

ACMAC's PrePrint Repository

Dynamic Heterogeneity in Fully Miscible Blends of Polystyrene with Oligostyrene

Vagelis A. Harmandaris and Kurt Kremer and George Floudas

Original Citation:
Harmandaris, Vagelis A. and Kremer, Kurt and Floudas, George
(2013)
Dynamic Heterogeneity in Fully Miscible Blends of Polystyrene with Oligostyrene.
Physical Review Letters.
ISSN 0031-9007
(In Press)
This version is available at: http://preprints.acmac.uoc.gr/177/ Available in ACMAC's PrePrint Repository: March 2013
ACMAC's PrePrint Repository aim is to enable open access to the scholarly output of ACMAC.

Dynamic Heterogeneity in Fully Miscible Blends of Polystyrene with Oligostyrene

Vagelis A. Harmandaris,^{3*} Kurt Kremer², and George Floudas^{1,2*}

¹Department of Physics, University of Ioannina, GR-45110, Ioannina and Foundation for Research and Technology-Biomedical Research Institute, Ioannina, Greece ²Max Planck Institute for Polymer Research, D-55128 Mainz, Germany ³Department of Applied Mathematics, University of Crete, and IACM FORTH GR-71110 Heraklion, Greece

*Corresponding authors: gfloudas@cc.uoi.gr and vagelis@tem.uoc.gr

Abstract

Binary blends of polystyrene with oligostyrene are perfectly miscible (χ =0) yet dynamically heterogeneous. This is evidenced by independent probing of the dipole relaxation perpendicular to the backbone by dielectric spectroscopy and molecular dynamics. The selfconcentration model with a single intra-molecular length scale qualitatively describes the slower segmental dynamics. A quantitative comparison based on MD however, requires a composition-dependent length scale. The pertinent dynamic length scale that best describes the slow segmental dynamics in miscible blends relates to both intra- and inter-molecular contributions.

PACS numbers: 64.70.pj, 64.70.Q-, 77.22.Gm

Thermodynamically miscible polymer blends display a broadening of the relaxation spectra with respect to homopolymers and two separate relaxation processes that reflect the component's segmental dynamics. Both are considered as signatures of *dynamic heterogeneities* [1-6]. Theoretical models [7-17] have been considered in explaining these experimental features. In all cases, increasing the dynamic asymmetry, *i.e.*, by increasing the difference in the glass temperatures (ΔT_g) of the parent homopolymers, enhances the dynamic heterogeneity. However, polymer mixtures with large disparity in their mobility are usually composed from monomers of different polarity and/or rigidity that tend to phase separate. In addition, even the known miscible blends show a miscibility window only for certain molecular weights, compositions, temperatures and pressures. In the quest for the *truly* miscible blend with a large dynamic asymmetry an obvious choice is mixtures of a homopolymer with its oligomers.

Dielectric spectroscopy (DS) [4,6,8,11,12,14,15,18-24] and molecular dynamics (MD) simulations [16, 17, 25-32] represent versatile and complementary tools in studying segmental dynamics in polymer blends. In this letter we report on the local dynamics in perfectly miscible blends of polystyrene with oligostyrene possessing a large dynamic asymmetry (ΔT_g =123 K) by MD and DS spanning about 12 decades in time. The blends display clear signatures of a dynamic heterogeneity as evidenced by the bimodal relaxation in both MD and DS. This allowed (i) testing the validity of the self-concentration model [9] and (ii) an independent and quantitative account for the slower dynamics through MD. The relation of the corresponding dynamic length scale with the static length scale corresponding to the static structure factor for the polymer chains is explored.

The studied homopolymer PS_{68} had M_w =7150 g/mol and M_n =6800 g/mol (about 65 monomers). The oligomer PS_3 had M_w = M_n =370 g/mol. The tacticity of PS_{68} was obtained from ¹³C NMR, giving 18% iso, 46% atactic and 36% syndiotactic sequences. The blend dynamics was investigated by probing the dipole perpendicular to the backbone by DS and MD. The dielectric loss curves in the blend, shown in Fig. 1, are clearly bimodal with "slow" and "fast" processes reflecting the PS_{68} and PS_3 relaxations in the blends. Two Havriliak-Negami (HN) functions together with the conductivity contributions at lower frequencies/high temperatures are necessary to deconvolute the spectra (See the Supplemental

Material [33] for the analysis of the DS and MD dynamics). Details about the all atom MD simulations employed in this study and the equilibration procedure are given elsewhere [30].

