,

since ωa2/(Lc0) � ωa/c0, ωa/c0 � 1, and
∫∞

0
J0(s)ds = 1. This gives for noise sources with a

power spectral density centered at λ:

VI '
c20N

4
R

128π3T

λ2

a2

∫
F̂(ω)2

ω2
dω, (20)

VII ' 0. (21)

This formula is in continuation of the discrete case: if we (formally) apply it to the case of a linear

array sampled at λ/2, i.e. 2a = NRλ/2, then one finds VI ' c20N
2
R

8π3T

∫ F̂(ω)2

ω2 dω which has the same
order of magnitude as (17).
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4.3 Signal-to-noise ratio analysis

Here we assume that the bandwidth B of the noise sources is smaller than their central frequency
ω0, or we assume that the noise sources are broadband but we filter the recorded signals to keep
only the frequency components in a band centered at ω0 with width B. Then, in terms of the
bandwidth, the peak amplitude (that is proportional to

∫
F̂(ω)dω) is proportional to B, and the

variance of the fluctuations (that is proportional to
∫ F̂(ω)2

ω2 dω) is proportional to B as well.
The previous results show that, when the receiver arrays are sampled at more than half-a-
wavelength apart, then the variance of the daylight imaging functional is proportional to N2

RB/T ,
while the peak amplitude is proportional to N2

RB (and independent of T ). Therefore the signal-
to-noise ratio defined by

SNRD =

〈
ID(zr)

〉
Var
(
ID(z)

)1/2 (22)

is proportional to
SNRD ∼ NR

√
BT. (23)

When the receiver arrays are densely sampled, then the variance of the daylight imaging functional
is proportional to N4

R(λ/a)2B/T , and therefore the signal-to-noise ratio is proportional to

SNRD ∼
√
BT (a/λ). (24)

4.4 Robustness of the results

Here we discuss the robustness of the results with respect to different kinds of perturbations:
- addititive measurement noise: the method is very robust to additive measurement noise as it is
based on the processing of the cross correlations of the recorded signals, and the calculations of
the cross correlations naturally eliminate the additive noises which are uncorrelated for different
receivers.
- source distribution: in the previous subsections the analysis is carried out with the hypothesis
that the sources surround the region of interest and cover the surface of a ball. This allows us to
apply the Helmholtz-Kirchhoff identity which considerably simplifies the analysis. However this
hypothesis is not necessary for the results to be true. In the case of spatially localized source
distributions, one can use other approaches such as a high-frequency analysis and the application
of stationary phase arguments [10]. Furthermore the forthcoming sections will present results from
numerical simulations in the configuration of Figure 1, in which the sources are indeed spatially
localized.
- medium noise: we assume in this paper that the background medium is known. It turns out that
the method is sensitive to the knowledge of the background medium, in the same way as Kirchhoff
migration with active array data is. It is necessary to know the travel times between receivers and
search points with an accuracy of the order of the wavelength, otherwise the main peak can be
blurred and/or shifted.

5 Numerical simulations

In our numerical simulations, we solve the wave equation (1) with the source term

n(t,x) =

NS∑
s=1

g(x− xs)fs(t). (25)

The signals (fs(t))16s6NS emitted by the point sources are independent and identically distributed

stationary signals as described in Appendix A with the power spectral density F̂(ω) given by

F̂(ω) = exp
(
− (ω − ω0)2

B2

)
+ exp

(
− (ω + ω0)2

B2

)
, (26)
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where ω0 is the central angular frequency and B is the bandwidth. Our numerical setup is shown
on Figure 1. Our simulation parameters are chosen to be close to the experimental values reported
in [14] where the problem of monitoring aircraft fuselage and wing structures was considered. The
spatial support of the ambient noise sources is limited in the grey region on the left of the image
and the sensors are denoted by triangles and are assumed to be embedded in the structure under
control. The black square represents a defect (hole, crack, etc) that we wish to detect and image.
In (26), ω0 = 2πf0 and B = 2π∆f0 with f0 = 500 kHz and ∆f0 = 106 kHz. The function g is
Gaussian

