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The effect of self-concentration and intermolecular packing on the dynamics of poly-

isoprene (PI)/polystyrene (PS) blends is examined by extensive atomistic simula-

tions. Direct information on local structure of the blend system allows a quantita-

tive calculation of self- and effective composition terms at various length scales that

are introduced to proposed models of blend dynamics. Through a detailed statis-

tical analysis, the full distribution of relaxation times associated with reorienation

of carbon-hydrogen bonds was extracted and compared to literature experimental

data. A direct relation between relaxation times and local effective composition is

found. Following an implementation of a model involving local composition as well

as concentration fluctuations the relevant length scales characterizing the segmental

dynamics of both components were critically examined. For PI the distribution of

times becomes narrower for the system with the lowest PS content and then broad-

ens as more PS is added. This is in contrast to the slow component (PS), where an

extreme breadth is found for relaxation times in the 25/75 system prior to narrow-

ing as we increase PI concentration. The chain dynamics was directly quantified by

diffusion coefficients as well as the terminal (maximum) relaxation time of each com-

ponent in the mixed state. Strong coupling between the friction coefficients of the

two components was predicted that leads to very similar chain dynamics for PI and

PS, particularly for high concentrations of PI. We anticipate this finding to the rather

short oligomers (below the Rouse regime) studied here as well as to the rather similar

size of PI and PS chains. The ratio of the terminal to the segmental relaxation time,

τterm/τseg,c, presents a clear qualitative difference for the constituents: for PS the

above ratio is almost independent of blend composition and very similar to the pure

state. In contrast, for PI this ratio depends strongly on the composition of the blend;

i.e. the terminal relaxation time of PI increases more than its segmental relaxation

time, as the concentration of PS increases, resulting into a larger terminal/segmental

ratio. We explain this disparity, based on the different length scales characterizing

dynamics. The relevant length for the segmental dynamics of PI is about 0.4-0.6 nm,

smaller than chain dimensions which are expected to characterize terminal dynamics,

whereas for PS associated length scales are similar (about 0.7-1.0 nm) rendering a

uniform change with mixing.
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I. INTRODUCTION

The dynamics of polymer mixtures remains an area of intense research for nearly two

decades due to their complex rheological behavior. It is well established that even thermo-

dynamically miscible blends, such as polyisoprene (PI)/1,2 polybutadiene (PVE) can retain

distinct individual mobilities in the mixed state that are separate from the pure components.1

A critical parameter in the observed behavior is the dynamic asymmetry, controlled by the

difference in the glass transition temperatures (Tg) of the constituent homopolymers. Devis-

ing simple, efficient and general models that interpret the observed dynamic heterogeneity

and formulate mixing rules is a critical step towards choosing appropriate processing con-

ditions in practical industrial applications. However, despite continuous development for

more than a decade, this remains a challenging task with several open questions pertaining

to linking molecular details to model parameters. Excellent reviews in the literature provide

a thorough background of accumulated knowledge2,3 therefore we focus in this introduction

on aspects that motivated the current study.

Several models combine concentration fluctuations and contributions from chain connec-

tivity to provide a framework that rationalizes the observed experimental behavior. Concen-

tration fluctuations are expected to be present in mixtures and depending on their lifetime

they can promote a distribution of segmental decorrelation rates. This view of polymer

blend dynamics was proposed by Zetsche and Fischer4 and further developed in subsequent

studies that extended the concept of concentration fluctuations beyond a Gaussian form, to

capture experimental and simulation data.5–15 Some of the aforementioned studies added the

effect of self-concentration, first introduced by Chung et al.16 and further elaborated by the

Lodge-McLeish (LM) model.17 According to this concept, each segment of a specific com-

ponent A is experiencing an environment that is enriched to A due to chain connectivity.16

To create a quantitative formalism, it is necessary to select an appropriate lengthscale over

which self-concentration and fluctuations in composition control segmental dynamics. The

success of these theoretical models to capture qualitatively experimental findings, fueled

extensive studies aiming to offer a quantitative prediction of dynamics in polymer blends.

He et al. examined extensively the segmental and terminal dynamics of polyisoprene

(PI) /polystyrene (PS) oligomers.18 While homogeneous terminal dynamics were probed,

segmental relaxation rates were significantly different. By refinement of self-concentration
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terms ϕself the LM model provided a reasonable description of experimental data. However

the actual values (0.33±0.05 for PI and 0.42 ± 0.07 for PS) differed from the anticipated

0.45 and 0.27 based on a direct application the original LM model. As described by the

authors, the actual values are largely dependent on the length scale (volume) over which the

self-concentration term is evaluated. This volume should be in the order of l3K where lK is

the Kuhn length of the polymer segment whose dynamics are examined. Shenogin et al.19

supported that a single correlation length that is composition-independent can reproduce

experimental data; however concentration fluctuations need to be incorporated in the LM

model. Using both self-correlation terms and fluctuations, a distribution of effective com-

positions p(ϕeff) can be turned to a distribution of segmental times p(log τ) given a specific

correlation length. By iteratively refining predictions of the model to experimental data,

short length scales were predicted for PI in the range of 4-10 Å. Nevertheless, as stated

by the authors, the actual values are quite sensitive to the analysis procedure to have any

molecular significance. We add, that the complete distribution of times is required to obtain

an accurate description since as shown by Kumar et al.20 mean times and peaks of the dis-

tribution can both be affected by local composition and fluctuations. It is important to add

in our introduction a subsequent study by Liu et al., employing bead-spring models that

demonstrated that even the self-concentration term should be described by a non-Gaussian

distribution of concentrations rather than a constant value.21 This feature is particularly

important for dilute blends.

Simple lattice models can provide valuable qualitative aspects of the correlation between

composition and dynamics of model polymer blends. Using such models Colby and Lipson22

analyzed data from dielectric experiments of PI/PVE blends to show that, by accounting

for the relatively strong composition dependence of the blend Tg, it is possible to model the

dielectric relaxation spectrum by considering concentration fluctuations at the scale of the

Kuhn length; the latter is both composition and temperature independent. More recently

White and Lipson,23 using a simple lattice-based equation of state, examined correlations

between the difference of pure component energy parameters and their bulk miscibility,

using various experimental data for blends exhibiting both upper and lower critical solution

temperature. Finally, recently Colmenero, Richter and co-workers in a series of papers24–26

studied the effect of blending on dynamics using dielectric spectroscopy, neutron scattering

and simulations with bead-spring models. Among other systems they studied the dynamics
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PI/poly(tert-butylstyrene)(PtBS) miscible blends. They found that as the concentration of

the higher-Tg component PtBS increases, the dielectric response of PI becomes slower and

there is a gradual broadening of both low- and high- frequency tails of the normal mode

relaxation of PI.

For miscible oligomer mixtures, dynamics are today directly accessible by fully atom-

istic molecular dynamics simulations. Using such detailed models, Faller demonstrated that

heterogeneous segmental dynamics are present in the PI/PS mixture associated with length-

scales up to 1.3 nm.27 Maranas and co-workers2,28 compared the dynamics of a poly(ethylene

oxide)(PEO) and poly(methyl methacrylate)(PMMA) with that of a diblock copolymer of

the same overall composition. As shown, differences in the intermolecular packing of the

blend and the copolymer leads to variations in composition defined over local length scales.