In MD simulations, the segmental dynamics of polymer melts can be studied by calculating time-autocorrelation functions of a vector, \mathbf{v}_{b} , along the monomer. Here we choose a vector that connects the carbon of the backbone CH group with the center of mass (CM) of the phenyl ring [30]. In more detail, segmental dynamics is quantified, in both MD and DS, through the first Legendre polynomial: $P_{1}(t) = \langle \cos (\theta(t)) \rangle$, where θ is the angle of \mathbf{v}_{b} vector at time *t* relative to its original position.

Fig. 2 depicts the $P_1(t)$ autocorrelation curves of the C-CM ring for the blends and the respective homopolymers at 463 K obtained from MD. $P_1(t)$ exhibits a small rapid decay at short times (t < 10-100 ps) followed by a rather slow de-correlation at later times. This shorttime regime (not shown here) corresponds to a primitive (bond vibrations and angle librations) relaxation (Debye-Waller factor), whereas the long-time regime corresponds to the segmental relaxation. In agreement with DS, bimodality is evident in MD simulations as well. The $P_1(t)$ data were fitted (for times t > 10 ps) by a KWW stretched-exponential function $P(t)=Aexp[-(t/\tau_{KWW})^{\beta}]$ where, τ_{KWW} , is a characteristic relaxation time, β the stretch exponent and A a pre-exponential factor that takes into account relaxation processes at very short time scales. The segmental correlation time, τ_s , defined as the integral of the above equation, can be calculated numerically and is presented below in Fig. 3. Fits of the simulation data for times above about 5-10 ps, are included in Fig. 2 with lines. Note that a modified KWW expression, that describes fast relaxation modes with an additional exponential term, gives very similar values for both τ_{KWW} and β ; see Supplemental Material. The comparison of the stretch exponent, obtained independently from MD (Eq. 1) and DS (Supplemental Material [33]) suggests the broadening of the "slow" component in the blend. This is explained by the increasing concentration fluctuations [8] on approaching the glass temperature of the slower component. Understanding the complete T-dependence of the distribution requires knowledge of the separate contribution from temporal and spatial heterogeneities [34].

The segmental dynamics from MD and DS comprising 13 orders of magnitude (for the 3mer) are directly compared in Fig. 3. The $\tau(T)$ conform to the Vogel-Fulcher-Tammann (VFT) equation, $\tau = \tau_0 \exp(B/(T-T_0))$, with parameters summarized in Table I, Supporting Information (these lines are not shown in Fig. 3 for clarity).

According to the "self-concentration" model of Lodge and McLeish (LM) [9], the average composition of the local environment around any chosen segment is enriched by the same species because of chain connectivity effects. Each species will experience a different average local environment and to the extent that the glass temperature is sensitive to composition, each polymer will sense its own composition-dependent glass temperature. The relevant length-scale in evaluating the self-concentration is the Kuhn length ($l_{\rm K}$). The self-concentration of component *i* is determined from the volume fraction occupied by monomers in one Kuhn length inside a volume $V_{K} = l_{\rm K}^3$ as $\varphi_{\rm self,i} = C_{\infty} M_0 / k \rho N_{\rm A} V_{\rm k}$ where C_{∞} is the characteristic ratio, M_0 is the repeat unit molar mass and *k* is the number of backbone bonds per repeat unit of the component *i*, and N_A is the Avogadro number. The model associates the average local concentration of each component with a local glass temperature, $T_{g,q_{\rm H}} = \frac{1}{\sigma}$. The effective glass temperature $T_{g,\text{seff}}$ is determined from the macroscopic $T_{\rm g}(\varphi)$ but now evaluated at φ_{eff} , which for two components *A* and *B* is defined as:

$$\varphi_{eff,A} = \varphi_{self,A} + (1 - \varphi_{self,A})\varphi_A$$
$$\varphi_{eff,B} = \varphi_{self,B} + (1 - \varphi_{self,B})\varphi_B$$
(1)

where φ_A and φ_A are the bulk volume fractions of *A* and *B*, respectively. Lipson and Milner [32] proposed a modification of the above expression that resulted in a self-consistent definition (*i.e.*, self-consistent Lipson Milner, SCLM):

$$\varphi_{eff,A} = \varphi_{self,A} + (1 - \varphi_{self,A})p$$

$$\varphi_{eff,B} = \varphi_{self,B} + (1 - \varphi_{self,B})(1 - p)$$
(2)

In the above relation, p, the probability that an intermolecular neighbor within a volume V_K is of type A irrespectively of the type of the central atom is given by:

$$p = \frac{\varphi_A(1 - \varphi_{self,A})}{\varphi_A(1 - \varphi_{self,A}) + \varphi_B(1 - \varphi_{self,B})}$$
(3)

For the macroscopic composition dependence of the glass temperature the model suggests the Fox equation [23]. However, the Fox equation cannot describe the "effective" T_g values in blends, the latter measured by DSC. Here we employed the Gordon-Taylor equation instead (with the value of the adjustable parameter K=3.08).