g(x) = β exp (−α|x|2),

with α = −ln(10−6)/r2, β =
√
α/π, r = λ/2, and λ is the wavelength associated with the central

frequency f0. The speed of propagation is c0 = 3 km/s so that the wavelength λ = c0/f0 is equal
to 6 mm.
To solve the wave equation (1) we use the code Montjoie (http://montjoie.gforge.inria.fr/).
Montjoie is designed for the efficient solution of time-domain and time-harmonic linear partial
differential equations using high-order finite element methods. This code is mainly written for
quadrilateral/hexahedral finite elements, partial implementations of triangular/tetrahedral ele-
ments are provided. The equations solved by this code, come from the “wave propagation”
problems, particularly acoustic, electromagnetic, aeroacoustic, elastodynamic problems. For the
numerical examples considered in this paper we solve (1) in time domain using 7th order finite
elements in space and 4th order finite differences in time.
We added the computation of cross-correlations and imaging functionals in Montjoie. For the
Fourier transform, we use GSL Fourier transform [9] and/or FFTW [8], depending on what is
installed (these two libraries are interfaced in Montjoie, so that the user does not have to code
depending on the library he uses).
The numerical setup for the daylight test case configuration is shown on Figure 1. We analyze in
this subsection the signal-to-noise ratio (SNR) of the daylight imaging functional as a function of
the number of receivers NR, the recording time T , and the bandwidth B.
The considered domain is the rectangle [0, 50λ] × [−15λ, 15λ], with a square hole located at
[44λ, 46λ]× [−λ, λ]. The noise sources are made of NS = 200 point sources located at (xs)16s6NS ,
which is a collection of random points belonging to [0, 4λ]× [−15λ, 15λ]. We use NR = 61 receivers
xj located at (5λ, (j − 31)λ/2), for j ∈ {1, . . . , NR}.
To give a quantitative result on the image of the scatterer, we compute in this section the signal-
to-noise ratio (SNR) as follows. Let ID(z) be the averaged absolute value of the image over a
square of size 2λ× 2λ centered at z. The SNR is computed as

SNR =
ID(z∗)

maxz 6=z∗ ID(z)
, (27)

where z∗ is the point where the image admits its maximal value and z 6= z∗ means that squares
of size 2λ× 2λ centered at z and z∗ do not intersect.

SNR versus number of receivers We put on Table 1 measured SNRs for different configura-
tions of receivers, and we plot the associated daylight images on Figures 2 and 4.
The results in Table 1 and the images on Figure 2 show that the role of the number of receivers
is twofold. First, as predicted by the resolution analysis, the cross-range resolution improves
by increasing the number of receivers, because this also means that the receiver array diameter
increases. This is illustrated in Figure 2 by the focal spot on the scatterer that becomes tighter
and gives a more accurate estimate of its size. At the same time, increasing NR improves the
SNR of the image, i.e., the amplitude of the ghosts in the image decreases, as predicted by the
theoretical formula (23).
The results in Table 1 and the images on Figure 4 allow us to distinguish the two effects, cross-
range resolution enhancement and SNR reduction. Indeed they show that reducing the spacing
between receivers while fixing the number of receivers does not modify the SNR (provided the

http://montjoie.gforge.inria.fr/
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(a) NR = 20 (b) NR = 30 (c) NR = 40 (d) NR = 50

Figure 2: Daylight imaging with 200 sources. The distance between two consecutive receivers is
δ = λ/2. The recording time is T = 480µs. The number of receivers is NR.

distance between receivers remains larger than half-a-wavelength), as predicted by the theoretical
formula (23), but it does reduce the cross-range resolution, since the array diameter decays.

Configuration of receivers SNR
20 receivers, δ = λ/2 1.74
30 receivers, δ = λ/2 2.52
40 receivers, δ = λ/2 3.06
50 receivers, δ = λ/2 3.67
60 receivers, δ = λ/2 4.31
20 receivers, δ = λ 1.79
30 receivers, δ = λ 2.37

Table 1: Configurations and SNRs. The recording time is T = 480µs. The spacing between
receivers is δ.

