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A software framework for computing Newton polytopes of

resultants and (reduced) discriminants

Ioannis Z. Emiris∗ Vissarion Fisikopoulos∗ Christos Konaxis∗∗

March 11, 2013

Abstract

We present a new software for computing Newton polytopes of resultant and discriminant
polynomials. We illustrate its use with a number of examples.

1 Introduction

We work with Laurent polynomials having �xed support sets Ai ⊂ Zn in n unknowns x =
(x1, x2, . . . , xn) over an algebraically closed �eld K i.e. fi(x) =

∑
a∈Ai

ci,ax
a, ci,a 6= 0. The

Newton polytope of a polynomial f , denoted by N(f), is the convex hull of its support set.

Sparse resultant. Sparse, or toric, resultants, or simply resultants, study systems such as:

f0(x) = f1(x) = · · · = fn(x) = 0. (1)

Let A0, . . . , An ⊂ Zn be the respective supports, assuming they form an essential family [Stu94,
Sec.1]. Polynomials f0(x) . . . , fn(x) are de�ned on the Ai's with symbolic coe�cients ci,a, i =
0, . . . , n, a ∈ Ai. Given A0, . . . , An we de�ne the sparse resultant of system (1) to be the unique
(up to sign) irreducible integer polynomial RA0,...,An in the ci,a, which vanishes i� (1) has a
solution in (K∗)n. The sparse resultant has

∑n
i=0 |Ai| variables, however the intrinsic dimension

of its Newton polytope, called resultant polytope, is [GKZ94]: dim(N(R)) =
∑n

i=0 |Ai| − 2n− 1.

A-discriminant. Let A be a subset of Zn s.t. it generates Zn as an a�ne lattice and f =∑
a∈A cax

a be a generic polynomial w.r.t. A, i.e. with generic coe�cients ca 6= 0. The A-
discriminant is the unique (up to sign) irreducible integer polynomial ∆A in the unknowns ca
which vanishes i� f has a multiple root in (K∗)n, namely

∃x∗ ∈ (K∗)n s.t. f(x∗) =
∂f

∂x1
(x∗) = · · · = ∂f

∂xn
(x∗) = 0. (2)

∆A is homogeneous, and quasi-homogeneous relative to the weight de�ned by any vector in
the rowspan of the (n + 1) × m,m = |A| > n + 1, integer matrix (also called A by abuse of
notation) whose �rst row consists of ones, and whose columns are (1, a), a ∈ A. The intrinsic
dimension of its Newton polytope, called discriminant polytope, is therefore |A| − n− 1.
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The Cayley trick. Given pointsets A0, . . . , An ⊂ Zn, we de�ne the pointset

A :=

n⋃
i=0

(Ai × {ei}) ⊂ Z2n, (3)

where e0, . . . , en form an a�ne basis of Rn: e0 = (0, . . . , 0), ei = (0, . . . , 0, 1, 0, . . . , 0), i =
1, . . . , n. The regular tight mixed subdivisions of Minkowski sum A0 + · · ·+An are in bijection
with the regular triangulations of A.

2 Algorithms for resultant and (reduced) discriminant polytopes

Our software ResPol computes (projections of) resultant polytopes, and (reduced) discriminant
polytopes. It is written in C++, uses the CGAL library 1, principally the experimental CGAL
package triangulation, and is publicly available at http://respol.sourceforge.net. It o�ers
binary �les for 32 and 64-bit Linux systems. To compile ResPol, e.g. on other architectures, one
may consult the README �le available with our distribution, once CGAL is installed.

Resultant polytope. An output-sensitive algorithm and an implementation for the resultant
polytope are presented in [EFKP12]. Its complexity is polynomial in the number of polytope
vertices and the number of full-dimensional cells in the triangulation of the polytope constructed
by the algorithm. The method de�nes a vertex oracle which, given direction c ∈ R|A|, computes
vertex v ∈ N(R) s.t. cT v is maximized. The oracle is implemented by computing a regular
triangulation of the Cayley set A. Then v equals the exponent ρ of the extreme monomial in
[Stu94, Thm.2.1]. Using the oracle, the entire polytope can be reconstructed: Initialize with
the convex hull of a su�cient number of vertices for the hull to be full-dimensional. Given a
convex polytope, c is the outer normal to a facet F . The method either �nds a new vertex and
removes F (and possibly other facets), or a vertex on the hyperplane of F , which con�rms that
F is valid, so is never tested again. The reconstruction is implemented in [Hug06] given a vertex
oracle. Our implementation is optimized for vertex oracles that compute triangulations.

