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ON PERIODIC ORBITS IN A SLOW-FAST SYSTEM WITH NORMALLY
ELLIPTIC SLOW MANIFOLD

CHRISTOS SOURDIS

Abstract. In this note we consider the bifurcation of a singular homoclinic orbit to periodic
ones in a 4-dimensional slow-fast system of ordinary differential equations, having a 2-
dimensional normally elliptic slow manifold, originally studied by Fečkan and Rothos in
[11] (see also [13, Ch. 6]). Assuming an extra degree of differentiability on the system, we
can refine their perturbation scheme, in particular the choice of approximate solution, and
obtain improved estimates.

1. Introduction and statement of the main result

We consider the system  ẍ + h(x) = f(x, ẋ, y, εẏ, ε),

ε2ÿ + y = ε2g(x, ẋ, y, εẏ, ε),
(1.1)

where ε > 0 is a small singular perturbation parameter and

(A1) h, f, g ∈ Cr, for some r ≥ 1, h is independent of ε, and the first order partial
derivatives of f and g are bounded over compact sets of R5; f(x1, x2, 0, 0, 0) = 0,

(A2) f(x1, x2, y1, y2, ε), g(x1, x2, y1, y2, ε) are even in the variables x2 and y2, i.e.

f(x1,−x2, y1,−y2, ε) = f(x1, x2, y1, y2, ε), g(x1,−x2, y1,−y2, ε) = g(x1, x2, y1, y2, ε),

(A3) h(0) = 0, h′(0) = −α2 < 0 (α > 0), and there exists a homoclinic solution φ of

ẍ + h(x) = 0, t ∈ R, (1.2)

such that φ(t) = φ(−t) and φ(t) → 0 as t → ±∞ (see [6] for necessary and sufficient
conditions; a typical example is h(x) = −α2x + |x|p−1x, p > 1). (We note that there
exist at most two such solutions, see also [4] and [20]).

Systems of the form (1.1) appear in a variety of interesting physical situations. Firstly,
note that if g is identically zero then (1.1) includes the rapidly forced Duffing equation (see
[3, 14]). Next, we have the following two examples that are taken from [11], where we refer
for more details (see also [13]). The equation

ε2u(4) + ü− u + u2 = 0, (1.3)

Key words and phrases. Singular perturbations; Resonance phenomena; Periodic orbits of vector fields
and flows.
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2 CHRISTOS SOURDIS

which arises in the theory of water–waves in the presence of surface tension (see [2] and the
references therein), can be written as a fourth-order system of the form (1.1). Indeed, by
setting x = u and y = ü− u + u2, problem (1.3) is equivalent to ẍ− x + x2 = y,

ε2ÿ + y = ε2 [2(ẋ)2 + (y + x− x2)(2x− 1)] .
(1.4)

System (1.1) also describes the reduced problem, after a center manifold reduction, in the
study of traveling pulses for the discrete nonlinear Klein-Gordon equation

ün −
1

ε2
(un+1 − 2un + un−1)− h(un) = 0;

we also refer to [5] for a variety of physical situations that are modeled by the above equa-
tion. Moreover, systems of the form (1.1), with (1.2) having heteroclinic orbits, describe a
pendulum of unit length with a fixed end and large elastic constant of order 1/ε2, allowing
the pendulum to be stretched or contracted slightly in the radial direction, see [10] and
the references therein. Lastly, let us mention that a nonlocal perturbation of a system of
the form (1.1), with h linear, appears in the study of concentrated solutions of the non-
linear Schrödinger equation along closed weighted geodiscs in the plane, after an infinite
dimensional Lyapunov-Schmidt reduction (see [8]).

