ПANEПIГTHMIO KPHTH乏 - TMHMA EФAPMO乏MEN Ω N MAOHMATIK Ω N Archimedes Center for Modeling, Analysis \& Computation UNIVERSITY OF CRETE - DEPARTMENT OF APPLIED MATHEMATICS Archimedes Center for Modeling, Analysis \& Computation

ACMAC's PrePrint Repository

Uniform estimates for positive solutions of a class of semilinear elliptic equations and related Liouville and one-dimensional symmetry results

Christos Sourdis

Original Citation:

Sourdis, Christos
(2013)

Uniform estimates for positive solutions of a class of semilinear elliptic equations and related Liouville and one-dimensional symmetry results.
(Submitted)
This version is available at: http://preprints.acmac.uoc.gr/173/
Available in ACMAC’s PrePrint Repository: March 2013
ACMAC's PrePrint Repository aim is to enable open access to the scholarly output of ACMAC.

UNIFORM ESTIMATES FOR POSITIVE SOLUTIONS OF A CLASS OF SEMILINEAR ELLIPTIC EQUATIONS AND RELATED LIOUVILLE AND ONE-DIMENSIONAL SYMMETRY RESULTS

CHRISTOS SOURDIS

Abstract

We consider the semilinear elliptic equation $\Delta u=W^{\prime}(u)$ with Dirichlet boundary conditions in a smooth, possibly unbounded, domain $\Omega \subset \mathbb{R}^{n}$. Under suitable assumptions on the potential W, including the double well potential that gives rise to the AllenCahn equation, we deduce a condition on the size of the domain that implies the existence of a positive solution satisfying a uniform pointwise estimate. Here, uniform means that the estimate is independent of Ω. The main advantage of our approach is that it allows us to remove a restrictive monotonicity assumption on W that was imposed in the recent paper by G. Fusco, F. Leonetti and C. Pignotti [118]. In addition, we can remove a nondegeneracy condition on the global minimum of W that was assumed in the latter reference. Furthermore, we can generalize an old result of P. Hess [133] and D. G. De Figueiredo [90], concerning semilinear elliptic nonlinear eigenvalue problems. Moreover, we study the boundary layer of global minimizers of the corresponding singular perturbation problem. For the above applications, our approach is based on a refinement of a useful result that dates back to P. Clément and G. Sweers [76], concerning the behavior of global minimizers of the associated energy over large balls, subject to Dirichlet conditions. Combining this refinement with global bifurcation theory and the celebrated sliding method, we can prove uniform estimates for solutions away from their nodal set, refining a lemma from a well known paper of H. Berestycki, L. A. Caffarelli and L. Nirenberg [33]. In particular, combining our approach with a-priori estimates that we obtain by blow-up, the doubling lemma of P. Polacik, P. Quittner, and P. Souplet [179] and known Liouville type theorems, we can give a new proof of a Liouville type theorem of Y. Du and L. Ma [97], without using boundary blow-up solutions. We can also provide an alternative proof, and a useful extension, of a Liouville theorem of H. Berestycki, F. Hamel, and H. Matano [39], involving the presence of an obstacle. Making use of the latter extension, we consider the singular perturbation problem with mixed boundary conditions. Moreover, we prove some new one-dimensional symmetry properties of certain entire solutions to Allen-Cahn type equations, by exploiting for the first time an old result of Caffarelli, Garofalo, and Segála [65], and we suggest a connection with the theory of minimal surfaces. Using this approach, we also provide new proofs of well known symmetry results in half-spaces with Dirichlet boundary conditions. Lastly, we study the one-dimensional symmetry of solutions in convex cylindrical domains with Neumann boundary conditions, and in convex epigraphs with partially over-determined boundary conditions.

Index

1. Introduction and statement of the main result 2
1.1. Outline of the paper 9
2. Proof of the main result 10
2.1. Minimizers of the energy functional on large balls 10
2.2. Proof of Theorem 1.2 29
3. Uniform estimates for positive solutions without specified boundary conditions 33
4. Algebraic singularity decay estimates in the case of pure power nonlinearity, andcompletion of the proof of Theorem 1.237
4.1. Proof of relation (1.18) 40
5. Bounds on entire solutions of $\Delta u=W^{\prime}(u)$ 41
6. Nonexistence of nonconstant solutions with Neumann boundary conditions 43
6.1. A Liouville theorem arising in the study of traveling waves around an obstacle 43
6.2. The case of smooth, bounded, star-shaped domains 48
7. Extensions 49
8. On the boundary layer of global minimizers of singularly perturbed elliptic equations 51
9. The singular perturbation problem with mixed boundary value conditions 54
10. Some one-dimensional symmetry properties of certain solutions to the Allen-Cahn equation 56
10.1. Symmetry of entire solutions 56
10.2. One-dimensional symmetry in half-spaces 58
11. One-dimensional symmetry in convex cylindrical domains 60
11.1. A gradient bound in convex cylindrical domains 61
11.2. The symmetry result 63
12. One-dimensional symmetry of a partially over-determined problem in a convex epigraph 65
Appendix A. Some useful "comparison" lemmas of the calculus of variations 67
Appendix B. A Liouville-type theorem 69
Appendix C. A doubling lemma 69
Appendix D. Some remarks on equivariant entire solutions to a class of elliptic systems of the form $\Delta u=W_{u}(u), u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ 70
References 71

1. Introduction and statement of the main result

A problem that has received considerable attention in the literature is the study of the structure of solutions $(\lambda, u) \in \mathbb{R} \times C^{2, \alpha}(\overline{\mathcal{D}}), 0<\alpha<1$, depending on the nonlinearity f, of the semilinear elliptic nonlinear eigenvalue problem

$$
\begin{equation*}
\Delta u+\lambda f(u)=0, x \in \mathcal{D} ; \quad u(x)=0, x \in \partial \mathcal{D} \tag{1.1}
\end{equation*}
$$

where \mathcal{D} is typically a smooth bounded domain. To this end, the main approaches used include the method of upper and lower solutions, bifurcation techniques, as well as topological and variational methods (see [148], [161], [199], [203] and the references therein).

Recently, G. Fusco, F. Leonetti and C. Pignotti considered in [118] the semilinear elliptic problem

$$
\begin{cases}\Delta u=W^{\prime}(u), & x \in \Omega \tag{1.2}\\ u=0, & x \in \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{n}, n \geq 1$, is a domain with nonempty Lipschitz boundary (see for instance [104]), under the following assumptions on the C^{2} function $W: \mathbb{R} \rightarrow \mathbb{R}$, which we will often refer to as a potential:
(a): There exists a constant $\mu>0$ such that

$$
\begin{gathered}
0=W(\mu)<W(t), t \in[0, \infty), t \neq \mu, \\
W(-t) \geq W(t), t \in[0, \infty)
\end{gathered}
$$

(b): $W^{\prime}(t) \leq 0, t \in(0, \mu)$;
(c): $W^{\prime \prime}(\mu)>0$.

A model potential which satisfies the assumptions in [118] is the double well potential in (1.23) below, appearing frequently in the mathematical study of phase transitions, see [91]. Another, model example is given in (4.1). An example of an unbounded domain with nonempty Lipschitz boundary is (4.10) below, which was considered in [33]. We stress that, in the case where the domain is unbounded, the boundary conditions in (1.2) do not refer to $u(x) \rightarrow 0$ as $|x| \rightarrow \infty$ with $x \in \Omega$. Note that (1.1) can be related to (1.2) via a simple rescaling (see the relation between (7.9) and (7.10) below).

Some preliminary notation. For $x \in \mathbb{R}^{n}, \rho>0$, we let

$$
\begin{aligned}
B_{\rho}(x) & =\left\{y \in \mathbb{R}^{n}:|y-x|<\rho\right\}, \quad B_{\rho}=B_{\rho}(0) \\
A+B & =\{x+y: x \in A, y \in B\}, \quad A, B \subset \mathbb{R}^{n}
\end{aligned}
$$

and denote by $d(x, E)$ the Euclidean distance of the point $x \in \mathbb{R}^{n}$ from the set $E \subset \mathbb{R}^{n}$, and by $|E|$, unless specified otherwise, the n-dimensional Lebesgue measure of E (see [104]). By $\mathcal{O}(\cdot), o(\cdot)$ we will denote the standard Landau's symbols.

The main result of [118] was the following:
Theorem 1.1. Assume Ω and W as above. There are positive constants $R^{*}, r^{*} \in\left(0, R^{*}\right)$, $a^{*} \in(0, \mu), k, K$, depending only on W and n, such that if Ω contains a closed ball of radius R^{*}, then problem (1.2) has a solution $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ verifying

$$
\begin{gather*}
0<u(x)<\mu, \quad x \in \Omega \tag{1.3}\\
\mu-a^{*}<u(x), \quad x \in \Omega_{R^{*}}+B_{r^{*}}, \tag{1.4}
\end{gather*}
$$

and

$$
\begin{equation*}
\mu-u(x) \leq K e^{-k d(x, \partial \Omega)}, \quad x \in \Omega \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega_{R^{*}}=\left\{x \in \Omega: d(x, \partial \Omega)>R^{*}\right\} . \tag{1.6}
\end{equation*}
$$

The approach of [118] to the proof of Theorem 1.1 is variational, involving the construction of various judicious radial comparison functions, see also [11]. Although variational, in our opinion, their argument boils down to the construction of a weak lower solution to (1.2), see [30], whose building blocks, after a translation, are radial solutions of
$\Delta \Phi^{r}+c^{2}\left(\mu-\Phi^{r}\right)=0$ in $B_{r}, \Phi^{r}(r)=\mu-a ;-\Delta \Psi^{r, R}=0$ in $B_{r+R} \backslash B_{r}, \Psi^{r, R}(r)=\mu-a, \Psi^{r, R}(r+R)=0$,
where $c^{2}<W^{\prime \prime}(t), t \in[\mu-a, \mu]$ (note that assumption (b) implies that solutions of (1.2) are super-harmonic). It can be verified that $\Phi^{\prime}(r)<\Psi^{\prime}(r)$ for sufficiently large r and R (having dropped the superscripts for convenience). So, after a translation, the functions u, v, and zero, can be patched together at $|x|=r$ and $|x|=r+R$ to form a weak lower solution to (1.2), in the sense of [30], provided that Ω contains some large ball of radius greater than $r+R$. This gives us a solution satisfying (1.4) only in B_{r} (we use μ as an upper solution). However, we may extend the domain of validity, and obtain the desired bound (1.4), by
"sliding around" that lower-solution, as in [33]. Using this strategy, one may considerably simplify the corresponding arguments in [118]. We note that, once (1.4) is established, the proof of the exponential decay estimate (1.5), given in [118], can be simplified considerably by employing Lemma 4.2 in [113], making use of the non-degeneracy condition (c) (the constants in Theorem 1.1 can be chosen so that $\left.W^{\prime \prime}(t)>0, t \in\left[\mu-a^{*}, \mu\right]\right)$. Moreover, an examination of the proof of Lemma 2.1 in [118] (see Lemma A. 1 herein) shows that assumption (a) above can be relaxed to
(\mathbf{a}^{\prime}): There exists a constant $\mu>0$ such that

$$
\begin{gathered}
0=W(\mu)<W(t), t \in[0, \mu), \quad W(t) \geq 0, t \in \mathbb{R} \\
W(-t) \geq W(t), t \in[0, \mu] \text { or } W^{\prime}(t)<0, t<0
\end{gathered}
$$

For a typical example of such a potential, see Figure 1.1.

Figure 1.1. An example of a potential W satisfying hypothesis (a').
If one further assumes that

$$
\begin{equation*}
W^{\prime \prime}(0)<0 \text { if } W^{\prime}(0)=0 \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
W^{\prime}(t)<0, \quad t \in(0, \mu), \tag{1.9}
\end{equation*}
$$

then Theorem 1.1 can essentially be deduced from Lemmas 3.2-3.3 in the famous article [33] by Berestycki, Caffarelli and Nirenberg or Lemma 4.1 in the recent article [151] by Pacard, Kowalczyk and Liu, see also Lemmas 6.1-6.2 in [195], and [120]. In fact, the latter lemmas hold for arbitrary positive solutions to (1.2) with values less than μ.

The main purpose of this article is to show that relation (1.4) can be established in a simple manner without assuming the monotonicity condition (b), and in fact we will prove a stronger version of it. A well known nonlinearity which satisfies our assumptions but not (b) is

$$
\begin{equation*}
W^{\prime}(u)=u(u-a)(u-\mu) \text { with } 0<a<\frac{\mu}{2} \tag{1.10}
\end{equation*}
$$

which arises in the mathematical study of population genetics (see [24]). Moreover, we remove completely the non-degeneracy condition (c) from the proof of (1.4). On the other hand, since an argument of [118] involving the boundary regularity of weak solutions to (1.2)
when $\partial \Omega$ is arbitrarily Lipschitz is not clear to us (see the last part of the proof of Theorem 3.3 therein), we will assume that Ω has C^{2}-boundary (to be on the safe side, see however Remarks 1.4 and 2.16 that follow). We will accomplish the aforementioned improvements, loosely speaking, by using translations of a positive solution of

$$
\Delta u=W^{\prime}(u), x \in B_{R} ; \quad u(x)=0, x \in \partial B_{R}
$$

which minimizes the associated energy, as a lower solution of (1.2) after we have extended it by zero outside of B_{R}. Actually, this approach will allow us to refine the results of [33], [151] that we mentioned earlier in relation to (1.8), (1.9). On the other side, assuming further that W^{\prime} satisfies a scaling property and that the corresponding whole space problem (1.22) below does not have nontrivial entire solutions (a Liouville type theorem), we will use "blow-up" arguments from [123] together with a key "doubling lemma" from [179] to establish that Lemma 3.3 in [33] can be improved.

In passing, we remark that a similar monotonicity assumption to (b) also appears in a series of papers [11], [12], [15] in the context of variational elliptic systems of the form $\Delta u=\nabla_{u} W(u)$ with $W: \mathbb{R}^{n} \rightarrow \mathbb{R}$. In particular, these references employ comparison functions of the form (1.7). In this direction, see also Remarks 1.5, 2.9 and Appendix D below.

Our main result is
Theorem 1.2. Assume that Ω is a domain with nonempty boundary of class C^{2}, and that $W \in C^{2}$ satisfies (\mathbf{a}^{\prime}). Let $\epsilon \in(0, \mu)$ and $D>D^{\prime}$, where D^{\prime} is determined from the relation

$$
\begin{equation*}
\mathbf{U}\left(D^{\prime}\right)=\mu-\epsilon, \tag{1.11}
\end{equation*}
$$

where in turn \mathbf{U} is the only function in $C^{2}[0, \infty)$ that satisfies

$$
\begin{equation*}
\mathbf{U}^{\prime \prime}=W^{\prime}(\mathbf{U}), s>0 ; \quad \mathbf{U}(0)=0, \quad \lim _{s \rightarrow \infty} \mathbf{U}(s)=\mu \tag{1.12}
\end{equation*}
$$

(see Remark 1.1 below). There exists an $R^{\prime}>D$, depending only on ϵ, D, W, and n, such that if Ω contains some closed ball of radius R^{\prime} then problem (1.2) has a solution $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ verifying (1.3), and

$$
\begin{equation*}
\mu-\epsilon \leq u(x), \quad x \in \Omega_{R^{\prime}}+B_{\left(R^{\prime}-D\right)}, \tag{1.13}
\end{equation*}
$$

where $\Omega_{R^{\prime}}$ was previously defined in (1.6). Furthermore, it holds that

$$
\begin{equation*}
\min \{W(t): t \in[0, u(x)]\} \leq \frac{C}{\operatorname{dist}(x, \partial \Omega)}, \quad x \in \Omega_{R^{\prime}} \tag{1.14}
\end{equation*}
$$

for some constant $C>0$ that depends only on W, n. If $W^{\prime \prime}(\mu)>0$ then estimate (1.5) holds true.
If

$$
\begin{equation*}
W^{\prime \prime}(t) \geq 0 \text { for } \mu-t>0 \text { small, } \tag{1.15}
\end{equation*}
$$

then

$$
\begin{equation*}
-W^{\prime}(u(x)) \leq \frac{\tilde{C}}{(\operatorname{dist}(x, \partial \Omega))^{2}}, \quad x \in \Omega_{R^{\prime}}, \quad R \geq R^{\prime} \tag{1.16}
\end{equation*}
$$

for some constant $\tilde{C}>0$ that depends only on n, assuming that $W^{\prime \prime} \geq 0$ on $[\mu-\epsilon, \mu]$. If there exist constants $c>0$ and $p>1$ such that

$$
\begin{equation*}
-W^{\prime}(t) \geq c(\mu-t)^{p}, \quad t \in[\mu-d, \mu], \quad \text { for some small } d>0 \tag{1.17}
\end{equation*}
$$

and $\bar{\Omega}$ is disjoint from the closure of an infinite open connected cone, or $n=2$ and $\bar{\Omega} \neq \mathbb{R}^{2}$, then

$$
\begin{equation*}
\mu-u \leq \tilde{K} \operatorname{dist}^{-\frac{2}{p-1}}(x, \partial \Omega), \quad x \in \Omega \tag{1.18}
\end{equation*}
$$

for some constant $\tilde{K}>0$ that depends only on c, p, n and W.
Estimate (1.16) is motivated from [33]. Condition (1.17) is in part motivated by some recent studies $[213,214,215]$ of a class of singularly perturbed elliptic boundary value problems of the form (8.5) below in one space dimension, where the degenerate equation $W(u, x)=0$ has a root $u=u_{0}(x)$ of finite multiplicity.

The method of our proof is quite flexible, and we came up with a variety of applications to related problems that can be found in the following sections and the included remarks (see the outline at the end of this section). As will be apparent from the proof, see in particular the comments leading to Proposition 8.1 below, a delicacy of our result is that the constant D^{\prime} is independent of n.

Remark 1.1. The existence and uniqueness of such a solution \mathbf{U} of the ordinary differential equation $u^{\prime \prime}=W^{\prime}(u)$ follows readily from (\mathbf{a}^{\prime}) by phase plane analysis, using the fact that the latter equation has the conserved quantity $e(s)=\frac{1}{2}\left(u^{\prime}\right)^{2}-W(u)$, see for instance Lemma 3.2 in [18], Chapter 2 in [23] or page 135 in [218] (for a more analytic approach, we refer to [31] or [47]). We note that

$$
\begin{equation*}
\mathbf{U}^{\prime}(s)>0, \quad s \geq 0 \tag{1.19}
\end{equation*}
$$

Remark 1.2. Similar assertions hold for the Robin boundary value problem:

$$
\Delta u=W^{\prime}(u), x \in \Omega ; \quad \frac{\partial u}{\partial \nu}+b(x) u=0, x \in \partial \Omega
$$

where ν denotes the outward unit normal vector to the boundary of Ω, assuming here that the latter is at least C^{1}, with $b \in C^{1+\alpha}(\partial \Omega), \alpha>0$, being nonnegative (so that the constant μ is a positive upper solution, see [189]). Moreover, as in [118], we can possibly study some problems with mixed boundary conditions (see also Section 9).

Remark 1.3. A sufficient, and easy to check, condition for the uniqueness of a positive solution of (1.2), in any smooth bounded domain, is

$$
\begin{equation*}
\frac{W^{\prime}(t)}{t} \text { being strictly increasing in }(0, \infty) \tag{1.20}
\end{equation*}
$$

This uniqueness result is originally due to Krasnoselski, see [52] (see also Theorem 1.16 in [186] for a different proof, and Theorem 3 in [202] for a radially symmetric proof). The above condition is clearly satisfied by the model double well potential in (1.23) below. Related conditions can be found in [211]. In certain cases, these type of conditions imply uniqueness of a positive solution in unbounded domains as well, see for example [64] and [89] for uniqueness of the so-called saddle solutions that we will discuss shortly. Another sufficient condition, which on the other hand depends partly on the smooth bounded domain Ω, is

$$
W^{\prime \prime}(t) \geq-\lambda, \quad t \geq 0
$$

for some $\lambda<\lambda_{1}$, where $\lambda_{1}>0$ denotes the principal eigenvalue of $-\Delta$ in $W_{0}^{1,2}(\Omega)$ (see [17], [194]). This condition is clearly satisfied, with $\lambda=0$, by the convex model potential in (4.1) below.

Let us mention that for a class of potentials, including (1.23), the dependence of the set of solutions of (1.2), in one space dimension, on the size of the interval was studied for the first time in [72] (see also the more up to date reference [74]).

In our opinion, Theorems 1.1 and 1.2 are important for the following reasons. If we additionally assume that W is even, namely

$$
\begin{equation*}
W(-t)=W(t), \quad t \in \mathbb{R} \tag{1.21}
\end{equation*}
$$

by means of these theorems, we can derive the existence of various sign-changing entire solutions for the problem

$$
\begin{equation*}
\Delta u=W^{\prime}(u), \quad x \in \mathbb{R}^{n} \tag{1.22}
\end{equation*}
$$

This can be done by first establishing existence of a positive solution in a suitable large "fundamental" domain $\Omega_{F} \subset \mathbb{R}^{n}$, with Dirichlet boundary conditions on $\partial \Omega_{F}$, and then performing consecutive odd reflections to cover the entire space.
Remark 1.4. The boundary of the fundamental domain Ω_{F} may have corner or conical points. But we can round them off, approximating Ω_{F} by a sequence of expanding smooth domains Ω_{j} (where Theorem 1.2 is applicable). Then, we can obtain the desired solution in Ω_{F} by letting $j \rightarrow \infty$ along a subsequence (see [89]). In this regard, see also Remark 2.16 below.

