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Abstract:  In this paper, we compare two well established techniques, namely the BASEX and the 

Fourier - Hankel, as regards their efficiency of retrieving the three-dimensional distribution of 

cylindrically symmetric objects in the presence of noise. This situation is commonly encountered in 

pump-probe experiments where the refractive index profile of elongated structures, such as plasma strings 

or transient refractive index changes, is under study. We performed numerical experiments for a variety 

of objects, with respect to the spatial distribution and size, and for various statistical distributions and 
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levels of noise. In this area of application, the BASEX can surpass the Fourier Hankel technique in 

respect of reconstruction quality, spatial resolution and robustness to noise especially after proper tuning 

of the basis set functions width.  

 

Keywords:  Inhomogeneous optical media, Image reconstruction techniques, Inverse problems, 

Microscopy.  

 

1.  Introduction 

In the field of holographic microscopy [1-6], the treatment of inverse problems, as for instance, that of 

recovering the volume of the three-dimensional distribution of the refractive index, is based on the 

application of various techniques of Abel transform. The Abel transform [7-9] is actually a solution of the 

inverse mathematical problem of retrieving the three-dimensional distribution of a physical property such 

as the refractive index or absorption on the basis of the knowledge of a single projection. This problem is 

ill posed [9], as we cannot prove that a unique solution exists, unless the distribution is spherically or 

axially symmetric, in which case, the inverse Abel transform, provides a unique solution.   

In the field of image analysis, the forward Abel transform is used in order to project, an axially symmetric 

distribution function, onto a plane. In this respect, the measured intensity (projection), ( , )P x z , is given 

in terms of the distribution function ( , )R r z , via the Abel transform [7-9]
 
as follows :

 

 

  
2 2 1/ 2

( , )
( , ) 2 ,

( )x

R r z r
P x z dr

r x

¥
=

-ò  (1) 

where r is the radial coordinate, with 
2 2 2r x y= +  and x is the coordinate along the projection. A 

geometric interpretation of the Abel transform is depicted in Fig. 1. In this figure, a ray propagating 
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parallel to the y-axis passes through a circularly symmetric object (indicated by blue color) and reaches 

the observer located at (O). If the circularly symmetric function ( , )R r z
 
denotes the distribution of 

absorption for this object then the total absorption experienced by the ray is given by the Abel transform 

described in eq. (1).  

In many cases, the projection function ( , )P x z is measured, while the distribution function ( , )R r z , is 

unknown. The solution of this inverse problem is performed by means of the inverse Abel transform [9]: 

 
2 2 1/ 2

1 ( )
( , )

( - )r

P x
R r z dx

x rp

¥ ¶ ¶
= - ò  (2) 

Practically, the numerical implementation of equation (2) is difficult due to the singularity point at the 

lower limit of integral and because the derivative of the projection ( )P x¶ ¶  tends to enhance the noise-

corruption of the experimental data. Moreover, the projection function ( , )P x z , cannot be treated as a 

continuous function, as its value is known only in certain discrete points [9]. Various approaches that are 

based on geometrical or numerical methods and on the use of polynomials, have been adopted aiming at 

the calculation of the inverse Abel transform
 
[9-15].  

It should be noted, that an extension of this inverse problem to a truly three dimensional distribution may 

be treated using the inverse Radon transform [16]. Taking into account that the two-dimensional Radon 

transform is defined as the projection of a physical property along a specific radial direction [16], the 

retrieval of a three-dimensional object’s structure involves the inverse Radon transform of a number of its 

projections. This approach is widely applied in tomographic imaging applications where the object under 

study is somewhat static. On the other hand, it is quite difficult to retrieve the large number of projections 

required in the case of dynamical objects encountered in ultrafast pump-probe experiments [1-6]. In this 

case the objects under study are laser induced perturbations in the refractive index of a transparent 

medium with micron sized spatial dimensions. Furthermore, these structures dynamically change with 

time at time scales well below 1 ps. All the above mentioned problems make the retrieval from multiple 
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projections impractical, leading to the utilization of a single projection and an implementation of the Abel 

transform for the retrieval of the refractive index distribution [2, 6].  

Up to now, the commonly applied method for calculating the inverse Abel transform in problems of laser 

induced perturbations is the Fourier–Hankel technique (F-H)  [2, 6, 9]. More specifically, this method is 

based on a representation of the inverse Abel transform (eq. (2)) via the Hankel transform of the Fourier 

transform of the measured projection [9]. In this scheme, the distribution ( , )R r z , can be calculated from 

the measured projection ( , )P x z  via the following expression, 

 
0

0
( , ) 2 (2 ) ( , )exp( 2 )R r z qJ kr P x z i xk dxdkp p p

¥ ¥

-¥
= -ò ò  (3) 

where, 0 ( )J × is the zero-order Bessel function of the first kind [17]. For an axial symmetric object 

extending along the z axis (Fig. 1) this procedure is iterated for each z in order to obtain the distribution 

along z. However, this method is sensitive to experimental noise, especially of high spatial frequency. In 

order to eliminate the effect of noise low pass filtering [2, 6] is used. This approach has though a 

deteriorating effect in extremely noisy images as well as to images with a large dynamic range [18] where 

the filtering can affect the fine details of the reconstructed object. 

