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Abstract 

 Binary blends of polystyrene with oligostyrene are perfectly miscible (χ=0) yet dynamically 

heterogeneous. This is evidenced by independent probing of the dipole relaxation 

perpendicular to the backbone by dielectric spectroscopy and molecular dynamics. The self-

concentration model with a single intra-molecular length scale qualitatively describes the 

slower segmental dynamics. A quantitative comparison based on MD however, requires a 

composition-dependent length scale. The pertinent dynamic length scale that best describes 

the slow segmental dynamics in miscible blends relates to both intra- and inter-molecular 

contributions. 
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 Thermodynamically miscible polymer blends display a broadening of the relaxation 

spectra with respect to homopolymers and two separate relaxation processes that reflect the 

component’s segmental dynamics. Both are considered as signatures of dynamic 

heterogeneities [1-6]. Theoretical models [7-17] have been considered in explaining these 

experimental features. In all cases, increasing the dynamic asymmetry, i.e., by increasing the 

difference in the glass temperatures (ΔTg) of the parent homopolymers, enhances the dynamic 

heterogeneity. However, polymer mixtures with large disparity in their mobility are usually 

composed from monomers of different polarity and/or rigidity that tend to phase separate. In 

addition, even the known miscible blends show a miscibility window only for certain 

molecular weights, compositions, temperatures and pressures. In the quest for the truly 

miscible blend with a large dynamic asymmetry an obvious choice is mixtures of a 

homopolymer with its oligomers.  

Dielectric spectroscopy (DS) [4,6,8,11,12,14,15,18-24] and molecular dynamics (MD) 

simulations [16, 17, 25-32] represent versatile and complementary tools in studying 

segmental dynamics in polymer blends. In this letter we report on the local dynamics in 

perfectly miscible blends of polystyrene with oligostyrene possessing a large dynamic 

asymmetry (ΔTg=123 K) by MD and DS spanning about 12 decades in time. The blends 

display clear signatures of a dynamic heterogeneity as evidenced by the bimodal relaxation in 

both MD and DS. This allowed (i) testing the validity of the self-concentration model [9] and 

(ii) an independent and quantitative account for the slower dynamics through MD. The 

relation of the corresponding dynamic length scale with the static length scale corresponding 

to the static structure factor for the polymer chains is explored.  

The studied homopolymer PS68 had Mw=7150 g/mol and Mn=6800 g/mol (about 65 

monomers). The oligomer PS3 had Mw=Mn=370 g/mol. The tacticity of PS68 was obtained 

from 13C NMR, giving 18% iso, 46% atactic and 36% syndiotactic sequences. The blend 

dynamics was investigated by probing the dipole perpendicular to the backbone by DS and 

MD. The dielectric loss curves in the blend, shown in Fig. 1, are clearly bimodal with “slow” 

and “fast” processes reflecting the PS68 and PS3 relaxations in the blends. Two Havriliak-

Negami (HN) functions together with the conductivity contributions at lower 

frequencies/high temperatures are necessary to deconvolute the spectra (See the Supplemental 



3 
 

Material [33] for the analysis of the DS and MD dynamics). Details about the all atom MD 

simulations employed in this study and the equilibration procedure are given elsewhere [30].  

In MD simulations, the segmental dynamics of polymer melts can be studied by 

calculating time-autocorrelation functions of a vector, vb, along the monomer. Here we 

choose a vector that connects the carbon of the backbone CH group with the center of mass 

(CM) of the phenyl ring [30]. In more detail, segmental dynamics is quantified, in both MD 

and DS, through the first Legendre polynomial: ( )1( ) co s ( )P t tθ= , where θ is the angle of vb 

vector at time t relative to its original position. 

Fig. 2 depicts the P1(t) autocorrelation curves of the C-CM ring for the blends and the 

respective homopolymers at 463 K obtained from MD. P1(t) exhibits a small rapid decay at 

short times (t<10-100 ps) followed by a rather slow de-correlation at later times. This short-

time regime (not shown here) corresponds to a primitive (bond vibrations and angle 

librations) relaxation (Debye-Waller factor), whereas the long-time regime corresponds to the 

segmental relaxation. In agreement with DS, bimodality is evident in MD simulations as well. 