The fact that, after reflecting, we obtain a classical solution can be shown by a standard capacity argument (see Theorem 1.4 in [61]).

In the case where

$$
\begin{equation*}
W(t)=\frac{1}{4}\left(t^{2}-1\right)^{2}, \quad t \in \mathbb{R} \tag{1.23}
\end{equation*}
$$

then (1.22) becomes the well known Allen-Cahn equation (see for instance [176]). Assuming that W is even, namely that (1.21) holds true, then (1.2) has always the trivial solution. In this regard, the purpose of estimate (1.13) is twofold: In the case where Ω_{F} is bounded, it ensures that the solution of (1.2) (on Ω_{F}), provided by Theorem 1.2, is nontrivial. The situation of unbounded domains Ω_{F} can be treated by exhausting them by an increasing (with respect to inclusions) sequence $\left\{\Omega_{j}\right\}$ of bounded ones, each containing the same ball $B_{R^{\prime}}\left(x_{0}\right)$, and a standard compactness argument, making use of (1.3) together with elliptic estimates and a Cantor type diagonal argument. The fact that the region of validity of estimate (1.13) increases, as $j \rightarrow \infty$, rules out the possibility of subsequences of the (chosen) solutions u_{j} of (1.2) $)_{j}$ on Ω_{j} converging, uniformly in compact subsets of Ω_{F}, to the trivial solution of (1.2) on Ω_{F}. Another approach for excluding this last scenario, which however does not seem to provide uniform estimates directly, can be found in the proof of Theorem 1.3 in [61], based on a similar relation to (2.70) below (see also [92] and [176]). In this fashion, and under more general assumptions on W than previous studies (conditions (a') and (1.21) suffice for most applications), one can construct a whole gallery of nontrivial sign-changing solutions of (1.22) that includes

- "saddle solutions" which vanish on the Simons cone $\left\{(x, y) \in \mathbb{R}^{2 m}:|x|=|y|\right\} \subset$ $\mathbb{R}^{2 m}=\mathbb{R}^{n}$ if n is even (see [61], [63], [64], [89], [126], and [176]). In fact, they can be constructed in the block-radial class, namely $u(x, y)=\mathrm{u}(|x|,|y|)=-\mathrm{u}(|y|,|x|)$. In passing, we note that solutions with these symmetries have been studied for nonlinear Schrödinger type equations, say (1.22) with $W^{\prime}(t)=t-t^{3}$, in Chapter 3 in [153], Section 1.6 in [221], and the references therein (for such solutions to the Gross-Pitaevskii equation with radial trapping potential, we refer to Section 6 in [140]). Estimate (1.5)
implies that the corresponding saddle solution converges to $\pm \mu$ exponentially fast, as the signed distance from the Simons cone tends to plus/minus infinity respectively. Analogous solutions exist in odd dimensions, for example when $n=3$ it was shown in [5] that there exists a solution which vanishes on all coordinate planes (see also a related discussion in [93]). In dimension $n=2$, solutions whose zero level set has the symmetry of a regular $2 k$-polygon and consists of k straight lines passing through the origin were found in [4] (in the case where W is periodic, similar solutions but with polynomial growth were found, following this strategy, recently in [219]); such solutions can appropriately be named "pizza solutions", see also [197]. Denote G the rotation of order $2 k$, and note that these solutions satisfy $u(G x)=-u(x), x \in \mathbb{R}^{2}$. Another method to get u is to find a minimizing solution u_{R} of the equation in the invariant class $\left\{u \in W_{0}^{1,2}\left(B_{R}\right)\right.$ and $\left.u(G x)=-u(x), x \in B_{R}\right\}$. The minimizer u_{R} can be proved to satisfy (1.2) in B_{R} by the heat flow method (see [11], [10], [15], [40]). Note that because W is even, the invariant class is positively invariant by the heat flow.
- "lattice solutions" which include solutions that are periodic in each variable x_{i} with period L_{i}, provided that $L_{i}, i=1, \cdots, n$, are sufficiently large (see [15], [29], [114], [143], and [166]). This type of solutions, which can be described as having lamellar phase, were recently conjectured to exist in Chapter 4 of [201]. Another example, which is motivated from [164], are solutions in the plane whose nodal domains consist of sufficiently large (identical modulo translation and rotation) equilateral triangles tiling the plane (in relation to this, see also Remark 2.20 below). Under some additional hypotheses on W, planar lattice solutions can be constructed by local and global bifurcation techniques (see [114], [134], [143], and [164]).
- "tick saddle solutions" which have saddle (or pizza) structure in some coordinates while they are periodic in the remaining ones (see the introduction in [118]). For example, in \mathbb{R}^{2}, these solutions are odd with respect to both x and y, having as nodal curves the lines $x=0$ and $y=k L, k \in \mathbb{Z}$, for L sufficiently large (so that the fundamental domain $\Omega_{F, L} \equiv\{x>0, y \in(0, L)\}$ contains a sufficiently large closed ball). In fact, if $W^{\prime \prime}(0)<0$ and (2.43) below hold, by modifying the approach of the current paper and using some ideas from Proposition 3.1 in [92] (which dealt with a problem of similar nature on an infinite half strip, see also Remark 2.10 below), it is plausible that there exists an explicit constant $L^{*}>0$ such that (1.2) considered in $\Omega_{F, L}$ has a positive solution if and only if $L>L^{*}$ (see also Remark 2.6 below); a similar construction should also work in higher dimensions. We note that tick saddle solutions can be constructed as limits of appropriate lattice solutions by letting some of the periods tend to infinity (along a subsequence), see [15]. In the case where W is as in (1.23), and $n=2$, the spectrum of the linearized operator about the saddle solution of [89] has a unique negative eigenvalue (see [191]). Moreover, it has been shown recently that the saddle solution is non-degenerate, namely there are no decaying elements in the kernel of the linearized operator (see [150]). In view of these two properties it might also be possible to construct tick saddle solutions in \mathbb{R}^{3}, with W as in (1.23), by local bifurcation techniques (for example, by the ideas in [85]).
- "Screw-motion invariant solutions" whose nodal set is a helicoïd of \mathbb{R}^{3}, or analogous minimal surfaces in any odd dimension (see [92] and Remark 2.10 herein).

A completely different approach to the construction of sign-changing solutions of (1.22), mainly applied for potentials satisfying (a), (c), and (1.21) (the typical representative being (1.23)), is based on the implementation of an infinite dimensional Lyapunov-Schmidt reduction argument, see [91], [92], [93], [176], and the references therein. This approach produces solutions with less (or even without any) symmetry but is technically more involved.

Our Theorem 1.2 can also be used to construct multiple positive solutions of (1.2), using estimate (1.13) to make sure that they are distinct, see Section 7 below.
1.1. Outline of the paper. The outline of the paper is as follows: In Section 2, we will present the proof of our main result, with the exception of (1.18), by using two different approaches, both based on a special case of a radial lemma that we prove in Subsection 2.1. In the remainder of the paper we will exploit further this radial lemma and use it as a basis to prove interesting results. In Section 3, we prove uniform lower bounds for arbitrary positive solutions. In Section 4, we prove universal decay estimates for solutions, in the case where W is a model power nonlinearity potential, thereby generalizing the exponential decay estimate (1.5) by an algebraic one and relating the obtained result to a corresponding one in [33]. Moreover, this algebraic decay estimate allows us to show (1.18) and thus complete the proof of Theorem 1.2. In Section 5, under appropriate conditions on W, we will show that all entire solutions of (1.22) are uniformly bounded; combining this with the main result of Section 3, we can give a short self-contained proof of the main result in the paper of Du and Ma [97]. In Section 6, we prove nonexistence results for nonconstant solutions with Neumann boundary conditions that are motivated by some Liouville type result of Berestycki, Hamel and Matano (for which we provide simplified proofs). In Section 7, we will show how our Theorem 1.2 can be used to produce multiple positive solutions of (1.2) and thus generalize an old result of P. Hess from 1981, where nonlinear eigenvalue problems were considered. In Section 8, we study the size of the boundary layer of global minimizers of the corresponding singular perturbation problem, in the context of nonlinear eigenvalue problems. In Section 9, we will study the corresponding problem with mixed boundary conditions. In Section 10, we will prove some new one-dimensional symmetry results for certain entire solutions to (1.22), by exploiting for the first time an old result of Caffarelli, Garofalo, and Segála [65], and we suggest a connection with the theory of minimal surfaces. Using this approach, we also provide new proofs of well known symmetry results in half-spaces with Dirichlet boundary conditions. In Section 11, we study the one-dimensional symmetry of solutions in convex cylindrical domains with Neumann boundary conditions. Finally, in Section 12, we consider the one-dimensional symmetry of solutions to a partially over-determined boundary value problem in a two-dimensional convex epigraph. In Appendix A, for completeness purposes, we will state some useful comparison lemmas that we will use in this article. In Appendix B, for the reader's convenience, we will state a useful Liouville type theorem of [108] which extends a result of [51]. In Appendix C, for the reader's convenience, we will state the useful doubling lemma of [179] that we mentioned earlier. In Appendix D, we make some remarks that are motivated from the recent paper [12], dealing with uniform estimates for equivariant entire solutions to an elliptic system under assumptions that are analogous to those in [118].

Remark 1.5. We recently found the paper [15], where it is stated that G. Fusco, in work in progress (now published, see [119]), has been able to remove the corresponding monotonicity assumption to (b) from the vector-valued Allen-Cahn type equation that was treated in [11]. After the first version of the current paper was completed, we were informed by G.

Fusco that himself, F. Leonetti and C. Pignotti are working in a paper where, using the same technique developed for the vector case, they are in the process of extending the main result in [118] to more general potentials without assuming (b). Their approach is certainly more elaborate but it is entirely self-contained, while we use in a simple and coordinate way various deep well known results.

2. Proof of the main result

2.1. Minimizers of the energy functional on large balls. In this subsection, we will mainly prove two lemmas concerning the asymptotic behavior of the minimizing (of the associated energy) solutions of (1.2) over large balls as their radius tends to infinity. The first one is essential for the proof of Theorem 1.2, and refines a result of P. Clément and G. Sweers [76]. The latter result is quite useful, and has been previously applied in singular perturbation problems (see [86], [152], and [156]). The second lemma, an extension of the first, is of independent interest and in particular allows for $W^{\prime}(0)$ to be positive. Even though the first lemma is a special case of the second, we felt that it would be more instructive and more convenient for the reader to present them separately, since the more general second lemma is not needed for the proof of Theorem 1.2 and can be skipped at first reading.

The following is our first lemma, which is motivated from Lemma 2 in [152] and Lemma 2.2 in [156] (see also Lemma 2.4 in [103]), whose origins can be traced back to [75, 76]. In these works, the weaker relation (2.12) below was established, which implies that assertion (2.3) holds but with constant D possibly diverging as $n \rightarrow \infty$ (see also Remark 2.2 below). Our improvement turns out to have interesting consequences in the study of the boundary layer of solutions of singular perturbation problems of the form (7.9) below, with $\lambda=\varepsilon^{-1} \rightarrow \infty$, see Remark 7.2 and Section 8 below. Moreover, estimate (2.3) will be used in a crucial way in Proposition 2.1 for studying the asymptotic stability of minimizing solutions that are provided by the following lemma or the more general Lemma 2.3 below.

Lemma 2.1. Assume that $W \in C^{2}$ satisfies condition (a'). Let $\epsilon \in(0, \mu)$ and $D>D^{\prime}$, where D^{\prime} is as in (1.11). There exists a positive constant $R^{\prime}>D$, depending only on ϵ, D, W and n, such that there exists a global minimizer u_{R} of the energy functional

$$
\begin{equation*}
J\left(v ; B_{R}\right)=\int_{B_{R}}\left\{\frac{1}{2}|\nabla v|^{2}+W(v)\right\} d x, \quad v \in W_{0}^{1,2}\left(B_{R}\right) \tag{2.1}
\end{equation*}
$$

which satisfies

$$
\begin{equation*}
0<u_{R}(x)<\mu, x \in B_{R} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu-\epsilon \leq u_{R}(x), x \in \bar{B}_{(R-D)} \tag{2.3}
\end{equation*}
$$

provided that $R \geq R^{\prime}$. Moreover, there exists a constant C depending only on W, n such that

$$
\begin{equation*}
\min \left\{W(t): t \in\left[0, u_{R}(r)\right]\right\} \leq \frac{C}{R-r}, \quad r \in[0, R), \forall R \geq R^{\prime} \tag{2.4}
\end{equation*}
$$

(If necessary, we assume that W is extended linearly outside of a large compact interval so that the above functional is well defined (see also Lemma 2.4 in [103]); clearly this modification does not affect the assertions of the lemma).

Proof. Under our assumptions on W, it is standard to show the existence of a global minimizer $u_{R} \in W_{0}^{1,2}\left(B_{R}\right)$ satisfying

$$
\begin{equation*}
0 \leq u_{R}(x) \leq \mu \text { a.e. in } B_{R}, \tag{2.5}
\end{equation*}
$$

see Chapter 2 in [25], [118], [185], and Lemma A. 1 herein (applied to the minimizing sequence converging, weakly in $W_{0}^{1,2}\left(B_{R}\right)$, to u_{R}). (The upper bound in (2.5) can also be derived from Lemma A. 3 below, see also the second proof of Theorem 1.2). By standard elliptic regularity theory [124], this minimizer is a smooth solution, in $C^{2}\left(\bar{B}_{R}\right)$, of

$$
\begin{equation*}
\Delta u=W^{\prime}(u) \text { in } B_{R} ; u=0 \text { on } \partial B_{R} . \tag{2.6}
\end{equation*}
$$

By the strong maximum principle (see for example Lemma 3.4 in [124]), via (2.5) and (2.6), we deduce that $u_{R}(x)<\mu, x \in B_{R}$, and that either u_{R} is identically equal to zero or $u_{R}(x)>0, x \in B_{R}$ (recall that assumption (a') implies that $W^{\prime}(0) \leq 0$ and $\left.W^{\prime}(\mu)=0\right)$.

By adapting an argument from Section 4 in [176] (see also Lemma 5.3 in [121] and Theorem 1.13 in [185]), we will show that u_{R} is nontrivial, provided that R is sufficiently large (depending only on W and n). (This is certainly the case when $W^{\prime}(0)<0$). It is easy to cook up a test function, and use it as a competitor, to show that there exists a positive constant C_{1}, depending only on W and n, such that

$$
\begin{equation*}
J\left(u_{R} ; B_{R}\right) \leq C_{1} R^{n-1}, \text { say for } R \geq 2 \tag{2.7}
\end{equation*}
$$

(Plainly construct a function which interpolates smoothly from μ to 0 in a layer of size 1 around the boundary of B_{R} and which is identically equal to μ elsewhere, see also (2.69) below or Lemma 1 in [66]). In fact, as in Proposition 1 in [2] (see also [154]), it can be shown that

$$
\begin{equation*}
J\left(u_{R} ; B_{K}\right) \leq \tilde{C}_{1} K^{n-1} \quad \forall K<R, \quad R \geq 2, \tag{2.8}
\end{equation*}
$$

where the constant $\tilde{C}_{1}>0$ depends only on W and n (see also Remark 2.11, and the arguments leading to relation (2.70) below). On the other hand, the energy of the trivial solution is

$$
J\left(0 ; B_{R}\right)=\int_{B_{R}} W(0) d x=C_{2} R^{n}
$$

where $C_{2}>0$ depends only on W, n. From (2.7), and the above relation, we infer that u_{R} is certainly not identically equal to zero for

$$
R \geq C_{1} C_{2}^{-1}+2
$$

We thus conclude that (2.2) holds. (In the above calculation, we relied on the fact that (a') implies that $W(0)>0$; in this regard, see Remark 2.8 below).

Since $u_{R} \in C^{2}\left(\bar{B}_{R}\right)$ is strictly positive in the ball B_{R}, by (2.6) and the method of moving planes [54, 82, 122], we infer that u_{R} is radially symmetric and decreasing, namely

$$
\begin{equation*}
u_{R}^{\prime}(r)<0, \quad r \in(0, R) \tag{2.9}
\end{equation*}
$$

(with the obvious notation). In this regard, keep in mind that if $v \in W_{0}^{1,2}\left(B_{R}\right)$ is nonnegative, then its Schwarz symmetrization $v^{*} \in W_{0}^{1,2}\left(B_{R}\right)$, which is radially symmetric and decreasing, satisfies $J\left(v^{*} ; B_{R}\right) \leq J\left(v ; B_{R}\right)$ (see for example [57] and the references therein). We note that, since u_{R} is a global minimizer and thus stable (in the usual sense, as described in Remark 2.17 below), the radial symmetry of u_{R}, for $n \geq 2$, can also be deduced as in Lemma 1.1 in [8] (see also the related references in the proof of Lemma 2.3 below). In fact, the monotonicity property (2.9) can be alternatively derived by arguing as in Lemma 2 in [60]
(see also Proposition 1.3.4 in [102]), making use of the stability of the radial solution u_{R} (see also the proof of Lemma 2.3 below, and Lemma 1 in [7]). Now, relation (2.7) and the nonnegativity of W clearly imply that

$$
\begin{equation*}
\int_{B_{R} \backslash B_{\frac{R}{2}}}\left\{\frac{1}{2}\left|\nabla u_{R}\right|^{2}+W\left(u_{R}\right)\right\} d x \leq C_{1} R^{n-1}, \quad R \geq C_{1} C_{2}^{-1}+2 . \tag{2.10}
\end{equation*}
$$

Hence, by the mean value theorem and the radial symmetry of u_{R}, there exists a $\xi \in\left(\frac{R}{2}, R\right)$ such that

$$
\left\{\frac{1}{2}\left[u_{R}^{\prime}(\xi)\right]^{2}+W\left(u_{R}(\xi)\right)\right\}\left|B_{R} \backslash B_{\frac{R}{2}}\right| \leq C_{1} R^{n-1}, \quad R \geq C_{1} C_{2}^{-1}+2
$$

i.e.,

$$
\begin{equation*}
\frac{1}{2}\left[u_{R}^{\prime}(\xi)\right]^{2}+W\left(u_{R}(\xi)\right) \leq C_{3} R^{-1}, \quad R \geq C_{1} C_{2}^{-1}+2 \tag{2.11}
\end{equation*}
$$

where the positive constat C_{3} depends only on W and n (for simplicity in notation, we have suppressed the obvious dependence of ξ on R). Hence, from assumption (a'), and relations (2.9), (2.11), we obtain that

$$
\begin{equation*}
u_{R} \rightarrow \mu, \text { uniformly in } \bar{B}_{\frac{R}{2}}, \text { as } R \rightarrow \infty \tag{2.12}
\end{equation*}
$$

In the sequel, we will prove that the stronger property (2.3) holds true.
For future reference, we note here that

$$
\begin{equation*}
\left[u_{R}^{\prime}(R)\right]^{2} \rightarrow 2 W(0) \text { as } \quad R \rightarrow \infty \tag{2.13}
\end{equation*}
$$

Indeed, let

$$
\begin{equation*}
E_{R}(r)=\frac{1}{2}\left[u_{R}^{\prime}(r)\right]^{2}-W\left(u_{R}(r)\right), \quad r \in(0, R) \tag{2.14}
\end{equation*}
$$

Thanks to (2.6), we find that

$$
\begin{equation*}
E_{R}^{\prime}(r)=u_{R}^{\prime \prime} u_{R}^{\prime}-W^{\prime}\left(u_{R}\right) u_{R}^{\prime}=-\frac{n-1}{r}\left(u_{R}^{\prime}\right)^{2}, \quad r \in(0, R) . \tag{2.15}
\end{equation*}
$$

So,

$$
\begin{equation*}
E_{R}(R)=E_{R}(\xi)-\int_{\xi}^{R} \frac{n-1}{r}\left(u_{R}^{\prime}\right)^{2} d r \tag{2.16}
\end{equation*}
$$

where $\xi \in\left(\frac{R}{2}, R\right)$ is as in (2.11). Now, observe that (2.10) and the nonnegativity of W imply that

$$
\int_{\xi}^{R} r^{n-1}\left(u_{R}^{\prime}\right)^{2} d r \leq C_{4} R^{n-1}, \quad R \geq C_{1} C_{2}^{-1}+2
$$

with C_{4} depending only on W and n. In turn, the above estimate clearly implies that

$$
\int_{\xi}^{R}\left(u_{R}^{\prime}\right)^{2} d r \leq 2^{n-1} C_{4}, \quad R \geq C_{1} C_{2}^{-1}+2
$$

and it follows that

$$
\begin{equation*}
\int_{\xi}^{R} \frac{n-1}{r}\left(u_{R}^{\prime}\right)^{2} d r \leq 2^{n} C_{4}(n-1) R^{-1}, \quad R \geq C_{1} C_{2}^{-1}+2 \tag{2.17}
\end{equation*}
$$

The claimed relation (2.13) follows readily from (2.11), (2.14), (2.16), and (2.17). In fact, we have shown that $R\left|E_{R}(R)\right|$ remains uniformly bounded as $R \rightarrow \infty$. In relation to (2.13), see also Remark 8.5 below.