The Gaussian basis-set expansion Abel transform method, also called as BASEX method, is a recently 

developed method of reconstructing three-dimensional images from their two-dimensional projections 

[18]. This method is based on expanding the projection in a basis set of functions that are analytical 

projections of known well-behaved functions. The three-dimensional distribution can then be 

reconstructed as a linear combination of these functions, which have a Gaussian-like shape, with the same 

expansion coefficients as the projection [18]. At this point, it should be noted, that BASEX method is up 

to now mainly applied, with great success, to two-dimensional projections of three-dimensional spherical 

objects encountered in photoelectron imaging spectroscopy. 
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In this work we compare the BASEX and the F-H methods by using them to retrieve the distribution 

of three-dimensional objects with cylindrical symmetry from two-dimensional projections that are 

commonly encountered in pump-probe experiments [2-6]. In particular we numerically study the effect of 

noise on the reconstruction results for various typical distributions. Our results show that especially after 

an optimization process, regarding the width of the basis functions, the BASEX technique can eventually 

outperform the F-H technique with better reconstruction quality and less sensitivity to noise.   

This paper is organized as follows: In Section 2 we present a direct adaptation of the BASEX method to 

cylindrically symmetric objects. In section 3 we illustrate extensive numerical simulations and assess the 

behavior and effectiveness for both BASEX and F-H techniques after applying them to noisy 

distributions. We end with a summary and conclusions in section 4.  

  

2. Adaptation of the BASEX method in cylindrical objects 

Since the BASEX method has been analytically developed and detailed described for spherical objects 

[18, 19], we need to adapt it to the simpler case of cylindrical objects. The approach is quite 

straightforward, but for the sake of completeness, we will repeat the basic elements of the method, the 

details of which can be found in [18, 19]. For cylindrically symmetric distributions ( , )R r z , where z is the 

axis of symmetry, the distribution can be expanded, following the BASEX method via a set of K basis 

radial functions ( )k rr , as following: 

 
1

0
( , ) ( ) ( )

K f

k kk
R r z C z rr

-

=
=å  (4) 

where ( )f

kC z  are expansion coefficients, which in our case depend on z. In view of this, the projection 

( , )P x z of the distribution function ( , )R r z  along the x-z plane (Fig. 1), given in (2), can be similarly 

expanded as  
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-1

0
( ) ( ) ( )

K

k kk
P x,z C z G x

=
=å  (5) 

where,  

 
2 2 1/ 2

( )
( ) 2 , 0,..... 1

( )

k
k

x

r r
G x dr k K

r x

r¥
= = -

-ò  (6) 

are the projections of the basis functions ( )k rr  after applying forward Abel transform and the kC (z) are 

expansion coefficients to be calculated. 
 

Furthermore, since the projection ( , )P x z is retrieved using discrete devices like CCD cameras, equation 

(5) can be rewritten in a discrete form for a x zN N´  pixels projection image, as follows: 

 
-1( ) ( )

0
( )

KK k

ij k j ik
P C z G

=
=å ,

 
(7a) 

where,  

 
( )

2 2 1/ 2

( )
2

( - )i

k k
i

x
i

r r
G dr

r x

r¥
= ò ,         1,..., xi N=

 
 and  1,..., zj N=

 
(7b) 

Eq. (7a) can be solved independently for each zj. In this case for a single zj it is written in matrix form as   

 =P CG  (8) 

which is a system of equations representing the inverse problem in two dimensions. Here, C and G are  

vectors  

(0) ( 1)( ,.... ),K-=C C C (0) ( 1)( ,.... ) ,K T-=G G G ( ) ( ){ , }k k KÎC G R . 

As it was shown in [18] an appropriate set of basis functions ( )k rr  is given by the relation  
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2( ) exp[-2( - ) ]k

r
r kr

s
= , 0,..., -1k K=  (9) 

where s  is a parameter related to the width of Gaussian base functions ( )k rr  and ( 1) 2xK N£ + . 

