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We study curved trajectory dynamics and design in discrete array settings. We find that beams with power
law phases produce curved caustics associated with the fold and cusp type catastrophes. A parabolic phase
produces a focus that suffers from spherical aberrations. More importantly, we find that by designing the
initial phase or wavefront of the beam we can construct trajectories with pure power law caustics as well as
aberration-free focusing of discrete waves.

OCIS codes: (130.2790) Guided waves; (230.7380) Waveguides, channeled; (350.5500) Propagation.

Light propagation along curved trajectories is a topic
of increased interest over the last years. A main exam-
ple is the Airy wave that follows a parabolic trajectory
and is the only one-dimensional diffraction free solution
of the Schrödinger equation [1]. Airy beams were intro-
duced in optics in [2,3] where it was shown that exponen-
tially apodized Airy waves can be easily generated in the
Fourier space by applying a cubic phase to a Gaussian
beam. Along with apodization, their power becomes fi-
nite, and thus they loose their non-diffracting character.
However, apodized Airy waves can propagate for several
diffraction lengths before they become significantly dis-
torted. A different class of diffraction free accelerating
waves are the 2D parabolic beams as predicted in [4].
Curved light waves have found potential applications in
particle manipulation [5], filament generation [6], plas-
monics [7, 8] and near field imaging [9], and optical bul-
let formation [10, 11]. In cylindrical coordinates the on-
axis interaction of radial Airy-type caustics leads to the
phenomenon of abrupt autofocusing, i.e., to the sudden
increase of the intensity of light by several orders of mag-
nitude at the focal point [12–15].

Light beams can follow different families of curved tra-
jectories including general power law [13, 16]. The cost
of this adjustability is the loss of the diffraction resist-
ing character of the Airy wave. Such light trajectories
can be analyzed by utilizing caustics and catastrophe
theory [17,18]. In periodic index configurations, such as
waveguide arrays, the behavior of light waves becomes
effectively “discretized”. For a comprehensive review on
linear and nonlinear dynamics in periodic lattices see [19]
and references therein. In [20] a review on modulated
lattice is also presented. A discrete system with a lin-
ear index gradient is known to support Wannier-Stark
states [21]. These states, in the absence of the linear
potential, have been shown to propagate in waveguide
arrays along curved trajectories [22].

In this work, we explore the possibilities of generat-
ing caustics in discrete waveguide settings. In the case
where the initial phase of the beam is power law, the re-
sulting curved trajectory is parametrically determined.
According to the value of the exponent of the phase the

associated catastrophe can be a fold or a cusp. In addi-
tion, in the case of a parabolic wavefront the resulting
focusing effect suffers from spherical aberrations. More
importantly, we find that the discrete beam trajectory
can be engineered by appropriately selecting the initial
phase. Thus, we can generate pure power law caustics as
well as aberration-free discrete focusing of light.

Let us consider the coupled mode theory equations

iu̇n + κ(un−1 + un+1) = 0 (1)

that describe the propagation in a one-dimensional pe-
riodic lattice. In this potential-free discretized version
of the Schrödinger equation, un describes the field am-
plitude in waveguide n, u̇n = dun/dz, z is the prop-
agation direction, and κ is the coupling coefficient be-
tween adjacent waveguides. Equation (1) supports plane
wave solutions ei(qn−k(q)z) with a dispersion relation
k(q) = −2κ cos q. Using the Fourier transform pair we
find that

un(z) =
1

2π

∞∑
m=−∞

um(0)

∫ 2π

0

eiq(n−m)+2iκ cos(q)zdq.

(2)

We define a continuous (real) variable ξ such that
u(ξ, 0) = un(0) if ξ is an integer and assume that
u(ξ, 0) is slowly varying with ξ and goes to zero as
ξ → ±∞. Physically, ξ represents the transverse coor-
dinate at the input plane. Under these assumptions, and
using an amplitude and phase decomposition u(ξ, 0) =
A(ξ) exp[iφ(ξ)], the Euler-type sum in Eq. (2), can be
approximated by the following integral

u(x, z) =
1

2π

∫ ∞
−∞

∫ 2π

0

A(ξ)eiΨdqdξ, (3)

where Ψ = φ(ξ) + q(x − ξ) + 2κ cos(q)z. Note that the
initial phase distribution φ(ξ) can be generated by using
for example a spatial light modulator.