In this study, we examine whether the dynamics in PI/PS oligomer blends as described

by atomistic simulations, can be predicted by employing the concept of self-concentration

combined with composition fluctuations which lead to a distribution of relaxation times.

We rely on extensive analysis of decorrelation rates as well as the ability to create long

trajectories that provide sufficient sampling both for local as well as terminal dynamics. In

the next section we describe the models and the overall simulation methodology followed.

In Section 3 we present results from the atomistic simulations of the polymer blends. We

analyze the structure, the composition and the dynamics of the model systems. Finally, our

findings and conclusions are summarized in Section 4.

II. MODELS AND METHODOLOGY

A. Polyisoprene Model

Polyisoprene (PI) is modeled based on a fully atomistic description that is described

in the literature and was previously employed to study PI/PS.27,29,30 We verified that the

conformational and thermodynamic properties are reproduced faithfully using a series of

simulations ranging from an 8-mer to a 24-mer at 413K. Extrapolation to high-molecular

weight resulted to a specific volume of 1.175 cm3/g which is in excellent agreement to

available estimates of 1.183-1.196 cm3/g at this temperature.31,32 Conformational properties

were also consistent with data in the literature; extrapolating to infinity the characteristic
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ratio is expected to be in the range of 4.5-4.8. However, for the 12-mer employed in this

study, a value of ≈ 3.8 was extracted (using an average square bond length l2 ≈ 2.18 Å2).

We estimate that a monomer adds approximately 4.58 Å to the contour length which will

result to a maximum extension for the 12-mer of 53.1 Å and a Kuhn length segment of

7.5 Å; a value that is somewhat lower than the reported 8.2 Å for high molecular weight

polyisoprene.33

B. Polystyrene Model

Polystyrene (PS) atactic oligomers (10mer) are also modeled using an all-atom model,

where hydrogens and carbons are treated explicitly. All bond lengths were kept rigid whereas

a harmonic potential was used to describe bond angle bending. Standard torsional potentials

were used to describe rotations along bonds in the aliphatic backbone. Parameters of the bar-

riers for the rotation of polystyrene backbone dihedral angles were calculated from ab initio

calculations on polystyrene fragments. Non-bonded interactions were described by pairwise-

additive Lennard-Jones potentials. The model included partial charges on the carbon and

hydrogen atoms of the phenyl groups that reproduce the electric quadropole moment of the

benzene molecule. Additional details of the model are reported in the literature.34 The chain

dimensions as well as the structure of PS bulk systems are in good agreement with available

experimental data.35,36 It is important to note that this model predicts slower PS dynam-

ics (a factor of about 4-5), compared to experimental data from dielectric spectroscopy.37

For PS the extracted value for the characteristic ratio is about 5.0, lower than the high

molecular value of about 9.8 as reported in previous studies.38 This value results to a Kuhn

segment lk ≈ 7.65 Å, for the PS oligomers studied here, smaller than the value of 15.0 Å

for high molecular weight PS. In previous works we have studied extensively the PS model

predictions for structure, dimensions and dynamics of PS systems as a function of molecular

weight.39,40

C. Simulation Methodology

Simulations were performed with the molecular dynamics software Gromacs 4.5.541,42 in

the NPT ensemble maintaining a pressure of 1 bar at four different temperatures T : 413, 443,
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TABLE I. Details of systems studied. The weight fraction is used to name each system studied.

The number fraction of the corresponding component for each system is provided in parenthesis.

Polyisoprene (wt%) 100 75 50 25 0

12-mer cis-1,4 PI chains (MW=819 g/mol) 72 46 32 17 0

(1) (0.79) (0.56) (0.29) (1)

10-mer atactic PS chains (MW=1043.5 g/mol) 0 12 25 40 56

(0) (0.21) (0.44) (0.71) (1)

473 and 503 K. Pressure P was maintained with the Berendsen thermostat with τ = 0.1 ps

while temperature control was introduced through the stochastic velocity rescaling scheme.43

A twin cut-off scheme was applied with full van der Waals interactions up to 0.9 nm

and a smooth switch to zero at 1 nm. Electrostatics were calculated with a particle mesh

Ewald method.44 All bonds were kept constant using the P-Lincs algorithm45 which allowed

a timestep of 1 fs. For mixtures at least 200 ns trajectories were generated, far beyond the

relaxation time of these oligomers. For pure PI, 20 ns were sufficient to accumulate good

statistics while for pure PS simulations were extended to 400 ns due to slow dynamics of this

component in the pure state. In addition to these long simulations several 200 ps trajectories

were created to extract the short-time dynamic behavior of the systems with configurations

recorded at time intervals of 0.1 or 0.2 ps. To be able to merge consistently results from

short- and long-trajectories we employed the following strategy: simulation snapshots from

long runs separated by 10 ns were utilized as starting points (with the stored positions and

velocities) for the short simulations. Results from the last (i.e. autocorrelation functions)

were averaged out with the outcome describing faithfully the initial decay of curves generated

by long-time trajectories where time-frames were more sparsely recorded (i.e. every 100 ps).

We should also note here that using the Flory-Huggins interaction parameter for PI and PS

we can calculate the critical point of our blend. Indeed, using a temperature dependent χ

factor (χ = −0.07 + 63/T )6 the critical point of our PI/PS blend is at Tc=332 K, ϕc=0.49.

The temperature range of our simulations (413-503 K) is well above Tc.
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III. RESULTS AND DISCUSSION

A. Density of systems

We begin our discussion by first examining macroscopic properties of the oligomer mix-

tures studied. PS, even as an oligomer, maintains a significantly higher density than its

mixtures with PI as shown in Fig. 1a. Higher temperatures uniformly increase the overall

density. For our discussion, it is important to emphasize that while mixing alters mass den-

sity, in terms of atom number density the effect is minimal; this originates directly from the

higher packing of PS chains. As can been seen in Fig. 1b, the number of atoms/interaction

sites per nm3 remains practically constant with concentration for higher temperatures (473K

and 503K) while small changes are observed at lower temperatures (443K and 413K).
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FIG. 1. a) Density of the mixtures at P = 1 atm as predicted with the models studied. b) Number

density of atoms at P = 1 atm; notice that mixing does not alter significantly the number of atoms

per volume while small changes are induced by altering temperature T .

B. Structure and Self-concentration

We first discuss how components distribute within the oligomer melts. The LM model

employs local volume fractions to correlate compositions around a polymer segment to the

observed dynamic behavior. Calculation of volume fractions from the simulation data is

not straightforward. Alternatively, a fraction of atoms can be employed within a specific

volume. In general, for a blend of A and B we can quantify self- and effective concentrations
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using:

ϕself,i(r) =
N intra

i (r)

NA(r) +NB(r)
ϕeff,i(r) =

Ni(r)

NA(r) +NB(r)
(1)

where i = A or B, and the self- (and effective) concentrations ϕself,i(r), (ϕeff,i(r)) of i are

calculated by the number fraction of intramolecular neighbors N intra
i (r) (and total neighbors

Ni(r)) relative to the total NA(r) + NB(r) contained within a sphere of radius r.28 While

we anticipate minimal changes of the self-concentration term, the above definition presents

a subtle decrease as we decrease T for pure components due to higher increases in the

denominator NA(r) + NB(r) with lowering T ; closer packing of the chains will reduce the

self-fraction. Here we should also note that we could use mass instead of number fractions.