These Gaussian base functions represent a good basis set due to the analytical expression of their Abel 

inversion [19] and are used in all cases analyzed later on, in this paper. The term K  depends both on the 

corresponding width of the projection image and the selection width parameter s  of the Gaussian basis 

functions. For instance, to adequately cover the object area, the selection of a narrow basis functions with 

1s =  requires that / 2xK N= , while if 2s = , / 4xK N= . Recall that we are interested in recovering 

cylindrical density distributions. The system (8) yields the corresponding expansion coefficients by 

solving the least-squares problem via the Tikhonov regularization which is used in order to ensure the 

stability on an ill-posed problem giving ultimately accurate approximate solutions [18, 20]: 
 

 

2 1( )T T

xq -= +C PG GG I , 0xq >   (10) 

where I  is the identity matrix and 
2

xq  
 
is the regularization parameter of 

( )k

iG for the x dimension. The 

process of regularization is utilized aiming at the improvement of the condition number of the matrix   

TGG [21-24] which is equal to the ratio of the highest ( max ( )Ts GG ) to the lowest (
min ( )Ts GG ) 

singular value [24-26] of
 
matrix 

TGG  and is expressed by the following relation, 

 

( ) 1
max

2
2 min

( )
( ) 1

( )

T
T T T

T
Cond

s
s

-
= × = ³

GG
GG GG GG

GG
 (11) 

The regularization parameter 
2

xq  is a positive and free parameter that enters into the final solution of eq. 

(10) and affects the amount of noise suppression in the two-dimensional reconstructed distribution 

projection. Very small values of the parameter should be avoided due to the appearance of high frequency 

noise in the reconstruction [20, 22, 23]. Likewise, very large values should also be avoided because they 

lead to information loss in the reconstruction [20, 22, 23]. The determination of the optimal Tikhonov 
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regularization factor 
2

xq  has been achieved, in all numerical results below, by following an approach 

relying on the Bayesian interpretation, taking into account all the crucial assumptions arising from this 

method [27]. 

   

3.  Simulated objects  

To study the efficiency of each of the two methods on analyzing two–dimensional projections of 

cylindrically symmetric objects we have first simulated two conically shaped objects. Although the 

specific objects are not commonly encountered in experiments there are interesting to study numerically 

since their width is monotonically varied enabling to examine the effect of object size on the 

reconstruction. The radial distribution function of the first one, referred from now on as Reference Object 

1, is shown in Fig. 2(a) (in normalized units). As it is clear from the figure the object is conical in shape 

with gradually increasing width and smooth edges. The radial distribution function of the second one, 

referred from now on as Reference Object 2, is shown in Fig. 2(b) (in normalized units). The radial 

distribution function of this object is described by a Super Gaussian distribution. In both cases the 

distribution functions might refer to the perturbation of the refractive index, induced by a strong ultrafast 

pulse. In Fig. 2(c) a radial profile of the normalized density distribution is shown for both objects. The 

analytical expressions that describe the density distribution of these objects are: 

 

2

1 2
( , ) exp[ 4ln 2 ]

( )

r
R r z

w z
= -  (12) 

 

2
2

2 2
( , ) exp[ 2 ln 2 ]

( )

n
n

n

r
R r z

w z
= -  (13) 

where ( )w z z=  and 8n = . The two dimensional projections of these objects were calculated 

numerically by using the direct Abel transform of eq. (1) and are shown in Figs. 3(a) and 3(b) 
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respectively. These projections correspond to the measurable quantity in any experimental configuration. 

Therefore, in order to study the effect of noise on the reconstruction we numerically generated noisy 

projections by adding different levels noise in the original projections. This approach closely mimics the 

real experiments where noise is emerging during the projection retrieval.  

In experiments noise can originate from inhomogeneities of the probe beam spatial distribution 

(speckle, interference fringes etc.) or from the detection device (CCD sensor). The statistical properties of 

noise differ depending on its source. Noise originating from the CCD sensor can be adequately described 

by white Gaussian noise. On the other hand, probe beam inhomogeneities exhibit more complex 

statistical properties, which are related to the experimental setup used. In order to cover the widest 

possible noise statistical scenarios we have used both the generic distribution of white Gaussian noise and 

also noise with statistical properties retrieved from a series of experimental images.  

Typical images of noisy projections, using white Gaussian noise, are shown in Figs. 3(c) and 3(d). The 

noise in these images corresponds to typical noise levels encountered in real experiments. Normally a 

single number describing the ratio of the signal to noise (SNR) would suffice to describe the strength of 

noise in a projection. In our case the situation is more complicated since both objects, have variable width 

while the RMS noise amplitude is constant over the whole projection. As shown in Fig. 3(e). the SNR 

ratio depends on the width (FWHM) of the object and roughly stabilizes to a saturation value for large 

widths. The Noise Level 2, for instance, corresponds to noise level of the power of 13 2SNR dB= ± , 

approximately. This behavior is also repeated in the case of Reference Object 2 (not shown here).  