We also consider the following family of functions

$$
\begin{equation*}
U_{R}(s)=u_{R}(R-s), \quad s \in[0, R] . \tag{2.18}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
U_{R} \rightarrow \mathbf{U}, \text { uniformly on compact intervals of }[0, \infty), \text { as } R \rightarrow \infty, \tag{2.19}
\end{equation*}
$$

where \mathbf{U} is as in (1.12).
In view of (2.6), we get

$$
\begin{equation*}
U_{R}^{\prime \prime}-\frac{n-1}{R-s} U_{R}^{\prime}-W^{\prime}\left(U_{R}\right)=0, \quad s \in(0, R) \tag{2.20}
\end{equation*}
$$

Making use of (2.2), the above equation, elliptic estimates [124], Arczela-Ascoli's theorem, and a standard diagonal argument, passing to a subsequence $R_{i} \rightarrow \infty$, we find that

$$
\begin{equation*}
U_{R_{i}} \rightarrow V \text { and } U_{R_{i}}^{\prime} \rightarrow V^{\prime}, \text { uniformly on compact intervals of }[0, \infty), \text { as } i \rightarrow \infty, \tag{2.21}
\end{equation*}
$$

where $V \in C^{2}[0, \infty)$ is nonnegative and satisfies

$$
\begin{equation*}
V^{\prime \prime}=W^{\prime}(V), s>0, \text { and } V(0)=0 \tag{2.22}
\end{equation*}
$$

Moreover, by (2.13), (2.18), and (2.21), we see that

$$
\left[V^{\prime}(0)\right]^{2}=2 W(0)>0
$$

By the uniqueness of solutions of initial value problems of ordinary differential equations, see for example page 108 in [218], we deduce that

$$
V \equiv \mathbf{U}
$$

where \mathbf{U} is as in (1.12). We also used that \mathbf{U}, V are nonnegative (which implies that $\mathbf{U}^{\prime}(0), V^{\prime}(0)$ are also nonnegative), and the relation

$$
\begin{equation*}
\left[\mathbf{U}^{\prime}(0)\right]^{2}=2 W(0) \tag{2.23}
\end{equation*}
$$

which follows from the identity

$$
\left[\mathbf{U}^{\prime}(s)\right]^{2}-\left[\mathbf{U}^{\prime}(0)\right]^{2}=2 \int_{0}^{s} W^{\prime}(\mathbf{U}) \mathbf{U}^{\prime} d s=2 W(\mathbf{U}(s))-2 W(0), \quad s \geq 0
$$

and the fact that $\mathbf{U}(s) \rightarrow \mu$ as $s \rightarrow \infty$, recalling that $W(\mu)=0$ (otherwise, $\mathbf{U}^{\prime}(s)$ would tend to a nonzero number and in turn $|\mathbf{U}(s)|$ would diverge, as $s \rightarrow \infty)$. Moreover, by the uniqueness of the limiting function, we infer that the limits in (2.21) hold for all $R \rightarrow \infty$. Consequently, the claimed relation (2.19) holds.

Having (2.13), (2.19) at our disposal, we can now proceed to the proof of (2.3). Let $\epsilon \in(0, \mu)$ and $D>D^{\prime}$, where D^{\prime} is as in (1.11). By virtue of (1.12), (1.19), and (2.19), there exists a sufficiently large R^{\prime}, depending only on ϵ, D, W, n, such that $U_{R}(D) \geq \mu-\epsilon$, and all the previous relations continue to hold, for $R>R^{\prime}$. In other words, via (2.18), we have that

$$
\begin{equation*}
u_{R}(R-D)=U_{R}(D) \geq \mu-\epsilon, \quad R>R^{\prime} . \tag{2.24}
\end{equation*}
$$

The fact that u_{R} is radially decreasing, recall (2.9), and the above relation imply the validity of (2.3). As will be apparent from the Remarks 2.3 and 2.4 that follow, condition (2.9) is essential only when dealing with degenerate situations when there exists a sequence $t_{j} \rightarrow \mu^{-}$ such that $W^{\prime}\left(t_{2 j}\right) W^{\prime}\left(t_{2 j+1}\right)<0$ for large j; an example is a potential W that coincides with $(\mu-t)^{2}\left[\sin \left(\frac{1}{\mu-t}\right)+2\right]$ near μ, in which case we can choose $t_{j}=\mu-\frac{1}{j \pi}$ (note that
$W^{\prime}(t) \sim \cos \left(\frac{1}{\mu-t}\right)$ as $\left.t \rightarrow \mu^{-}\right)$. It remains to prove (2.4). To this end, note that the nonnegativity of W and (2.7) imply that

$$
\int_{r}^{R} s^{n-1} W\left(u_{R}(s)\right) d s \leq \tilde{C}_{1} R^{n-1}, \quad r \in(0, R)
$$

where \tilde{C}_{1} is independent of $R \geq R^{\prime}$. It follows, via (2.9), that

$$
\min \left\{W(t): t \in\left[0, u_{R}(r)\right]\right\}\left(R^{n}-r^{n}\right) \leq n \tilde{C}_{1} R^{n-1}
$$

which clearly implies the validity of (2.4).
The proof of the lemma is complete.
Remark 2.1. Our assumptions on the behavior of W near its global minimum at μ are quite weak, and in fact even allow for the potential W to have C^{∞} contact with zero at the point μ, that is $W^{(i)}(\mu)=0, i \geq 1$. This degeneracy translates into the absence of decay rates for the convergence of the "inner" approximate solution $\mathbf{U}(R-|x|)$ (in the sense of singular perturbation theory, see [113] and the related references that can be found in Remark 8.6 below), where \mathbf{U} is as described in (1.12), to the "outer" one μ, away from the boundary of B_{R}, as $R \rightarrow \infty$ (see also the discussion leading to (7.10) below). This is the main reason why we have not attempted to apply a perturbation argument, see for instance [113] and the related references in Remark 8.6 below, in order to study the asymptotic behavior of u_{R} as $R \rightarrow \infty$. We refer to the recent papers [213, 214, 215] for singular perturbation arguments (in one space dimension) in the case where μ is a root of W^{\prime} of finite multiplicity (also allowing for x dependence on W^{\prime}). From the viewpoint of geometric singular perturbation theory, the case $W^{\prime \prime}(\mu)=0$ corresponds to lack of normal hyperbolicity of the slow manifold corresponding to the equilibria with $\left(u, u^{\prime}\right)=(\mu, 0)$ (see [212]).

If $W^{\prime \prime}(\mu)>0$, then the convergence of \mathbf{U} to μ is of order $e^{-\sqrt{W^{\prime \prime}(\mu)} s}$ as $s \rightarrow \infty$ (by the stable manifold theorem, see [77]), and one can effectively interpolate between the outer and inner approximations in order to construct a smooth global approximation that is valid throughout B_{R}.

Remark 2.2. By the well known relations $\left|B_{R}\right|=c_{n} R^{n},\left|\partial B_{R}\right|=n c_{n} R^{n-1}, R>0, n \geq 2$, for some explicit constants c_{n} (independent of R), where $\left|\partial B_{R}\right|$ denotes the ($n-1$)-dimensional measure of ∂B_{R}, we find that

$$
\frac{\left|\partial B_{R}\right|}{\left|B_{R} \backslash B_{\frac{R}{2}}\right|}=\frac{n 2^{n}}{2^{n}-1} R^{-1}, \quad R>0 .
$$

We deduce that the constant R^{\prime} in Lemma 2.1 diverges (at least linearly) as $n \rightarrow \infty$ (see in particular the relations leading to (2.11)).

Remark 2.3. If in addition to (a') we assume that there exists some $d \in(0, \mu)$ such that

$$
\begin{equation*}
W^{\prime}(t) \leq 0, \quad t \in(\mu-d, \mu), \tag{2.25}
\end{equation*}
$$

(note that this is very natural), then relation (2.3) can alternatively be shown, starting from (2.24), without assuming knowledge of (2.9), as follows: Assuming, without loss of generality, that $2 \epsilon<d$, thanks to Lemma A. 2 below, we can find a radial $\tilde{u} \in W^{1,2}\left(B_{R-D}\right)$ such that

$$
J\left(\tilde{u} ; B_{R-D}\right) \leq J\left(u_{R} ; B_{R-D}\right), \quad \tilde{u}(R-D)=u_{R}(R-D), \quad \text { and } \tilde{u}(x) \in[\mu-\epsilon, \mu], x \in \bar{B}_{R-D} .
$$

Thus, the function

$$
\hat{u}(x)= \begin{cases}\tilde{u}(x), & x \in B_{R-D} \\ u_{R}(x), & x \in B_{R} \backslash B_{R-D}\end{cases}
$$

belongs in $W_{0}^{1,2}\left(B_{R}\right)$ and is a global minimizer of $J\left(\cdot ; B_{R}\right)$ in $W_{0}^{1,2}\left(B_{R}\right)$ (since $J\left(\hat{u} ; B_{R}\right) \leq$ $J\left(u_{R} ; B_{R}\right)$). In particular, it is smooth, radial (and by virtue of its construction), and solves (2.6). It follows from Lemma 3.1 in [138], which is in the spirit of Lemma A. 3 below, that the function $u_{R}-\hat{u}$ is either strictly positive, strictly negative, or identically equal to zero in B_{R}, and obviously the latter case occurs. For completeness purposes, as well as for future reference, we will draw the same conclusion by an alternative and, to our opinion, more elementary approach: The function

$$
v \equiv u_{R}-\hat{u}
$$

solves the linear equation

$$
\Delta v+Q(x) v=0, \quad x \in B_{R},
$$

where

$$
Q(x)= \begin{cases}\frac{W^{\prime}(\hat{u}(x))-W^{\prime}\left(u_{R}(x)\right)}{u_{R}(x)-\hat{u}(x)}, & \text { if } \hat{u}(x) \neq u_{R}(x) \tag{2.26}\\ -W^{\prime \prime}\left(u_{R}(x)\right), & \text { if } \hat{u}(x)=u_{R}(x)\end{cases}
$$

On the other hand, since

$$
v(x)=0, \quad x \in B_{R} \backslash B_{(R-D)},
$$

and $Q \in L^{\infty}\left(B_{R}\right)$, the unique continuation principle (see for instance [135]) yields that

$$
v(x)=0, x \in B_{R}
$$

(In this simple case of radial symmetry, we can also make use of the uniqueness theorem of ordinary differential equations to show that $v \equiv 0$). Therefore, estimate (2.3) holds. We remark that, if W was strictly decreasing in $(\mu-d, \mu)$, then (2.3) follows at once from the general lemma in [13] (see also the second assertion of Lemma A. 2 herein) and (2.24).

The approach that we just presented makes only partial use of the radial symmetry of the problem (in order to establish (2.24)), and may be applied to extend some results in [86] to the general case (without radial symmetry), see [205]. Moreover, it can be applied for the study of global minimizers of the analogous vector-valued energy functionals, as those appearing in [11], over B_{R}. In this case, it is known that global minimizers are radial, see [162], but monotonicity properties do not hold in general.

Remark 2.4. In the one dimensional case, i.e., when $n=1$, the assertion of Remark 2.3 can be shown without assuming (2.25). As in the latter remark, we do not assume the monotonicity property (2.9) of u_{R}, just that it is even, and we will start from (2.24) which clearly implies that

$$
\begin{equation*}
u_{R}(R-D) \rightarrow \mu \text { as } R \rightarrow \infty \tag{2.27}
\end{equation*}
$$

Since the energy of u_{R} is not larger than that of the even function given by

$$
\check{u}_{R}(x)= \begin{cases}u_{R}(x), & x \in[R-D, R], \tag{2.28}\\ \frac{u_{R}(R-D)-\mu}{D}(x-R+D)+u_{R}(R-D), & x \in[R-2 D, R-D], \\ \mu, & x \in[0, R-2 D]\end{cases}
$$

it follows readily from (\mathbf{a}^{\prime}) and (2.27) that

$$
\begin{equation*}
\int_{-R+D}^{R-D}\left\{\left(u_{R}^{\prime}\right)^{2}+W(u)\right\} d x \rightarrow 0 \text { as } R \rightarrow \infty \tag{2.29}
\end{equation*}
$$

Hence, by (\mathbf{a}^{\prime}) and the clearing-out Lemma 1 in [44] (noting that it continues to apply in our possibly degenerate setting), we have that

$$
\begin{equation*}
u_{R} \rightarrow \mu, \text { uniformly in }[-R+D, R-D], \text { as } R \rightarrow \infty \tag{2.30}
\end{equation*}
$$

The intuition behind the latter lemma, as applied in the case at hand, is that if the energy is sufficiently small in some place, then there are no spikes located there. Note that from (2.2), (2.6), in arbitrary dimensions, via standard interior elliptic regularity estimates [124] (see also Lemma A. 1 in [43]), applied on balls of radius $\frac{D}{4}$ covering $B_{(R-D)}$, we have that $\left|\nabla u_{R}\right|$ remains uniformly bounded in $B_{(R-D)}$ as $R \rightarrow \infty$ (or see the gradient bound in (2.56) below). Thus, relation (2.30) can also be derived from (a') and (2.29) similarly to Theorem III. 3 in [45], see also Lemma 3.2 in [219] (the point is that the "bad" intervals, where u_{R} is away from μ must have size of order one (by the uniform gradient estimate), as $R \rightarrow \infty$, which is not possible by (\mathbf{a}^{\prime}) and (2.29)). In contrast to the one dimensional case, in $n \geq 2$ dimensions, by the analog of (2.29), i.e.,

$$
\begin{equation*}
R^{1-n} J\left(u_{R} ; B_{(R-D)}\right) \rightarrow 0 \quad \text { as } \quad R \rightarrow \infty, \tag{2.31}
\end{equation*}
$$

arguing again as in Theorem III. 3 in [45], we can show the weaker property:
Given $\alpha \in(0,1) \Rightarrow u_{R} \rightarrow \mu$, uniformly in $\bar{B}_{(R-D)} \backslash B_{\alpha R}$, as $R \rightarrow \infty$.
We note that if $W^{\prime \prime}(\mu)>0$, then (2.30) follows directly from (2.29), via (2.44) below and the Sobolev embedding

$$
\left\|\mu-u_{R}\right\|_{L^{\infty}(-R+D, R-D)} \leq C\left\|\mu-u_{R}\right\|_{W^{1,2}(-R+D, R-D)}
$$

with constant C independent of $R \geq 2 D$ (see Corollary 5.16 in [1]). One might be curious whether this simple argument can be extended to $n \geq 2$ dimensions. In this direction, we would like to mention that by using the pointwise estimate
$\left(\mu-u_{R}(r)\right)^{2} \leq C_{n} r^{1-n}\left\|\mu-u_{R}\right\|_{W^{1,2}\left(B_{(R-D)}\right)}^{2}+\left(\frac{R-D}{r}\right)^{n-1}\left(\mu-u_{R}(R-D)\right)^{2}, r \in(0, R-D)$,
which can be proven similarly as the classical Strauss radial lemma (see [208]), relation (2.27), and (2.31), we arrive again at (2.32). On the other side, as in [10], fixing K and letting $R \rightarrow \infty$, we see from the monotonicity formula (2.58) below that $u_{R} \rightarrow \mu$, uniformly on \bar{B}_{K}, as $R \rightarrow \infty$ (see also Remark 2.12 below, and the compactness argument that follows). Suppose that for a sequence $R \rightarrow \infty$, there exist $r_{R} \in[0, R-D]$ such that $u_{R}\left(r_{R}\right)=\mu-2 \epsilon$. From (2.32) and our previous comment, we get that $R-r_{R} \rightarrow \infty$ and $r_{R} \rightarrow \infty$, as $R \rightarrow \infty$, respectively. As in the proof of Theorems 1.3 and 1.4 in [86], we let $v_{R}(s)=u_{R}\left(r_{R}+s\right)$, $s \in\left(-r_{R}, R-r_{R}\right)$, note that $v_{R}(0)=\mu-2 \epsilon$. Using (2.2), (2.6), together with standard elliptic regularity estimates and Sobolev embeddings (see [124]), passing to a subsequence, we find that $v_{R} \rightarrow V$ in $C_{l o c}^{1}(\mathbb{R})$, where

$$
\begin{equation*}
V^{\prime \prime}=W^{\prime}(V), \quad 0 \leq V \leq \mu, \quad s \in \mathbb{R}, \quad V(0)=\mu-2 \epsilon \tag{2.33}
\end{equation*}
$$

Moreover, the solution V is a minimizer of the energy

$$
I(v)=\int_{-\infty}^{\infty}\left[\frac{1}{2}\left(v^{\prime}\right)^{2}+W(v)\right] d s
$$

in the sense that $I(V+\phi) \leq I(V)$ for every $\phi \in C_{0}^{\infty}(\mathbb{R})$, see page 104 in [86]. Arguing as in the proof of De Giorgi's conjecture in low dimensions (see [18], [34], [87], [108], [120], [176]), we can prove that either V is a constant with $W^{\prime}(V)=0, W^{\prime \prime}(V) \geq 0$ or V^{\prime} is nontrivial and has fixed sign. Since we are assuming that $W^{\prime \prime}(\mu)>0$, the first scenario is ruled out at once from the last condition in (2.33); in the second scenario, it follows from phase analysis (see [23], [218]) that V has to connect two equal wells of the potential W at respective infinities, one of them being μ, but this is impossible since $W(t)>0, t \in[0, \mu)$. Consequently, if we assume that $W^{\prime \prime}(\mu)>0$, assertion (2.3) can be deduced in this manner from (2.24) without making use of (2.9) for all $n \geq 1$.

A more direct approach, with the advantage of not making use of the radial symmetry of u_{R}, is the following: Observe that the function $v=\left(\mu-u_{R}\right)^{2}$ satisfies

$$
|\nabla v|=2\left(\mu-u_{R}\right)\left|\nabla u_{R}\right| \leq\left|\nabla u_{R}\right|^{2}+\left(\mu-u_{R}\right)^{2}, \quad x \in B_{(R-D)} .
$$

Then, via (2.31), and (2.44) below, we obtain that

$$
R^{1-n} \int_{B_{(R-D)}}|\nabla v| d x \rightarrow 0 \text { as } R \rightarrow \infty
$$

By a useful imbedding theorem of Morrey (see Theorem 7.19 in [124]), and the above relation, we infer that

$$
\operatorname{osc}_{B_{(R-D)}} v=\max _{B_{(R-D)}} v-\min _{B_{(R-D)}} v \rightarrow 0 \text { as } R \rightarrow \infty
$$

which clearly implies the relation sought for.
Remark 2.5. If $W \in C^{2, \alpha}(\mathbb{R}), 0<\alpha<1$, satisfies (\mathbf{a}^{\prime}),

$$
W^{\prime}\left(\rho_{1}\right)=0, \quad W^{\prime}(t)<0, t \in\left(\rho_{1}, \mu\right), \text { for some } \rho_{1} \in(0, \mu)
$$

and (1.15), then Theorem 2 in [209] tells us that there exists a $\delta_{1} \in(0, \mu)$ such that (2.6) has at most one solution such that

$$
\max _{x \in \bar{B}_{R}} u(x) \in\left(\mu-\delta_{1}, \mu\right) \text { and }-\mu<u(x)<\mu, x \in B_{R}
$$

for all $R>0$. Therefore, under these assumptions on W, in view of (2.2) and (2.3) which hold for all global minimizers (with the same R^{\prime}), we conclude that there exists a unique global minimizer of (2.1), if R is sufficiently large.

On the other side, if in addition to (\mathbf{a}^{\prime}), the stronger assumption $W^{\prime \prime}(\mu)>0$ holds (in other words (c)), then a simple proof of the uniqueness of the global minimizer, satisfying (2.2), for large R, can be given as follows: One first shows that if a solution of (2.6) satisfies (2.2), (2.3), and (2.19) (recall (2.18)), then it is asymptotically stable for large $R>0$ (we will give a short self-contained proof of this in the sequel). Then, suppose that u_{1} and u_{2} are two distinct global minimizers of (2.1), satisfying (2.2). By the proof of Lemma 2.1, they satisfy (2.2), (2.3), and (2.19), uniformly (independent of the choice of minimizers) as $R \rightarrow \infty$. Thanks to Lemma 3.1 in [138] (see also Lemma A. 3 herein), without loss of generality, we may assume that $u_{1}(x)<u_{2}(x), x \in B_{R}$ (in the problem at hand, we can also assume this when dealing with stable solutions). On the other hand, by the mountain pass theorem or the theory of monotone dynamical systems (see [90], [165] respectively, and Section 7 herein), we infer that there exists an unstable solution \hat{u}_{1} of (2.6) such that $u_{1}(x)<\hat{u}_{1}(x)<u_{2}(x), x \in B_{R}$. In particular, the unstable solution enjoys the asymptotic behavior of global minimizers, as $R \rightarrow \infty$, and thus is asymptotically stable (by our previous discussion); a contradiction.