On the other side, the main mathematical interest for studying (1.1) is the following:
Writing (1.1) as a slow-fast system of ordinary differential equations, by setting x1 = x,
x2 = ẋ, y1 = y, y2 = εẏ, it is easy to see, letting ε = 0, that the corresponding system has
(y1, y2) = (0, 0) as a two-dimensional slow manifold (recall (A1)), see [15]. By linearizing, we
find that the slow eigenvalues are imaginary (±i to be exact), see also a related discussion in
the introduction of [19]. This implies that the slow manifold is normally elliptic, see [10], and
nearby orbits oscillate rapidly in the normal direction. Thus, in contrast to the normally
hyperbolic case (for example when ε2ÿ + y is replaced by ε2ÿ − y in (1.1)), the smooth
persistence of the slow-manifold, for small ε > 0, is not guaranteed. Consequently, it is an
interesting problem to rigorously relate (1.1) with the limit problem (1.2) for small ε > 0.
In geometric singular perturbation theory, the latter problem is frequently referred to as the
limit slow system, and the image of its trajectories on the slow manifold (y1, y2) = (0, 0),
namely (x, ẋ, 0, 0), are called singular orbits (see [15]). In these terms, the homoclinic solution
φ of (1.2) gives rise to a singular homoclinic orbit of (1.1).

The singular homoclinic orbit of (1.1) is not expected to survive the singular perturbation,
and persist as a homoclinic orbit, for small ε > 0. In fact, it may persist as a homoclinic
orbit to an exponentially small amplitude periodic orbit (as opposed to a homoclinic to an
equilibrium), see [2, 16] and the references therein. Nevertheless, it has been shown that,
at least for a sequence εi → 0, there are periodic solutions (xεi

, yεi
) of (1.1), whose periods

diverge as i → ∞, that are close (in some sense) to (φ, 0) (keep in mind that, in the phase
plane of (1.2), the interior of the homoclinic loop is exhausted by periodic orbits, see for
instance Chapter 12 in [4]). To be more precise, if h, f, g ∈ C1, Fečkan and Rothos in [11]
(see also Chapter 6 in [13]) proved by a perturbation argument, using the pair (x0, y0) = (φ, 0)
as an approximate solution to (1.1), for small ε > 0, the following:

Theorem 1.1. [11, 13] For any k0 ∈ N, there is an ε0 such that for any 0 < ε < ε0 and
T = ε

(
2k[ε−3/2]π + τ

)
with k ∈ N, k ≤ k0, τ ∈ [π/4, 3π/4] ∪ [5π/4, 7π/4], system (1.1)
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has an even 2T -periodic solution (xε(t), yε(t)) near (φ(t), 0) on [0, T ], where [a] denotes the
integer part of a > 0.

Remark 1.1. If in addition f, g and h are analytic, the Melnikov function (see [14]) of (1.1)
is known to be exponentially small (see [11, 16] and the references therein; see also [3]).

It follows from the analysis in [11], see Remark 3.2 therein, that the following estimates
hold:

|xε(t)− φ(t)|+ |ẋε(t)− φ̇(t)| ≤ Cε1/4, |yε(t)|+ |εẏε(t)| ≤ Cε1/2, t ∈ [0, T ].

Remark 1.2. Throughout this article, we will denote by C a large generic constant that is
independent of small ε and large T .

If h ∈ C2 (h′′ being bounded around [0, φ(0)] is enough), pushing their arguments further,
it is easy to see that one can choose

T = ε
(
2k[εδ−2]π + τ

)
(1.5)

with k ∈ N, k ≤ k0, τ ∈ [π/4, 3π/4] ∪ [5π/4, 7π/4], 0 < δ < 1, and obtain the estimates

|xε(t)− φ(t)|+ |ẋε(t)− φ̇(t)|+ |yε(t)|+ |εẏε(t)| ≤ Cεδ, t ∈ [0, T ]. (1.6)

In this note, we will revisit the proof of [11] (see also Chapter 6 in [13]), applying their
perturbation scheme, but starting with a more refined initial approximate solution to (1.1),
for small ε > 0, than (φ, 0). This will eventually lead to an improvement of estimates (1.6).
A minor drawback of our argument is that we require an extra derivative on g and h, namely
g, h ∈ C2. More precisely, instead of (φ, 0), we will choose as approximate solution the pair
(φ, y1), where y1 is obtained by applying one iteration in the recursive relation

yn+1 = ε2g(φ, φ̇, yn, εẏn, ε)− ε2ÿn, y0 = 0.