The P1(t) data were fitted (for times t>10 ps) by a KWW stretched-exponential function 

P(t)=Aexp[-(t/τKWW)β] where, τKWW, is a characteristic relaxation time, β the stretch exponent 

and A a pre-exponential factor that takes into account relaxation processes at very short time 

scales. The segmental correlation time, τs, defined as the integral of the above equation, can 

be calculated numerically and is presented below in Fig. 3. Fits of the simulation data for 

times above about 5-10 ps, are included in Fig. 2 with lines. Note that a modified KWW 

expression, that describes fast relaxation modes with an additional exponential term, gives 

very similar values for both τKWW and β; see Supplemental Material. The comparison of the 

stretch exponent, obtained independently from MD (Eq. 1) and DS (Supplemental Material 

[33]) suggests the broadening of the “slow” component in the blend. This is explained by the 

increasing concentration fluctuations [8] on approaching the glass temperature of the slower 

component. Understanding the complete T-dependence of the distribution requires knowledge 

of the separate contribution from temporal and spatial heterogeneities [34].   

The segmental dynamics from MD and DS comprising 13 orders of magnitude (for the 

3mer) are directly compared in Fig. 3. The τ(T) conform to the Vogel-Fulcher-Tammann 

(VFT) equation, τ=τοexp(B/(T-To)), with parameters summarized in Table I, Supporting 

Information (these lines are not shown in Fig. 3 for clarity).   
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According to the “self-concentration” model of Lodge and McLeish (LM) [9], the 

average composition of the local environment around any chosen segment is enriched by the 

same species because of chain connectivity effects. Each species will experience a different 

average local environment and to the extent that the glass temperature is sensitive to 

composition, each polymer will sense its own composition-dependent glass temperature. The 

relevant length-scale in evaluating the self-concentration is the Kuhn length (lK). The self-

concentration of component i is determined from the volume fraction occupied by monomers 

in one Kuhn length inside a volume VK= lK
3 as φself,i=C∞Mo/kρNAVk where C∞ is the 

characteristic ratio, Mo is the repeat unit molar mass and k is the number of backbone bonds 

per repeat unit of the component i, and NA is the Avogadro number. The model associates the 

average local concentration of each component with a local glass temperature,

, ( ) |
effg eff gφ φT Tφ == . The effective glass temperature Tg,eff is determined from the macroscopic 

Tg(φ) but now evaluated at φeff, which for two components A and B is defined as: 

   𝜑𝑒𝑓𝑓,𝐴 = 𝜑𝑠𝑒𝑙𝑓,𝐴 + �1 − 𝜑𝑠𝑒𝑙𝑓,𝐴�𝜑𝐴 

                                               𝜑𝑒𝑓𝑓,𝐵 = 𝜑𝑠𝑒𝑙𝑓,𝐵 + �1 − 𝜑𝑠𝑒𝑙𝑓,𝐵�𝜑𝐵                                        (1)               

where φA and φA are the bulk volume fractions of A and B, respectively. Lipson and Milner 

[32] proposed a modification of the above expression that resulted in a self-consistent 

definition (i.e., self-consistent Lipson Milner, SCLM): 

   𝜑𝑒𝑓𝑓,𝐴 = 𝜑𝑠𝑒𝑙𝑓,𝐴 + �1 − 𝜑𝑠𝑒𝑙𝑓,𝐴�𝑝 

                                              𝜑𝑒𝑓𝑓,𝐵 = 𝜑𝑠𝑒𝑙𝑓,𝐵 + �1 − 𝜑𝑠𝑒𝑙𝑓,𝐵�(1− 𝑝)                                 (2)                        

In the above relation, p, the probability that an intermolecular neighbor within a volume VK is 

of type A irrespectively of the type of the central atom is given by:  

                           𝑝 = 𝜑𝐴(1−𝜑𝑠𝑒𝑙𝑓,𝐴)
𝜑𝐴�1−𝜑𝑠𝑒𝑙𝑓,𝐴�+𝜑𝐵�1−𝜑𝑠𝑒𝑙𝑓,𝐵�

                       (3) 

For the macroscopic composition dependence of the glass temperature the model suggests the 

Fox equation [23]. However, the Fox equation cannot describe the “effective” Tg values in 

blends, the latter measured by DSC. Here we employed the Gordon-Taylor equation instead 

(with the value of the adjustable parameter K=3.08).   