A related uniqueness proof, based on a dynamical systems argument (but not of monotone nature), can be found in [7].

Here, for completeness, assuming that $W^{\prime \prime}(\mu)>0$, we will show that solutions u_{R} of (2.6) which satisfy (2.2), (2.3), and (2.19) are asymptotically stable if R is sufficiently large. Our argument is inspired from [22] where, in particular, under the additional assumption (b) with strict inequality, it was applied to (7.9) below on a smooth bounded domain with large λ. We will ague by contradiction. Suppose that, for a sequence $R \rightarrow \infty$, the principal eigenvalue μ_{R} of the linearized operator about u_{R} is non-positive, i.e,

$$
\begin{equation*}
\mu_{R} \leq 0 . \tag{2.34}
\end{equation*}
$$

It is well known that μ_{R} is simple and that the corresponding eigenfunction φ_{R} (modulo normalization) may be chosen to be positive in B_{R}, see for instance Theorem 8.38 in [124]. We have

$$
\begin{equation*}
-\Delta \varphi_{R}+W^{\prime \prime}\left(u_{R}\right) \varphi_{R}=\mu_{R} \varphi_{R} \text { in } B_{R} ; \varphi_{R}=0 \text { on } \partial B_{R} \tag{2.35}
\end{equation*}
$$

and we normalize φ_{R} by imposing that

$$
\begin{equation*}
\left\|\varphi_{R}\right\|_{L^{\infty}\left(B_{R}\right)}=1 \tag{2.36}
\end{equation*}
$$

We note that φ_{R} is radially symmetric (and so is every eigenfunction that is associated to a non-positive eigenvalue, see [132], [158], because (a') and Hopf's boundary point lemma yield that $u_{R}^{\prime}(R)<0$). For future reference, observe that testing (2.35) by φ_{R} yields the uniform (in R) lower bound:

$$
\begin{equation*}
\mu_{R} \geq-\max _{t \in[0, \mu]}\left|W^{\prime \prime}(t)\right| \tag{2.37}
\end{equation*}
$$

Now, by virtue of (2.3) and the positivity of $W^{\prime \prime}(\mu)$, there exists a constant $D>0$ such that

$$
W^{\prime \prime}\left(u_{R}\right) \geq \frac{W^{\prime \prime}(\mu)}{2}>0 \quad \text { on } \quad \bar{B}_{(R-D)}
$$

for large $R>0$. So, from (2.34), (2.35), and (2.36), we obtain that there exist $z_{R} \in[R-D, R]$ such that $\varphi_{R}\left(z_{R}\right)=1, \varphi_{R}^{\prime}\left(z_{R}\right)=0$, and $\varphi_{R}^{\prime \prime}\left(z_{R}\right) \leq 0$, for large R (along the sequence). As in the proof of Lemma 2.1, making use of (2.19), (2.34), (2.35), (2.36), and (2.37), passing to a subsequence, we get that $\varphi_{R_{i}}\left(R_{i}-\cdot\right) \rightarrow \Phi(\cdot)$ in $C_{l o c}^{1}[0, \infty), \mu_{R_{i}} \rightarrow \mu_{*} \leq 0$, and $R_{i}-z_{R_{i}} \rightarrow \mathbf{z} \in[0, D]$, as $i \rightarrow \infty$, such that

$$
\begin{equation*}
-\Phi^{\prime \prime}+W^{\prime \prime}(\mathbf{U}(r)) \Phi=\mu_{*} \Phi, r \in(0, \infty) ; \Phi(0)=0, \Phi(\mathbf{z})=\|\Phi\|_{L^{\infty}(0, \infty)}=1 \tag{2.38}
\end{equation*}
$$

where \mathbf{U} is as in (1.12). On the other hand, differentiating (1.12), multiplying the resulting identity by $\frac{\Phi^{2}}{\mathbf{U}^{\prime}}$ (recall (1.19)) and integrating by parts over $(0, \infty)$, we arrive at $\mu_{*} \geq 0$ (see also Proposition 3.1 in [176]); to be more precise, one first multiplies by $\frac{\zeta_{m}^{2}}{\mathbf{U}^{\prime}}$, with $\zeta_{m} \in C_{0}^{\infty}(0, \infty)$ such that $\zeta_{m} \rightarrow \Phi$ in $W_{0}^{1,2}(0, \infty)$, and then lets $m \rightarrow \infty$. A different way to see that $\mu_{*} \geq 0$ is to note that the linear operator defined by the lefthand side of (2.38) is an unbounded, self-adjoint operator in $L^{2}(0, \infty)$ with domain $W_{0}^{1,2}(0, \infty) \cap W^{2,2}(0, \infty)$, having as continuous spectrum the interval $\left[W^{\prime \prime}(\mu), \infty\right)$ and principal eigenvalue zero (by the positivity of \mathbf{U}^{\prime}), see also Remark 2.8 in [9] or Proposition 1 in [131] or [191]. In other words, recalling (2.34), we have

$$
-\Phi^{\prime \prime}+W^{\prime \prime}(\mathbf{U}(r)) \Phi=0, \Phi>0, r \in(0, \infty) ; \Phi(0)=0, \Phi(\mathbf{z})=\|\Phi\|_{L^{\infty}(0, \infty)}=1
$$

The above linear second order equation has the following two independent solutions:

$$
\mathbf{U}^{\prime}(r) \text { and } \mathbf{U}^{\prime}(r) \int_{0}^{r} \frac{1}{\left[\mathbf{U}^{\prime}(s)\right]^{2}} d s
$$

see for example Lemma 3.2 in [28]. It is easy to see that the second solution grows unbounded as $r \rightarrow \infty$ (plainly apply l'hospital's rule), and thus Φ has to be $\left\|\mathbf{U}^{\prime}\right\|_{L^{\infty}(0, \infty)}^{1} \mathbf{U}^{\prime}$. Since $\Phi(0)=0$, whereas $\mathbf{U}^{\prime}(0)=\sqrt{2 W(0)}>0$, we have reached a contradiction.

For further information on "asymptotic" uniqueness of positive solutions, in arbitrary domains, we refer to Remark 7.1 below.

In the case where uniqueness of a stable solution, satisfying (2.2), holds for $R>R_{0} \geq 0$ (recall Remark 1.3 and see Remark 7.1 below), it is easy to see that the family $\left\{u_{R}\right\}_{R>R_{0}}$ is nondecreasing with respect to R, namely

$$
\begin{equation*}
u_{R_{2}}(x)>u_{R_{1}}(x), \quad x \in \bar{B}_{R_{1}}, \quad \forall R_{2}>R_{1}>R_{0} \tag{2.39}
\end{equation*}
$$

see Lemma 1 in [89]. Moreover, as in Lemma 2 in [89], we have that

$$
\begin{equation*}
u_{R}(R-r) \leq \mathbf{U}(r), \quad r \in[0, R], \forall R>R_{0}, \tag{2.40}
\end{equation*}
$$

(plainly observe that, thanks to (1.12) and (1.19), the function $\mathbf{U}(R-r)$ is a weak upper solution to (2.6) in the sense of [30]). We note that, arguing as in Remark 2.3 (see also Lemma A. 3 in Appendix A), it follows that (2.39) holds without assuming uniqueness (plainly observe that $J\left(\max \left\{u_{R_{2}}, u_{R_{1}}\right\} ; B_{R_{2}}\right) \leq J\left(u_{R_{2}}, B_{R_{2}}\right)$, see also Lemma 5.3 in [121]).

Remark 2.6. If in addition to (a'), we assume that $W^{\prime}(0)=0, W^{\prime \prime}(0)<0$, and $W \in C^{3}$ ($W^{\prime \prime \prime}$ bounded for $t>0$ small is enough), then (2.6) admits a nontrivial positive solution, which is a global minimizer of $J\left(\cdot ; B_{R}\right)$ in $W_{0}^{1,2}\left(B_{R}\right)$, as long as $R>R_{c}$, where

$$
\begin{equation*}
R_{c}=\sqrt{-\frac{\lambda_{1}}{W^{\prime \prime}(0)}}, \tag{2.41}
\end{equation*}
$$

and λ_{1} denotes the principal eigenvalue of $-\Delta$ in $W_{0}^{1,2}\left(B_{1}\right)$ (an analogous result holds for (7.9) below). To see this, let φ_{1} denote the associated eigenfunction with the normalization $\varphi_{1}(0)=1$ (φ_{1} is radially decreasing). Then, the pair

$$
\begin{equation*}
\lambda_{R}=\lambda_{1} R^{-2} \text { and } \varphi_{R}(x)=\varphi_{1}\left(R^{-1} x\right) \tag{2.42}
\end{equation*}
$$

is the principal eigenvalue and eigenfunction of $-\Delta$ in $W_{0}^{1,2}\left(B_{R}\right)$ such that $\varphi_{R}(0)=1$. Now, the desired conclusion follows at once by noting that

$$
J\left(\varepsilon \varphi_{R} ; B_{R}\right)=J\left(0 ; B_{R}\right)+\frac{\varepsilon^{2}}{2} \int_{B_{R}} \varphi_{R}^{2}\left(\lambda_{1} R^{-2}+W^{\prime \prime}(0)+\mathcal{O}(\varepsilon)\right) d x \text { as } \varepsilon \rightarrow 0^{+}
$$

which implies that zero is not a global minimizer if $R>R_{c}$ (see also Example 5.11 in [20], Theorem 2.19 in [25], Lemma 2.1 in [92] and Proposition 1.3.3 in [102]; note also that $\varepsilon \varphi_{R}$, with $R>R_{c}$, is a lower solution to (2.6) for small $\varepsilon>0$). (If W is even, one can construct a plethora of sign-changing solutions, for large R, not necessarily radial, by noting that $J\left(u ; B_{R}\right)<J\left(0 ; B_{R}\right)$ for $u \in \operatorname{Span}\left\{\varphi_{1}\left(R^{-1} x\right), \cdots, \varphi_{k}\left(R^{-1} x\right)\right\}, k \geq 1$, and $\|u\|_{L^{2}\left(B_{R}\right)}$ sufficiently small, where φ_{i} denote eigenfunctions of the Laplacian in $W_{0}^{1,2}\left(B_{1}\right)$ (normalized so that $\left\|\varphi_{i}\left(R^{-1} x\right)\right\|_{L^{2}\left(B_{R}\right)}=1$ and $\int_{B_{1}} \varphi_{i} \varphi_{j} d x=0$ if $\left.i \neq j\right)$, corresponding to the first k eigenvalues (counting multiplicities), and applying Theorem 8.10 in [183]; see also [6] and Theorem 10.22 in [20]).

If we further assume that

$$
\begin{equation*}
W^{\prime}(t) \geq W^{\prime \prime}(0) t, \quad t \geq 0 \tag{2.43}
\end{equation*}
$$

then (2.6), for $R \in\left(0, R_{c}\right)$, has no positive solution as can be seen by testing the equation by φ_{R}.

Under some different conditions, which are compatible with (\mathbf{a}^{\prime}), and are satisfied for example by the nonlinearity in (1.10), there exists an $R_{c}^{\prime}>0$ such that (2.6) has exactly one positive solution for $R=R_{c}^{\prime}$ and exactly two for $R>R_{c}^{\prime}$, the one is a global minimizer while the other is a mountain pass of the associated energy (see [174], [199], [220]).

Remark 2.7. By (2.10), via the coarea formula (see [104]), it follows that there exists a $\xi_{R} \in\left(\frac{R}{2}, R\right)$ such that

$$
\int_{\partial B_{\xi_{R}}}\left\{\frac{1}{2}\left|\nabla u_{R}\right|^{2}+W\left(u_{R}\right)\right\} d S \leq 2 C_{1} R^{n-2}, \quad R \geq C_{1} C_{2}^{-1}+2
$$

This observation makes no use of the radial symmetry of u_{R}, and is motivated from the proof of the corollary in [13]. In regard to the latter comment, it might be useful to recall our Remark 2.4 and compare with the arguments of [13].
Remark 2.8. In case a C^{2} potential W satisfies $W(0)=0$ and the domain Ω has C^{1} boundary, is bounded, and star-shaped with respect to some point in its interior, the well known Pohozaev identity easily implies that there does not exist a nontrivial solution of (1.2) such that $W(u(x)) \geq 0, x \in \Omega$ (see for instance relation (11) in [16], a reference which is in accordance with our notation). Actually, relation (11) in the latter reference holds true for the elliptic system that corresponds to (1.2) (with the obvious notation), and an analogous nonexistence result holds in that situation as well.

Remark 2.9. Under the stronger assumptions (a) (or more generally (a')), (b), and (c), considered in [118] (recall the introduction herein), motivated from the proof of Lemma 3 in [159] (see also [193] and the remarks following Lemma 2.1 in [68]), we can give a streamlined proof of relation (2.12) as follows: Note first that, thanks to (\mathbf{a}^{\prime}) and (c), there exists a positive constant c_{0} such that

$$
\begin{equation*}
W(t) \geq c_{0}(\mu-t)^{2}, \quad 0 \leq t \leq \mu \tag{2.44}
\end{equation*}
$$

Then, bounds (2.2), (2.7), and the above relation yield that

$$
\begin{equation*}
\int_{B_{R}}\left(\mu-u_{R}\right)^{2} d x \leq c_{1} R^{n-1}, \quad R \geq 2 \tag{2.45}
\end{equation*}
$$

where the positive constant c_{1} depends only on W and n. Next, note that assumption (b), bound (2.2), and the equation in (2.6), imply that the function $\mu-u_{R}$ is subharmonic in B_{R}, and thus we have

$$
\Delta\left(\mu-u_{R}\right)^{2} \geq 0 \text { in } B_{R}, \quad R \geq 2
$$

In other words, the function $\left(\mu-u_{R}\right)^{2}$ is also subharmonic in B_{R}. Consequently, by (2.45) and the mean value inequality of subharmonic functions (see Theorem 2.1 in [124]) together with a simple covering argument (see also the general Theorem 9.20 in [124] and Chapter 5 in [167]), we deduce that

$$
\begin{equation*}
\max _{\bar{B}_{\frac{R}{2}}}\left(\mu-u_{R}\right)^{2} \leq c_{2} R^{-n} \int_{B_{R}}\left(\mu-u_{R}\right)^{2} d x \leq c_{3} R^{-1}, \quad R \geq 2 \tag{2.46}
\end{equation*}
$$

where the positive constants c_{2}, c_{3} depend only on W and n. The latter inequality clearly implies the validity of (2.12). In passing, we note that the spherical mean of $\left(\mu-u_{R}\right)^{2}$ appearing in the above inequality is nondecreasing with respect to R, because of the subharmonic property, see [182].

The above argument makes no use of the fact that u_{R} is radially symmetric. Moreover, it works equally well if instead of (2.44) we had $W(t) \geq c(\mu-t)^{p}, t \in[0, \mu]$, for some constants $c>0$ and $p>2$. In Appendix D, we will adapt this approach in order to simplify some arguments from Section 6 of the recent paper [12], where the De Giorgi oscillation lemma for subharmonic functions was employed instead of the mean value inequality. The former lemma roughly says that if a positive subharmonic function is smaller than one in B_{1} and is "far from one" in a set of non trivial measure, it cannot get too close to one in $B_{\frac{1}{2}}$ (see for example [67]). An intriguing application of the techniques in the current remark is given in the following Remark 2.10.

Remark 2.10. When seeking solutions of (1.22) in \mathbb{R}^{3} which are invariant under screw motion and whose nodal set is a helicoïd, assuming that W is even, by introducing cylindrical coordinates, one is led to study positive solutions of

$$
\begin{equation*}
\partial_{r}^{2} U+\frac{1}{r} \partial_{r} U+\left(1+\frac{\lambda^{2}}{\pi^{2} r^{2}}\right) \partial_{s}^{2} U-W^{\prime}(U)=0 \tag{2.47}
\end{equation*}
$$

in the infinite half strip $\{(r, s) \in(0, \infty) \times(0, \lambda)\}$, vanishing on the boundary of $[0, \infty) \times[0, \lambda]$, where λ corresponds to a dilation parameter of a fixed helicoïd. More specifically, such solutions U give rise to solutions u of (1.22) which vanish on the helicoïd that is parameterized by

$$
\left\{(r \cos \theta, r \sin \theta, z) \in \mathbb{R}^{3}: z=\frac{\lambda}{\pi} \theta\right\}
$$

see [92] for the details. In the latter reference, assuming that $W^{\prime \prime}(0)<0$ and (2.43), it was shown that there exists an explicit constant $\lambda^{*}>0$ such that the above problem has a positive solution U_{λ} if and only if $\lambda>\lambda^{*}$ (λ^{*} is actually equal to $2 R_{c}$, where R_{c} is given from (2.41) with $n=1$).

Here, motivated from our previous Remark 2.9, we will study this problem for large values of λ under complementary conditions on W (in particular, without assuming that $W^{\prime \prime}(0)<$ 0). Due to the presence of singularities in the equation (2.47) at $r=0$, as in Lemma 3.4 in [101], we will first consider the approximate (regularized) problem

$$
\begin{equation*}
\Delta_{\mathbb{R}^{2}} U+\left(1+\frac{\lambda^{2}}{\pi^{2}|x|^{2}}\right) \partial_{s}^{2} U-W^{\prime}(U)=0 \tag{2.48}
\end{equation*}
$$

in $\{\xi<|x|, s \in(0, \lambda)\}$ with zero conditions on $\{|x|=\xi, s \in[0, \lambda]\}$ and $\{\lambda=0,|x| \geq \xi\}$, $\{\lambda=1,|x| \geq \xi\}$, with ξ small (this was skipped in [92]). Then, we consider equation (2.48) in the annular cylinder $\{\xi<|x|<R, s \in(0, \lambda)\}$, imposing that U also vanishes on $|x|=R$. Assuming (\mathbf{a}^{\prime}), as in Lemma 2.1, by minimizing the energy

$$
\begin{equation*}
E(V)=\frac{1}{2} \int\left\{\left|\nabla_{x} V\right|^{2}+\left(1+\frac{\lambda^{2}}{\pi^{2}|x|^{2}}\right)\left|\partial_{s} V\right|^{2}+2 W(V)\right\} d x d s \tag{2.49}
\end{equation*}
$$

in $W_{0}^{1,2}\left(\left(B_{R} \backslash B_{\xi}\right) \times(0, \lambda)\right)$ (with the obvious notation), but this time in the radially symmetric class with respect to $|x|$ (minimizers in this class are critical points in the usual sense, see [177]), we find a solution $U_{\xi, R, \lambda}$ of (2.48), satisfying the prescribed Dirichlet boundary
conditions, such that $0 \leq U_{\xi, R, \lambda}(|x|, s) \leq \mu$ on $\left(\bar{B}_{R} \backslash B_{\xi}\right) \times[0, \lambda]$ (see Lemma A. 2 below). Moreover, as in the proof of Lemma 2.1, we have

$$
\begin{equation*}
E\left(U_{\xi, R, \lambda}\right) \leq C R \lambda, \quad R \geq 2, \quad \lambda \geq 2, \quad \xi \leq 1, \tag{2.50}
\end{equation*}
$$

with C independent of ξ, R, λ (for this, it is convenient to use a separable test function of the form $\eta(r) \vartheta(s)$, see also [92]). Hence, again as in Lemma 2.1, we have that $0<U_{\xi, R, \lambda}(|x|, s)<$ μ, if $\xi \leq|x| \leq R, s \in[0, \lambda]$, for all $\xi \leq 1, \lambda \geq 2$, provided that R is sufficiently large (note that $\left.E(0)=\lambda \pi\left(R^{2}-\xi^{2}\right) W(0)\right)$. Using the standard compactness argument, letting $\xi \rightarrow 0$ and $R \rightarrow \infty$ (along a sequence), we are left with a solution U_{λ} of (2.47) in the infinite half strip $(0, \infty) \times(0, \lambda)$, with zero conditions on its boundary, such that $0 \leq U_{\lambda} \leq \mu$ on the half strip. The latter relation leaves open the possibility of U_{λ} being identically zero. However, U_{λ} is a minimizer of the energy in (2.49), in the sense of (2.71) below (since it is the limit of a family of minimizers, see also page 104 in [86]). So, with the help of a suitable energy competitor (see for example (2.28) or (2.69)), for any two-dimensional ball $B_{\frac{\lambda}{3}}(q)$ of radius $\frac{\lambda}{3}$ that is contained in $(\lambda, \infty) \times(1, \lambda-1)$, we have

$$
\int_{B_{\frac{\lambda}{3}}(q)} W\left(U_{\lambda}\right) d r d s \leq C \lambda^{2},
$$

with constant $C>0$ independent of large λ. If we further assume that conditions (b) and (c) hold, noting that

$$
\partial_{r}^{2}\left(\mu-U_{\lambda}\right)+\frac{1}{r} \partial_{r}\left(\mu-U_{\lambda}\right)+\left(1+\frac{\lambda^{2}}{\pi^{2} r^{2}}\right) \partial_{s}^{2}\left(\mu-U_{\lambda}\right) \geq 0
$$

and that the coefficients of the elliptic operator above satisfy

$$
\frac{1}{r} \leq \lambda^{-1}, \quad 1 \leq 1+\frac{\lambda^{2}}{\pi^{2} r^{2}} \leq 1+\pi^{-2} \quad \text { on } B_{\frac{\lambda}{3}}(q)
$$

the arguments in Remark 2.9 can be applied to show that

$$
U_{\lambda} \rightarrow \mu, \text { uniformly on } \bar{B}_{\frac{\lambda}{6}}(q), \text { as } \lambda \rightarrow \infty
$$

Since q was any point with coordinates $r>\frac{4 \lambda}{3}$ and $s \in\left(\frac{\lambda}{3}+1, \frac{2 \lambda}{3}-1\right)$, we deduce that

$$
U_{\lambda} \rightarrow \mu \text {, uniformly on }[2 \lambda, \infty) \times\left[\frac{\lambda}{6}+1, \frac{5 \lambda}{6}-1\right], \text { as } \lambda \rightarrow \infty .
$$

Studying the existence and asymptotic behavior of U_{λ}, as $\lambda \rightarrow \infty$, assuming only (\mathbf{a}^{\prime}), is left as an interesting open problem.