We have also computed the regression equation of the measured SNR versus the number of recievers
and plotted it on Figure 3. The regression equation is

SNR = 0.063NR + 0.54, (28)

with NR the number of receivers. One can see that the SNR does linearly depend on the number
of receivers as predicted by the theory (see Eq. (23)).

15 20 25 30 35 40 45 50 55 60 65
1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 3: Plot of measured SNR versus number of receivers NR (blue dots) and regression line
(black line). Note that there are two markers at NR = 20: they correspond to 20 receivers λ-apart
from each other, or 20 receivers λ/2-apart from each other. The same holds for NR = 30. It can
be seen that the SNR does not depend on the spacing between receivers (when it is larger than
λ/2), but only on the number of receivers.

We note also that the number of ghosts in the image, i.e., the number of regions where the noise
is high, depends on δ (see figures 4(a) and 4(b)). The distance δ = λ/2 gives a slightly better
image although this is not reflected at the SNR value as computed by (27).
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(a) NR = 20, δ = λ (b) NR = 20, δ = λ/2 (c) NR = 30, δ = λ (d) NR = 30, δ = λ/2

Figure 4: Daylight imaging with 200 sources. The recording time is T = 480µs. There are NR
receivers and the spacing between receivers is δ.

SNR versus recording time We put on Table 2 measured SNRs for different recording times
T , and we plot the associated daylight images on Figure 5. We clearly see on Figure 5 that the
quality of the image improves from left to right as the recording time increases. To quantify the
dependence of the SNR on T we also compute the regression equation and we plot it on Figure 6.
Regression equation is

SNR =
√

0.0029T − 1.9133, (29)

it shows that the SNR does linearly depend on the square root of recording time as predicted by
the theory presented in Subsection 4.2 (see Eq. (23)).

(a) T = 1920µs (b) T = 3840µs (c) T = 5760µs (d) T = 8640µs

Figure 5: Daylight imaging with 200 sources and 21 receivers. The recording time is T .

Recording time SNR
T = 1920µs 1.93
T = 3840µs 3.04
T = 5760µs 3.75
T = 8640µs 4.81

Table 2: Configurations and SNR for 21 receivers and 200 sources. The spacing between receivers is
λ/2. Note that here we use a different realization of noise sources compared to the results reported
in Table 1 as for long recording times we considered only 21 receivers to reduce computational
cost.

SNR versus bandwidth We apply here a treatment to the cross correlation in the Fourier do-
main in order to analyze the role of the bandwidth. More exactly we apply a band-pass filter H(f)
to the recorded signals to retain only the frequency components centered at the central frequency
f0 = 500 kHz with a bandwidth ∆f : the filter has the form H(f) = 1[f0−∆f/2,f0+∆f/2](|f |).
We plot on Figure 7 the Fourier transform of u(t,x) for different positions of receivers (we only
plot for the positive frequencies). One can see that the spectrum of the received signal is in the
bandwidth [0, 2f0]. Moreover, we observe that most information is concentrated for 0.5f0 6 |f | 6
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Figure 6: Plot of measured SNR versus recording time T (blue dots) and regression line (black
line). There are 200 sources and 21 receivers. The spacing between receivers is λ/2.
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(a) xj = x1
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(b) xj = x16
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(c) xj = x31

Figure 7: Plot of F (u) (·,xj) versus f/f0.

1.5f0, so that a band-pass filter with ∆f > f0 plays no role, but a band-pass filter with ∆f < f0

indeed removes low and high-frequency components.

(a) ∆f = f0 (b) ∆f = f0/2 (c) ∆f = f0/4

(d) ∆f = f0/6 (e) ∆f = f0/8 (f) ∆f = f0/12

Figure 8: Daylight imaging with 200 sources and 61 receivers. The spacing between receivers is
λ/2. We filter the data using the band-pass filter H(f) = 1[f0−∆f/2,f0+∆f/2](|f |).
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As predicted by the theory bandwidth affects both the image resolution and the SNR. The range
resolution is c0/B and therefore as the effective bandwidth (here ∆f) decreases the image becomes
less focused in range. Loss of resolution is also accompanied with loss in SNR and we observe that
the amplitude of the ghosts in the image increases as the bandwidth decreases.