In that case, results are similar and the whole discussion remains unchanged.

To provide a more transparent examination of our results we selected to work first with

absolute number densities of atoms within specific volumes. Figs. 2a) and b) present the

radial number distribution function (RDF) with a frame of reference a PI or a PS atom

for the pure components at 443 K (unnormalized). Notice that intermolecular packing is

significantly different with interchain neighbors rising at a faster pace in PI; a similar trend

carries over to partial RDFs in mixtures as reported in the past.27 To examine how self-

concentration varies with distance, a cumulative number of atoms within a sphere r needs

to be calculated as shown in Figs. 2c, d. As expected, these curves are smoother than RDFs.

We evaluated the ratio of the cumulative concentrations to calculate the term ϕself,i(r) solely

for pure components, as shown in the inset of Figs. 2c, d. The LM model introduces

a cooperative volume that is in the order of l3k, or vk,PI ∝ 0.422 nm3 and vk,PS∝ 0.447

nm3 for PI and PS respectively using concepts of cubic volumes; the exact value for an

appropriate spherical volume to be selected is often determined through laborious treatment

of experimental data employing necessary approximations.

Without a priori knowledge on dynamics, one approach would be to set these volumes

equal to the above values and calculate a radius that provides the same spherical volume,

r = 0.5 ∗ lk ∗ (6/π)1/3 which results to 4.65 Å for PI and 4.74 Å for PS, respectively. These

values will provide self-terms that are very high and in disagreement with the optimum

values reported by He et al. (ϕself,PI(r) = 0.33± 0.05 and ϕself,PS(r) = 0.42± 0.07).18 While

the experimental parameters refer to mixtures, as we will see below, mixing can not justify

such large differences. In addition, the LM predicts a self-concentration that should be lower

for PS compared to PI. Similar very high values for self-terms can be extracted if we select
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FIG. 2. a) Radial number density as a function of distance for PI at 443K. b) Radial number

density as a function of distance for PS at 443K. c) Number density of atoms within a sphere r

starting from a PI atom, for pure PI at 443K. The inset provides the ratio ϕself,i(r). d) Number

density of atoms within a sphere r starting from a PS atom, for pure PS at 443K. The inset provides

the ratio ϕself,i(r).

r = lk/2 as performed by Sacristan et al..28 Since the model is phenomenological and the

constant of proportionality is rather arbitrary, we could also select as radius of the sphere the

full Kuhn length lk and the corresponding volumes equal to 4πl3k/3. Under this assumption,

for pure melts, ϕself,PI(r) ≈ 0.37 and ϕself,PS(r) ≈ 0.40. All these arguments though neglect

fluctuations and as stated by Shenogin et al. the whole distribution of ϕself(r) at a specific

distance should be considered rather than the mean value.19 Prior to examine these features

we need to interrogate potential changes with temperature and composition.

Figs. 3a and b, present the radial density of atoms decomposed to individual contributions

for a shell from r to r + dr starting from a PI or a PS atom respectively. It is clearly
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observed that locally, concentrations are enriched on the component that serves as a point

of reference due to the self-concentration term. To quantify the relative contribution of

this term, for a spherical volume extending from an atom to r, the cumulative amounts are

calculated over the total volume as performed previously for pure components. Figs. 3c and

d present such graphs for the 50/50 blend at 443K. As it is observed, the local effective

concentration calculated directly from the simulation is higher than the bulk and converges

to the latter value as the self-concentration term approaches zero. Notice again, that since

this calculation includes a cumulative amount, the range over which this deviation persists

is further away than the point where a shell dv reaches the average composition. This is

anticipated given that the rich in intramolecular neighbors envirnoment needs to be diluted

extensively to asymptotically reach the average fraction. The inset in these plots, presents

again the normalized fraction of self-concentration as calculated by Eq. 1. As it is evident,

no significant deviation from the pure components exists.

We can also calculate the fraction of the self- to total concentration (in Figs. 3c, d) to

obtain the normalized effective concentration of a component directly from the simulation

and compare to the approach employed by the LM model . This is shown explicitly in

Figs. 3e and f. According to the LM model, the effective concentration is calculated given

the self-term, using the formula:

ϕeff, A = ϕself, A + (1− ϕself, A)ϕA

ϕeff, B = ϕself, B + (1− ϕself, B)ϕB (2)

where ϕA and ϕB are the bulk volume fractions of A and B respectively. Lipson and Milner46

proposed a modification of the above expression that resulted in a self-consistent definition

(SCLM):

ϕeff, A = ϕself, A + (1− ϕself, A)p

ϕeff, B = ϕself, B + (1− ϕself, B)(1− p) (3)

where p:

p =
(1− ϕself, A)ϕA

(1− ϕself, A)ϕA + (1− ϕself, B)ϕB

(4)

In both models, ϕself, i needs to be estimated. In the data above, direct calculation of ϕself, i(r)

allows a first test of the above combination rules given the bulk ϕi reported in Table I. As
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FIG. 3. a) Radial number density as a function of distance from a PI atom for a 50 wt% PI blend.

b) Radial number density as a function of distance from a PS atom for a 50 wt% PI blend. c)

Number density of atoms within a sphere r starting from a PI atom. The inset provides the ratio

ϕself,i(r) compared to pure PI. d) Number density of atoms within a sphere r starting from a PS

atom. The inset provides the ratio ϕself,i(r) compared to pure PS. e) and f) Effective PI (PS)

fraction around a PI (PS) atom. In all cases T = 443K.
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observed in Figs. 3 by employing the actual self-concentration calculated in the simulation,

ϕeff, i(r) is captured by both the LM and the SCLM set of equations. However, a careful

inspection reveals that the self-consistent definition provides a more accurate description

of the decay at close distances. While the above equations provide a concise formulation

of the variation of the mean concentration as we enlarge a spherical volume centered at a

PI or PS atom, certain important aspects remain. First, as discussed earlier, it has been

proposed that fluctuations are important both for intermolecular neighbors as well as the

self-concentration term. Second, despite extensive effort, it remains still unclear whether a

single length over which these concentrations are calculated, suffices to describe dynamics.

This will be further discussed in the following sections. First, we will describe how dynamics

are affected by blending in our systems.