In Fig. 3 we test the SCLM model predictions for the “slow” and “fast” component 

dynamics against the full τ(T) dependence. The three Arrhenius relaxation maps display the 

relaxation times of the PS68, PS3 homopolymers and three PS68/PS3 blends together with the 
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SCLM model predictions (Eq. 2) for the slower component (dash-dotted lines). φSelf for 

component A (PS68) was calculated through the model using C∞=9.61, M0=0.104 kg/mol, k=2, 

ρ=986 kg/m3, lK=1.48 nm resulting in φSelf,A=0.26. It can be seen that the SCLM model 

predictions are in qualitative agreement with the “slow” PS68 segmental dynamics in the 

blends but not in quantitative agreement. Evidently, a single length scale cannot describe the 

full τ(T) dependence for all blend compositions. As for the relevant length scale for the 

oligomer (PS3), we can employ the end-to-end distance of l=0.65 nm (r=0.4 nm, see below 

for the definition) from simulations. However, Eq. 3 gives an unphysical value of φSelf,B (>1) 

for such a length scale. For both segmental dynamics in the blends we have further assumed 

the VFT equation for τi(φeff,T), with identical Bi and τ0,i parameters as for bulk PS68 and PS3 

(B =1140 K and τ0=3.02x10-11 s for PS68 and B=1680 K and τ0=3.63x10-14 s for PS3) where 

only the “ideal” glass temperature, 0, 0, , ,( ) ( )i eff i g i eff g iTφ T T φ T = + −  , varies with 

composition.  T0,i is the ideal glass temperature for homopolymers A or B and T0,i(φeff) is the 

ideal glass temperature for each component in the blends. In addition, one can notice a 

peculiar T-dependence (nearly Arrhenius) of the “fast” relaxation times in the more 

asymmetric PS68/PS3 75/25 blend (Fig. 3a). This has been discussed in the literature as 

reflecting the dynamics of the “faster” component that is now confined within the frozen 

domains of the “slower” component [35]. Cleary, the model does not take into account such 

confinement effects that can lead to a Arrhenius temperature dependence.  

In view of these deficiencies associated with the SCLM model, we employ MD 

simulations as a guide in predicting the effective composition for each component in the 

blends that best fit the combined DS/MD τ(T) dependence. In more detail, from the MD 

simulations we directly calculate apparent distance dependent self- and effective- 

concentrations defined as:  

   𝜑𝑠𝑒𝑙𝑓,𝑖(𝑟) = <𝑀𝑖
𝑖𝑛𝑡𝑟𝑎(𝑟)>

<𝑀𝐴(𝑟)+𝑀𝐵(𝑟)>
,     𝜑𝑒𝑓𝑓,𝑖(𝑟) =  <𝑀𝑖(𝑟)>

<𝑀𝐴(𝑟)+𝑀𝐵(𝑟)>
   (4) 

where Mi(r) and Mi
intra(r) are the total and the intra-molecular atom mass of neighbors of type 

i (A or B) within a sphere with radius r around a central atom of type i. Brackets denote 

statistical average. Furthermore, we can also calculate effective concentrations by employing 

Eq. 1 (LM model) and Eq. 2 (SCLM model) using the values for φself,i and p calculated 

directly from the MD simulations.  
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In Fig. 4a-d we present the MD result for self and effective composition denoted as φeff,i 

MD, LM and SCLM, calculated respectively using equations (4), (1) or (2). Self 

concentration, as expected, is much larger for 65mer than 3mer for a given length scale, and 

does not depend on the concentration. Notice that φeff,i obtained through MD differs 

substantially from the LM model. This is in agreement with earlier MD simulations that 

emphasized the importance of distributions of intramolecular concentrations on the dynamics 

especially in dilute blends [17]. A direct comparison of the simulation with the LM model can 

be made by calculating the composition within a sphere with the same volume as an lK
3 cube, 

i.e., within a radius of r= lK/2*(6/π)1/3=0.9 nm, resulting in φSelf,A~0.48 (Fig. 4a). For the 

oligomer (PS3), we can employ the MD predictions at the relevant length scale (r=0.4 nm) 

resulting in φSelf,B=0.74 (Fig. 4a). 

According to MD, a quantitative description of the full τ(T) for the slower component, 

as shown in Fig. 3 with the color solid lines, requires φeff,A=0.82, 0.64 and 0.48, respectively 

for the 75/25, 50/50 and 25/75 blends. The extracted (Fig. 4) dynamic length scale is plotted 

in Fig. 5 as a function of blend composition. Evidently, the dynamic length scale decreases 

with increasing polymer concentration (PS68). In the same figure we plot (i) the purely 

intramolecular length scale from the LM model (lK) and (ii) the concentration dependence of 

the pair atom-atom correlations in the intermolecular pair distribution function, g(r), 

representing solely polymer correlations (PS68). The latter shows a d~φ-0.6 dependence that 

corresponds to the good solvent scaling for the blob size in concentrated solutions in a 

crossover regime to the melt (ξ~φν/1-3ν with νeff~4/5). The dynamic length scale, has a 

composition dependence (φ-0.26), intermediate to the purely intermolecular (φ-0.6) and 

intramolecular (φ0) length scales. This suggests that both interactions should be taken into 

account in understanding the dynamics of the slow segmental dynamics in miscible blends.   