∆f % of signal kept SNR
f0/24 33.90% 0.333
f0/12 52.17% 0.70
f0/8 61.09% 1.21
f0/6 73.18% 1.48
f0/4 84.83% 1.94
f0/2 98.56% 3.63
f0 100% 4.31

Table 3: Configurations and SNR for 61 receivers and 200 sources. The spacing between receivers
is δ = λ/2. The recording time is T = 480µs.
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Figure 9: Plot of measured SNR (blue dots) as a function of the relative bandwidth ∆f/f0 and
regression (black line). There are 200 sources and 61 receivers. The spacing between receivers is
δ = λ/2. The recording time is T = 480µs.

We plot on Figure 9 the value of the SNR with respect to the bandwidth ∆f (blue points) and
the regression equation given by (30) (black line).

SNR =
√

23.1∆f − 0.7402. (30)

SNR does linearly depend on the square root of bandwidth as predicted by the theory proposed
in Subsection 4.2 (see Eq. 23).

Conclusions

In this paper we have considered the problem of imaging by backpropagating or migrating cross-
correlations of passive noise recordings with an array of sensors. Motivated by the application
of structural health monitoring, we have studied an imaging configuration where the sensors are
located between the sources and the reflectors to be imaged (daylight illumination). The quality
of the images obtained was analyzed both in terms of resolution and SNR. Our analysis shows
that the important parameters for imaging are:

1. The number of sensors NR. Both cross-range resolution and SNR linearly improve with NR.

2. The bandwidth of the noise sources B. Range resolution improves linearly with B, while the
SNR is proportional to

√
B.
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3. The recording time T . The SNR of the cross-correlations, and therefore the SNR of the
image as well, is proportional to

√
T .

Our numerical results are in very good agreement with our theoretical analysis.

Acknowledgments

The work of C. Tsogka and A. Semin was partially supported by the European Research Council
Starting Grant, GA 239959and the FP7-REGPOT-2009-1 project “Archimedes Center for Mod-
eling, Analysis and Computation”. The work of J. Garnier was partially supported by ERC Ad-
vanced Grant Project MULTIMOD-267184. The work of G. Papanicolaou was partly supported
by AFOSR grant FA9550-11-1-0266.

A Simulation of the noise source term

In this section, we give a precise sense to the noise sources n(t,x). Given NS ∈ N∗, we take an
independent and identically distributed (i.i.d.) random sequence of NS points (xs)16s6NS chosen
uniformly in a given bounded domain Ω, and we take an i.i.d. random sequence of NS functions
in time (fs)16s6NS . Let g : Rd → R be a positive radial decreasing function. We build the noise
source n(t,x) as

n(t,x) =
1√
NS

NS∑
s=1

fs(t)g(x− xs). (31)

It is then easy to show the following.

Proposition A.1. Assume that the family of functions (fs)16s6NS satisfies the following two
relations,

E {fs(t1)fs(t2)} = F(t1 − t2), (32)

E {fs(t1)fs′(t2)} = 0, s′ 6= s, (33)

and the points (xs)16s6NS are chosen independently and uniformly in the bounded domain Ω, then

E {n(t1,x1)n(t2,x2)} = F(t1 − t2)
1

|Ω|

∫
Ω

g(x1 − x)g(x2 − x)dx, (34)

where |Ω| is the volume of Ω.

Corollary A.2. In relation (34), if g = δ, then relation (3) is satisfied with

K(x) =
1

|Ω|
1Ω(x). (35)

Time-dependence of the noise source term Here, we make precise how to build the random
functions fs in (31). To do so we use the classical representation formula for the Fourier transform

of a stationary random signal fs(t) with power spectral density F̂:

f̂s(ω) =

√
F̂(ω)ŵs(ω),

where ws(t) is a real white noise (a Gaussian process with mean zero and delta correlated covariance
function: E {ws(t)ws(t′)} = δ(t− t′)). If the real white noises (ws)16s6NS are independent, then
the functions (fs)16s6NS satisfy hypotheses (32), (33) of Proposition A.1.
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B Numerical computation of cross-correlations

To implement numerically (5) in an efficient way, we first define ũ : R → R the extension of u to
a 2T -periodic function by

ũ(t,x) =

{
u(t,x) for t ∈ [0, T ],
0 for t ∈ [−T, 0].