C. Local Dynamics

The segmental dynamics of the mixture were studied separately for each component. In

order to compare directly to available experimental data we analyzed the second Legendre

polynomial, defined as:

PCH
2 (t) =

3

2
⟨cos2 θ(t)⟩ − 1

2
(5)

for backbone carbon-hydrogen C-H vectors for PS and for the first carbon atom of each

PI monomer following the 13C labeling scheme employed in the study of He et al.18 Orien-

tation decorrelation dynamics were described using a modified Kohlrausch-Williams-Watts

(mKWW) funtion:

G(t) = αlib exp

(
− t

τlib

)
+ (1− αlib) exp

[
−
(

t

τseg

)β
]

(6)

In Fig. 4a) we present an example of simulation data with mKWW fits for one system. It

is clear that PI dynamics is quantitatively described by the above expression. For PS, some

deviations were observed with the mKWW overestimating decorrelation at intermediate

times and underestimating it at the long tails. Most of the data were conforming to the

following parameters: τlib=0.1 ps (0.3), αlib=0.3 (0.1) for PI (PS) and β ≈ 0.6 (results

presented in Table II). While the mKWW is only a formula to describe actual simulation

data it is very instructive to discuss the values found. First, pure components present
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segmental times that are significantly disparate by two orders of magnitude. Mixing alters

these times, slowing the faster PI component and inducing an opposite action to PS as

anticipated. It is also noteworthy that the parameter β which describes the stretching

of the autocorrelation curve (or the breadth of an underlying distribution of exponential

relaxation times) becomes progressively lower as we introduce more PS. Surprisingly, pure

PS had a higher value of β (≈ 0.6) relative to the 25/75 %wt mixture (≈ 0.5) despite the

anticipated higher Tg for PS. We acknowledge that there is substantial statistical error in

these parameters (±0.1 for β) however similar findings were reported in the experiments by

He al.18 For pure PI and the 75/25 system β was found to be 0.62 and 0.58 with a decrease

to 0.52 and 0.46 for higher PS concentrations. In contrast, for PS β slightly decreased first

from 0.51 to 0.49 and then it was described by 0.50. In any case, direct comparison can only

be made by transforming simulation data to T1 values.47
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bonds (see text) for PI and PS at 443K and 50/50 %wt. Lines respresent best fits with the

mKWW function. b) Mean correlation times provided by the mKWW description of simulation

data (symbols, filled for PI and open for PS). Dashed lines are the VFT fits on experiments of pure

systems.18 Continuous lines are VFT representations of our data.

We now turn into a description of the coupled composition and temperature dependence

of segmental dynamics. To proceed, we extracted the mean correlation time provided by

the mKWW expression associated with segmental dynamics:

τseg,c =
τseg
β

Γ

(
1

β

)
(7)
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PI PS

System τlib (ps) αlib τseg (ps) β τlib (ps) αlib τseg (ps) β

Pure

413K 0.10 0.30 20.47 0.59 -a 0.23 309500 0.61

443K 0.09 0.30 11.44 0.59 - 0.27 40070 0.61

473K 0.08 0.29 6.99 0.59 - 0.27 3271 0.64

503K 0.08 0.30 4.76 0.60 - 0.27 752 0.63

75/25

413K 0.11 0.31 27.57 0.58 0.28 0.12 400.6 0.56

443K 0.09 0.30 14.34 0.56 0.26 0.12 172.3 0.57

473K 0.09 0.30 8.46 0.58 0.32 0.13 91.32 0.60

503K 0.09 0.31 6.03 0.59 0.19 0.1 51.26 0.57

50/50

413K 0.10 0.30 40.51 0.50 0.27 0.12 1233 0.51

443K 0.10 0.32 20.05 0.56 0.28 0.13 342.8 0.53

473K 0.09 0.30 10.34 0.54 0.34 0.14 161.3 0.57

503K 0.08 0.29 6.27 0.55 0.29 0.13 78.81 0.55

25/75

413K 0.09 0.25 70.68 0.38 0.52 0.15 8700 0.48

443K 0.10 0.29 27.56 0.46 0.87 0.18 1319 0.54

473K 0.09 0.28 13.3 0.47 0.35 0.14 348.0 0.52

503K 0.09 0.29 7.7 0.51 0.34 0.14 146.8 0.53

a For pure PS we did not explicitly accounted for an initial fast decorrelation

TABLE II. Parameters extracted from modeling simulation data with the mKWW function. Error

bars are about 10% of the actual values for both τseg and β.

We note that τseg,c is less sensitive to the choice of β than τseg. Fig. 4b) presents the extracted

mean times from all simulations with symbols; given the logarithmic scale we expect that

errors are approximately equal to symbol sizes. Nevertheless, as we will discuss further later

on, these errors are significant since any attempt to characterize an appropriate lengthscale
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for cooperative dynamics is extremely sensitive to the values depicted in Fig. 4b). We can

quantitatively compare our results to experimental measurements represented by the dashed

lines reproduced only for the pure components (for clarity). It is apparent that pure PI

dynamics is captured by our model quantitatively. This is not the case for PS as mentioned in

the methodology section where slower segmental dynamics are observed. Despite deviations

for PS, we clearly observe a significant accelaration of the slower component and a minor

deceleration of PI, a feature well-established in such blend dynamics. Continuous lines in

the same figure are the results of a first attempt to employ the LM model.

The LM model correlates dynamics to different effective glass transitions Tg, eff experi-

enced by individual components. To proceed with such an analysis we need data at low

temperatures. Since simulations are not feasible in proximity to Tg we extract such pa-

rameters using the Vogel-Fulcher-Tammann (VFT) expression for the variation of mean

segmental times with temperature:

log

(
τseg, c
τ∞

)
=

B

T − T0

(8)

where τ∞, B and T0 are constants that should in principle be determined independently

for each component in each composition. This is an important aspect that will return to

our discussion. For this section, it is clearly not practical to extract these values solely by

data on four temperatures. Following the literature, we assume that B and τ∞ are different

for each component but do not change with mixing.18 To further proceed, since we are far

from Tg we assume that T0 for each pure component is equal to the values employed in

analysis of experimental data (152K and 273K for PI and PS respectively); this is preferable

than adopting values for B which have larger error.18 With these assumptions we can now

simultaneously fit all 16 points (times) for each component using five parameters: B, τ∞

and T0,k where k refers to the three mixtures (75/25, 50/50 and 25/75). We found that

starting from pure PI where T0 is kept at 152K, T0,k values increase to 166.9, 186.6 and

220.8K as we move to higher concentrations of PS. In contrast, for PS, starting at 273K,

T0,k values decrease by mixing with PI with values 169.2 K, 198.3 and 231.8 for the 75/25,

50/50 and 25/75 mixtures respectively. B values extracted are 656.3 K (964.3 K) for PI

(PS) respectively while τ∞ was 0.1 ps for both polymers. The actual model VFT curves

are represented in Fig. 4b) by the continuous lines. In general, the extracted curves are

within the error of the data however it appears that errors are systematic, partially due

17



to ignoring fluctuations as we will describe in subsequent sections. The analysis allows to

calculate effective glass transitions for each component i by correlating changes in T0,i by

blending to changes in T i
g, eff:

T0,i(ϕ) = T0,i(ϕ) + [T i
g, eff(ϕ)− T i

g ] (9)

taking values of 190 K and 319 K for the pure PI and PS respectively.18 Subsequent appli-

cation of the Fox equation:
1

Tg, eff(ϕeff)
=

ϕeff

TA
g

+
1− ϕeff

TB
g

(10)

provides an effective concentration for each component which is our aim. The values ex-

tracted for the three mixtures for PI are 0.82, 0.62 and 0.35 (by increasing PS content).