Example 1. Let A0 = {0, 1, 3} and A1 = {0, 3, 4} and consider two generic, relative to these
supports, univariate f0 = a0 +a1x+a2x

3, f1 = b0 + b1x
3 + b2x

4. Their resultant is the Sylvester
resultant of f0, f1. To compute its polytope, prepare text �le file.txt:

1 dimension of the input supports A0, A1

3 3 | cardinalities of the Ai's, �|� implies no projection
[[0],[1],[3],[0],[3],[4]] joint list of all support points

The third line contains the points ofA0 followed by those ofA1. Running command ./res_enum_d
< file.txt, the set of the resultant polytope vertices: (0, 3, 1, 1, 2, 0), (0, 0, 4, 3, 0, 0), (3, 0, 1, 0, 3,

0), (4, 0, 0, 0, 0, 3), (0, 4, 0, 1, 0, 2), (3, 1, 0, 0, 1, 2), are written in the standard output. If �3 3 |

0 3� was used as second line then the result would be the orthogonal projection of the resultant
polytope in the �rst and fourth coordinate (counting starts at 0).

Discriminant polytope. We extend ResPol to compute (reduced) discriminant polytopes
following two approaches. The �rst focuses on reduced discriminants. By employing the Horn-
Kapranov parameterization, the problem is reduced to implicitization. The Newton polytope of
the implicit equation of the parameterization, or implicit polytope, is computed as the projection
of a resultant polytope [EKKB13] and it contains (a translate of) the reduced discriminant
polytope. This approach is discussed below.

The second approach de�nes vertex oracles for the discriminant polytope and uses Beneath-
Beyond. There are several procedures to get a vertex oracle. In [Rin13] is given a procedure and

1CGAL: Computational Geometry Algorithms Library. http://www.cgal.org.
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an implementation (tropli) for such an oracle using tropical geometry: tropli, given direction
c ∈ R|A|, computes a vertex v ∈ N(∆A) s.t. cT v is minimized. Respol can use this oracle to
reconstruct the discriminant polytope. One can also de�ne a vertex oracle using the η-vectors
from [GKZ94, ch.11], similarly to the vertex oracle for resultant polytopes. Such an oracle
involves the computation of (normalized) volumes of lower dimensional simplices, and has not
yet been implemented in ResPol.

Regarding the �rst approach, given A, let B = (bij) ∈ Zn×(m−n−1) be a matrix whose column
vectors are a basis of the integer kernel of A. Then B is of full rank. We assume that its maximal
minors have unit gcd (i.e. the rows generate Zm−n−1). Since the �rst row of A equals (1, . . . , 1),
the columns of B add up to 0. Set d = m−n−1. Let y1, . . . , yd be homogenous parameters and
set y1 = 1 so as to dehomogenize the parameterization. We denote by li, i = 1, . . . ,m the inner
product of the i-th row of B and the parameter vector (1, y2, . . . , yd): li :=

∑d
j=1 bijyj . The li

correspond bijectively to the coe�cients ca, a ∈ A of f and are thus the discriminant variables.
The, so called, Horn-Kapranov parametrization [GKZ94, Kap91], is de�ned as:

xj =

m∏
i=1

l
bij
i , j = 1, 2, . . . , d. (4)

The implicit equation of (the closure of) its image is a polynomial ∆B in x := (x1, . . . , xd),
called the reduced discriminant, which is the dehomogenized version of ∆A; it is obtained from
∆A by specializing some n + 1 of its variables so as to remove the n + 1 quasi-homogeneities.
It follows that N(∆B) is the projection of N(∆A) in a space of dimension equal to its intrinsic
dimension and retains the combinatorial structure of N(∆A).

Example 2. Let A = {0, 1, 2, 3, 4} and f = c0 + c1t
1 + c2t

2 + c3t
3 + c4t

4 be a generic quartic.