For future reference, let us prove here the following lemma.
Lemma 2.2. Suppose that $W \in C^{2}$ satisfies (a'), (1.8), and (1.9). Let u_{R} denote a family of solutions to (2.6), not necessarily global minimizers, such that (2.2) holds. Then, we have that u_{R} are radial as well as the validity of relations (2.3), (2.9), (2.13), and (2.19), uniformly with respect to the family u_{R}.

Proof. Since u_{R} is positive, thanks to [122], we have that u_{R} is radial and that (2.9) holds. Similarly to Lemma 2.1, the functions U_{R}, defined through (2.18), satisfy (2.21) for some V which solves (2.22) with $0 \leq V(s) \leq \mu, s \geq 0$.

We claim that V is nontrivial. In the case where $W^{\prime}(0)<0$, this is clear. If $W^{\prime}(0)=0$ and $W^{\prime \prime}(0)<0$ (keep in mind (1.8)), we argue as follows. Let λ_{R}, φ_{R} be as in (2.42). In view of (1.9), we have

$$
W^{\prime}(t) \leq-c t, \quad t \in\left[0, \frac{\mu}{2}\right]
$$

for some $c>0$ (necessarily $\left.c \leq-W^{\prime \prime}(0)\right)$. Observe that the functions $\tau \varphi_{R}$, with $\tau \in\left[0, \frac{\mu}{2}\right]$, satisfy

$$
-\Delta\left(\tau \varphi_{R}\right)+W^{\prime}\left(\tau \varphi_{R}\right) \leq \frac{\lambda_{1}}{R^{2}} \tau \varphi_{R}-c \tau \varphi_{R} \leq 0 \text { in } B_{R}
$$

if $R>\sqrt{\frac{\lambda_{1}}{c}}$ (we also used that $\varphi_{R}(x) \leq \varphi_{R}(0)=1, x \in B_{R}$). Consider a ball B_{R} with $R>3 \sqrt{\frac{\lambda_{1}}{c}}$ and another ball $B_{\sqrt{\frac{4 \lambda_{1}}{c}}}(p) \subset B_{R}$ such that they touch at one point on ∂B_{R}. By Serrin's sweeping technique (see the references in the first proof of Theorem 1.2 below), keeping in mind that $u_{R}^{\prime}(R)<0$ (by Hopf's lemma), it follows that

$$
u_{R}(x) \geq \frac{\mu}{2} \varphi_{\sqrt{\frac{4 \lambda_{1}}{c}}}(x-p), \quad x \in B_{\sqrt{\frac{4 \lambda_{1}}{c}}}(p) .
$$

(In fact, since u_{R} is radially symmetric, the above bound holds for all $p \in B_{R}$ such that $\operatorname{dist}\left(p, \partial B_{R}\right)=2 \sqrt{\frac{\lambda_{1}}{c}}$. This lower bound certainly ensures that V is nontrivial. Then, by the strong maximum principle, we deduce that

$$
\begin{equation*}
0<V(s)<\mu, \quad s>0 \tag{2.51}
\end{equation*}
$$

On the other hand, from (a'), (1.9), and the phase portrait of the ordinary differential equation (see for example [23]), the only solution of (2.22) which satisfies (2.51) is \mathbf{U}, as described in (1.12). By the uniqueness of the limiting function, we infer that (2.21) holds for $R \rightarrow \infty$. So, we have proven that (2.19) and in turn (2.3), (2.13) hold for each such family of solutions.

The fact that they hold uniformly with respect to the family $\left\{u_{R}\right\}$ follows plainly from the observation that every such family is uniformly bounded in $C^{2}\left(\bar{B}_{R}\right)$ with respect to R. The latter property follows from the fact that $0<u_{R}<\mu$ in B_{R} and a standard bootstrap argument involving elliptic regularity (the gradient bounds for u_{R} follow from elliptic estimates [124] applied on balls of radius one covering B_{R}).

The proof of the lemma is complete.
An extension of Lemma 2.1 can be shown, allowing the possibility $W^{\prime}(0) \geq 0$, provided that the potential W satisfies:
(a"): There exist constants $\mu_{-} \leq 0$ and $\mu>0$ such that

$$
\begin{gathered}
0=W(\mu)<W(t), t \in\left[\mu_{-}, \mu\right), \quad W(t) \geq 0, t \in \mathbb{R} \\
W\left(2 \mu_{-}-t\right) \geq W(t), t \in\left[\mu_{-}, \mu\right] \text { or } W^{\prime}(t)<0, t<\mu_{-} .
\end{gathered}
$$

Note that (\mathbf{a} ") reduces to (\mathbf{a} ') when $\mu_{-}=0$. We point out that the existence of \mathbf{U}, as in (1.12), also holds under (a^{\prime}).

Below, we state such a result which seems to be new and of independent interest.
Lemma 2.3. Assume that $W \in C^{2}$ satisfies condition (a"). Let $\epsilon \in(0, \mu)$ and $D>D^{\prime}$, where D^{\prime} is as in (1.11). Then, there exists a positive constant $R^{\prime}>D$, depending only on ϵ, D, W, and n, such that there exists a global minimizer u_{R} of the energy functional in (2.1)
which satisfies (2.2), (2.3), and (2.4), provided that $R \geq R^{\prime}$. (As before, we assume that W has been appropriately extended outside of a large compact interval). (We have chosen to keep some of the notation from Lemma 2.1).

Proof. The existence of a minimizer u_{R}, which solves (2.6), and satisfies

$$
\mu_{-}<u_{R}(x)<\mu, x \in B_{R}
$$

follows as in the proof of Lemma 2.1. The main difference with the proof of Lemma 2.1 is that the above relation does not exclude the possibility of the minimizer u_{R} taking non-positive values. In particular, the method of moving planes (see [54], [82], [122]) is not applicable in order to show that u_{R} is radially symmetric and decreasing. (Nevertheless, it is known that nonnegative solutions of (2.6), with $n \geq 2$, are actually positive in B_{R} and so the method of moving planes is still applicable in that situation, see [180] and the references therein). Not all is lost however. As we have already remarked in the proof of Lemma 2.1, if $n \geq 2$, the stability of u_{R} (as a global minimizer) implies that it is radially symmetric, see Lemma 1.1 in [8], Remark 3.3 in [59], Proposition 2.6 in [86], and [169]; for an elegant proof that exploits the fact that u_{R} is a global minimizer, see Corollary II. 10 in [162] (see also [130] and Appendix C in [221]). In [79], see also Proposition 10.4.1 in [71], it has additionally been shown that stable solutions have constant sign, and hence are radially monotone by the method of moving planes. For the reader's convenience, we will show that $u_{R}(r)$ is a decreasing function of r, namely that (2.9) holds true, by a far more elementary argument. In view of (2.11), which still holds for the case at hand (by virtue of radial symmetry alone), it suffices to show that $u_{R}^{\prime}(r) \neq 0, r \in(0, R]$. We will follow the part of the proof of Lemma 2 in [60] which dealt with problem (1.22) with $n \geq 3$ (see also Proposition 1.3.4 in [102]), and in fact show that it continues to apply for $n \leq 2$. To this end, we have not been able to adapt the approach of Lemma 1 in [7], which basically consists in multiplying (2.54) below by $V^{+} \equiv \max \{V, 0\} \in W^{1,2}\left(B_{R}\right)$ and integrating the resulting identity by parts over B_{R}, since in the problem at hand $V(R)=u_{R}^{\prime}(R)$ may be positive. Let

$$
V \equiv u_{R}^{\prime}
$$

and suppose, to the contrary, that $V\left(R_{0}\right)=0$ for some $R_{0} \in(0, R]$. We will show that the function

$$
\tilde{V}(r)= \begin{cases}V(r), & r \in\left[0, R_{0}\right] \tag{2.52}\\ 0 & r \in\left[R_{0}, R\right]\end{cases}
$$

belonging in $W_{0}^{1,2}\left(B_{R}\right)$, satisfies

$$
\begin{equation*}
\int_{B_{R}}\left\{|\nabla \tilde{V}|^{2}+W^{\prime \prime}\left(u_{R}\right) \tilde{V}^{2}\right\} d x<0 \tag{2.53}
\end{equation*}
$$

which clearly contradicts the stability of u_{R}. Differentiating (2.6) with respect to r, we arrive at

$$
\begin{equation*}
-\Delta V+W^{\prime \prime}\left(u_{R}\right) V+\frac{n-1}{r^{2}} V=0, \quad x \in B_{R} \backslash\{0\} \tag{2.54}
\end{equation*}
$$

Let ζ be a smooth function such that

$$
\zeta(t)= \begin{cases}0, & t \in[0,1] \\ 1, & t \in[2, \infty)\end{cases}
$$

Multiplying (2.54) by $\zeta\left(\frac{r}{\varepsilon}\right) V(r)$, with $\varepsilon>0$ small, and integrating the resulting identity by parts over $B_{R_{0}}$ (recall that $V\left(R_{0}\right)=0$), we find that

$$
\begin{equation*}
\int_{B_{R_{0}}}\left\{\zeta\left(\frac{r}{\varepsilon}\right)|\nabla V|^{2}+\frac{1}{\varepsilon} V \zeta^{\prime}\left(\frac{r}{\varepsilon}\right)\left(\frac{x}{r} \cdot \nabla V\right)+\zeta\left(\frac{r}{\varepsilon}\right) W^{\prime \prime}\left(u_{R}\right) V^{2}+\zeta\left(\frac{r}{\varepsilon}\right) \frac{n-1}{r^{2}} V^{2}\right\} d x=0 \tag{2.55}
\end{equation*}
$$

Note that

$$
\left|\int_{B_{R_{0}}} \frac{1}{\varepsilon} V \zeta^{\prime}\left(\frac{r}{\varepsilon}\right)\left(\frac{x}{r} \cdot \nabla V\right) d x\right| \leq C \varepsilon^{-1} \int_{\varepsilon}^{2 \varepsilon} r^{n-1} d r \rightarrow 0 \text { as } \varepsilon \rightarrow 0
$$

since the constant $C>0$ does not depend on ε. (Note that we have silently assumed that $N \geq 2$, since in the case $N=1$ we can plainly multiply (2.54) by V and then integrate by parts over $\left.\left(-R_{0}, R_{0}\right)\right)$. So, letting $\varepsilon \rightarrow 0$ in (2.55), and employing Lebesgue's dominated convergence theorem (see for instance page 20 in [104]), it readily follows that

$$
\int_{B_{R_{0}}}\left\{|\nabla V|^{2}+W^{\prime \prime}\left(u_{R}\right) V^{2}+\frac{n-1}{r^{2}} V^{2}\right\} d x=0
$$

where in order to obtain the last term we used that $|V(r)| \leq C^{\prime} r, r \in[0, R]$, with constant $C^{\prime}>0$ depending only on R (keep in mind that $u_{R} \in C^{2}[0, R]$ with $u_{R}^{\prime \prime}(0)=\frac{1}{n} W^{\prime}\left(u_{R}(0)\right.$), see for instance page 72 in [218]). From the above relation, via (2.52), we get (2.53). We have thus arrived at the desired contradiction. Consequently, the monotonicity relation (2.9) also holds for the more general case at hand. The rest of the argument follows word by word the proof of Lemma 2.1, and is therefore omitted.

The proof of the lemma is complete.
Remark 2.11. Suppose that u_{R} is as in Lemma 2.1 or Lemma 2.3, and E_{R} as defined in (2.14). From (2.15), it follows that

$$
E_{R}(r)<E_{R}(0)=-W\left(u_{R}(0)\right)<0, \quad r \in[0, R]
$$

i.e.,

$$
\begin{equation*}
\frac{1}{2}\left[u_{R}^{\prime}(r)\right]^{2}<W\left(u_{R}\right), \quad r \in(0, R] \tag{2.56}
\end{equation*}
$$

recall (\mathbf{a}^{\prime}) and that $u_{R}^{\prime}(0)=0$, see also Remark 4 in $[7]$ for a related discussion. In passing, we note that every bounded solution of (1.22) satisfies

$$
\begin{equation*}
\frac{1}{2}|\nabla u|^{2} \leq W(u), \quad x \in \mathbb{R}^{n} \tag{2.57}
\end{equation*}
$$

provided that W is nonnegative. The proof of this gradient bound, originally due to L. Modica, is much more complicated than that of its radially symmetric counterpart (2.56). We refer the interested reader to [65], Lemma 4.1 in [73], and to the older references that can be found in [10]. In turn, making use of the gradient bound (2.56), we can establish the monotonicity formula

$$
\begin{equation*}
\frac{d}{d r}\left(\frac{1}{r^{n-1}} \int_{B_{r}}\left\{\frac{1}{2}\left|\nabla u_{R}\right|^{2}+W\left(u_{R}\right)\right\} d x\right)>0, \quad r \in(0, R) \tag{2.58}
\end{equation*}
$$

see [10] for a modern approach as well as the older references therein which include [65]. In passing, we note that a similar monotonicity formula holds true for solutions of (1.22), and a weaker one (with the exponent $n-1$ replaced by $n-2$) holds in the case of the corresponding
systems, see again [10] and the references therein or [68]. Now, making use of (2.7) and the above relation, we find that

$$
\frac{1}{K^{n-1}} \int_{B_{K}}\left\{\frac{1}{2}\left|\nabla u_{R}\right|^{2}+W\left(u_{R}\right)\right\} d x<C_{1} \quad \forall K \in(0, R), \quad R \geq 2
$$

We have therefore provided a proof (of a sharper version) of (2.8). It also follows from (2.58) that $R^{1-n} J\left(u_{R} ; B_{R}\right)$ remains bounded from below by some positive constant, as $R \rightarrow \infty$ (compare with (2.7)). If $W^{\prime \prime}(\mu)>0$, making use of (2.19), it is not hard to determine a constant to which $R^{1-n} J\left(u_{R} ; B_{R}\right)$ converges as $R \rightarrow \infty$ (see [21] and [121]), recall also the last part of Remark 2.1 (in order to avoid confusion, we point out that we have not shown that the latter function is increasing in R). In this regard, we also refer to Theorem 7.10 in [48] where functionals of the form (2.1) are shown to converge (in an appropriate variational sense) to functionals involving the perimeter of the domain.

Remark 2.12. Here, for completeness, we sketch an argument related to the proof of Lemma 2.3. By (2.2), elliptic estimates (see [124]), and a standard compactness argument, it follows readily that u_{R} converges, up to a subsequence $R_{i} \rightarrow \infty$, uniformly on compact subsets of \mathbb{R}^{n} to a radially symmetric solution U of (1.22) such that $0 \leq U(x) \leq \mu, x \in \mathbb{R}^{n}$. Moreover, arguing as in page 104 of [86], this solution is a global minimizer of (1.22) in the sense of (2.71) below, with $\Omega=\mathbb{R}^{n}$, see also [61], [138].

On the other hand, it is known that (1.22), for any $W \in C^{2}$, does not have nonconstant bounded, radial global minimizers (see [217]). This property is also related to the nonexistence of nonconstant "bubble" solutions to (1.22) with $W \geq 0$ vanishing nondegenerately at a finite number of points, namely solutions that tend to one of these points as $|x| \rightarrow \infty$, see Theorem 2 in [69], Chapter 4 in [201] and recall Remark 2.8 (keep in mind that stable solutions of (1.22) are radially monotone and tend to a local or global minimum of W, as $r \rightarrow \infty$, see [60]). In passing, we note that if $n \leq 10$ then nonconstant radial solutions of (1.22), with $W \in C^{2}$ arbitrary, are unstable (see [60]). Under certain assumptions on W, satisfied by the Allen-Cahn potential (1.23) for example, it was shown in [127] (see also [46]) that nonconstant radial solutions of (1.22) tend in an oscillatory manner to zero as $r \rightarrow \infty$ and thus are unstable (compare with Theorem 3.1 in [107] which seems to us to be incorrect). More generally, the nonexistence of nonconstant finite energy solutions to (1.22) with $W \geq 0$ holds, see [10] or [131] where this property is refereed to as a theorem of Derrick and Strauss. Related nonexistence results for nonnegative solutions can be found in Sections 5 and 6 herein.

Obviously $U \equiv \mu$ (recall ($\left.\mathbf{a}^{\prime}\right)$) and, by the uniqueness of the limit, the convergence holds for all $R \rightarrow \infty$. We conclude that, given any $K>1$, we have $u_{R} \rightarrow \mu$, uniformly in B_{K}, as $R \rightarrow$ ∞. The main advantage of this approach is that it continues to work when (2.6) is replaced by $\Delta u=F_{R}(|x|, u)$, with a suitable $F_{R}(|x|, u)$ which converges uniformly over compact sets of $[0, \infty) \times \mathbb{R}$ to a C^{1} function $F(u)$ (the point being that $\frac{d}{d r} F_{R}(r, u)$ may be negative somewhere, and (2.9) may fail in B_{R}).

The following lemma is motivated from Lemma 3.3 in [33].
Lemma 2.4. Assume that W satisfies conditions (a") and (1.15). Let $\epsilon \in(0, \mu)$ be any number such that

$$
\begin{equation*}
W^{\prime \prime}(t) \geq 0 \quad \text { on } \quad[\mu-\epsilon, \mu] . \tag{2.59}
\end{equation*}
$$

Then, the global minimizers u_{R} that are provided by Lemmas 2.1 and 2.3 satisfy

$$
\begin{equation*}
-W^{\prime}\left(u_{R}(0)\right) \leq \tilde{C} R^{-2} \tag{2.60}
\end{equation*}
$$

where the constant $\tilde{C}>0$ depends only on n, provided that $R \geq R^{\prime}$, where R^{\prime} is as in the latter lemmas.

Proof. Let D be as in the assertions of Lemmas 2.1 and 2.3. Thanks to (2.2), (2.3), (2.6), (2.9), and (2.59), we have

$$
\Delta u_{R}=W^{\prime}\left(u_{R}\right) \leq W^{\prime}\left(u_{R}(0)\right) \quad \text { on } \quad \bar{B}_{(R-D)}
$$

if $R \geq R^{\prime}$.
For such R, let Z_{R} be the solution of

$$
\Delta Z_{R}=W^{\prime}\left(u_{R}(0)\right) \quad \text { in } B_{(R-D)} ; \quad Z_{R}=0 \text { on } \partial B_{(R-D)} .
$$

By scaling, one finds that

$$
\max _{|x| \leq R-D} Z_{R}(x)=Z_{R}(0)=-z(0) W^{\prime}\left(u_{R}(0)\right)(R-D)^{2}
$$

for $R \geq R^{\prime}$, where z is the solution of

$$
\Delta z=-1 \text { in } B_{1} ; z=0 \text { on } \partial B_{1} .
$$

By the maximum principle, we deduce that

$$
Z_{R}(x) \leq u_{R}(x)<\mu, \quad x \in B_{(R-D)}, \quad R \geq R^{\prime}
$$

In particular, by setting $x=0$ in the above relation, we get (2.60).
The proof of the lemma is complete.
Remark 2.13. In the special case where W satisfies (1.9), $W^{\prime}(0)=0, W^{\prime \prime}(0)<0, W^{\prime}(\mu)=$ 0 , and $W^{\prime \prime}(\mu)>0$, the estimate of Lemma 2.4 becomes that of Lemma 3.1 in [157].

Under conditions ($\mathbf{a} "$) and (1.15), the global minimizers that are provided by Lemmas 2.1 and 2.3 are asymptotically stable, if R is sufficiently large. This property is a direct consequence of the following proposition, which will play an essential role in the proof of Theorems 6.1 and 6.2 below.

Proposition 2.1. Assume that (\mathbf{a} ") and (1.15) hold, then any solution of (2.6) which satisfies (2.2), (2.3), and (2.21) with $V=\mathbf{U}$ for all $R \rightarrow \infty$ (keep in mind (2.18)) is linearly non-degenerate if R is sufficiently large.

Proof. We remark that in the case where $W^{\prime \prime}(\mu)>0$, we have already seen in Remark 2.5 that any such solution is in fact asymptotically stable for large R.