Note that yn is defined as long as g, h are sufficiently smooth, and one can show that

|En| = |ε2ÿn + yn − ε2g(φ, φ̇, yn, εẏn, ε)| ≤ Cnε
2+2n, |yn|+ |ẏn|+ |ÿn| ≤ Cnε

2.

(The important thing is that T does not appear in the above estimates). After studying
the corresponding linearized operators around (φ, y1), along the lines of [11, 13] (but offering
some simplified proofs), we obtain the existence of a genuine solution by applying Schauder’s
fixed point theorem on a carefully chosen closed neighborhood of (φ, y1) which is smaller than
the corresponding one in [11][13] (this point requires that h ∈ C2).

Our main result is

Theorem 1.2. Assume that f ∈ C1 and g, h ∈ C2, satisfy conditions (A1)–(A3). For
any k0 ∈ N, and 0 < δ < 1, there is an ε0 such that for any 0 < ε < ε0 and T =
ε
(
2k[1/ε2−δ]π + τ

)
with k ∈ N, k ≤ k0, τ ∈ [π/4, 3π/4] ∪ [5π/4, 7π/4], system (1.1) has an

even 2T -periodic solution (xε(t), yε(t)) near (φ(t), 0) on [0, T ]. In fact,

|xε(t)− φ(t)|+ |ẋε(t)− φ̇(t)| ≤ Cε, |yε(t)|+ |εẏε(t)| ≤ Cε1+δ, t ∈ [0, T ]. (1.7)

Remark 1.3. If f(x1, x2, 0, 0, ε) = 0, as is the case in (1.4), it follows from the proof that
the estimates in (1.7) are both of order ε2.

Remark 1.4. Estimate (1.7) implies the convergence ‖yε‖C1[0,T ] → 0, as ε → 0, which does
not follow from (1.6).
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Let us briefly comment on the structure of the set in which the parameter ε can be chosen.
As will be apparent in the proof, our construction does not hold for all values of the parameter
ε close to 0. There is a resonance phenomenon which prevents the construction to hold for
any small value of ε and which forces ε to be taken away from certain intervals. In this
context, such a phenomenon was first discovered in [17] and [19].

In [12], the authors considered the case where the corresponding equation to (1.2) has
heteroclinic solutions. Our observations seem to apply in this setting without any problems.

Even, small amplitude, high frequency, periodic solutions of (1.3) have been constructed
in [2] for small ε > 0. These solutions bifurcate from the trivial solution of (1.3). Based on
these, similarly to the proof of Theorem 1.2, we can construct a plethora of approximate,
large period, periodic solutions to (1.4), “near” (φ, 0), for small ε > 0 (one may also try
to use the periodic solutions of (1.2) that are accumulating, in the phase plane, to the
homoclinic loop). It is natural to wonder whether the presence of the extra parameters in
these approximate solutions (which are free to adjust conveniently) offers any advantage in
dealing with the aforementioned issue of resonance. In the context of homoclinic orbits to
(1.3), this strategy has been successfully employed in [2]. In the context of partial differential
equations, an approach in the same spirit has been applied recently in [9].

We will devote the rest of this note in proving Theorem 1.2.

2. Proof of Theorem 1.2

The following lemma is motivated from [18] (see also [10]).

Lemma 2.1. Let
y1 = ε2g(φ, φ̇, 0, 0, ε). (2.1)

Then,
|y1|+ |ẏ1|+ |ÿ1| ≤ Cε2, t ∈ [0, T ], (2.2)

|E1| =
∣∣∣ε2ÿ1 + y1 − ε2g(φ, φ̇, y1, εẏ1, ε)

∣∣∣ ≤ Cε4, t ∈ [0, T ], (2.3)

and
ẏ1(0) = 0, |ẏ1(T )| ≤ Cε2e−αT . (2.4)

Proof Relation (2.2) follows at once from the fact that g ∈ C2, h ∈ C1, observing that

φ, φ̇, φ̈,
...
φ ∈ L∞(R).