These can be directly compared to the overall bulk fraction which is 0.79, 0.56 and 0.29

(reported also in Table I). For PS, values are 0.30, 0.55 and 0.78. If we attempt to identify a

cutoff radius Rc that signifies the range over which dynamics are experiencing this effective

concentration using Fig. 3 we find values for PI of ≈ 1.3 nm (almost twice the PI Kuhn

length). For PS there is a systematic trend for this range to decrease starting also from a

value ≈ 1.3 nm down to 1 nm for the mixture with the highest PS content. Attributing this

higher effective content due to self-concetrations results to a value of ϕself(PI)=0.13 while

for PS ϕself(PS)=0.16-0.26. Despite the approximations introduced, it is apparent that for

the slower component employing a mean effective concentration over a specific range does

not suffice to capture the simulation data (Fig. 4b). We believe the same is true for PI, how-

ever closer proximity of PS to the Tg of the blend makes this effect clearer. Furthermore,

while the self-concentration terms for PI in range of 1.3nm presents as the most reason-

able choice in agreement with proposed values in past studies18,27 we find that deviations

in Fig. 4b) are present and their origin could be either the accumulated statistics of the

simulations or an underlying defficiency of the LM model. In the next sections we examine

whether introducing concentration fluctuations improves the description of blend segmental

dynamics.

D. Concentration Fluctuations

The extracted values for ϕeff were correlated to a cooperative length and a value for self-

concentration using mean values which only represent the first moment of a distribution of
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local concentrations. Fluctuations of ϕeff could be important not only due to changes in the

intermolecular environment but also due to a range of self-concentration values accessible

within the same cooperative length. Liu et al.21 employing a Lennard-Jones polymer model

proposed that a distribution of intramolecular concentrations play a significant role across

different compositions, particularly at the dilute limit. This effect becomes progressively

more important as we decrease the radius Rc chosen for the cooperative length down to

1.5σ, which is approximately equal to the Kuhn segment, for the simple LJ model polymer

system employed. Note that atomistic models of PMMA with intrinsic rigidity at such

lengthscales present a distribution of self-concentrations with a peak at 1.28 We will return

to this discussion after briefly commenting on density fluctuations and mixing.

For the systems we studied we did not observe significant changes on the fluctuations of

the self-concentration term by blending. The insets in Fig. 3c,d show that the mean values of

the self-distribution between pure components and the 50/50 mixture are identical. A weak-

temperature dependence emerges from the use of a fraction and the incompressibility of a

single-chain that carries over to the distribution of self-concentrations normalized to the total

density. These implies that the fraction of self-contacts will decrease with a temperature

decrease. However, as described earlier, mixing has a minute effect on the total concentration

of atoms; furthermore no changes are discerned for the self-terms or their fluctuations. Thus

we conclude that to a good approximation self-concentrations are constant with regards to

blending with a small temperature dependence. After the above discussion, for the remaining

of this study we will employ fractions of atoms ϕ instead of number densities ρ and examine

the dependance of these fluctuations as we change the cutoff radius Rc representing a selected

cooperative length.

Figs. 5a,b present the distribution of effective concentrations with a decomposition to

its constituents (self- and inter-) for a highly assymetric mixture (25/75 PI/PS). For these

calculations, we excluded the end monomers for reasons that will be further clarified in the

next section. The probability for a specific value of an effective concentration is the result

of the convolution of the underlying self- and inter- terms.19 There are several important

features displayed by such an analysis. First, at large separations, fluctuations ⟨δϕ2
eff⟩ were

in the range of 0.1-0.2 suggesting a weakly interacting blend; ⟨δϕ2⟩ has been proposed to

be inversely proportional to Rc,
19 however this is not straightforward to examine given the

highly broad distributions as we move to shorter distances. At these shorter distances, as
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FIG. 5. a) Distribution of total and self- and inter-PI fractions around a PI atom within in a radius

Rc for the 25/75 system at 443K. b) Distribution of total and self- and inter-PS fractions around a

PS atom within a radius Rc for the 25/75 system at 443K. Arrows point towards increasing radii.

All curves have been calculated around atoms of PI or PS, excluding the first and last monomer

of each chain.

discussed by Liu et al.21 fluctuations of the self-term become important. Note for the same

Rc (i.e. 0.5 nm) the self-PS term displays a much broader distribution. This result pro-

vides evidence that PS atoms are exposed to a larger spectrum of self-concentrations which

could directly enhance their exposure to the environment. Finally, at very short distances

the resulting effective concentrations present a maxima at ϕeff = 1. This is an important

observation that results to a further complication if we wish to introduce concentration

fluctuations within the LM model. Specifically, if a single characteristic relaxation time is

associated with a specific value of ϕeff then this will result to an equivalent abrupt distri-

bution of relaxation times. This finding was realized in past analysis of experimental data

and additional broadening of the distribution of times was introduced using the empirical

Havriliak-Negami function as calculated from the equivalent pure components.19 Finally we
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mention that we restricted the range of Rc examined to 0.4-2nm. Shorter distances present

fluctuations with peaks probing characteristic features of the single chain intramolecular

distribution function; i.e. related to the specific monomer structure (bond lengths and bond

angles).

E. Distribution of relaxation times

Introducing concentration fluctuations with a probability p(ϕeff) can provide a spectrum

of distribution of relaxation times p(log τseg c). One approach would be to compare the mean

p(log τseg c) to the values reported earlier (Fig. 4b). A different, more rigorous comparison

requires access to the full underlying spectrum of p(log τseg c) probed during the simulations.

CH vectors, even in pure systems, reorient with different distributions of relaxation times

whose mean values are affected by the surrounding free volume; the average free volume

varies as a function of position along the chain.48 To extract an underlying distribution of

times we undertook the challenge to fit each CH vector individually with a mKWW function.

We should note here that this is a non-trivial statistical problem due to rather small, com-

pared to realistic, systems studied in all atomistic MD simulations. Thus, it is not surprising

that, according to our knowledge, such a detailed analysis has not been performed before

in atomistic models of polymer blends. In order to improve statistics we modelled each

curve using the same β, αlib, τlib extracted from the overall analysis (Table II). We relied

on automating a constrained optimization scheme with the Levenberg-Marquardt algorithm

as implemented in the Octave software49 and performing thousands of such individual fits.

Specifically, for PI and PI in blends we employed the 20, 200 ps short runs (initial configura-

tions separated by ∆t = 10 ns in the long trajectory) to extract the correlations of individual

CH vectors (i.e. 768 for the PI in the 50/50 system which resulted to 15,360 curves). For

PS in blends we calculated correlations during segments of the long trajectory (200 ns),

progressively longer for lower temperatures. We note that statistics were very poor for pure

PS at low temperatures; at 413K only the single whole trajectory was employed resulting to

1,680 curves. Given the limited quality of the fits, data for PS at low temperatures appeared

insufficient for our analysis. Nevertheless we can circumvent this limitation by looking at

the temperature dependence of the extracted distribution of log τseg c as described below.