Next, we compared the two methods BASEX and F-H by applying them to the reconstruction of the 

simulated objects shown in Fig. 2 using as an input their noisy projections (shown in Fig. 3). In the case 

of the BASEX technique we utilized two different sets of basis functions: (a). 100K = , 1s = , 
2 15xq =

 

and (b).  50K = , 2s = , 
2 28xq = ,  respectively. On the other hand, in the case of the F-H technique, we 

used low pass Gaussian filtering to reduce the effect of noise in the reconstruction. In this case the Fourier 
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transform of the projection (P(x,z) in eq. (3)) first multiplied by a Gaussian function before the Hankel 

transform was applied [9]. The amount of low pass filtering was adjusted by changing the width of the 

Gaussian filter function, a process which effectively equivalent to the numerical aperture (NA) of an 

optical system. We applied two different levels of filtering : (i) weak filtering referring to NA= 0.85, and 

(ii). strong filtering referring to NA = 0.17. Fig. 4, shows the reconstruction results for the Reference 

Object 1 and at Noise Level 1 ( 33 2SNR dB= ± ), Noise Level 2 ( 13 2SNR dB= ± ) and Noise Level 3 

( 3 2SNR dB= ± ). It is clear that both methods, qualitatively at least, sufficiently reconstruct the original 

objects for the first two noise levels where noise is not that strong. On the other hand, the F-H technique, 

as shown in Figs 4(f) and 4(e), seems to be more robust to high levels of noise compared to BASEX. One 

reason behind this is the low pass filtering that is used in the F-H technique. The results for the case of 

Reference Object 2 (not shown here), are similar.  

For better understanding the effect of each reconstruction method in Fig. 5 we show typical line profiles 

of the original and reconstructed objects for 13 2SNR dB= ±  noise level. For the BASEX technique 

results from both sets ( 1,2s = ) of basis functions are shown, while for the F-H technique two low pass 

filtering levels (weak (i) and strong (ii)) are applied. These results quantitatively confirm the qualitative 

result of Fig. 4, that for such type of objects the F-H technique leads to a more accurate reconstruction 

compared to the BASEX. The low pass filtering plays a very important role here since for weaker 

filtering F-H results in quite noisy reconstructions. Besides the object reconstruction the baseline (zero in 

our case) is well recovered in the F-H reconstructions compared to the BASEX.  On the other hand, the 

BASEX technique is more robust to the effect of noise as the basis set becomes wider. This is an expected 

result since wider base functions filter out noise components that correspond to higher spatial frequency 

practically acting like a low pass filter.  

The dependence of the RMS reconstruction error on the typical size (FWHM) of the object for various 

noise levels is shown in Fig. 6. For the BASEX technique the wider ( 2s = ) basis set is used while for the 

F-H the stronger low pass filtering is applied. It is clear that for this type of objects the F-H results 
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systematically to a lower RMS error compared to BASEX. On the other hand, the F-H  shows some 

sensitivity on the size of the reconstructed object since the RMS error ( 0.0210 0.0182± ) can vary by an 

order of magnitude (Fig. 6 (a)) as the object size changes while, on the contrary, the BASEX shows a 

much lower variation of the RMS reconstruction error ( 0.0557 0.0038± ). This effect is weakened as the 

noise level is increasing but still the F-H shows a stronger variation as a function of the object size. The 

BASEX technique although is in general less robust in noise for the types of objects and noise used, it 

exhibits remarkable stability as the object size varies. So in this respect it is superior compared to F-H 

since the RMS reconstruction error will be independent of the original object size.  

It is expected that the increase of the width of the Gaussian functions of the BASEX basis set will further 

reduce the effect of noise on the reconstruction. In this sense the BASEX technique can be better adapted 

for the reconstruction of noisy projections. As shown in Fig. 7(a) the RMS error for a noisy projection 

( 13 2SNR dB= ± ) is monotonically decreased as the basis set width is increased. On the other hand, 

simply measuring the global RMS error in a reconstruction can be misleading. As also shown in Fig. 7(a) 

if we focus only on small features (with typical feature size w<12 in our simulations) the reconstruction 

fails to be accurate even in the absence of noise. Clearly in this case the increase of the basis set width 

leads to loss of resolution. In order to optimize the BASEX technique the two opposing trends of 

sensitivity to noise and resolution should be balanced. This, as shown in Fig. 7(a), is achieved at a basis 

set width of  s ~ 3.5±0.5 roughly 3.5 times smaller than the width of the typical feature size. Using this 

optimization process we obtain a roughly threefold reduction of the RMS reconstruction error in presence 

of noise.  

In order to confirm this significant argument, in Fig. 7(b) we illustrate typical line profiles of fine 

structured objects (where typical feature size w<12) for the case of Reference Object 1 and the 

corresponding reconstructed objects at Noise Level 2. To do so, the optimum F-H technique (strong (ii)) 

is applied, while the optimized BASEX for a set of basis functions where 3.7s = , is presented. After 

inspecting the plots in Fig. 7(b), we conclude that after this optimization process the BASEX technique 
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can clearly provide more reliable results compared to the F-H. Thus, after appropriately tuning the basis 

set functions width, the BASEX approach is better than F-H in all aspects.  