To prove this proposition, we will argue once more by contradiction. Suppose that there exists a sequence $R \rightarrow \infty$ and solutions u_{R} of (2.6), as in the assertion of the proposition, such that there are nontrivial solutions φ_{R} of (2.35) with $\mu_{R}=0$. Without loss of generality, we may assume that the normalization (2.36) holds. This time, the φ_{R} 's may change sign but they are still radially symmetric (see again [132], [158], and note that (2.21) implies that $u_{R}^{\prime}(R)<0$ for large R). By Lemma 2.1 in [146], the following identity holds

$$
\begin{equation*}
R^{-n} \int_{0}^{R} W^{\prime}\left(u_{R}(r)\right) \varphi_{R}(r) r^{n-1} d r=-\frac{1}{2} u_{R}^{\prime}(R) \varphi_{R}^{\prime}(R) \tag{2.61}
\end{equation*}
$$

In order to make the presentation as self-contained as possible, let us mention that a direct proof of (2.61) can be given by observing that the function

$$
\zeta(r)=r^{n}\left[u^{\prime} \varphi^{\prime}-W^{\prime}(u) \varphi\right]+(n-2) r^{n-1} u^{\prime} \varphi, \quad r \in[0, R],
$$

(having dropped the subscripts for the moment), introduced in [210], satisfies

$$
\zeta^{\prime}(r)=-2 W^{\prime}(u) \varphi r^{n-1}, \quad r \in(0, R) ;
$$

see also Chapter 1 in [148] (a perhaps simpler proof was given in [147]). Since $W^{\prime}(\mu)=0$, by (2.3), we deduce that

$$
R^{-n} \int_{0}^{R}\left[W^{\prime}\left(u_{R}(r)\right)\right]^{2} r^{n-1} d r \rightarrow 0 \text { as } R \rightarrow \infty .
$$

Hence, recalling (2.36), via the Cauchy-Schwarz inequality, we find that the lefthand side of (2.61) tends to zero as $R \rightarrow \infty$ (along the sequence). On the other side, from our assumption that (2.21), with $V=\mathbf{U}$, holds for all $R \rightarrow \infty$, we know that

$$
u_{R}^{\prime}(R) \rightarrow-\sqrt{2 W(0)}<0 \quad \text { as } \quad R \rightarrow \infty
$$

So, from (2.61), we get that $\varphi_{R}^{\prime}(R) \rightarrow 0$ as $R \rightarrow \infty$ (along the contradicting sequence). By the continuous dependence theory for systems of ordinary differential equations [23, 218] (applied to $\varphi_{R}(R-r)$ in (2.35)), making use of (2.21) with $V=\mathbf{U}$ for all $R \rightarrow \infty$, we infer that for any $D>0$ we have

$$
\begin{equation*}
\left|\varphi_{R}(r)\right|+\left|\varphi_{R}^{\prime}(r)\right| \leq \frac{1}{2}, \quad r \in[R-D, R] \tag{2.62}
\end{equation*}
$$

provided that R is sufficiently large (along this sequence). On the other hand, if D is chosen so that $W^{\prime \prime}\left(u_{R}\right) \geq 0$ on $\bar{B}_{(R-D)}$, which is possible by (1.15), (2.2) and (2.3), it follows from (2.35) with $\mu_{R}=0$ that

$$
\varphi_{R} \Delta \varphi_{R}=W^{\prime \prime}\left(u_{R}\right) \varphi_{R}^{2} \geq 0 \text { on } \bar{B}_{(R-D)}
$$

for such large R. In particular, we find that φ_{R} cannot vanish in $B_{(R-D)} \backslash\{0\}$ (using the radial symmetry, and integrating by parts over B_{z} if $\varphi_{R}(z)=0$). Furthermore, it cannot vanish at the origin by virtue of the uniqueness theorem for ordinary differential equations, which still holds despite of the singularity at $r=0$ (see [89], [178], [218]). Therefore, without loss of generality, we may assume that $\varphi_{R}>0$ in $B_{(R-D)}$. Hence, the positive function φ_{R} is subharmonic in $B_{(R-D)}$, and not greater than $\frac{1}{2}$ on $\partial B_{(R-D)}$ (recall (2.62)), for R large along the contradicting sequence. The maximum principle (see for example Theorem 2.3 in [124]) yields that $0<\varphi_{R} \leq \frac{1}{2}$ on $\bar{B}_{(R-D)}$. The latter relation together with (2.62) clearly contradict (2.36), and we are done.

The proof of the proposition is complete.
Remark 2.14. We note that identity (2.61) has been generalized in Lemma 2.3 in [174] for the case of solutions of (1.2) on an arbitrary smooth, bounded star-shaped domain (see also Theorem 1.6 in [148]). This leaves open the possibility that Proposition 2.1 above can be generalized accordingly.

The following corollary is a simple consequence of the maximum principle.

Corrolarry 2.1. If $W^{\prime \prime}(\mu)>0$, then the solutions provided by Lemmas 2.1 and 2.3 satisfy

$$
\mu-u_{R}(r) \leq C_{5} e^{-C_{6}(R-r)}, \quad r \in[0, R-2 D] \text { for } R \geq R^{\prime},
$$

and some positive constants C_{5}, C_{6}, depending on W and n.
Proof. Let $\varphi \equiv \mu-u_{R}$, where u_{R} is as in Lemma 2.1 or 2.3. By virtue of (\mathbf{a}^{\prime}), (2.2), and (2.3), we can choose ϵ sufficiently small such that that

$$
W^{\prime}\left(u_{R}(x)\right) \leq \frac{W^{\prime \prime}(\mu)}{2}\left(u_{R}(x)-\mu\right), \quad x \in B_{(R-D)}
$$

provided that $R \geq R^{\prime}$, where D, R^{\prime} are as in the previously mentioned lemmas (having increased the value of R^{\prime}, if necessary, but still depending only on ϵ, D, W, and n). It follows from (2.6) that

$$
-\Delta \varphi+\frac{W^{\prime \prime}(\mu)}{2} \varphi \leq 0 \text { in } B_{(R-D)}, \quad R \geq R^{\prime}
$$

Now, the desired assertion of the corollary follows from a standard comparison argument, see Lemma 2 in [43] or Lemma 4.2 in [113] (see also Lemma 2.5 in [101] and Lemma 5.3 in [121]).

The proof of the corollary is complete.
Remark 2.15. A special case of Theorem 2.1 in [83] shows that the assertion of Corollary 2.1 above can be considerably refined to

$$
\lim _{R \rightarrow \infty} R^{-1} \ln \left(\mu-u_{R}(R s)\right)=-(1-s) \sqrt{W^{\prime \prime}(\mu)}, \quad \forall s \in[0,1]
$$

see also [26].
2.2. Proof of Theorem 1.2. Once Lemma 2.1 is established, the proof of Theorem 1.2 proceeds in a rather standard way. We will present two different approaches, and leave it to the reader's personal taste. The first approach is based on the method of upper and lower solutions, while the second one is based on variational arguments.

First proof of Theorem 1.2: We will adapt an argument from the proof of Theorem 2.1 in [88], and prove existence of the desired solution to (1.2) by the method of upper and lower solutions (see for instance [165], [189]). Let $\epsilon \in(0, \mu)$ and $D>D^{\prime}$, where D^{\prime} is as in (1.11), and R^{\prime} be the positive constant, depending only on ϵ, D, W, and n, that is described in Lemma 2.1. Suppose that Ω contains a closed ball of radius R^{\prime}. We use $\bar{u}(x) \equiv \mu, x \in \Omega$, as an upper solution (recall that $W^{\prime}(\mu)=0$), and as lower solution the function

$$
\underline{u}_{P}(x) \equiv \begin{cases}u_{\operatorname{dist}(P, \partial \Omega)}(x-P), & x \in B_{\operatorname{dist}(P, \partial \Omega)}(P), \tag{2.63}\\ 0, & x \in \Omega \backslash B_{\operatorname{dist}(P, \partial \Omega)}(P),\end{cases}
$$

for some $P \in \Omega_{R^{\prime}}$ (considered fixed for now), where u_{R} is as in Lemma 2.1 (here we used that $W^{\prime}(0) \leq 0$ and Proposition 1 in [30] to make sure that \underline{u}_{P} is a lower solution, see also Proposition 1 in [152]). In view of (2.2) and (2.3), keeping in mind that

$$
\begin{equation*}
\operatorname{dist}(P, \partial \Omega)>R^{\prime} \tag{2.64}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\underline{u}_{P}(x)<\bar{u}(x) \equiv \mu, x \in \Omega, \quad \text { and } \mu-\epsilon<\underline{u}_{P}(x), \quad x \in B_{(\operatorname{dist}(P, \partial \Omega)-D)}(P) . \tag{2.65}
\end{equation*}
$$

In the case where Ω is bounded, it follows immediately from the method of monotone iterations, see Theorem 2.3.1 in [189] (this is the only place where we use the smoothness of $\partial \Omega$, see however Remark 2.16 below), that there exists a solution $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ of (1.2) such that

$$
\begin{equation*}
\underline{u}_{P}(x)<u(x)<\bar{u}(x) \equiv \mu, \quad x \in \Omega \tag{2.66}
\end{equation*}
$$

(keep in mind that the solution u depends on the choice of the center P). The same property can also be shown in the case where Ω is unbounded, by exhausting it with a sequence of bounded domains, see Theorem 2.10 in [168] (also recall our discussion following the statement of Theorem 1.2), see also [170, 172]. We have thus established the existence of a solution u to (1.2) that satisfies (1.3), and the lower bound (1.13) in the region $B_{(\operatorname{dist}(P, \partial \Omega)-D)}(P)$ (recall (2.2), (2.3), and (2.64)), or equivalently in $P+B_{(\operatorname{dist}(P, \partial \Omega)-D)} \supseteq P+B_{\left(R^{\prime}-D\right)}$. It remains to show that the latter lower bound is valid in $\Omega_{R^{\prime}}+B_{\left(R^{\prime}-D\right)}$. Observe that as we vary the point P in $\Omega_{R^{\prime}}$, assuming for the moment that $\Omega_{R^{\prime}}$ has a single arcwise connected component, the functions \underline{u}_{P} 's continue to be lower solutions of (1.2). Consequently, by Serrin's sweeping principle (see [76, 81, 137, 189], and the last part of the proof of Proposition 3.1 herein), we deduce that

$$
\begin{equation*}
\underline{u}_{Q}(x)<u(x), \quad x \in \Omega, \quad \forall Q \in \Omega_{R^{\prime}} \tag{2.67}
\end{equation*}
$$

(see also the proof of Lemma 3.1 in [76], and note that \underline{u}_{Q} varies continuously with respect to Q because of the connectedness of $\partial \Omega$; by the implicit function theorem [20], we obtain that u_{R} varies smoothly with respect to R, provided that R is sufficiently large so that Proposition 2.1 is applicable). In fact, this is more in the spirit of the celebrated sliding method [35]: Let $\gamma(s), s \in[0,1]$, be a smooth curve lying entirely in $\Omega_{R^{\prime}}$ such that $\gamma(0)=P$ and $\gamma(1)=Q\left(Q \in \Omega_{R^{\prime}}\right.$ arbitrary). It follows from (2.66) that $\underline{u}_{\gamma(0)}<u$ in Ω. We want to prove that $\underline{u}_{\gamma(s)} \leq u$ in Ω for all $s \in[0,1]$. If not, there would exist an $s_{0} \in(0,1)$ such that $\underline{u}_{\gamma\left(s_{0}\right)} \leq u$ in Ω and $\underline{u}_{\gamma\left(s_{0}\right)}\left(x_{0}\right)=u\left(x_{0}\right)$ at some point $x_{0} \in \Omega$. But, we have

$$
\Delta\left(u-u_{\gamma\left(s_{0}\right)}\right)+q(x)\left(u-u_{\gamma\left(s_{0}\right)}\right)=0, \quad x \in \Omega, \text { with } q \in L^{\infty}\left(B_{\operatorname{dist}\left(\gamma\left(s_{0}\right), \partial \Omega\right)}\left(\gamma\left(s_{0}\right)\right)\right) \subset \Omega
$$

and the strong maximum principle implies that $u \equiv u_{\gamma\left(s_{0}\right)}$. This is not possible, since $\underline{u}_{\gamma\left(s_{0}\right)}$ is compactly supported while u is not. We remark that a similar argument, in the case where the radius of the sliding ball is kept fixed, appears in the proof of Lemma 3.1 in [33]. The validity of the lower bound (1.13), over the whole specified domain, now follows from (2.3), (2.63), (2.64), and (2.67). In the case where the domain $\Omega_{R^{\prime}}$ has numerable many arcwise connected components, we can use the function $\max \left\{\underline{u}_{P_{i}}, i=1, \cdots\right\}$ as a lower solution, where the $\underline{u}_{P_{i}}^{\prime}$'s are as in (2.63) with each center P_{i} belonging to a different component of $\Omega_{R^{\prime}}$. (We use again Proposition 1 in [30], keep in mind that the maximum is essentially chosen among finitely many functions). The case where there are denumerable many arcwise connected components of $\Omega_{R^{\prime}}$ can be treated similarly. The validity of (1.14) follows at once from (2.4), (2.63), and (2.67).

If $W^{\prime \prime}(\mu)>0$, the validity of (1.5) for $x \in \Omega_{R^{\prime}}$ follows at once from Corollary 2.1 and relations (2.63), (2.67). If $\operatorname{dist}(x, \partial \Omega) \leq R^{\prime}$, then plainly observe that

$$
\begin{equation*}
\mu-u(x) \leq \mu=\mu e^{R^{\prime}} e^{-R^{\prime}} \leq \mu e^{R^{\prime}} e^{-\operatorname{dist}(x, \partial \Omega)} \tag{2.68}
\end{equation*}
$$

If relation (1.15) holds, then the validity of (1.16) follows from (2.60), (2.63), and (2.67), keeping in mind that $\mu-\epsilon \leq \underline{u}_{P}(P) \leq u(P)$, via (1.15), implies that $-W^{\prime}(u(P)) \leq-W^{\prime}\left(\underline{u}_{P}(P)\right.$). We postpone the proof of relation (1.18) until Subsection 4.1.

The first proof of the theorem, with the exception of (1.18), is complete.

Remark 2.16. It is stated in page 1107 of [33], unfortunately without providing a reference, that the method of upper and lower solutions works also in the case of merely Lipschitz domains (at least for Dirichlet boundary conditions). If this is true, then our Theorem 1.2 holds for Ω Lipschitz.

Remark 2.17. Since it is constructed by the method of upper and lower solutions, we know that the obtained solution u is stable (with respect to the corresponding parabolic dynamics), see [165, 189], namely the principal eigenvalue of

$$
-\Delta \varphi+W^{\prime \prime}(u) \varphi=\lambda \varphi, x \in \Omega ; \quad \varphi=0, x \in \partial \Omega
$$

in nonnegative. In the case of unbounded domains, some extra care is needed in the definition of stability, see [60, 87, 102].

Second proof of Theorem 1.2: Assume first that Ω is bounded. As in the proof of Lemma 2.1, there exists a global minimizer $u_{\min }$ of the energy

$$
J(v ; \Omega)=\int_{\Omega}\left\{\frac{1}{2}|\nabla v|^{2}+W(v)\right\} d x, \quad v \in W_{0}^{1,2}(\Omega)
$$

which furnishes a classical solution of (1.2) such that $0 \leq u_{\text {min }}(x)<\mu, x \in \Omega$. Again, by the strong maximum principle, either $u_{\min }$ is identically equal to zero or it is strictly positive in Ω. We intend to show that there exists an $R_{*}>0$, depending only on W and n, such that $u_{\min }$ is nontrivial, provided that Ω contains some closed ball of radius R_{*}.

For the sake of our argument, suppose that $u_{\text {min }}$ is the trivial solution. Then, motivated from Proposition 1 in [2] (see also [61], [154] and [171]), assuming without loss of generality that $\bar{B}_{R+2} \subset \Omega$ for some $R>0$, we consider the function

$$
Z(x)= \begin{cases}0, & x \in \Omega \backslash B_{R+1}, \tag{2.69}\\ \mu(R+1-|x|), & x \in B_{R+1} \backslash B_{R}, \\ \mu, & x \in B_{R}\end{cases}
$$

Since $Z \in W_{0}^{1,2}(\Omega)$, from the relation $J(0 ; \Omega) \leq J(Z ; \Omega)$, and recalling that $W(\mu)=0$, we obtain that

$$
\begin{equation*}
J\left(0 ; B_{R+1}\right) \leq \int_{B_{R+1} \backslash B_{R}}\left\{\frac{1}{2}|\nabla Z|^{2}+W(Z)\right\} d x \leq C_{0} R^{n-1} \tag{2.70}
\end{equation*}
$$

with C_{0} depending only on W and n. In turn, the above relation implies that

$$
\left|B_{R+1}\right| W(0) \leq C_{0} R^{n-1}
$$

which cannot hold if $R \geq R_{*}$ is sufficiently large, depending on W and n. Consequently, the minimizer $u_{\text {min }}$ is nontrivial, provided that Ω contains some closed ball of radius R_{*}. From our previous discussion, we therefore conclude that $u_{\min }$ satisfies (1.3).

Let $\epsilon \in(0, \mu)$ and $D>D^{\prime}$, where D^{\prime} is as in (1.11). Suppose that Ω contains a closed ball of radius R^{\prime}, where R^{\prime} is as in the assertion of Lemma 2.1; without loss of generality, we may assume that $R^{\prime}>R_{*}$. Relation (1.13) now follows by applying Lemma A. 3 below, over every closed ball of radius R^{\prime} contained in Ω, and recalling Lemma 2.1. Note that, as in Remark 2.3, the unique continuation principle implies that

$$
\begin{equation*}
u_{\text {min }} \text { minimizes } J(v ; \mathcal{D}) \text { in } v-u_{\min } \in W_{0}^{1,2}(\mathcal{D}) \text { for every smooth bounded domain } \mathcal{D} \subset \Omega \text {. } \tag{2.71}
\end{equation*}
$$

The case where Ω is unbounded can be treated by exhausting it by an infinite sequence of bounded ones, where the above considerations apply (see also [171]). The minimizers over the bounded domains (extended by zero outside) converge locally uniformly to a solution u of (1.2) that satisfies (1.3) (the latter solution is nontrivial by virtue of the lower bound $u(x) \geq \mu-\epsilon, x \in B_{\left(R^{\prime}-D\right)}\left(x_{0}\right)$ for some $x_{0} \in \Omega_{R^{\prime}}$, which is valid since we may assume that each one of the bounded domains contains the same closed ball $\left.\bar{B}_{R^{\prime}}\left(x_{0}\right)\right)$. This solution of (1.2), on the unbounded domain Ω, found in this way, may have infinite energy but is still a global minimizer in the sense of Definition 1.2 in [138], namely satisfies (2.71). As before, it satisfies (1.13).

The validity of (1.14) follows from (2.4) and Lemma A. 3 below (applied on every ball $\left.B_{\text {dist }(x, \partial \Omega)}(x), x \in \Omega_{R^{\prime}}\right)$. Similarly, if $W^{\prime \prime}(\mu)>0$, the validity of (1.5) follows from Corollary 2.1, Lemma A. 3 below, and the observation in (2.68). The validity of relation (1.16) follows in the same manner, making use of (2.60). We postpone the proof of relation (1.18) until Subsection 4.1.

The second proof of the theorem, with the exception of (1.18), is complete.
Remark 2.18. If W is as in Remark 2.5, and Ω is bounded with smooth boundary (at least C^{3}), in view of the latter remark and Theorem 2 in [209], the solutions of Theorem 1.2 that we found by the two different approaches are actually the same, if ϵ is chosen sufficiently small.

Remark 2.19. The first proof of Theorem 1.2 provides the additional information of the existence of a minimal and maximal solution of (1.2).

Remark 2.20. Assume that the domain Ω is symmetric with respect to the hyperplane $x_{i}=0$. Then, since the solution of (1.2), provided by the second proof of Theorem 1.2, is a global minimizer of the associated energy (in the sense described above, in case Ω is unbounded), it follows from Theorem II. 5 in [162] (applied on symmetric bounded domains, with respect to the hyperplane $x_{i}=0$, exhausting Ω) that the latter solution is symmetric with respect to this hyperplane. Note that, if in addition the domain Ω is bounded and convex in the x_{i} direction, this assertion holds true for any positive solution of (1.2) by virtue Theorem 2 in [54] or Theorem 1 in [82] (proven by the method of moving planes). Clearly, if uniqueness holds for positive solutions of (1.2) (recall Remark 1.3), these assertions follow at once (see also Remark 1.3 in [118]).

Remark 2.21. In the case where $\bar{\Omega}$ is the complement in \mathbb{R}^{n} of a smooth convex domain \mathcal{D}, the existence of the desired solution to (1.2) can be proven by noting that the function

$$
\begin{equation*}
\underline{u}(x)=\mathbf{U}(\operatorname{dist}(x, \partial \mathcal{D})), \tag{2.72}
\end{equation*}
$$

with \mathbf{U} as in (1.12), is a lower solution to (1.2). This follows from (1.19), and the property that the distance function $\rho(x)=\operatorname{dist}(x, \partial \mathcal{D})$ satisfies $|\nabla \rho|=1$ and $\Delta \rho \geq 0$ (see [139] and a related discussion in [190]). Keep in mind that $\bar{u}=\mu$ is always an upper solution.