One can see that

CT (τ,x1,x2) =
1

T

∫ T

−T
ũ(t,x1)ũ(t+ τ,x2)dt. (36)

Assume now that we know u(t,x1) and u(t,x2) on a finite number N of discretization points nδT ,
with 0 6 n < N and δT = N−1T . If we introduce tn = (n−N)δT , and call ũ(x)n the value of ũ
at time tn and at point x, using a quadrature formula allows us to rewrite (36) as

CT (x1,x2)N+k =
1

N

2N−1∑
j=0

ũ(x1)j ũ(x2)j+k. (37)

Here, for the second index, we take the remaining in {0, . . . , 2N − 1} modulo 2N and we use that
ũ(x1)k = ũ(x2)k = 0 for 0 6 k < N .
To compute numerically (37), we use Discrete Fourier Transform (DFT) as defined in the GNU
Scientific Library [9],

F (u)n =

2N−1∑
k=0

uk exp

(
−2iπ

kn

2N

)
. (38)

We apply now the DFT on (CT (x1,x2)k) and use the fact that ũ is real-valued to get,

F (CT (x1,x2))n =
(−1)n

N
F (ũ(x1))nF (ũ(x2))n . (39)

We implemented the cross correlation computations as a part of Montjoie
(https://gforge.inria.fr/projects/montjoie/). We use the Seldon library
(http://seldon.sourceforge.net/) to deal with the various vectors we have to use. Our choice
of implementing this in Montjoie is due to the fact that numerical simulations of section 5 have
been done using this code. We use OpenMP (http://openmp.org/wp/) for parallelization of the
program.
We have implemented both formulas (37) and (39), the first implementation is to check the validity
of the second one.

C Passive sensor imaging

In this appendix we carry out the analysis of the statistical cross correlation C(1) when the back-
ground medium is homogeneous with background speed c0 and there is a point reflector at zr. If we
assume that the reflector is weak and small, then we can use the point interaction approximation
for the Green’s function [11]:

Ĝr

(
ω,x,y

)
= Ĝ

(
ω,x,y

)
+
ω2

c20
σrl

2
r Ĝ
(
ω,x, zr

)
Ĝ
(
ω,zr,y

)
. (40)

Here Ĝ is the Green’s function (4) of the background medium, that is, in the absence of reflector,
σr is the reflectivity of the point reflector, and l2r is the effective scattering volume. The statistical
cross correlation is given by

C(1)(τ,x1,x2) = C
(1)
0 (τ,x1,x2) + C(1)

r (τ,x1,x2), (41)

https://gforge.inria.fr/projects/montjoie/
http://seldon.sourceforge.net/
http://openmp.org/wp/
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where C
(1)
0 is the statistical cross correlation in the absence of the reflector, that is, equation (7)

with the background Green’s function (4). C
(1)
r contains the additional terms due to the presence

of the reflector:

C(1)
r (τ,x1,x2) =

σrl
2
r

2πc20

∫∫
dydωK(y)ω2F̂(ω)Ĝ

(
ω,x1,y

)
Ĝ
(
ω,x2, zr

)
×Ĝ
(
ω,zr,y

)
e−iωτ

+
σrl

2
r

2πc20

∫∫
dydωK(y)ω2F̂(ω)Ĝ

(
ω,x1, zr

)
Ĝ
(
ω,zr,y

)
×Ĝ
(
ω,x2,y

)
e−iωτ , (42)

where we have retained only the terms of order O(σrl
2
r ) consistently with the Born or lowest order

scattering approximation.
In the high-frequency regime, that is, when the coherence time of the noise sources is smaller
than the typical travel times, the statistical cross correlation has peaks at specific lag times that

can be used for imaging. More exactly, the stationary phase analysis of C
(1)
0 shows that this

cross correlation has a peak at the inter-sensor travel time T (x1,x2) [10]. The stationary phase

analysis of C
(1)
r when the noise sources are spatially localized and the sensors are between the

sources and the reflectors (daylight illumination) shows that the singular components of the cross

correlation C
(1)
r are concentrated at lag times equal to (plus or minus) the sum of travel times

T (x2, zr) + T (x1, zr).