The study of conically shaped objects (Reference obj. 1 and 2), although not commonly encountered 

in pump-probe experiments, has provided us with valuable information regarding the effect of object size 

on the reconstruction and enabled us to finely tune the BASEX basis set.  

We now extend our study to three commonly encountered types of cylindrical reference objects. In all 

cases the distribution functions again refer to the perturbation of the refractive index, typically induced by 

a strong ultrafast pulse in the experiments. The radial distribution function of the first one, referred from 

now on as Reference Object 3, is shown in Fig. 8(a) (in normalized units) and is described by the 

analytical expression: 

                                       
2 2

3

-
( , ) exp[-4ln 2 ( ) ( ) ]o

z o

z z r
R r z

w w
=                                                                       (14) 

where oz  25=  is the peak position along z,  30zw =  and 18ow =  are respectively the FWHM of the 

distribution along  z axis (at r = 0) and along r (at z = zo). The radial distribution function of the second 

one, referred from now on as Reference Object 4, is shown in Fig. 8(b) (in normalized units) and is 

described by a Gaussian distribution sinusoidally modulated along z axis: 

      
2 2

4

-2
( , ) {1 cos[ ( )]}exp[-4ln 2 ( ) ( ) ]

6

o o

z o

z z z r
R r z m z

w w

mp
= + × -

L
                                                  (15) 

where oz  25=  ,  2m = ,  30zw = 25ow =  refer to the spatial characteristics of the Gaussian envelope 

function and,  20L = ,  0.8m =  refer to the modulation period and strength. This distribution mimics 

generation of plasma hotspots during the dynamic propagation, along the propagation axis z, of an intense 

beam in the non-linear propagation regime [2, 5, 6]. The radial distribution function of the third one, 
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referred from now on as Reference Object 5, is shown in Fig. 8(c) (in normalized units) and is described 

by the analytical expression:  

                                   

2
20

5 2 2

0 0

( , ) exp[-4ln 2 ( ) )]
( )o

w r
R r z

w z z w
=

+ -
                                                            (16) 

where
 

  25oz = , 16ow =  refer respectively to the peak position along z and the FWHM of the 

distribution along r (at z = zo), This kind of distribution mimics the typical focusing of a Gaussian pump 

beam with a Gaussian transverse distribution (along r) and a Lorenzian distribution along z. In Figs. 8(d), 

8(e) and 8(f), the two dimensional projections of these objects, which were numerically generated by 

applying the direct Abel transform of eq. (1), are illustrated. Note again, that these projections correspond 

to the measurable quantity of interest in any experiment.  

In the following, we compared the optimized BASEX ( 3.7s = ) and F-H  (NA = 0.17) techniques by 

applying them to noisy projections of Reference Objects 3,4 and 5, using again white Gaussian noise. Fig. 

9, shows the comparative reconstruction results for the Reference Object 3 (Fig.9-top row), the Reference 

Object 4 (Fig.9-middle row) and the Reference Object 5 (Fig. 9-bottom row) at Noise Level 2, and for 

both reconstruction methods. More precisely, the typical image of noisy projection ( 13 2SNR dB= ± ) of 

the Reference Object 3 is shown in Fig. 9-top left. On the center and right plots the results for both the 

optimized BASEX and the optimum F-H techniques are depicted, correspondingly. In the middle and 

bottom rows of the same figure the corresponding results for the Reference Object 4 and the Reference 

Object 5, respectively, are illustrated. It is clear that both optimal methods, qualitatively at least, provide 

quite satisfactory retrievals of the original cylindrical objects, with a lower loss of resolution for the 

optimized BASEX compared to the optimum F-H. We also observe that for the first two types of 

cylindrical objects the optimum F-H technique, leads to a slightly more accurate reconstruction with 

respect to the optimized BASEX method. In particular, the RMS reconstruction error for the F-H ranges 

from 0.0294 (Reference obj. 3) to 0.0259 (Reference obj. 4), while for the Basex method varies from 
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0.0351 (Reference obj. 3) to 0.0467 (Reference obj. 4), respectively. On the contrary, for the Reference 

Object 5, the optimized Basex shows a slightly lower RMS reconstruction error (RMS = 0.0308) 

compared to the F-H technique (RMS = 0.0316). This behavior of the F-H technique is due to dependence 

of the reconstruction quality on the initial object size. On the other hand, the Basex’s recontstuction 

quality is practically independent to the object size. Moreover, our simulations (not shown here) for this 

type of objects systematically result to a lower RMS error for the optimized BASEX (RMS = 0.0308) 

compared to the narrow BASEX basis set Gaussian functions ( 2s £ ) (RMS = 0.0722).  