In Fig. 3 we test the SCLM model predictions for the "slow" and "fast" component dynamics against the full $\tau(T)$ dependence. The three Arrhenius relaxation maps display the relaxation times of the PS₆₈, PS₃ homopolymers and three PS₆₈/PS₃ blends together with the

SCLM model predictions (Eq. 2) for the slower component (dash-dotted lines). φ_{Self} for component A (PS₆₈) was calculated through the model using C_{∞} =9.61, M_0 =0.104 kg/mol, k=2, ρ =986 kg/m³, $l_{\rm K}$ =1.48 nm resulting in $\varphi_{Self,A}$ =0.26. It can be seen that the SCLM model predictions are in qualitative agreement with the "slow" PS₆₈ segmental dynamics in the blends but not in quantitative agreement. Evidently, a single length scale cannot describe the full $\tau(T)$ dependence for all blend compositions. As for the relevant length scale for the oligomer (PS₃), we can employ the end-to-end distance of l=0.65 nm (r=0.4 nm, see below for the definition) from simulations. However, Eq. 3 gives an unphysical value of $\varphi_{Self,B}$ (>1) for such a length scale. For both segmental dynamics in the blends we have further assumed the VFT equation for $\tau_i(\varphi_{eff},T)$, with identical B_i and $\tau_{0,i}$ parameters as for bulk PS₆₈ and PS₃ $(B = 1140 \text{ K and } \tau_0 = 3.02 \times 10^{-11} \text{ s for } \text{PS}_{68} \text{ and } B = 1680 \text{ K and } \tau_0 = 3.63 \times 10^{-14} \text{ s for } \text{PS}_3)$ where only the "ideal" glass temperature, $T_{\mathcal{Q}_i}(e_{ff}) = T_{0,i} = T_{g,i}(e_{ff}) = T_{g,i}$, varies with composition. $T_{0,i}$ is the ideal glass temperature for homopolymers A or B and $T_{0,i}(\varphi_{eff})$ is the ideal glass temperature for each component in the blends. In addition, one can notice a peculiar T-dependence (nearly Arrhenius) of the "fast" relaxation times in the more asymmetric PS₆₈/PS₃ 75/25 blend (Fig. 3a). This has been discussed in the literature as reflecting the dynamics of the "faster" component that is now confined within the frozen domains of the "slower" component [35]. Cleary, the model does not take into account such confinement effects that can lead to a Arrhenius temperature dependence.

In view of these deficiencies associated with the SCLM model, we employ MD simulations as a guide in predicting the effective composition for each component in the blends that best fit the combined DS/MD $\tau(T)$ dependence. In more detail, from the MD simulations we directly calculate apparent distance dependent self- and effective-concentrations defined as:

$$\varphi_{self,i}(r) = \frac{\langle M_i^{intra}(r) \rangle}{\langle M_A(r) + M_B(r) \rangle}, \quad \varphi_{eff,i}(r) = \frac{\langle M_i(r) \rangle}{\langle M_A(r) + M_B(r) \rangle}$$
(4)

where $M_i(r)$ and $M_i^{intra}(r)$ are the total and the intra-molecular atom mass of neighbors of type *i* (*A* or *B*) within a sphere with radius *r* around a central atom of type *i*. Brackets denote statistical average. Furthermore, we can also calculate effective concentrations by employing Eq. 1 (LM model) and Eq. 2 (SCLM model) using the values for $\varphi_{self,i}$ and *p* calculated directly from the MD simulations.

In Fig. 4a-d we present the MD result for self and effective composition denoted as $\varphi_{eff,i}$ MD, LM and SCLM, calculated respectively using equations (4), (1) or (2). Self concentration, as expected, is much larger for 65mer than 3mer for a given length scale, and does not depend on the concentration. Notice that $\varphi_{eff,i}$ obtained through MD differs substantially from the LM model. This is in agreement with earlier MD simulations that emphasized the importance of distributions of intramolecular concentrations on the dynamics especially in dilute blends [17]. A direct comparison of the simulation with the LM model can be made by calculating the composition within a sphere with the same volume as an $l_{\rm K}^3$ cube, *i.e.*, within a radius of $r = l_{\rm K}/2^*(6/\pi)^{1/3}=0.9$ nm, resulting in $\varphi_{Self,A}\sim 0.48$ (Fig. 4a). For the oligomer (PS₃), we can employ the MD predictions at the relevant length scale (*r*=0.4 nm) resulting in $\varphi_{Self,B}=0.74$ (Fig. 4a).