Fig. 6a) presents “raw” data for pure PI at 443K; even as high as half of the points
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FIG. 6. a) Distribution of log τseg c extracted for pure PI at 443K (dashed lines). The continuous

line is the result after filtering out fits with correlation coefficient R2 < 0.95 and removing data

for vectors residing on end-monomers. The inset displays average times as a function of monomer

position. b) Distribution of log τseg c for pure PI and PS for all temperatures studied (filtered,

open symbols). Dotted vertical lines represent values extracted independently by fitting the overall

trajectory as reported in Fig. 4b). Continuous lines represent predictions based on the concept of

an underlying distribution of T -independent activation energies extracted at 503K.

originate from curves with poor statistics that should not be analyzed further. Notice that

a peak at the sub-picosecond times is present. This is the result of the fast re-orientation

of CH vectors residing at end monomers as shown by the mean log τseg c as a function of

monomer position in the inset. The faster relaxation towards ends of the molecules is a

direct result of the increased available free volume as we have explicitly quantified in past

studies.48 To remove results from curves with poor statistics we filtered-out the “raw” data

by requiring that the correlation coefficient of the fit is higher than 0.95. Before proceeding

with further analysis though, it is important to examine that setting parameters of the

mKWW to the “overall” determined values and filtering-out poor fits does not bias the

extracted distribution; we did not find any such evidence as shown in the same figure by

the continuous and dashed lines (the different height is the result of renormalization after

removal of end-monomer contributions).

It is anticipated that the distributions of p(log τseg c) will be T -dependent. However,

as noted earlier, it is particularly challenging to extract such distributions for PS at low-

temperatures. Therefore, we proceed under the assumption that the distribution of log τseg c

22



extracted at 503K for each of the pure components is the result of a distribution of T -

independent activation energies introduced in the VFT formalism. Mathematically, this

requires a transformation of a probability density function p(log τseg c) → p(B) using the

VFT equation and values for T0 and τ∞ determined previously for the pure components.

Specifically, we create a set of distinct points Bi, then we find the probability of observing

log τseg c, i = Bi/(T − T0) + log τ∞ by spline interpolation on originally calculated data at

503K. p(Bi) is given by the product p(log τseg c, i) with T − T0 as the appropriate derivative

dB/d log τseg c.
50 If our assumption is reasonable then an inverse procedure can produce

distributions p(log τseg c) at the remaining temperatures (413, 443, 473) which can be directly

contrasted to calculated data. Fig. 6b) presents these estimates with several important

features being eminent. First, by examining the open symbols (direct calculation by fitting

individual CH vectors filtered as described earlier) and the vertical dotted lines (extracted

by overall fits reported in Fig. 4b) we find that the extracted distributions are consistent

with the mean relaxation times reported previously. The success of this approach is heavily

due to the ability to automatically optimize tens of thousands of decorrelation curves and

filtering out poor descriptions without biasing the resulting distributions. Second, we find

that for PI, regenerating distributions based on the concept of a T -independent underlying

distribution of B proves to be a rather valid approach. Third, for PS, modeled distributions

are not in good agreement at low temperatures (443K and 413K). Interestingly, the predicted

distribution is clearly shifted towards shorter times at 443K; note that the mean value

reported in Fig. 4b exhibits a similar deviation from the VFT fits, suggesting simply that

accuracy is limited due to the length of the trajectory. Finally distributions for PS at 413K

are highly unreliable due to the small sample utilized; nevertheless we choose to present them

to show that again, the approach with a distribution of activation energies appears to be

reasonable. We conclude this discussion by stating that within the accuracy of simulations,

the distribution of activation energies extracted at 503K appears to reliably model pure

component dynamics at lower temperatures. Therefore, by analyzing tens of thousands of

curves we can now access a distribution of relaxation times exhibited by segments of each

component in the mixtures and compare to theoretical predictions using p(ϕeff) and pure

component p(log τseg c).
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F. Correlation between relaxation times and effective concentration

Prior to proceeding to the effect of concentration flucutations we would like first to

establish that indeed changes in effective concentrations alter dynamics. In more detail, we

calculated for each hydrogen, in all CH vectors analyzed before, self-, ϕself, and effective,

ϕeff, local composition for both PI and PS. Since local composition depends strongly on the

actual length scale (see Fig. 3), we consider various distances from a reference H atom, Rc,

from 0.4 nm up to 1.3 nm. Thus, we do have information, for each CH vector considered

here (for both PI and PS), not only about its dynamical behavior (segmental relaxation

time) but also about its local environment. Our goal is to check weather changes in ϕeff of

PI (or PS) alter τseg,c of PI (or PS). Note, that the direct correlation of these quantities is

a complex statistical problem since it involves correlation between two very noisy variables.

In order to improve statistics, we are grouping together all atoms that have the same ϕeff

within a specific ∆ϕeff interval (here ∆ϕeff=0.1), independently for each component. Next,

we calculate for each component the average relaxation time for all CH vectors with ϕeff in

the same interval, i.e. τseg,c(ϕeff).

Data about the average relaxation time of both PI and PS, as a function of its local

environment, for a specific system (50/50, T=443K) are shown in Figs. 7a and b. First,

in Fig. 7a we present τseg,c(ϕeff) of PI for various local PI effective compositions, ϕeff. ϕeff

was calculated using different Rc ranging from 0.4 to 1.3 nm. It is evident that for any

Rc chosen, decorrelation times of the low-Tg (PI) component, decrease with an increase of

ϕeff (or decrease of the concentration of the high-Tg component, PS, since ϕPI
eff + ϕPS

inter = 1).

The actual functional dependence is stronger for values of Rc (0.4 nm), for which τseg,c(ϕeff)

reduces by a factor of about 2.5 as ϕeff goes from 0.7 to 1.0. For the larger distances τseg,c(ϕeff)

decreases about 2 times as ϕeff increases from 0.3 to 1.0.

Additionally, in Fig. 7b data about the average relaxation time, τseg,c(ϕeff), of PS as a

function of PS effective composition are presented. As expected the relaxation time of the

high-Tg (PS) component, increases as its concentration increases; i.e. its dynamics becomes

slower. The dependence of PS τseg,c(ϕeff) on ϕeff is much stronger for small length scales: for

Rc=0.4 nm relaxation time increases by a factor of about 100 as ϕeff increases from 0.5 to 1.0,

whereas for Rc=1.3 nm increases by a factor of about 5. It is even more important to notice

the much stronger dependence of the segmental dynamics of PS on its local environment,
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FIG. 7. a) Relaxation times of PI as a function of effective concentration calculated at different

distances, Rc, from a reference PI atom. b) Relaxation times of PS as a function of effective

concentration of PS calculated at different distances, Rc, from a reference PS atom. In both cases

the system is the 50/50 PI/PS blend at T=443K.

compared to the case of PI discussed above. This aspect will be further discussed in the

next section in accordance to the terminal dynamics. As a final remark here we should state

that the monomer structure of a specific polymer plays a crucial role in the dependence of

its segmental dynamics on its local environment; we believe this is related to other systems

where it has been argued that intermolecular packing plays a critical role.2,28

G. A second approach to the LM with concentration fluctuations

Equipped with a reliable method to generate distributions of log τseg c for the pure com-

ponents and a direct calculation of p(ϕeff) from atomistic simulations we can now re-examine

the application of the LM model coupled with concentration fluctuations.19 The procedure

is analogous to calculating the probability density of a function of two variables, namely

B and T0 (where the p(T0) is derived by transformation of p(ϕeff) using the Fox equation,

Eq. 10) and requires calculation of the appropriate Jacobian.50 This process was performed

iteratively for different Rc (from 0.4 nm to 2 nm using a step of 0.1nm) and the extracted

p(log τseg c) can be rigorously compared to the directly calculated. A unique feature of our

strategy, is that simulations provide direct information on p(ϕeff) and fluctuations associated

with this parameter. Therefore no assumptions for the structure of the mixtures are made.