We have

|E1(t)| =
∣∣∣ε2ÿ1 + y1 − ε2g(φ, φ̇, y1, εẏ1, ε)

∣∣∣
≤ ε2|ÿ1|+ ε2

∣∣∣g(φ, φ̇, 0, 0, ε)− g(φ, φ̇, y1, εẏ1, ε)
∣∣∣

(A1)

≤ ε2|ÿ1|+ Cε2 (|y1|+ ε|ẏ1|) ,

for t ∈ [0, T ], and estimate (2.3) follows via (2.2).
By differentiating (2.1), we get

ẏ1(t) = ε2gx1(φ, φ̇, 0, 0, ε)φ̇ + ε2gx2(φ, φ̇, 0, 0, ε)φ̈.

Now, keeping in mind that φ̇(0) = 0, the exponential decay estimates

|φ(t)|+ |φ̇(t)|+ |φ̈(t)| ≤ Ce−α|t|, t ∈ R (from (A3)), (2.5)
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and gx2(x1, 0, y1, 0, ε) = 0, x1, y1 ∈ R (from (A2)), we infer that relation (2.4) holds.
The proof of the lemma is complete.

Next, we recall two useful lemmas from [11] (see also Chapter 6 in [13]). We point out
that they hold for h ∈ C1.

Lemma 2.2. There exist T0, C > 0 such that, if T ≥ T0 and z ∈ C[0, T ], there exists a
unique solution u = L̃T [z] of ü + h′(φ(t))u = z(t), 0 ≤ t ≤ T,

u̇(0) = u̇(T ) = 0.
(2.6)

Moreover, we have that

‖u‖+ ‖u̇‖ ≤ C‖z‖,
where

‖x‖ = max
[0,T ]

|x(t)|.

Proof We note that, by standard theory of ODEs (see for example Chapter VI in [20]),
existence and uniqueness of a solution will follow from the a-priori estimate for z ≡ 0. The
validity of the a-priori estimate essentially relies on the property that there are no nontrivial
bounded and even solutions to

ü + h′ (φ(t)) u = 0, t ∈ R, (2.7)

see for example Lemma 3.2 in [5] (note that φ̇ is an odd solution). The proof in [11] is in
the spirit of Lyapunov and Perron, making use of exponential dichotomies and the variation
of constants formula. Another way is to argue by contradiction, similarly to Lemma 1.3.6 in
[7], as follows. Firstly, we will establish the weaker a-priori estimate

‖u‖ ≤ C‖z‖, (2.8)

for some constant C, for all u ∈ C2[0, T ] and z ∈ C[0, T ] that satisfy (2.6), provided that T
is sufficiently large. Suppose to the contrary that there are sequences Ti →∞, ui ∈ C2[0, Ti],
and zi ∈ C[0, Ti], satisfying (2.6) on [0, Ti], such that ‖ui‖ = 1 and ‖zi‖ → 0. Without loss of
generality, we may assume that there are ti ∈ [0, Ti] such that ui(ti) = 1, u̇i(ti) = 0, üi(ti) ≤ 0.
It follows that h′ (φ(ti)) ≥ zi(ti). Therefore, via (A3), we infer that the ti’s are uniformly
bounded. Using elliptic estimates to find that the ui’s are uniformly bounded in C2(R)
(with respect to i, see also (2.9) below), Arzcela-Ascoli’s theorem, and a standard Cantor-
type diagonal argument, we can extract a subsequence such that ui → u∗ in C1

loc[0,∞),
and we may further assume that ti → t∗ ≥ 0, where

ü∗ + h′ (φ(t)) u∗ = 0, t > 0, u′∗(0) = 0, u∗(t∗) = 1, max
[0,∞)

|u∗| = 1.