We now apply a stationary phase method in Eq. (3) on
the integration variables q, ξ leading to the ray equation

x = ξ + 2κ sin(q(ξ))z, (4)
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Fig. 1. (Color online) Wave dynamics in the case of a
wavefront given by Eq. (6). In (a)-(c) the amplitude pro-
file is shown along with the caustic trajectory, while in
(d)-(f) the corresponding ray picture is depicted. In par-
ticular, in (a), (d) β = 3/2, ξ0 = 40, A(ξ) = e0.02ξH(−ξ),
in (b), (e) β = 3, ξ0 = 40, A(ξ) = H(ξ + ξ0)H(−ξ), in

(c), (f) β = 2, ξ0 = 20, A(ξ) = e−(ξ/ξ0)2 .

where q(ξ) = φ′(ξ) is the local value of the Bloch mo-
mentum. Along the caustic trajectory the phase should
be stationary to higher than first order to variations of
the initial wavefront. Requiring second order stationarity
ΨξξΨqq −Ψ2

qξ = 0 we obtain

2zκ cos(q(ξ))q′(ξ) + 1 = 0. (5)

In the continuous limit (Schödinger or paraxial equa-
tion), optical waves with power law phases produce
beams with power law trajectories (having, in general,
different exponents). Our analysis shows that due to dis-
creteness this behavior is significantly altered. In partic-
ular, we assume that the phase is nonzero for ξ < 0, i.e.,

φ(ξ) = −α(−ξ)βH(−ξ)/β, (6)

where β is the chirp parameter, α characterizes the spa-
tial extend of the phase, and H(x) is the Heaviside theta
function, leading to q(ξ) = α(−ξ)β−1H(−ξ). Note that
the phase can be either exponential eiφ or sinusoidal
sinφ = (eiφ−e−iφ)/(2i). In the latter case the additional
e−iφ term gives rise to rays propagating in the opposite
direction that are not associated with caustics. Using
Eqs. (4)-(5) we find that the trajectory of the caustic is
parametrically determined as a function of ξ as

z =
(−ξ)2−β

2α(β − 1)κ cos(α(−ξ)β−1)
, (7)

x = ξ +
tan(α(−ξ)β−1)

α(β − 1)(−ξ)β−2
. (8)

We restrict ourselves to rays propagating to the right
κ sin(q(ξ)) > 0 that, are able to form caustics
κ cos(q(ξ))q′(ξ) < 0. The resulting range of values, as-
suming that q(ξ) is a decreasing function of ξ with
q(0) = 0, are 0 < q(ξ) < π/2. If β > 1 [and thus
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Fig. 2. (Color online) Dynamics of waves that follow
power law caustics [Eq. (11)] with A(ξ) = e0.02ξH(−ξ).
(a) amplitude profile and the quadratic caustic trajec-
tory and (b) the corresponding ray picture for δ = 2,
ξ0 = 40; (c) amplitude profile and cubic caustic trajec-
tory for δ = 3, ξ0 = 40.

q(0) = 0], then only waveguides in the range [ξ0, 0] can
contribute to the caustic, where ξ0 = −[π/(2α)]1/(β−1).
Alternatively, we can determine α as a function of ξ0 via
α = π/[2(−ξ0)β−1]. For small values of ξ (and thus small
values of x) the caustic trajectory takes the form

x = [(2− β)/(β − 1)][2α(β − 1)κz]1/(2−β). (9)

As expected, Eq. (9) is identical to the caustic trajec-
tory of the paraxial equation with a wavefront given by
Eq. (6). On the other hand, as ξ → ξ0 the caustic asymp-
totically approaches the ray Eq. (4) with ξ = ξ0, i.e.,

x = ξ0 + 2κz. (10)