Up to now we have limited our study on the effect of white Gaussian noise on the reconstructions 

which adequately describes noise originating from the CCD sensor but is not efficient in describing noise 

originating from probe beam inhomogeneities. In order to extend our study to the effect of noise closer 

resembling the experiment we have first analyzed the statistical properties of noise using a collection of 

120 experimental images. The spatial spectral distribution of noise in each image was retrieved, as a 

function of the spatial frequency, by radially averaging its Fourier transform. The statistical distribution 

of the whole image collection was then obtained by averaging the individual radial spectral distributions. 

The Fig. 10 depicts the normalized spatial spectral distribution of the whole image set as a function of the 

spatial frequency. The experimental points are well fitted by a Gaussian envelope function: 

                   
2( ) (1 ) [ 4ln 2( ) ]o o wS f p p Exp f f= + - -                                                                            (17) 

where f is the spatial frequency (in pixels
-1

), 0.18op @  represents a white noise background and 

10.1wf pixel-@  is the spectral FWHM of the Gaussian distribution. In comparison the spectral 

distribution of an averaged set of simulated white Gaussian noise is also shown in Fig. 10. Although due 

to the normalization process the two distributions look quite different is clear that above a spatial 

frequency of 
10.2f pixel->  (corresponding to intensity variations with a periodicity less than 5 pixels) 

the noise distribution is practically white. 
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We have numerically generated realistic noise images by using the spatial spectral distribution 

described in Eq. (17) as a spatial spectrum envelope function to white Gaussian noise. This approach 

enables us to obtain a random noise with the desired statistics. To implement this numerically a pseudo 

random complex numbers array a ib+  is firstly generated, and since a and b are independent and 

random their variation conforms to the normal distribution with mean value zero and standard deviation 

1. This array, that corresponds to the spatial Fourier transform of the required random noise distribution, 

is then multiplied by the envelope function ( )S f , where f is the spatial frequency. By inverse Fourier 

transforming this shaped random spectral distribution ( ) ( )a i S fb+ × we retrieve the desired random 

noise field 1 2n in+ . Finally, since the noise will be applied to the intensity values of each projection, only 

the real part is used in the simulations. Typical noise images resulting from this approach are shown in 

Fig. 11. The images in Fig. 11 are generated using different spectral FWHM values ranging from values 

similar to the experimental images Fig. 11(a) to values practically leading to white Gaussian noise. 

We further compared the optimized BASEX ( 3.7s = ) and the optimum F-H (NA = 0.17) methods by 

applying them to noisy projections of Reference Object 5, adding simulated noise with statistical 

properties similar to the experimental images as depicted in Fig. 11(a). The Signal to Noise ratio (SNR) 

was adjusted by properly scaling the noise amplitude values. Fig. 12, illustrates the comparative results 

for the Reference Object 5 adding experimental noise at different typical SNR values for both 

reconstruction techniques. On the left column of Fig. 12, the typical images of noisy projections (SNR = 

33dB, 13dB and 3dB respectively) of the Reference Object 5, are shown.  On the center and right 

columns, the reconstruction results for the optimized Basex and the optimum F-H methods are presented, 

respectively, for each typical noise level. It is clear that both techniques are successfully reconstructing 

the initial objects even for high noise levels. Interestingly, these results are comparable to the 

reconstruction results obtained using white Gaussian noise. More precisely the RMS reconstruction error 

for the Basex technique ranges at 0.0338 while the F-H results in 0.0334 values, at SNR = 13dB. For the 

case of Reference Objects 3 and 4 (not shown here) we get similar results. More specifically, the RMS 
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error for the Basex ranges from 0.0381 (Reference obj. 3) to 0.0445 (Reference obj. 4), while for the F-H 

technique varies from 0.0323 (Reference obj. 3) to 0.0277 (Reference obj. 4), correspondingly, at the 

same SNR level. 

To further explore the effect of noise statistical distribution we preformed reconstructions using noisy 

projections varying the noise statistics while keeping the SNR constant. The simulations were preformed 

adding the noise distributions depicted in Fig. 11 to the projection of Reference Object 5. In all cases the 

noise values were properly scaled so that the SNR is 13 dB. In Fig. 13, are shown the comparative results 

for the BASEX and the F-H techniques. Note, that the noise distributions are indexed from 1 to 4, 

corresponding to Fig. 11(a), 11(b), 11(c), and 11(d) respectively. On the left column of Fig. 13, we show 

the respective projections with the addition of noise (SNR = 13dB). On the center and right columns, the 

reconstruction results for the optimized Basex and the optimum F-H methods are presented, respectively. 