Extending u∗ evenly, we get a nontrivial bounded and even solution to (2.7). On the other
hand, as we have already discussed, this is not possible. Consequently, estimate (2.8) holds.
Then, we deduce the validity of the full estimate of the lemma by (2.6) and the elementary
interpolation inequality

‖u̇‖ ≤ 2‖u‖+ ‖ü‖, (2.9)

(keep in mind that T ≥ 1).
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The proof of the lemma is complete.

Remark 2.1. Related estimates to those of Lemma 2.2 can be found in [9].

In the remainder of the article, given k0 ∈ N and δ ∈ (0, 1), we will always assume that
small ε > 0 and large T satisfy relation (1.5) for k ≤ k0 with k ∈ N, τ ∈ [π/4, 3π/4] ∪
[5π/4, 7π/4]. So,∣∣∣∣Tε − 2mπ − π

2

∣∣∣∣ ≤ π

4
and

∣∣∣∣Tε − 2mπ − 3π

2

∣∣∣∣ ≤ π

4
for m = k[εδ−2] ∈ N. (2.10)

Lemma 2.3. If ε and T satisfy (1.5), given z ∈ C[0, T ], there exists a unique solution
v = M̃ε,T [z] of  ε2v̈ + v = εz(t), 0 ≤ t ≤ T,

v̇(0) = 0, v̇(T ) = 0.

Moreover, we have that

‖v‖+ ‖εv̇‖ ≤ 2(
√

2 + 1)T‖z‖.

Proof The validity of the lemma follows directly from the explicit representation of the
solution

v(t) = M̃ε,T [z] =
1

sin(T/ε)

(∫ T

0

cos

(
T − s

ε

)
z(s)ds

)
cos(t/ε) +

∫ t

0

sin

(
t− s

ε

)
z(s)ds,

(2.11)
and the fact that (2.10) implies that |sin(T/ε)| ≥

√
2/2.

The proof of the lemma is complete.

Remark 2.2. A qualitatively analogous relation to (2.11) has been shown in [1] for the
nonhomogeneous boundary value problem ε2v̈ + q2(t)v = εz(t), t ∈ (0, T ); v̇(0) = v̇(T ) = 0,
with q ∈ C1[0, T ] and positive, via the classical Prüfer transform (see for instance [20]).

Remark 2.3. In order to avoid confusion, we point out that we have changed the original
notation of [11], [13].

Since both φ̇(T ) and ẏ1(T ) are of order e−αT (recall (2.4), (2.5)), and T is of order εδ−1

with 0 < δ < 1 (recall (1.5)), we can easily obtain the following corollaries:

Corrolarry 2.1. There exist ε1, C > 0 such that, if 0 < ε < ε1 and T � 1 satisfy (1.5),
given z ∈ C[0, T ], there exists a unique solution u = LT [z] of

ü + h′(φ(t))u = z(t), 0 ≤ t ≤ T,

u̇(0) = 0, u̇(T ) = −φ̇(T ).

Moreover,

‖u‖+ ‖u̇‖ ≤ C‖z‖+ ε10.

Proof Let

ũ(t) = u(t) +
φ̇(T )

2T
t2.
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In terms of ũ, we have the equivalent problem

¨̃u + h′ (φ(t)) ũ = z(t) +
φ̇(T )

T
+ h′ (φ(t))

φ̇(T )

2T
t2, t ∈ [0, T ], ˙̃u(0) = 0, ˙̃u(T ) = 0.

Now, we can apply Lemma 2.2 to obtain existence, uniqueness, and the estimates

‖ũ‖+ ‖ ˙̃u‖ ≤ C‖z‖+ CT |φ̇(T )|.

Since T |φ̇(T )| ≤ Cεδ−1e−C−1εδ−1
, via the definition of ũ, we deduce that the assertion of the

lemma holds.
The proof of the lemma is complete.
Similarly we can show

Corrolarry 2.2. There exists a small ε2 and a C > 0 such that, if 0 < ε < ε2 and T � 1
satisfy (1.5), given z ∈ C[0, T ], there exists a unique solution v = Mε,T [z] of ε2v̈ + v = εz(t), 0 ≤ t ≤ T,

v̇(0) = 0, v̇(T ) = −ẏ1(T ).