Proposition C.1.
In the daylight illumination configuration, in the high-frequency regime, the cross correlation

C
(1)
r has two singular contributions at lag times equal to plus or minus the sum of travel times
T (x2, zr) + T (x1, zr). The peak centered at plus the sum of travel times has the form:

C(1)
r (τ,x1,x2) =

σrl
2
r

16π

Kx1,zr

|zr − x1|
1
2 |zr − x2|

1
2

F
(
τ − [T (x2, zr) + T (x1, zr)]

)
, (43)

where Kx,z is the power released by the noise sources along the ray starting from x with the
direction of z − x:

Kx,z =

∫ ∞
0

K
(
x +

x− z

|x− z|
l
)
dl. (44)

The peak centered at minus the sum of travel times has the form:

C(1)
r (τ,x1,x2) = −σrl

2
r

16π

Kx2,zr

|zr − x1|
1
2 |zr − x2|

1
2

F
(
τ + [T (x2, zr) + T (x1, zr)]

)
. (45)

Note that Kxj ,zr
is not zero only if the ray going from zr to xj extends into the source region,

which is the daylight illumination configuration.

Proof C.2. We consider the high-frequency regime in which F(τ) = F (τ/ε) where ε is a small
parameter that characterizes the ratio between the coherence time of the noise sources and the
typical travel time. We consider the first term in the right-hand-side of (42):

C
(1)
r,1 (τ,x1,x2) =

σrl
2
r

2πc20ε
2

∫∫
dydωK(y)ω2F̂ (ω)Ĝ

(ω
ε
,x1,y

)
Ĝ
(ω
ε
,x2, zr

)
×Ĝ
(ω
ε
, zr,y

)
e−i

ωτ
ε .

We use the asymptotic behavior of the Hankel function

H
(1)
0 (r)

r�1' 2
1
2

π
1
2 r

1
2

exp
(
ir − iπ

4

)
,
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which gives

C
(1)
r,1 (τ,x1,x2) =

σrl
2
r e
iπ/4

2
11
2 π

5
2 c

1
2
0 ε

1
2

∫∫
dydω

ω
1
2 F̂ (ω)K(y)

[|y − x1||y − zr||zr − x2|]
1
2

ei
ω
ε T0(y),

where the rapid phase is

T0(y) = −T (y,x1) + T (y, zr) + T (zr,x2)− τ.

The dominant contribution comes from the stationary points (ω,y) that satisfy

∇y

(
ωT0(y)

)
= 0, ∂ω

(
ωT0(y)

)
= 0,

which reads

∇yT (y,x1) = ∇yT (y, zr), τ = −T (y,x1) + T (y, zr) + T (zr,x2).

The first condition imposes that x1 and zr are on the same ray issued from y. The second
condition then reads τ = ±T (zr,x1) + T (zr,x2), with the sign + (resp. −) if y → x1 → zr (resp.
y → zr → x1). For the daylight illumination configuration we have y → x1 → zr. Using the
change of variable y ∈ R2 → (s, u) ∈ R+ × R,

y = x1 + |x1 − zr|
(
se1 + ε

1
2ue2

)
,

with e1 = (x1−zr)/|x1−zr| and e2 ⊥ e1, and the parametrization τ = T (x1, zr)+T (x2, zr)+ετ1,
we find

T0(y) = −ε |x1 − zr|
2c0s(1 + s)

u2 − ετ1 +O(ε2),

and therefore

C
(1)
r,1 (τ,x1,x2) =

σrl
2
r

25π2

∫∫
dsdω

F̂ (ω)K(x1 + |x1 − zr|se1)

|zr − x1|−
1
2 |zr − x2|

1
2

e−iωτ1 ,

where we have used the identity ∫
e−i

u2

2 du =
√

2πe−i
π
4 .

The second term in (42) can be addressed in the same way, which gives the desired result.
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