To be consistent with the distribution of times extracted, concentrations were calculated
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starting from PI or PS atoms that did not belong to end-monomers as shown in Figs. 5a,b;

however, we note that we did not find any significant effect on the overall averaged distri-

bution of effective concentrations.

We calculated distributions for radii ranging from 0.4-2.0 nm and compared to directly

extracted spectra of relaxation times. The optimum radius for each set of data was selected

based on the Kolmogorov-Smirnov test for the cumulative probability density function.51

Results for two temperatures are synopsized in Figs. 8a) and b). Overall, allowing a variable

cooperative length provides a satisfactory description, especially when the errors involved in

the data extracted are considered. We found that incorporating concentration fluctuations

provides a lower value for PI that ranges between 0.6-0.4 nm in agreement to experimental

studies.19 In contrast for PS a longer distance from 0.9-1.5 nm was obtained. This length

scale for PI is consistent with a length close to it Kuhn segment, whereas for PS (oligomer)

is smaller than its Kuhn segment. In addition, the values were systematically decreasing

for PI and increasing for PS with temperature rendering the model unsatisfactory. One

significant (but necessary) assumption that can contribute to this effect is the adoption of

Tg equal to reported data from experiments. Finally, we should also note here that in a

previous dielectric relaxation spectroscopy study of PI/PS oligomer blends6 it was shown

that a model, which incorporates only concentration fluctuation effects described through

mean-field approximation,4 predicts the dynamics of PI if a dynamic correlation length of

about 1.48 nm is being used. This value further enhances the importance of both self-

concentration and concentration fluctuation effects in the relaxation of PI.

Despite the previously mentioned approximations, our study provides further insight

into deviations from the theoretical model. A surprising feature observed, is that for PI

the distribution of times becomes narrower for the system with the lowest PS content and

then broadens as more PS is added. For the 75/25 system at 443K, a radius less than

0.4 nm would probably capture the mean value in better agreement; nevertheless as noted

earlier such values render non-continuous effective concentrations. This is in contrast to

the slow component, where an extreme breadth is found for relaxation times in the 25/75

prior to narrowing as we increase PI concentration. It appears therefore that the change

in the width of the distributions is somewhat coupled; to the best of our knowledge this

can not be reproduced for PI while maintaining high effective concentration corresponding

to a Tg close to the pure state. Mathematically, it is straightforward to recognize that our
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FIG. 8. a) Distribution of relaxation times measured at 503K as a function of blend composition for

each of the two components. The vertical dashed lines correspond to the times reported in Fig. 4b

for each system. Dashed lines, depict optimum fits for the distribution using the LM-concentration

fluctuations model and effective concentrations calculated from simulations. Values in parentheses

denote the corresponding cutoff radius. b) Same as a) for 443K.

procedure employed the underlying assumption of independency between the two variables

that produce the distribution p(log τseg c), namely T0 and B. As stated earlier, a similar

approach is used when modeling experimental data using a distribution function originating

from the pure component.19 We believe that more accurate descriptions could be provided

to the model if concentration-dependant activation energies are employed. However, to the

best of our knowledge, there is currently no framework to provide mixing rules for such

activation energies.
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IV. TERMINAL-CHAIN DYNAMICS

A. Translational dynamics

In the last part of this work we present data about the global chain dynamics. In the

experimental study of He et al., diffusion coefficients D for the two components were found

approximately equal based on a unimodal description that would fail if these parameters

differ more than a factor of 3.18 Data about DPI and DPS of all blends as well as of pure

components directly calculated from our simulations are shown in Fig. 9. The strong de-

pendence of diffusion coefficients on T , particular of DPS is evident. Furthermore, in the

same figure we also present results from NMR measurements of PI/PS oligomers blends by

He et al..18 D for pure PI, DPI is in quantitative agreement with the experimental data at

all T s studied herein. On the contrast, for pure PS, DPS are only in qualitative agreement

with the experimental data; i.e. the specific all-atom PS model predicts slower, compared

to experimental data, dynamics as it has also reported and discussed extensively in the

past.37,52

300 350 400 450 500
T (K)

-9.0

-8.5

-8.0

-7.5

-7.0

-6.5

-6.0

-5.5

-5.0

-4.5

-4.0

lo
g 

D
 (

cm
2 /s

)

PI
d3PS

PI/d8PS 25/75

PI 12mer
PI  75/25
PI  50/50
PI  25/75
PS 10mer 
PS  75/25
PS  50/50
PS  25/75

FIG. 9. Diffusion coefficient of all model systems studied here (open symbols). With full symbols

are experimental data from the literature.18

More important is the composition dependance of the dynamics of the two components

in the blends. As expected as the concentration of the low-Tg, component (PI) increases
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D of the low-Tg, component decreases, whereas for the high-Tg, component (PS) increases,

compared to their bulk (pure component) values. It is noticeable that as the concentration of

PI increases the difference between the diffusion coefficients of the two components becomes

progressively smaller: for pure componentsDPS is about two orders of magnitude larger than

DPI , whereas for the PI/PS 75/25 blends DPS is only 2-3 times DPI . Thus, in agreement

to experimental data, diffusion appears to be similar for the components albeit not exactly

equal. This strong coupling between the friction coefficients of the two components is not

surprising if we consider that: (a) First, model blends studied here are rather oligomers,

with a molecular length clearly below the Rouse regime. For simple molecular systems (e.g.

Lennard-Jones liquids) it is clear that similar diffusion coefficients are expected for both

components. (b) Second, of particular importance are the length scales involved in the

dynamics of the model systems. Both PI and PS have rather similar backbone lengths (as

well as radius of gyration: about 0.84 nm for the 12-mer PI and 0.7 nm for the 10-mer PS)

that experience on the average the same environment. Therefore it is reasonable to conclude

that chain dynamics are slaved to the collective mobility occuring over these length scales

in the blend. Clearly this effect will depend on the relevant size of the chains as well as on

the onset of entanglements which is much different for the two components. This will be the

subject of future work.

B. Orientational dynamics

In the next stage, in order to further analyze the terminal dynamics of the polymer chains

we study the orientational motion of both components. In more detail, we calculated the

average autocorrelation function of a unit vector along the end-to-end distance , defined, for

each component i through:

u(t)i =
⟨R(t)iR(0)i⟩

⟨R2⟩0,i
. (11)

In the above relation R(t) and R(0) is the end-to-end vector at time t and 0 respectively

and < R2 >0 is the equilibrium average end-to-end distance. Decorrelation times were

obtained again by the integral of an optimum description using a modified mKWW relation.