In the case where Ω is the quarter-plane $\left\{x_{1}>0, x_{2}>0\right\}$ (recall our discussion in the introduction about saddle solutions), and W also satisfies (1.20), it was observed in [191] that the function

$$
\frac{1}{\mu} \mathbf{U}\left(\frac{x_{1}}{\sqrt{2}}\right) \mathbf{U}\left(\frac{x_{2}}{\sqrt{2}}\right)
$$

is a lower solution to (1.2). We note that if the first \mathbf{U} in the above product is replaced by u_{R}, as provided by Lemma 2.1 with $n=1$, the resulting function becomes a lower solution
to (1.2) in the semi-infinite strip $(-\sqrt{2} R, \sqrt{2} R) \times[0, \infty)$; in this regard, recall our discussion on "tick" saddle solutions. Similarly, we can construct lower solutions in a rectangle (recall the so called "lattice" solutions). Analogous constructions hold in arbitrary dimensions. However, it does not seem likely that one can play this game for the so called "pizza" solutions.

Remark 2.22. In the case where Ω is convex, the function

$$
\bar{u}(x)=\mathbf{U}(\operatorname{dist}(x, \partial \Omega)),
$$

is a (weak) upper solution to (1.2) (see the comments following (2.72)). Therefore, if uniqueness of positive stable solutions holds, we can generalize (2.40).

3. UnIFORM ESTIMATES FOR POSITIVE SOLUTIONS WITHOUT SPECIFIED BOUNDARY CONDITIONS

In this section, we will assume conditions (\mathbf{a}^{\prime}), (1.8), and (1.9). Under these assumptions, we will establish uniform estimates for solutions of

$$
\begin{equation*}
\Delta u=W^{\prime}(u) \tag{3.1}
\end{equation*}
$$

provided that they are positive and less than μ over a sufficiently large set. Our motivation comes from Lemmas 3.2-3.3 in [33], Lemma 4.1 in [151], and Lemma 6.1 in [195] (see also Lemma 2.4 in [107] and [145]).

The next proposition and the corollary that follows refine the latter results, pretty much as (2.3) refined (2.12). In particular, the approach that we apply for their proofs will be used crucially in the proof of Theorem 10.1 below.

Proposition 3.1. Suppose that $W \in C^{3}$ satisfies (a'), (1.8), and (1.9). Let $\epsilon \in(0, \mu)$ and $D>D^{\prime}$, where D^{\prime} is given from (1.11). There exists a positive constant R^{\prime}, depending on ϵ, D, W, n, such that for any solution of (3.1) which satisfies

$$
\begin{equation*}
0<u(x)<\mu, \quad x \in \bar{B}_{R}(P), \text { for some } P \in \mathbb{R}^{n}, \quad \text { and } R \geq R^{\prime} \tag{3.2}
\end{equation*}
$$

we have

$$
\begin{equation*}
u(x) \geq \mu-\epsilon, \quad x \in \bar{B}_{(R-D)}(P) \tag{3.3}
\end{equation*}
$$

If $W^{\prime \prime} \geq 0$ on $[\mu-\epsilon, \mu]$, we have that

$$
\begin{equation*}
\min \{W(t): t \in[0, u(x)]\} \leq \frac{C}{R-|x-P|}, \quad x \in B_{R}(P) \tag{3.4}
\end{equation*}
$$

for some positive constant C that depends only on W and n, and

$$
\begin{equation*}
-W^{\prime}(u(P)) \leq \tilde{C}(R-|x-P|)^{-2}, \quad x \in B_{R}(P) \tag{3.5}
\end{equation*}
$$

for some constant $\tilde{C}>0$ that depends only on n.
Proof. Before we go into the proof, let us make some remarks. The point of this proposition is that we do not assume that the solutions under consideration are global minimizers, a case which can be handled similarly to the second proof of Theorem 1.2. The argument that was used for the related results in [33], [151], [195] essentially consists in constructing a family of positive lower solutions of (3.1) of the form $s \varphi_{R}, s>0$, where φ_{R} is the eigenfunction associated to the principal eigenvalue of the negative Dirichlet Laplacian over a fixed ball B_{R}, and sweeping á la Serrin with respect to s (see also Lemma 2.2 herein, Lemma 3.1 in [22], Lemma 2 in [81], Theorem 2.1 in [116], and Proposition 3.1 in [187]). On the other hand,
our argument consists in constructing a family of nonnegative lower solutions of (3.1) from the global minimizing solutions of (2.6) that are provided by Lemma 2.1, and sweeping with respect to the radius of the ball (a similar idea can be found in [89], see also the comments after Proposition 2.2 in [129]). Borrowing an expression from [145], this type of argument may appropriately be called "ballooning" (as opposed to "sliding"). The main advantage of our approach will become clear in Theorem 10.1 below.

Observe that if u solves (2.6), the function $v(y) \equiv u(R y), y \in B_{1}$, satisfies

$$
\begin{equation*}
\Delta v=R^{2} W^{\prime}(v), y \in B_{1} ; \quad v(y)=0, y \in \partial B_{1} \tag{3.6}
\end{equation*}
$$

Since $W^{\prime}(0) \leq 0$ (recall $\left.\left(\mathbf{a}^{\prime}\right)\right)$, it follows from the results in [146] (see also Chapter 1 in [148]), which are based on the identity (2.61), that solutions of (3.6) lie on smooth curves in the (R, v) "plane", i.e. either solutions of (3.6) can be continued in R or else there are simple turning points (see also [143] for the definitions and functional set up). We will distinguish two cases according to $W^{\prime}(0)$:

- If $W^{\prime}(0)<0$, by a classical global result of Leray and Schauder (see [155] or page 65 in $[20])$, there exists an unbounded connected branch $\mathcal{C}_{+} \subseteq(0, \infty) \times C\left(\bar{B}_{1}\right)$ of positive solutions to (3.6) that meets $(0,0)$ (see also Lemma 5.1 in [19]). (As we have already discussed, thanks to [122], all positive solutions of (3.6) are radially symmetric and decreasing). In fact, the detailed behavior of that branch as $R \rightarrow 0^{+}$is described in Theorem 3.2 of [175]. By the strong maximum principle, we deduce that the solutions on \mathcal{C}_{+}take values strictly less than μ (by a continuity argument, since they do so for small R, see also Lemma 1 in [133]). Thus, the projection of \mathcal{C}_{+}onto $(0, \infty)$ is unbounded, namely coincides with $(0, \infty)$.
- If $W^{\prime}(0)=0$ and $W^{\prime \prime}(0)<0$ (recall (1.8)), there is a global connected solution curve \mathcal{C}_{+}in $(0, \infty) \times C\left(\bar{B}_{1}\right)$, emanating from $\left(R_{c}, 0\right)$, where R_{c} was defined in (2.41), due to a bifurcation from a simple eigenvalue as R crosses R_{c} (see [143]). As before, the solutions on that branch are positive and strictly less than μ. It follows readily from Rabinowitz's global bifurcation theorem [184] (see also Chapter 4 in [20]) that the projection of \mathcal{C}_{+}onto $(0, \infty)$ is an unbounded interval (for this point, which relies on the radial symmetry of solutions, see the appendix in [198] for instance). (Keep in mind that \mathcal{C}_{+}is bounded away from $R=0$, as can easily be seen by testing (3.6) by the principal eigenfunction φ_{1} in (2.42) (see Lemma 6.17 in [175]); in fact, if (2.43) holds, the projection of \mathcal{C}_{+}onto $(0, \infty)$ is $\left.\left(R_{c}, \infty\right)\right)$.
As in $[80,146]$, we can parameterize smoothly \mathcal{C}_{+}by $\left\{\left(R_{\tau}, v_{\tau}\right), \tau \in\left(0, \tau^{\prime}\right)\right\}$, for a maximal interval $\left(0, \tau^{\prime}\right) \subseteq(0, \mu)$, where τ is the maximum of v_{τ}, namely $v_{\tau}(0)=\tau$. The functions

$$
\begin{equation*}
\mathrm{u}_{\tau}(r) \equiv v_{\tau}\left(R_{\tau}^{-1} r\right), \quad \tau \in\left(0, \tau^{\prime}\right), \text { where } r=|x| \tag{3.7}
\end{equation*}
$$

define a smooth, with respect to τ, family of solutions to (2.6), satisfying (2.2), with $R=R_{\tau}$. Note that

$$
\begin{equation*}
R_{\tau} \rightarrow 0, \text { as } \tau \rightarrow 0, \text { if } W^{\prime}(0)<0 ; R_{\tau} \rightarrow R_{c} \text {, as } \tau \rightarrow 0, \text { if (1.8) holds, } \tag{3.8}
\end{equation*}
$$

and the range of $R_{\tau}, \tau \in\left(0, \tau^{\prime}\right)$, covers $(0, \infty)$ and $\left(R_{c}, \infty\right)$ respectively (in the latter case, the covered interval might be $\left[R_{1}, \infty\right)$ with $R_{1}<R_{c}$, but strictly positive as can be seen by testing by the principal eigenfunction). In view of Lemma 2.2, it follows that

$$
\tau^{\prime}=\mu
$$

On the other side, from the definition of τ, we see that

$$
\begin{equation*}
\mathrm{u}_{\tau} \rightarrow 0, \text { uniformly on } \bar{B}_{R_{\tau}}, \text { as } \tau \rightarrow 0 . \tag{3.9}
\end{equation*}
$$

Given $\epsilon \in(0, \mu)$ and $D>D^{\prime}$, where D^{\prime} as in (1.11), let R^{\prime} be as in (2.3). Suppose that a solution u of (3.1) satisfies (3.2) for some $\mathrm{R}>R^{\prime}$ and $P \in \mathbb{R}^{n}$. The family of functions

$$
\underline{\mathrm{u}}_{\tau, P}(x)= \begin{cases}\mathrm{u}_{\tau}(x-P), & x \in B_{R_{\tau}}(P), \\ 0, & \text { elsewhere }\end{cases}
$$

are lower solutions to (3.1) in \mathbb{R}^{n} for all $\tau \in(0, \mu)$ (as the maximum of two lower solutions, recall that $W^{\prime}(0) \leq 0$, see $\left.[30]\right)$. Moreover, we have

$$
\underline{\mathrm{u}}_{\tau, P}(x)=0<u(x), \quad x \in \partial B_{\mathrm{R}}(P), \quad \tau \in\left(0, \tau_{*}\right],
$$

where τ_{*} is the smallest number such that

$$
R_{\tau_{*}}=\mathrm{R},
$$

(such a number exists since R_{τ} is smooth and $R_{\tau_{i}} \rightarrow \infty$ for some sequence $\tau_{i} \rightarrow \infty$). Also, thanks to (3.8) and (3.9), we get

$$
\underline{\underline{u}}_{\tau, P}(x)<u(x), \quad x \in \bar{B}_{\mathrm{R}}(P), \text { for } \tau \text { close to } 0 .
$$

Consequently, by Serrin's sweeping principle (see [76, 81, 189]), we deduce that

$$
\underline{\mathrm{u}}_{\tau_{*}, P}(x) \leq u(x), \quad x \in \bar{B}_{\mathrm{R}}(P) .
$$

In turn, this implies that

$$
\begin{equation*}
u_{\mathrm{R}}(x-P)=\mathrm{u}_{\tau_{*}}(x-P)=\underline{\mathrm{u}}_{\tau_{*}, P}(x) \leq u(x), \quad x \in \bar{B}_{\mathrm{R}}(P), \tag{3.10}
\end{equation*}
$$

where u_{R} is some solution to (2.6) that satisfies (2.2) with $R=\mathrm{R}$. To prove this, we let $\tilde{\tau}=\sup \left\{\tau \in\left(0, \tau_{*}\right]: u \geq \underline{\mathrm{u}}_{\tau, P}\right.$ on $\left.\bar{B}_{\mathrm{R}}(P)\right\}$, note that $u(x) \geq \mathrm{u}_{\tilde{\tau}}(x-P), x \in \bar{B}_{R_{\tilde{\tau}}}(P)$, and apply the strong maximum principle to $u(x)-\mathrm{u}_{\tilde{\tau}}(x-P)$ to deduce that this function has a positive lower bound on $\bar{B}_{R_{\tilde{\tau}}}(P)$ if $\tilde{\tau}<\tau_{*}$; this implies that the same holds true for the function $u-\underline{\mathrm{u}}_{\tilde{\tau}, P}$ on $\bar{B}_{\mathrm{R}}(P)$ which contradicts the maximality of $\tilde{\tau}$ if $\tilde{\tau}<\tau_{*}$. Relation (3.10), by virtue of Lemma 2.2 (recall that $\mathrm{R}>R^{\prime}$), clearly implies the validity of (3.3).

If $W^{\prime \prime} \geq 0$ on $[\mu-\epsilon, \mu]$, from Remark 7.1 below, we know that (2.6) has a unique solution satisfying (2.2) for large R. In particular, the solution u_{R} in (3.10) is the global minimizer of Lemma 2.1, provided that R is sufficiently large. The validity of relation (3.4) now follows at once from (2.4) and (3.10). Finally, relation (3.5) follows immediately from (2.60) and (3.10).

The proof of the proposition is complete.
Remark 3.1. In the case where condition (1.20) holds, relation (3.10) follows directly from Serrin's sweeping principle. Indeed, it is easy to verify that the functions $t u_{\mathrm{R}}(x-P), 0 \leq$ $t \leq 1$, fashion a family of lower solutions to (2.6) which vanish along $\partial B_{\mathrm{R}}(P)$.

Remark 3.2. The assumption (1.8) is essential for our approach. Indeed, if $W^{\prime}(0)=0$ and $W^{\prime \prime}(0)=0$ then there are no arbitrarily uniformly small positive solutions of (3.6) for any $R>0$ (thanks to the implicit function theorem, see for example [143]). In fact, for the case $W^{\prime}(t)=r t^{p}-t^{q}, t \geq 0$, with $p>q>1, r>0$, which satisfies (a'), (1.9), and (1.15) but not (1.8), the global bifurcation diagram of positive solutions of (3.6) has been shown in [174] to be qualitatively the same as the one corresponding to (1.10) that we described at the end of

Remark 2.6, namely \subset-shaped. It might also be useful to see the condition on the behavior of W^{\prime} near the origin for the so-called "hair-trigger effect" to take place in the parabolic equation $u_{t}=\Delta u-W^{\prime}(u)$, see [24].

Remark 3.3. In [33], the assumption (1.8) was replaced by the weaker one: W^{\prime} being Lipschitz continuous and $-W^{\prime}(t) \geq \delta_{0} t$ on $\left[0, t_{0}\right]$ for some $\delta_{0}, t_{0}>0$. A possible "cure" for this could be the use of bifurcation theory for Hölder continuous nonlinearities (see Appendix B in [175] and the references therein).

Remark 3.4. The proof of the above proposition may be adapted to provide an alternative proof of Lemma 3.1 in [22]. Therefore, one can estimate the width of the boundary layer of positive solutions to the spatially inhomogeneous singular perturbation problem (8.5) below (with $W(\cdot, x)$ essentially satisfying the assumptions of this section for each x) only in terms of W, without involving the principal Dirichlet eigenvalue of the Laplacian in the unit ball of \mathbb{R}^{n} (see also Remark 8.6 below).

The following corollary can be deduced from Proposition 3.1 by making use of the celebrated sliding method.

Corrolarry 3.1. Suppose that $W \in C^{3}$ satisfies (a') and (1.9). Let $\epsilon \in(0, \mu)$ and $D>D^{\prime}$, where D^{\prime} is given from (1.11). There exists an $R^{\prime}>D$, depending only on ϵ, D, W, and n, such that any solution u of (3.1) which satisfies (1.3) in a domain $\Omega \neq \mathbb{R}^{n}$ (open and connected set), containing some closed ball of radius R^{\prime}, satisfies (1.13), (1.14), and (1.16). In the case where $\Omega=\mathbb{R}^{n}$, the only solutions of (1.22) such that $0 \leq u(x) \leq \mu, x \in \mathbb{R}^{n}$, are the constant ones, namely $u \equiv 0$ and $u \equiv \mu$.

Proof. Suppose that $\epsilon, D, \Omega \neq \mathbb{R}^{n}, u$ are as in the first assertion of the corollary. From our assumptions, we know that Ω contains some closed ball $\bar{B}_{\mathrm{R}}(P)$ for some $\mathrm{R} \geq R^{\prime}$ and $P \in \Omega_{\mathrm{R}}$. Since u satisfies (1.3) and (3.1) in Ω, it follows from the proof of Proposition 3.1 that relation (3.10) holds. As in the first proof of Theorem 1.2, we can use the sliding method to show that the latter relation actually holds for all $P \in \Omega_{\mathrm{R}}$. We point out that here we do not need that the boundary of Ω is continuous, since the radius of the ball is fixed, and we can apply directly Lemma 3.1 in [33]. The validity of the first assertion of (1.13) now follows at once form (2.3) (keep in mind that R could also be chosen as R^{\prime}). Now, let $Q \in \Omega_{R^{\prime}}+B_{\left(R^{\prime}-D\right)}$. From the proof of Proposition 3.1, using Serrin's sweeping principle, we have that $u(x) \geq u_{\operatorname{dist}(Q, \partial \Omega)}(x-Q)$ in $B_{\operatorname{dist}(Q, \partial \Omega)}(Q)$. By means of (2.4) and (3.5), we infer that u also satisfies (1.14) and (1.16) respectively. Consequently, we have established the first assertion of the corollary.

The second assertion of the corollary follows easily. By the strong maximum principle, we deduce that either $u \equiv 0, u \equiv \mu$, or $0<u(x)<\mu, x \in \mathbb{R}^{n}$. We will show that the latter alternative cannot happen. Suppose to the contrary that $0<u(x)<\mu, x \in \mathbb{R}^{n}$. Then, we get that (3.10) holds for every $\mathrm{R}>0$ and $P \in \mathbb{R}^{n}$. By fixing P and letting $\mathrm{R} \rightarrow \infty$, making use of (2.12), we obtain that $u \geq \mu$ in \mathbb{R}^{n}; a contradiction.

The proof of the corollary is complete.
Remark 3.5. The second assertion of the corollary is a Liouville type theorem, and was originally proven in [24] by parabolic methods (see also [38] for a simpler proof of a more general result, using elliptic techniques, in the spirit of [33]; see also Theorem 2.7 in [103]).

Remark 3.6. If we additionally assume that $W^{\prime \prime}(\mu)>0$, then Proposition 3.1 and Corollary 3.1 can be derived from the exponential decay estimates of Lemma 4.2 in [151], Proposition 1 in [157], and Lemma 6.2 in [195] (see also [120] and Lemma 2.4 in [128]).
Remark 3.7. Estimate (1.16) represents a slight improvement over estimate (3.3) in [33] (see also relation (4.11) below). We remark that the latter relation was shown in [33] without making use of (1.15).

4. Algebraic singularity decay estimates in the case of pure power nonlinearity, and completion of the proof of Theorem 1.2

The potential that comes first to mind when looking at (\mathbf{a}^{\prime}) is

$$
\begin{equation*}
W(t)=|t-\mu|^{p+1} \tag{4.1}
\end{equation*}
$$

where $p \geq 1$.
If $p=1$, the solutions provided by Theorem 1.2 satisfy the exponential decay estimate (1.5). In this section, we will show that a universal algebraic decay estimate holds for all solutions of (3.1) with potential as in (4.1), provided that $p>1$. Although our arguments in this section rely on the specific form of the potential W, our results may be used together with a comparison argument to cover a broader class of potentials. In particular, as we will show in the following subsection, we can establish the remaining relation (1.18) from the proof of Theorem 1.2. Moreover, our main estimate in this section suggests that there is room for improvement over a result of the celebrated paper [33] by Berestycki, Caffarelli and Nirenberg, see Remark 4.3 below. We believe that the results of this section can have applications in the study of elliptic singular perturbation problems of the form (8.5) below in the case where the degenerate equation $W(u, x)=0$ has a root $u=u_{0}(x)$ of finite multiplicity (see the recent papers [213, 214, 215]). This section is self-contained and can be studied independently of the rest of the paper.

The main result of this section is
Proposition 4.1. Let W be given from (4.1), with $p>1$, and let $\Omega \neq \mathbb{R}^{n}$ be a domain of \mathbb{R}^{n}. There exists a positive constant C, depending only on p, n, such that any solution u of (3.1) in Ω satisfies

$$
\begin{equation*}
|\mu-u|+|\nabla u|^{\frac{2}{p+1}} \leq C \operatorname{dist}^{-\frac{2}{p-1}}(x, \partial \Omega), \quad x \in \Omega . \tag{4.2}
\end{equation*}
$$

In particular, if Ω is an exterior domain, i.e., $\Omega \supset\left\{x \in \mathbb{R}^{n}:|x|>R\right\}$ for some $R>0$, then

$$
\begin{equation*}
|\mu-u|+|\nabla u|^{\frac{2}{p+1}} \leq C|x|^{-\frac{2}{p-1}}, \quad|x| \geq 2 R . \tag{4.3}
\end{equation*}
$$

Proof. Our proof is modeled after that of Theorem 2.3 in [179] which dealt with focusing nonlinearities, making use of scaling (blow-up) arguments, inspired from [123], combined with a key "doubling" estimate. The main difference with [179] is in the Liouville type theorem that we will use to conclude, see Remark 4.2 below.