It is clear that both techniques, even for a wide range of noise statistical distributions, reconstruct quite 

sufficiently the initial object. This confirms the validity of the results obtained using white Gaussian 

noise, since both reconstruction techniques are not sensitive to the noise statistics in the parameters range 

that was examined. The RMS reconstruction error for the Basex technique ranges from 0.0261 (noise 

screen 1) to 0.0298 (noise screen 4), while the F-H results from 0.0226 (noise screen 1) to 0.0259 (noise 

screen 4) values, respectively. In this case the optimized F -H technique, seems to provide, quantitatively 

at least, a slightly more accurate reconstruction compared to the optimized BASEX method. Furthermore, 

our simulations (not shown here) for this wide range of noise statistical distributions result to a lower 

RMS error for the optimized BASEX (RMS =0.0347) compared to the narrow BASEX basis set Gaussian 

functions ( 2s £ ) (RMS =0.0689), as for instance, at noise screen 2. This behavior is also repeated in the 

cases of Reference Objects 3 and 4 (not shown here). More concretely, the RMS reconstruction error for 

the optimized BASEX ranges from 0.0398 (Reference obj. 3) to 0.0504 (Reference obj. 4), while for the 

narrow BASEX basis set varies from 0.0694 (Reference obj. 3) to 0.0652 (Reference obj. 4), respectively, 

at the same noise screen.  
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Overall, we conclude, that the BASEX method can be better adapted for the reconstruction of noisy 

projections compared to the F-H, especially after appropriately optimizing the basis set Gaussian 

functions width. A further advantage of the BASEX technique compared to the F-H concerns the amount 

of processing power. For typical reconstructions like the ones presented in this paper, the BASEX 

technique is approximately 15 times faster, and 1000 times faster in the calculation of the inverse Abel 

transform needed to derive the matrix of the expansion coefficients, described in equation (10). This 

aspect should be seriously taken into account in cases where a real time reconstruction is required.  

 

4.  Summary and conclusions 

In this paper we compared two widely used reconstruction techniques for the reconstruction of 

cylindrical objects typically encountered in laser pump-probe experiments, namely the BASEX technique, 

appropriately adapted to the reconstruction of cylindrical objects, and the F-H technique. Our numerical 

experiments were performed for a variety of objects, with respect to the spatial distribution and size, and 

for various noise levels and statistical distributions. The noise level and distribution was selected to cover 

a wide range corresponding to noise encountered in typical pump-probe experiments.  

Analyzing the numerical experiments, it is clearly shown that for such noisy projections a 

straightforward application of the BASEX technique, using a narrow Gaussian basis set, results to a 

slightly worse reconstruction quality compared to the low pass filtered F-H technique. On the other hand, 

by widening the base functions used in the BASEX technique the reconstruction becomes less sensitive to 

noise with the drawback of reducing the spatial resolution. We also show that the BASEX technique can 

be optimized for noisy projections by adapting the basis set width to be approximately 3-4 times smaller 

than the typical feature size.  

Another important aspect is the dependence of the reconstruction quality on the original object size. 

The low pass filtering used in the F-H technique results to a strong dependence of the reconstruction 
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quality on the object size. Thus, small objects are not well recovered by the F-H technique. This is not a 

problem for the BASEX technique, where the reconstruction quality is practically independent of the 

object size. Finally the F-H technique is by at least 15 times more computationally intensive than the 

BASEX.  

Furthermore, we confirmed that both techniques are robust to variations of the noise statistics. Using a 

collection of experimental images we have retrieved the typical statistical noise distribution for this 

application which we then exploited to generate simulated noise with the desired statistics. Our results 

show that both reconstruction techniques exhibit similar behavior in respect noise with statistical 

properties ranging from white Gaussian noise to typical experimental one.  

In summary, for typical cylindrical objects encountered in pump-probe holographic interferometry 

experiments, the BASEX is superior to the F-H method especially after proper optimization of the basis 

set functions width. 
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List of Figure Captions 

 

Fig. 1. (Color online) A geometrical interpretation of the Abel transform of a cylindrically symmetric 

function ( , )R r z . An observer (O) looks along a line parallel to the y axis, a distance x above the origin. 

He sees the projection ( , )P x z of the circularly symmetric function along the line of sight. Inset: Detail at 

a cross sectional x-y plane. 

Fig. 2. (Color online) The synthetic–simulated images of initial conical reference objects called as (a). 

Gauss-Filled-Cone (Reference Object 1) and (b). Top-Hat-Filled-Cone (Reference Object 2), respectively. 

(c). The imaging of general distribution of the radial profiles of two reference objects.    

Fig. 3. (Color online) The 2D projections of the initial conical (a).  Reference Object 1 and (b).  Reference 

Object 2, respectively, after using forward Abel transform. The corresponding noisy projections of (c). 

Reference Object 1 and (d). Reference Object 2, while adding white Gaussian noise (Noise Level 2). (e). 