Note that the reported relaxation times do not include very fast (short time) relaxation

processes. In addition the stretching exponent of the KWW fits, β, for all systems has a
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value between 0.9-0.98. Therefore, a fit in the long-time end regime of these curves with a

single exponential does not alter significantly the derived relaxation times.
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FIG. 10. Terminal relaxation time of PI (filled symbols) and PS for all systems studied here (open

symbols).

Data about the terminal relaxation time τterm for both PI and PS are shown in Fig. 10 as

a function of T for all systems studied here. In agreement with the behavior of the diffusion

coefficient, discussed above, we observe strong dependence of τterm on T , particular for PS

as well as a large difference between the terminal relaxation times for the two components:

τterm,PS is about 2-3 orders of magnitude larger than τterm,PI as T varies from 503K to 413K.
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FIG. 11. Ratio of terminal to segmental relaxation time for all systems studied here. a) PI b) PS.

It is instructive to examine the ratio of terminal to segmental dynamics. As it has been

observed in the past this ratio for various polymers is constant, independent of temperature,
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for temperatures far away Tg.
53 Here, since we have data for both segmental and terminal

characteristic relaxation times this ratio is directly accessible. In Figs. 11a and b we present

the ratio τterm/τseg,c for all (blends and pure) systems, for PI and PS respectively. In agree-

ment with the experimental observations we do observe that the ratio is almost temperature

independent for all systems. However, there is a clear qualitative difference between PI and

PS, concerning their behavior in the blends. In more detail, for the latter (PS, Fig. 11b)

the ratio τterm/τseg,c is almost constant, independent of the composition of the blend and

very similar to the ratio of the bulk pure PS. This means that both segmental and terminal

dynamics of PS are similarly affected by blending therefore changes in local friction carry

over to the observed global dynamics. On the contrary, the ratio τterm/τseg,c for PI (Fig. 11a)

depends strongly on the composition of the blend. As we increase the concentration of PS

τterm/τseg,c increases: for the pure PI the ratio is about 40, whereas for the blend with the

less PI studied here (25/75 system) is two times larger. Therefore, the terminal dynamics

is affected to a larger degree than the segmental dynamics with blending; i.e. the terminal

relaxation time of PI increases more than its segmental relaxation time, as the concentration

of PS increases, resulting into a larger terminal/segmental ratio. The observed behavior is in

agreement to the discussion presented in the previous section, where it was shown that the

distribution of the segmental relaxation times for PI is not largely affected by blending. In

order to better clarify this aspect we should again consider the various length scales involved

in the dynamics of the two components. As mentioned above the relevant length for the

segmental dynamics of PI is about 0.4-0.6 nm (see Fig. 8a) smaller than its chain dimensions

(radius of gyration is about 0.84 nm), that is expected to be the relevant scale for terminal

dynamics. On the contrast for PS both length scales are almost the same: the segmental dy-

namics is characterized by a longer distance from 0.9-1.5 nm (see Fig. 8b), whereas its radius

of gyration is about 0.7 nm. Therefore, it is expected that since the segmental dynamics

of PS is determined by a smaller length scale it will also be less sensitive to blending, as

smaller distances are dominated by the self-composition term. In order to further examine

this hypothesis a detailed study for various molecular lengths and different systems needed.

This is the subject of current ongoing work.54
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V. CONCLUSIONS

We revisited the dynamics of miscible PI/PS oligomer blends by detailed atomistic molec-

ular dynamics simulations. Our main goal was to provide a direct link between molecular

parameters and dynamical behavior of both PI and PS components in the blends using re-

cently proposed concepts of coupled concentration fluctuation effects with enrichment due

to chain-connectivity. The analysis of the atomistic simulations was performed by a compre-

hensive statistical approach that involves independent fits over thousands autocorrelation

functions of CH vectors for each component. This method allowed us to directly access

the underlying distribution of relaxation times providing unique information from detailed

all-atom MD simulations for the first time to the best of our knowledge. In the next stage

the local environment was considered by calculating the self-, ϕself, and effective, ϕeff, local

composition for each vector at various length scales. Then a direct coupling between the lo-

cal environment for a specific CH vector, at different length scales, and its actual segmental

relaxation time was performed.

Overall, the main findings of the present work can be summarized as follows:

(a) Segmental dynamics of both components is strongly affected by blending. However

there is a clear qualitative difference in the behavior of the two components. In more detail,

for PI the distribution of times becomes initially narrower for the system with the lowest PS

content and then broadens as more PS is added. This is in contrast to the slow component

(PS), where an extreme breadth is found for relaxation times in the 25/75 system prior to

narrowing as we increase PI concentration.

(b) There is a clear correlation between segmental dynamics of a component and its

local environment for both PI and PS. Segmental relaxation times as a function of effective

composition, τseg,c(ϕeff), were calculated at different distances: 0.4 nm, 0.7 nm, 0.9 nm

and 1.3 nm. For all lengths, the relaxation time of both components decreases as the

concentration of the low-Tg (PI) component increases; the dependence of the relaxation time

on the actual values of ϕeff being much stronger for the shorter distances. Most importantly

a stronger dependence of the segmental dynamics of PS on its local environment, compared

to the case of PI was found.

(c) Chain dynamics of both components in the blend were quantified by calculating

directly diffusion coefficients and orientational autocorrelation functions. As expected, as
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the concentration of the low-Tg, component (PI) increases the diffusion coefficient of the

low-Tg, component decreases, whereas the diffusion coefficient of the high-Tg, component

(PS) increases, compared to their bulk (pure component) values. Strong coupling between

the friction coefficients of the two components was found that leads to very similar chain

dynamics for PI and PS, particularly for blends with high concentration of PI. We attribute

this finding to the rather short oligomers (below the Rouse regime) studied here, as well as,

to the rather similar size of PI and PS chains.

(d) Terminal dynamics were further examined by calculating the maximum relaxation

time of chain, defined through the modified KWW description. A large difference between

the terminal relaxation times for the two components was observed: τterm,PS was predicted

to be 2-3 orders of magnitude longer than τterm,PI as T varies from 503K to 413K. The ratio

of the terminal to the segmental relaxation time, τterm/τseg,c, presents a clear qualitative

difference for the two components: for PS it remains approximately constant, independent

of the composition of the blend and very similar to the ratio of the bulk pure PS. On the

contrary, for PI this ratio depends strongly on the composition of the blend; i.e. the terminal

relaxation time of PI increases more than its segmental relaxation time, as the concentration

of PS increases, resulting to a larger terminal/segmental ratio. We provide a rationale of this

finding based on the different length scales characterizing dynamics. The relevant length

for the segmental dynamics of PI is about 0.4-0.6 nm, smaller than chain dimension which

is expected to be the relevant scale for terminal dynamics; in contrast for PS these length

scales are similar.

As a final remark, we should state that the specific monomer structure of a polymer can

play a crucial role in the hypothesis described above, concerning the controlling length scale

characterizing the segmental dynamics of a polymer, as well as the terminal to segmental

dynamics ratio. Therefore, to obtain further insight into the role of molecular parameters

on the dynamics of miscible polymer blends, data from detailed atomistic simulations of a

series of polymers with distinct chemical architectures and disparate molecular lengths are

needed. This will be the subject of further ongoing work.54
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