A =

(
1 1 1 1 1
0 1 2 3 4

)
, B =


3 2 1
−4 −3 −2
0 0 1
0 1 0
1 0 0

 .

Here m = 5, n = 1, d = 3 and l1 = 3 + 2y2 + y3, l2 = −4− 3y2 − 2y3, l3 = y3, l4 = y2, l5 = 1, and
the Horn-Kapranov parameterization is:

x1 =
(3 + 2y2 + y3)

3

(−4− 3y2 − 2y3)4
, x2 =

(3 + 2y2 + y3)
2y2

(−4− 3y2 − 2y3)3
, x3 =

(3 + 2y2 + y3)y3
(−4− 3y2 − 2y3)2

. (5)

We prefer to have rational parameterizations with a single monomial in the denominator because
this facilitates the computation of the implicit polytope. We introduce a new parameter y4
expressing the common denominator in (5) and obtain the parameterization

x1 =
(3 + 2y2 + y3)

3

y44
, x2 =

(3 + 2y2 + y3)
2y2

y34
, x3 =

(3 + 2y2 + y3)y3
y24

, y4 = −4− 3y2 − 2y3,

from which we de�ne the polynomials

F0 : = x1y
4
4 − (3 + 2y2 + y3)

3, F1 := x2y
3
4 − (3 + 2y2 + y3)

2y2,

F2 : = x3y
2
4 − (3 + 2y2 + y3)y3, F3 := y4 + 4 + 3y2 + 2y3,

whose supports are given as input to ResPol. The above procedure is demonstrated in the Maple
�le horn_example2.mw available with our distribution. Then, we prepare the input file.txt:

3

11 7 4 4 | 0 11 18

[[0, 0, 4], [0, 0, 0], [1, 0, 0], [0, 1, 0], [2, 0, 0], [1, 1, 0], [0, 2, 0],

[3, 0, 0], [2, 1, 0], [1, 2, 0], [0, 3, 0], [0, 0, 3], [1, 0, 0], [2, 0, 0],

[1, 1, 0], [3, 0, 0], [2, 1, 0], [1, 2, 0], [0, 0, 2], [0, 1, 0], [1, 1, 0],

[0, 2, 0], [0, 0, 1], [0, 0, 0], [1, 0, 0], [0, 1, 0]]
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The second line after `|' instructs ResPol to project to the space de�ned by x1, x2, x3. Executing
./res_enum_d < file.txt, we obtain the vertices (0, 0, 12), (0, 8, 0), (6, 0, 0), (0, 0, 0) in the
standard output. They de�ne a polytope containing a translate of N(∆B).

To compute the discriminant polytope using tropli we prepare a text�le file.txt:

1

5 0 |
[[0], [1], [2], [3], [4]]

where the zero after the cardinality 5 of the support in the second line is needed because ResPol
expects the number of supports to be one more than the dimension. Executing the command
./res_enum_d -d < file.txt, we obtain the vertices of N(∆A): (1, 0, 4, 0, 1), (0, 3, 0, 3, 0),
(0, 4, 0, 0, 2), (0, 2, 3, 0, 1), (0, 2, 2, 2, 0), (2, 0, 0, 4, 0), (3, 0, 0, 0, 3), (1, 0, 3, 2, 0) in the standard
output. The corresponding vertices of N(∆B) may be computed as follows: By renaming the
li's as ci's we have from (5) that x1 = c30c

−4
1 c4, x2 = c20c

−3
1 c3, x3 = c0c

−2
1 c2, which gives the

correspondence: (κ, λ, µ) 7−→ (3κ+ 2λ+ µ,−4κ− 3λ− 2µ, µ, λ, κ), between the vertices of ∆B

and ∆A. Moreover, this yields the correspondence: (a1, a2, a3, a4, a5) 7−→ (a5, a4, a3) between
the vertices of ∆A and ∆B. Hence, from the set of vertices of N(∆A) above, we obtain the
vertices of N(∆B): (0, 2, 3), (0, 2, 2), (1, 0, 3), (1, 0, 4), (0, 3, 0), (0, 4, 0), (3, 0, 0), (2, 0, 0), which
are all contained in the polytope de�ned by the set of vertices predicted by ResPol.
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