In Fig. (1) typical examples of discrete caustic dy-
namics generated by power law wavefronts are depicted.
In the simulations presented below we set κ = 1. In
Figs. 1(a), (d), the phase is sinusoidal with exponent
β = 3/2. The parabolic trajectory, and thus the con-
stant acceleration x′′(z), in the early stage dynamics
[Eq. (9)] is characteristic to the Airy wave solution of
the paraxial equation. As z increases, the acceleration
of the trajectory gradually decreases and eventually, for
large z, it goes to zero as the caustic approaches the
asymptotic given by Eq. (10). Discrete waves with phase
exponents 1 < β < 2 exhibit qualitatively similar be-
havior. In terms of catastrophe theory such a caustic is
labeled as a “fold”. When β > 2 the behavior is signifi-
cantly altered since the respective catastrophe becomes
a “cusp”. A typical example is depicted in Figs. 1(b),
(e) for β = 3 and an exponential phase. We see that two
caustics are formed that originate from a cusp. The loca-
tion of the cusp is determined by noting that z(ξ) has a
minimum at the cusp [z′(ξc) = 0 or sin(q)q′2 = cos(q)q′′]
leading to ξc ≈ 25.8 and z(ξc) ≈ 12.4. Equivalently, we
can say that ξc is a third order stationary phase point of
Eq. (3). As a result, the rays emerging from waveguides
−25 ≤ n ≤ 0 form the caustic on the left, while the re-
maining rays (−40 ≤ n ≤ −26) generate the caustic on
the right. In Fig. 1(c), (f) the intermediate case β = 2
with exponential phase φ = −αξ2/2 is depicted. In bulk
media, such a parabolic phase results to the focusing of
the initial wavefront at the focal point. However, due
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Fig. 3. Discrete focusing of an optical wavefront given by
Eq. (13) with zf = 10] (a) amplitude profile and (b) the
corresponding ray picture.

to spherical aberrations caustics might be formed before
(positive aberration) or after (negative aberration) the
focal point. The situation here is similar to the case of
negative spherical aberration: Caustics are formed after
the focus which is given by zf = 1/[2α(β − 1)κ].

We would like to point out that different types of caus-
tic trajectories can be generated, by appropriately engi-
neering the initial phase. Here we are going to consider
the following power law caustic trajectories

x = f(z) = γzδ. (11)

Using equation ξ = f(z)−zf ′(z), that relates the caustic
propagation distance z to ξ, we can derive the optical

wavefront φ =
∫ ξ

0
q(ξ)dξ, where

q(ξ) = <

{
arcsin

[
γ1/δδ

2κ

(
ξ

1− δ

)(δ−1)/δ
]}

(12)

and < denotes the real part, reminding that < arcsin c =
(π/2) sgn(c) if |c| > 1, where sgn(x) is the sign function.
The optical wavefront that generates the caustic extends
from ξ0 to 0 where q(ξ0) = π/2. Using this latter equa-

tion we find γ = (2κ/δ)δ [(1− δ)/ξ0)]
δ−1

. Note that the
rays can form the predefined caustic, as described by
Eq. (11) up to a finite value of the propagation distance
given by z0 = z(ξ0) = −ξ0δ/[2κ(δ − 1)]. For ξ < ξ0
the rays can not “bend” any further [the group velocity
k′(q(ξ)) has a maximum for ξ = ξ0] and the caustic dis-
appears. In Fig. 2 we see typical examples of power law
caustics. In particular the caustic trajectory in (a)-(b) is
quadratic while in (c) is cubic. In both cases the caustic
extends up to a finite value of the propagation distance.

By engineering the phase of the optical beam we can
eliminate spherical aberrations and produce an ideal fo-
cus. In particular, by setting x = 0 and z = zf (focal
point) to the ray equation, we obtain

φ = <
{√

(2κzf )2 − ξ2 − 2κzf + ξ arcsin

(
ξ

2κzf

)}
.

(13)
The rays can focus as long as q(ξ) = φξ(ξ) =
− arcsin(ξ/(2κzf )) lies in the range [−π/2, π/2], i.e., for
waveguide indices |n| ≤ 2κzf . A typical example of dis-
crete focusing is depicted in Fig. 3.

In conclusion, we have studied beam trajectory dy-
namics and engineering in discrete optical settings. We

have shown that power law phases lead to curved cusp
and fold type caustics. A parabolic initial wavefront re-
sults to beam focusing with negative spherical aberra-
tions. By engineering the beam wavefront we found dis-
crete waves with pure power law caustic trajectories as
well as aberration-free discrete beam focusing.

Supported by the FP7-REGPOT-2009-1 project
“Archimedes Center for Modeling, Analysis and Com-
putation” (ACMAC).
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