Despite the success in understanding the slow segmental dynamics in the blends the 

same cannot be said about the oligomer dynamics. The extracted length scales that best 

describe the τ(T) of the fast component (dashed lines in Fig. 3) exceeds the oligomeric end-to-

end distance (lengths of 1.2, 0.9 and 2.2 nm are obtained for the 75/25, 50/50 and 25/75 

blends).  

In conclusion, binary blends of polystyrene with oligostyrene display dynamic 

heterogeneity at the segment level as evidenced by independent probing of the dipolar 
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relaxation by dielectric spectroscopy and MD simulations. The self-concentration model with 

a single intra-molecular length scale describes the segmental dynamics of the slow 

component in the blend with a φSelf,A~0.26, however only qualitatively. A quantitative 

description requires a composition-dependent length scale. MD simulations of the effective 

composition coupled with the τ(T) dependence provide the relevant dynamic length scale. The 

latter exhibits a distinct concentration dependence, which is weaker as that of atom-to-atom 

correlations in the intermolecular pair correlation functions corresponding solely to the 

polymer. These results suggest that the pertinent length scale that best describes the slow 

segmental dynamics in miscible blends relates to both intra- and inter-molecular 

contributions.  

We thank Dr. M. Wagner (MPI-P) for NMR characterization. This research was 

supported by the Research unit on Dynamics and Thermodynamics of the UoI ( NSRF 2007-

2013, Region of Epirus, call 18) and co-financed by the European Union and Greek national 

funds Research Funding Program: THALIS. Partially supported by the European Union’s 

FP7-REGPOT-2009-1 project ‘‘Archimedes Center for Modeling, Analysis and 

Computation’’ (grant n 245749).  
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FIG. 1 (color). Dielectric loss plotted as a function of frequency for the PS3 oligomer (upper 
left, temperatures in the range from 237.15 to 283.15 K), the 75/25 blend (upper right, 
temperatures in the range from 319.15 to 336.15 K), the 50/50 blend (lower left, temperatures 
in the range from 281.15 to 303.15 K) and the 25/75 blend (lower right, temperatures in the 
range from 265.15 to 291.15 K). Lines are the result of fits to a summation of two HN 
functions.   
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FIG. 2 (color). Time correlation function P1(t) for the PS 3mer and PS 65mer (PS68) studied 
here from MD. The lines are KWW fits (T=463K). 
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FIG. 3 (color). Arrhenius relaxation map of the segmental dynamics in the homopolymer PS68 
(open squares) and PS3 (open circles) and the PS68/PS3 blends (triangles) with composition: 
75/25/ (top), 50/50 (middle) and 25/75 (bottom) obtained from MD (higher frequencies) and 
DS (lower frequencies). The “slow” and “fast” segmental dynamics in the blends are shown 
with filled and open symbols, respectively. In the blends the solid and dashed lines are fits 
based solely on MD predictions for self and effective compositions (Eq. 4) of the “slow” and 
“fast dynamics using φSelf,A=0.48 and φSelf,B=0.74. The dash-dotted black line is the 
comparison to the SCLM model (Eq. 2) with φSelf,A=0.26. Notice the Arrhenius T-dependence 
for the “fast” segmental dynamics in the 75/25 blend (confinement effects). 
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FIG. 4 (color). (a) Self concentration for all binary blends and (b-d) effective concentrations 
for the different blends within a sphere as a function of the sphere radius calculated through 
MD simulations (Eq. 4), LM (Eq. 1) and SCLM model for p=0.51 (Eqs 2, 3) (for length scale 
radius of 0.9 nm and 0.4 nm for A and B respectively; A is the 65mer and B the 3mer) at 
T=463K.  
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FIG. 5 (color). Composition dependence of (i) the PS68 static correlations (d) corresponding 
to the intermolecular atom-to-atom correlations in the blends (squares), and (ii) of the sphere 
radius (circles) that provides the best description of the slower segmental dynamics in the 
blends (r). The corresponding Kuhn length scale (lK) is also shown with the dash-dotted line. 
Notice that the dynamic length scale, has a composition dependence (φ-0.26), intermediate to 
the purely intermolecular (φ-0.6) and intramolecular (φ0) length scales.  
  
 

 