The graphical representation of SNR (dB) with respect to the FWHM (pixels) in several noise levels for 

the Reference Object 1. The dotted black line indicates the threshold of noise which is of power of SNR = 

3dB.  

 Fig. 4. (Color online)  Left column: The reconstructing results obtained through Basex ( 2s = ) for the 

Reference Object 1 at (a). Noise Level 1,  (c).  Noise Level 2 and (e).  Noise Level 3, respectively. Right 

column: The retrieving results provided via F-H by using a strong low pass Gaussian filtering 

(NA=0.17), at (b). Noise Level 1, (d). Noise Level 2 and (f). Noise Level 3, correspondingly. The 

reconstructed objects obtained by both methods are represented in an optimal color scale locked at [-1.2, 

1.2] interval.  

Fig. 5. (Color online) The graphical representation of variation for the profile (in a central line) of 

reconstructed Reference Object 1, after using (a). Basex in two different basis functions ( 1,2s = ) and (b). 

F-H in two different filtering levels (weak (i) and strong (ii)), respectively, at Noise Level 2. The 
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graphical representation of variation for the profile (in a central line) of reconstructed Reference Object 2, 

after applying (c). Basex in two different basis functions and (d). F-H in two different  filtering levels 

(weak (i) and strong (ii)), correspondingly, at the same Noise Level. The black line indicates the 

distribution of profiles for the reference objects, in the same central line.     

Fig. 6. (Color online) Left column: The RMS-error results provided through both reconstruction 

techniques with respect to the FWHM (pixels) for the Reference Object 1 at (a). Noise Level 1, (b). Noise 

Level 2 and (c). Noise Level 3. Right column: The RMS-error results provided through both 

reconstruction techniques with respect to the FWHM (pixels) for the Reference Object 2 at (d). Noise 

Level 1, (e). Noise Level 2 and (f). Noise Level 3, respectively. The green line represents the RMS-error 

results by using the Basex ( 2s = ) method and the red one indicates the RMS-error results after applying 

F-H method in appropriate filtering level (strong case, (ii)).     

Fig. 7. (Color online) (a). RMS-error of the Basex method as a function of the Gaussian basis function 

width. (n)  Global RMS error in the presence of noise, (l) mean RMS error for the reconstruction of 

small objects (widths <12) in the absence of noise. (The dashed and dotted lines are guides to the eye). 

(b). The graphical representation of variation for the profile (in a line where typical feature size w<12) of 

reconstructed Reference Object 1, after using (a). the optimized Basex ( 3.7s = ) and (b). the optimum F-

H (strong (ii)), respectively, at Noise Level 2. The black line indicates the distribution of the profile of the 

reference object.   

Fig. 8. (Color online) Simulated typical cylindrical reference objects (a). Double Gauss (Reference Object 

3), (b). Modulated Double Gauss (Reference Object 4) and (c). Typical Focus (Reference Object 5). The 

corresponding 2D projections of (d). Reference Object 3, (e). Reference Object 4 and (e). Reference 

Object 5, after applying forward Abel transform. 
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Fig. 9. (Color online) Noisy projections (noise Level 2) and the corresponding reconstruction results 

obtained using the optimized Basex ( 3.7s = ) and F-H (NA = 0.17) techniques. Top row: Reference 

Object 3. Middle row Reference Object 4. Bottom row: Reference Object 5.  

 Fig. 10. (Color online) Normalized spatial spectral noise distribution as a function of the spatial 

frequency (in pixels
-1

). (●) Spatial spectra retrieved from 120 images experimental images, (gray line) 

Gaussian fit, (blue line) simulated white Gaussian noise. 

Fig. 11. (Color online) Typical noise images generated using random spectral phase distribution shaped 

by a Gaussian envelope function as described in Eq. (17) (a). 
10.1wf pixel-=  (similar to typical 

experimental noise), (b). 
10.36wf pixel-= , (c). 

10.77wf pixel-= , and (d). 
11wf pixel-=  (similar to 

white Gaussian Noise). In all cases the background white value is set to 0.18op =  

Fig. 12. (Color online) Effect of noise, with statistical distribution similar to the experiment, for various 

SNR levels. Left column: The 2D noisy projections of Reference Object 5 while adding noise at different 

SNR levels (33dB, 13dB, 3dB). Center column: Reconstruction results after applying the optimized 

Basex ( 3.7s = ).  Right column: Reconstruction results after using the optimum F-H (NA = 0.17)  

Fig. 13. (Color online) Effect of the statistical distribution of noise in the reconstruction at a constant 

SNR=13 dB level. Left column: The 2D noisy projections of Reference Object 5 while consecutively 

adding noise with varying statistical properties corresponding to Fig. 11. Center column: Reconstruction 

results after applying the optimized Basex ( 3.7s = ). Right column: Reconstruction results after using the 

optimum F-H (NA = 0.17).  
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