According to MD, a quantitative description of the full $\tau(T)$ for the slower component, as shown in Fig. 3 with the color solid lines, requires $\varphi_{eff,A}=0.82$, 0.64 and 0.48, respectively for the 75/25, 50/50 and 25/75 blends. The extracted (Fig. 4) dynamic length scale is plotted in Fig. 5 as a function of blend composition. Evidently, the dynamic length scale *decreases* with *increasing* polymer concentration (PS₆₈). In the same figure we plot (i) the purely *intramolecular* length scale from the LM model (I_K) and (ii) the concentration dependence of the pair atom-atom correlations in the *intermolecular* pair distribution function, g(r), representing solely polymer correlations (PS₆₈). The latter shows a $d \sim \varphi^{-0.6}$ dependence that corresponds to the good solvent scaling for the blob size in concentrated solutions in a crossover regime to the melt ($\xi \sim \varphi^{v/1-3v}$ with $v_{eff} \sim 4/5$). The *dynamic* length scale, has a composition dependence ($\varphi^{-0.26}$), intermediate to the purely intermolecular ($\varphi^{-0.6}$) and intramolecular (φ^0) length scales. This suggests that both interactions should be taken into account in understanding the dynamics of the slow segmental dynamics in miscible blends.

Despite the success in understanding the slow segmental dynamics in the blends the same cannot be said about the oligomer dynamics. The extracted length scales that best describe the $\tau(T)$ of the fast component (dashed lines in Fig. 3) exceeds the oligomeric end-toend distance (lengths of 1.2, 0.9 and 2.2 nm are obtained for the 75/25, 50/50 and 25/75 blends).

In conclusion, binary blends of polystyrene with oligostyrene display dynamic heterogeneity at the segment level as evidenced by independent probing of the dipolar relaxation by dielectric spectroscopy and MD simulations. The self-concentration model with a single intra-molecular length scale describes the segmental dynamics of the slow component in the blend with a $\varphi_{Self,A}$ ~0.26, however only *qualitatively*. A *quantitative* description requires a composition-dependent length scale. MD simulations of the effective composition coupled with the $\tau(T)$ dependence provide the relevant dynamic length scale. The latter exhibits a distinct concentration dependence, which is weaker as that of atom-to-atom correlations in the intermolecular pair correlation functions corresponding solely to the polymer. These results suggest that the pertinent length scale that best describes the slow segmental dynamics in miscible blends relates to both intra- and inter-molecular contributions.

We thank Dr. M. Wagner (MPI-P) for NMR characterization. This research was supported by the Research unit on Dynamics and Thermodynamics of the UoI (NSRF 2007-2013, Region of Epirus, call 18) and co-financed by the European Union and Greek national funds Research Funding Program: THALIS. Partially supported by the European Union's FP7-REGPOT-2009-1 project "Archimedes Center for Modeling, Analysis and Computation" (grant n 245749).