Moreover,

‖v‖+ ‖εv̇‖ ≤ CT‖z‖+ ε10.

We are now ready for the
Proof of Theorem 1.2 In view of (A2), and Corollaries 2.1 and 2.2, we have to find a

small fixed point, in the convex set

XT =
{

(u, v) ∈ C1[0, T ]× C1[0, T ] : u̇(0) = 0, u̇(T ) = −φ̇(T ), v̇(0) = 0, v̇(T ) = −ẏ1(T )
}

,

of the compact mapping (u, v) → (ū, v̄), defined by

ū = LT

[
−h(φ + u) + h(φ) + h′(φ)u + f(φ + u, φ̇ + u̇, y1 + v, ε(ẏ1 + v̇), ε)

]
,

v̄ = Mε,T

[
ε
(
g(φ + u, φ̇ + u̇, y1 + v, ε(ẏ1 + v̇), ε)− g(φ, φ̇, y1, εẏ1, ε)

)
− ε−1E1

]
,

(2.12)

(the mapping is compact thanks to the well known Arczela-Ascoli theorem). Indeed, recalling
(A3) and (2.4), such functions φ + u and y1 + v fashion solutions of (1.1) in (0, T ) with
Neumann boundary conditions on the boundary, and are close to (φ, y1) ≈ (φ, 0) on [0, T ].
Then, in view of (A2), we can extend them, via consecutive even reflections with respect to
the lines t = (2m+1)T, m ∈ Z, to 2T -periodic even solutions of (1.1) (see [11], [13] for more
details).

By Corollaries 2.1–2.2, (A1), (1.5), (2.2), and (2.3), recalling that h ∈ C2, we can estimate

‖ ˙̄u‖+ ‖ū‖ ≤ C(‖u‖2 + ‖v‖+ ‖εv̇‖+ ε),

‖ε ˙̄v‖+ ‖v̄‖ ≤ Cεδ(‖u‖+ ‖u̇‖+ ‖v‖+ ‖εv̇‖+ ε2).

Now, it follows readily that Schauder’s fixed point theorem (see for instance Theorem 3.4.7
in [7]) can be applied, for small ε, to produce a fixed point in the closed convex subset of
XT that is defined by

Bε =
{
(u, v) ∈ XT : ‖u‖+ ‖u̇‖ ≤ Mε, ‖v‖+ ‖εv̇‖ ≤ Nε1+δ

}
,
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for some large constants M, N > 1 that are independent of ε and T . Indeed, if (u, v) ∈ Bε,
we have

‖ ˙̄u‖+ ‖ū‖ ≤ C(M2ε2 + Nε1+δ + ε),

‖ε ˙̄v‖+ ‖v̄‖ ≤ Cεδ(Mε + Nε1+δ + ε2),

with C independent of ε, M and N . We choose M = 2C, N = 4C2, and find that

‖ ˙̄u‖+ ‖ū‖ ≤ C(4C2ε2 + 4C2ε1+δ + ε),

‖ε ˙̄v‖+ ‖v̄‖ ≤ Cεδ(2Cε + 4C2ε1+δ + ε2).

Consequently, decreasing ε further, if necessary, we obtain that (ū, v̄) ∈ Bε, as is required
for applying Schauder’s theorem.

The proof of the theorem is complete.

Remark 2.4. At the end of the corresponding proof in [11, 13], it is remarked that if h ∈ C2

(as is the case here) then we can apply the well known uniform contraction mapping principle
to (2.12), and get local uniqueness of the obtained solutions. However, in view of the first
equation in (1.4) for example, this point is not obvious to us.

2.1. Acknowledgements. The research leading to these results has received funding from
the European Union’s Seventh Framework Programme (FP7-REGPOT-2009-1) under grant
agreement no 245749.
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