References

- [1] R. H. Colby, Polymer **30**, 1275 (1989).
- [2] C.M. Roland, K. L. Ngai, Macromolecules 24, 2261 (1991).
- [3] Y. H. Chin et al., Macromolecules 25, 3031 (1992).
- [4] J.A. Pathak et al., Macromolecules 32, 2553 (1999).
- [5] Y. He et al., J. Chem. Phys. 119, 9956 (2003).
- [6] E. Krygier et al., Macromolecules 38, 7721 (2005).
- [7] K. L. Ngai, C. M. Roland, Rubber Chem. Technol. 77, 579 (2004).
- [8] A. Zetsche, E. W. Fischer, Acta Polymer. 45, 168 (1994).
- [9] T. P. Lodge, T. C. B. McLeish, Macromolecules 33, 5278 (2000).
- [10] G.-C. Chung et al., Macromolecules 27, 964 (1994).
- [11] S. K. Kumar et al., J. Chem. Phys. 105, 3777 (1996).
- [12] S. Kamath et al., J. Chem. Phys. 111, 6121 (1999).
- [13] S. Shenogin et al., Macromolecules 40, 5767 (2007).
- [14] E. Leroy et al., Macromolecules 36, 7280 (2003).
- [15] D. Cangialosi et al., Macromolecules 39, 7149 (2006).
- [16] R. H. Colby, J. E. G. Lipson, Macromolecules 38, 4919 (2005).
- [17] W. Liu et al, Phys. Rev. Lett. 103, 037801 (2009).
- [18] G. Floudas et al., J. Chem. Phys. 111, 9129 (1999).
- [19] G. A. Schwartz et al., Macromolecules 40, 3246 (2007).
- [20] C. M. Roland, R. Casalini, R. Macromolecules 40, 3631 (2007).
- [21] A. Gitsas et al., Macromolecules 42, 5709 (2009).
- [22] K. Mpoukouvalas, G. Floudas, Macromolecules 41, 1552 (2008).
- [23] G. Floudas, M. Paluch, A. Grzybowski, K. L. Ngai, "Molecular Dynamics of Glass-
- Forming Systems. Effects of Pressure", Springer (2011).
- [24] G. Floudas, Progress in Polym. Sci. 29, 1143 (2004).
- [25] S. Salaniwai et al., Macromolecules 35, 9211 (2002).
- [26] D. Bedrov, G. D. Smith, Macromolecules 39, 8526 (2006).
- [27] M. Tyagi et al., Macromolecules 40, 4568 (2007).
- [28] J. Maranas, Curr. Opin. Coolid. Interf. Sc.12, 29 (2007).
- [29] V. Harmandaris et al., J. Chem. Phys. 116, 7656 (2002).
- [30] V. Harmandaris, G. Floudas, K. Kremer, Macromolecules 44, 393 (2011).
- [31] V. Harmandaris *et al.*, Macrom. Chem. Phys. **208**, 2109 (2007); Macromolecules **40**, 7026 (2007).
- [32] J. E. G. Lipson, S. T. Milner, J. Polym. Sci. Part B 44, 3528 (2006).
- [33] See Supplemental Material at <u>http://link.aps.org/supplmental/10.1103/PhysRevLett</u>. for the analysis of the DS and MD including the distribution of relaxation times for both processes.
- [34] A. Deres et al, Macromolecules 44, 9703 (2011).
- [35] J. Colmenero, A. Arbe, Soft Matter 3, 1474 (2007).

FIG. 1 (color). Dielectric loss plotted as a function of frequency for the PS_3 oligomer (upper left, temperatures in the range from 237.15 to 283.15 K), the 75/25 blend (upper right, temperatures in the range from 319.15 to 336.15 K), the 50/50 blend (lower left, temperatures in the range from 281.15 to 303.15 K) and the 25/75 blend (lower right, temperatures in the range from 265.15 to 291.15 K). Lines are the result of fits to a summation of two HN functions.

FIG. 2 (color). Time correlation function $P_1(t)$ for the PS 3mer and PS 65mer (PS₆₈) studied here from MD. The lines are KWW fits (*T*=463K).

FIG. 3 (color). Arrhenius relaxation map of the segmental dynamics in the homopolymer PS₆₈ (open squares) and PS₃ (open circles) and the PS₆₈/PS₃ blends (triangles) with composition: 75/25/ (top), 50/50 (middle) and 25/75 (bottom) obtained from MD (higher frequencies) and DS (lower frequencies). The "slow" and "fast" segmental dynamics in the blends are shown with filled and open symbols, respectively. In the blends the solid and dashed lines are fits based solely on MD predictions for self and effective compositions (Eq. 4) of the "slow" and "fast dynamics using $\varphi_{Self_{5}A}$ =0.48 and $\varphi_{Self_{5}B}$ =0.74. The dash-dotted black line is the comparison to the SCLM model (Eq. 2) with $\varphi_{Self_{5}A}$ =0.26. Notice the Arrhenius *T*-dependence for the "fast" segmental dynamics in the 75/25 blend (confinement effects).

FIG. 4 (color). (a) Self concentration for all binary blends and (b-d) effective concentrations for the different blends within a sphere as a function of the sphere radius calculated through MD simulations (Eq. 4), LM (Eq. 1) and SCLM model for p=0.51 (Eqs 2, 3) (for length scale radius of 0.9 nm and 0.4 nm for A and B respectively; A is the 65mer and B the 3mer) at T=463K.

FIG. 5 (color). Composition dependence of (i) the PS₆₈ static correlations (*d*) corresponding to the intermolecular atom-to-atom correlations in the blends (squares), and (ii) of the sphere radius (circles) that provides the best description of the slower segmental dynamics in the blends (*r*). The corresponding Kuhn length scale ($l_{\rm K}$) is also shown with the dash-dotted line. Notice that the dynamic length scale, has a composition dependence ($\varphi^{-0.26}$), intermediate to the purely intermolecular ($\varphi^{-0.6}$) and intramolecular (φ^0) length scales.