We will argue by contradiction. Suppose that estimate (4.2) fails. Then, there exist sequences of domains $\Omega_{k} \neq \mathbb{R}^{n}$, functions u_{k}, and points $y_{k} \in \Omega_{k}$, such that u_{k} solves (3.1) in Ω_{k} and the functions

$$
M_{k} \equiv\left|\mu-u_{k}\right|^{\frac{p-1}{2}}+\left|\nabla u_{k}\right|^{\frac{p-1}{p+1}}, \quad k=1,2, \cdots,
$$

satisfy

$$
M_{k}\left(y_{k}\right)>2 k \operatorname{dist}^{-1}\left(y_{k}, \partial \Omega_{k}\right), \quad k=1,2, \cdots
$$

From the Doubling Lemma of Polacik, Quittner and Souplet, see Lemma 5.1 and Remark 5.2 (b) in [179] or Lemma C. 1 in the appendix below, it follows that there exist $x_{k} \in \Omega_{k}$ such that

$$
\begin{equation*}
M_{k}\left(x_{k}\right) \geq M_{k}\left(y_{k}\right), \quad M_{k}\left(x_{k}\right)>2 k \operatorname{dist}^{-1}\left(x_{k}, \partial \Omega_{k}\right), \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{k}(z) \leq 2 M_{k}\left(x_{k}\right), \quad\left|z-x_{k}\right| \leq k M_{k}^{-1}\left(x_{k}\right), \quad k=1,2, \cdots \tag{4.5}
\end{equation*}
$$

Note that $B_{k M_{k}^{-1}\left(x_{k}\right)}\left(x_{k}\right) \subset \Omega_{k}$. Now, we rescale u_{k} by setting

$$
\begin{equation*}
v_{k}(y) \equiv \lambda_{k}^{\frac{2}{p-1}}\left[\mu-u_{k}\left(x_{k}+\lambda_{k} y\right)\right], \quad|y| \leq k, \quad \text { with } \lambda_{k}=M_{k}^{-1}\left(x_{k}\right) . \tag{4.6}
\end{equation*}
$$

The function v_{k} solves

$$
\Delta v_{k}(y)=(p+1) v_{k}(y)\left|v_{k}(y)\right|^{p-1}, \quad|y| \leq k
$$

Moreover,

$$
\begin{equation*}
\left[\left|v_{k}\right|^{\frac{p-1}{2}}+\left|\nabla v_{k}\right|^{\frac{p-1}{p+1}}\right](0)=\lambda_{k} M_{k}\left(x_{k}\right)=1, \tag{4.7}
\end{equation*}
$$

and

$$
\left[\left|v_{k}\right|^{\frac{p-1}{2}}+\left|\nabla v_{k}\right|^{\frac{p-1}{p+1}}\right](y) \leq 2, \quad|y| \leq k
$$

By using elliptic L^{q} estimates and standard imbeddings (see [124]), we deduce that some subsequence of v_{k} converges in $C_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ to a (classical) solution \mathbf{V} of

$$
\begin{equation*}
\Delta v=(p+1) v(y)|v(y)|^{p-1}, \quad y \in \mathbb{R}^{n} . \tag{4.8}
\end{equation*}
$$

Moreover, thanks to (4.7), we have

$$
\left[|\mathbf{V}|^{\frac{p-1}{2}}+|\nabla \mathbf{V}|^{\frac{p-1}{p+1}}\right](0)=1
$$

so that \mathbf{V} is nontrivial. On the other hand, by a result of Brezis [51], we know that there does not exist a nontrivial solution of (4.8) in $L_{l o c}^{p}\left(\mathbb{R}^{n}\right)$ (in the sense of distributions), see also Theorems 4.6-4.7 in [108] or Theorem B. 1 below. Consequently, we have arrived at the desired contradiction.

The proof of the proposition is complete.
Remark 4.1. The powers $2 /(p-1)$ and $(p+1) /(p-1)$ in (4.2) (for u and $|\nabla u|$ respectively) are sharp for $p \in\left(1, \frac{n}{n-2}\right)$ if $n \geq 3$ and $p>1$ if $n=2$, as can be seen from the explicit solution $u(x)=c(p, n)|x|^{-\frac{2}{p-1}}$ of

$$
\begin{equation*}
\Delta u=u^{p}, \tag{4.9}
\end{equation*}
$$

in $\mathbb{R}^{n} \backslash\{0\}$, see for example [52].
In the latter reference, it was shown that every nonnegative solution $u \in C^{2}\left(B_{R}\right)$ of (4.9), with $p>1$, satisfies

$$
u(0) \leq C(p, n) R^{-\frac{2}{p-1}}
$$

where $C(p, n)$ is determined explicitly. This result, minus the explicit dependence of the constat on p, n, follows as a special case of our Proposition 4.1 if we choose $\mu=0$. Moreover, it was shown in the same reference that every nonnegative solution $u \in C^{2}\left(B_{R} \backslash\{0\}\right)$ of (4.9), with $p \in\left(1, \frac{n}{n-2}\right)$ if $n \geq 3$ and $p>1$ if $n=2$, satisfies

$$
u(x) \leq l(p, n)|x|^{-\frac{2}{p-1}}\left[1+\frac{C(p, n)}{l(p, n)}\left(\frac{|x|}{R}\right)^{\beta}\right], \quad 0<|x| \leq \frac{R}{2}
$$

where $\beta=\frac{4}{p-1}+2-n>\frac{2}{p-1}$, and $C(p, n), l(p, n)$ some explicitly determined constants. The validity of this estimate, minus the explicit dependence of the constat on p, n, follows for all the range $p>1$ from our Proposition 4.1 with $\mu=0$. It was shown in [50] that, if $n \geq 3$ and $p \geq \frac{n}{n-2}$, there exists a constant $A=A(p, n)>0$ such that every nonnegative solution $u \in C^{2}\left(B_{1} \backslash\{0\}\right)$ of (4.9) satisfies

$$
u(x) \leq \frac{A}{|x|^{n-2}}, \quad 0<|x|<\frac{1}{2}
$$

In turn, the latter estimate was used to show that the solution u has a removable singularity at the origin. Clearly, the above estimate follows from (4.2) with $\mu=0$. The proofs in [50], [53], and [51] (where we referred to towards the end of the proof of Proposition 4.1), are based on the explicit knowledge of positive, radially symmetric upper solutions of the equation $-\Delta u+|u|^{p-1} u=0$ on arbitrary open balls, with the further property that these functions blow up at the boundary of the considered balls. This fact is crucially related to the shape of the nonlinear function $|t|^{p-1} t$ and it does not easily extend to more general functions. We refer to [108] for a different approach for establishing the Liouville type theorem of [51], that we used towards the end of the proof of Proposition 4.1, with the advantage to apply to a larger class of problems (see Theorem B. 1 below).

To the best of our knowledge, this is the first time that the doubling lemma of [179] has been used in relation with the previously mentioned papers.

Remark 4.2. In the problems studied in [123], [179] (see also [182]), the blowing-up argument leads to a positive solution of the whole space problem $\Delta v+v^{p}=0$, which does not exist for the range of exponents $p \in\left(1, \frac{n+2}{n-2}\right)$ if $n \geq 3, p>1$ if $n=2$.

Remark 4.3. Assume that the potential $W \in C^{2}$ satisfies (1.9), $W^{\prime}(t) \geq 0$ for $t \geq \mu$, $-W^{\prime}(t) \geq \delta_{0} t$ on $\left[0, t_{0}\right]$ for some $\delta_{0}, t_{0}>0$, and (1.15). Clearly, these conditions are satisfied by the model examples (1.23) and (4.1). Let Ω be the entire epigraph:

$$
\begin{equation*}
\Omega=\left\{x \in \mathbb{R}^{n}: x_{n}>\varphi\left(x_{1}, \cdots, x_{n-1}\right)\right\}, \tag{4.10}
\end{equation*}
$$

where $\varphi: \mathbb{R}^{n-1} \rightarrow \mathbb{R}$ is a globally Lipschitz continuous function. It was shown in Lemma 3.2 in [33] that there are constants $\varepsilon_{1}, R_{0}>0$ with R_{0}, depending only on n, δ_{0}, such that any positive bounded solution of (1.2) satisfies $u<\mu$ in Ω, and

$$
u(x)>\varepsilon_{1} \text { if } x \in \Omega_{R_{0}} \text {, i.e. } \operatorname{dist}(x, \partial \Omega)>R_{0} .
$$

Moreover, setting

$$
\delta(x)=\min \left\{-W^{\prime}(t): t \in\left[\varepsilon_{1}, u(x)\right]\right\}, \quad x \in \Omega_{R_{0}}
$$

there exists a constant C_{1}, depending only on n, such that

$$
\begin{equation*}
C_{1} \delta(x) \leq\left[\operatorname{dist}(x, \partial \Omega)-R_{0}\right]^{-2}, \quad x \in \Omega_{R_{0}} \tag{4.11}
\end{equation*}
$$

recall also estimate (1.16) herein. In the case of the potential (4.1), the function $\delta(x)$ is plainly $\delta(x)=(p+1)(\mu-u(x))^{p}$, and estimate (4.11) says that

$$
\mu-u(x) \leq\left[C_{1}(p+1)\right]^{-\frac{1}{p}}\left[\operatorname{dist}(x, \partial \Omega)-R_{0}\right]^{-\frac{2}{p}}, \quad x \in \Omega_{R_{0}} .
$$

Observe that our estimate (4.2) is an improvement of the above estimate, since $\frac{2}{p-1}>\frac{2}{p}$. Moreover, our estimate holds for all solutions, possibly sign changing or unbounded, without specified boundary conditions. Note also that these observations reveal that estimate (1.14) is far from optimal.

As in Theorem 2.1 in [179], we can generalize our Proposition 4.1 to
Proposition 4.2. Let $p>1$, and assume that the smooth W satisfies

$$
\begin{equation*}
\lim _{|t| \rightarrow \infty} t^{-1}|t|^{1-p} W^{\prime}(t+\mu)=\ell \in(0, \infty) . \tag{4.12}
\end{equation*}
$$

Let Ω be an arbitrary domain of \mathbb{R}^{n}. Then, there exists a constant $C=C\left(n, W^{\prime}\right)>0$ (independent of Ω and u) such that, for any solution of (3.1), there holds

$$
\begin{equation*}
|\mu-u|+|\nabla u|^{\frac{2}{p+1}} \leq C\left(1+\operatorname{dist}^{-\frac{2}{p-1}}(x, \partial \Omega)\right), \quad x \in \Omega . \tag{4.13}
\end{equation*}
$$

In particular, if $\Omega=B_{R} \backslash\{0\}$ then

$$
|\mu-u|+|\nabla u|^{\frac{2}{p+1}} \leq C\left(1+|x|^{-\frac{2}{p-1}}\right), \quad 0<|x| \leq \frac{R}{2}
$$

Proof. Assume that estimate (4.13) fails. Keeping the same notation as in the proof of Proposition 4.1, we have sequences $\Omega_{k}, u_{k}, y_{k} \in \Omega_{k}$ such that u_{k} solves (3.1) in Ω_{k} and

$$
M_{k}\left(y_{k}\right)>2 k\left(1+\operatorname{dist}^{-1}\left(y_{k}, \partial \Omega_{k}\right)\right)>2 k \operatorname{dist}^{-1}\left(y_{k}, \partial \Omega_{k}\right) .
$$

Then, formulae (4.4)-(4.6) are unchanged but now the function v_{k} solves

$$
\Delta_{y} v_{k}(y)=f_{k}\left(v_{k}(y)\right) \equiv-\lambda_{k}^{\frac{2 p}{p-1}} W^{\prime}\left(\mu-\lambda_{k}^{-\frac{2}{p-1}} v_{k}(y)\right), \quad|y| \leq k
$$

Note that, since $M_{k}\left(x_{k}\right) \geq M_{k}\left(y_{k}\right)>2 k$, we also have

$$
\lambda_{k} \rightarrow 0, \quad k \rightarrow \infty
$$

Since there exists a constant $C>0$ such that $\left|W^{\prime}(\mu-t)\right| \leq C\left(1+|t|^{p}\right), t \in \mathbb{R}$, due to (4.12) (and W^{\prime} being continuous), it follows that

$$
\left|f_{k}(t)\right| \leq C \lambda_{k}^{\frac{2 p}{p-1}}+C|t|^{p}, \quad t \in \mathbb{R}, k \geq 1
$$

By using elliptic L^{q} estimates, standard imbeddings, and (4.12), we deduce that some subsequence of v_{k} converges in $C_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$ to a classical solution \mathbf{V} of $\Delta v=\ell v|v|^{p-1}$ in \mathbb{R}^{n}. Moreover, we have that $|\mathbf{V}(0)|^{\frac{p-1}{2}}+|\nabla \mathbf{V}(0)|^{\frac{p-1}{p+1}}=1$, so that \mathbf{V} is nontrivial. As in Proposition 4.1, since $\ell>0$, this contradicts the Liouville theorem in [54], [108], in particular Theorem B. 1 below.

The proof of the proposition is complete.
Remark 4.4. The same assertion of Proposition 4.2 holds, if we assume that the righthand side of (4.12) is as the function f in Theorem B. 1 below.
4.1. Proof of relation (1.18). Based on Proposition 4.1, via a comparison argument, we can show relation (1.18) and thus complete the proof of Theorem 1.2.

Proof of (1.18): Clearly, estimate (1.18) holds if $\operatorname{dist}(x, \partial \Omega) \leq R^{\prime}$.
In any connected component \mathcal{A} of $\Omega_{R^{\prime}}+B_{\left(R^{\prime}-D\right)}$, thanks to (1.13) and (1.17) (assuming that $\epsilon<d$), we have

$$
\Delta u \leq-c(\mu-u)^{p} \text { in } \mathcal{A}, \quad u \geq \mu-\epsilon \text { on } \partial \mathcal{A}
$$

Let $0<v<\mu$ be the solution of

$$
\Delta v=-c(\mu-v)^{p} \text { in } \mathcal{A} ; \quad v=0 \text { on } \partial \mathcal{A}
$$

as provided by Theorem 1.2 (keep in mind the second part of Remark 1.3 which implies uniqueness), where $c>0, p>1$ are as in (1.17). From Proposition 4.1, we know that v satisfies

$$
\mu-v \leq \hat{K} \operatorname{dist}^{-\frac{2}{p-1}}(x, \partial \mathcal{A}), \quad x \in \mathcal{A}
$$

for some constant $\hat{K}>0$ that depends only on c, p, and n. Since $\operatorname{dist}(\partial \mathcal{A}, \partial \Omega) \leq D$, we have

$$
\operatorname{dist}(x, \partial \mathcal{A}) \geq \operatorname{dist}(x, \partial \Omega)-\operatorname{dist}(\partial \mathcal{A}, \partial \Omega) \geq \operatorname{dist}(x, \partial \Omega)-D
$$

So, we arrive at

$$
\mu-v \leq \tilde{K} \operatorname{dist}^{-\frac{2}{p-1}}(x, \partial \Omega), \quad x \in \mathcal{A}
$$

for some constant $\tilde{K}>0$ that depends only on c, p, n and W.
We intend to show that

$$
\begin{equation*}
v \leq u \text { in } \mathcal{A}, \tag{4.14}
\end{equation*}
$$

from where relation (1.18) follows at once. Let $w=u-v$. We have

$$
\Delta w \leq q(x) w \text { in } \mathcal{A},
$$

where

$$
q(x)=c p \int_{0}^{1}(\mu-s u-(1-s) v)^{p-1} d s
$$

This is a bit meshy but what matters is that q is continuous and nonnegative in \mathcal{A}. Note that $w>0$ on $\partial \mathcal{A}$ and w is bounded in $\mathcal{A}(|w| \leq \mu$ to be more precise). Therefore, the assumption that $\bar{\Omega}$ is disjoint from the closure of an infinite open connected cone (and so is $\overline{\mathcal{A}}$), or $n=2$ and $\bar{\Omega} \neq \mathbb{R}^{2}$, allows us to apply the maximum principle, even in the case where \mathcal{A} is unbounded, to deduce that (4.14) holds (see Lemma 2.1 and the remark following it in [33], and also Lemma 6.2 in [145]).

The proof of relation (1.18) is complete.
Remark 4.5. The proof of Lemma 2.1 in [33] is based on the property that, for the domains Ω in the previous class, there exists a positive super-harmonic function g in Ω (i.e. $\Delta g \leq 0$ in Ω) such that $g(x) \rightarrow \infty$ if $x \in \Omega$ and $|x| \rightarrow \infty$. If Ω is contained in the set $\left\{x_{n} \geq h\left(x_{1}, \cdots, x_{n-1}\right),\left(x_{1}, \cdots, x_{n-1}\right) \in \mathbb{R}^{n-1}\right\}$, for some $h \in C\left(\mathbb{R}^{n-1}\right)$ such that $h(y) \rightarrow \infty$ as $|y| \rightarrow \infty$, then clearly we can take

$$
g(x)=x_{n}-\min _{\mathbb{R}^{n-1}} h+1
$$

In light of the comparison function of Theorem 2 in [82], it follows readily that Lemma 2.1 in [33] also applies in the case where Ω is contained in some strip

$$
\left\{\left|x_{i}\right| \leq M, i=1, \cdots, n-m ; x_{j} \in \mathbb{R}, j=n-m+1, \cdots, n\right\}
$$

where $M>0$ and $m \in\{1, \cdots, n-1\}$. Therefore, relation (1.18) also holds for such domains.

5. Bounds on entire solutions of $\Delta u=W^{\prime}(u)$

In this subsection, we will assume that the C^{2} potential W satisfies (4.12) for some $\mu \in \mathbb{R}$, and there exist $\mu_{-}<\mu_{+}$such that

$$
\begin{equation*}
W^{\prime}\left(\mu_{-}\right)=W^{\prime}\left(\mu_{+}\right)=0, \quad W^{\prime}(t)<0, t<\mu_{-} ; W^{\prime}(t)>0, t>\mu_{+} \tag{5.1}
\end{equation*}
$$

We will utilize Propositions 3.1 and 4.2 , together with the corresponding parabolic flow to (1.22), in order obtain the following result:

Proposition 5.1. Under the above assumptions, we have that every solution $u \in C^{2}\left(\mathbb{R}^{n}\right)$ of (1.22), which is not identically equal to μ_{-}or μ_{+}, satisfies

$$
\begin{equation*}
\mu_{-}<u(x)<\mu_{+}, \quad x \in \mathbb{R}^{n} . \tag{5.2}
\end{equation*}
$$

Proof. From Proposition 4.2 with $\Omega=\mathbb{R}^{n}$, i.e. $\operatorname{dist}^{-\frac{2}{p-1}}(x, \partial \Omega)=0 \forall x \in \mathbb{R}^{n}$, we know that there exists a constant $C=C\left(W^{\prime}, n\right)>0$ such that every solution of (1.22) satisfies

$$
|u(x)| \leq C, \quad x \in \mathbb{R}^{n} .
$$

We will show that

$$
\begin{equation*}
\mu_{-} \leq u(x) \leq \mu_{+}, \quad x \in \mathbb{R}^{n} . \tag{5.3}
\end{equation*}
$$

Indeed, as in [22], [98], by the parabolic maximum principle (this is possible since all the functions under consideration are bounded, see [181]), we infer that

$$
\begin{equation*}
u_{-}(t) \leq u(x) \leq u_{+}(t), \quad t \geq 0 \tag{5.4}
\end{equation*}
$$

where $u_{ \pm}$are the solutions of the initial value problems

$$
\dot{u}_{ \pm}=W^{\prime}\left(u_{ \pm}\right), \quad t>0, \quad u_{ \pm}(0)= \pm 2 C .
$$

Note that $u_{ \pm}(t)$ are solutions of $u_{t}=\Delta u-W^{\prime}(u)$ on $\mathbb{R}^{n} \times(0, \infty)$, as is $u(x)$. From our assumptions on W, it follows that $u_{-}(t)$ is increasing and $u_{+}(t)$ is decreasing with respect to $t>0$. Furthermore, it is easy to show that $u_{ \pm}(t) \rightarrow \mu_{ \pm}$as $t \rightarrow \infty$, see also [23], [218]. Hence, letting $t \rightarrow \infty$ in (5.4), we find that relation (5.3) holds. For a similar argument, which allows for the last assumption in (5.1) to be weakened (allowing W^{\prime} to vanish), we refer to Theorem 2.7 in [103]. Alternatively, we could argue as in Corollary 3.1 by considering the function $2 C-u$. By the strong maximum principle, it follows that (5.2) holds unless $u \equiv \mu_{-}$or $u \equiv \mu_{+}$.

The proof of the proposition is complete.
Remark 5.1. With trivial modifications, Proposition 5.1 can be applied in the case where there is an obstacle in \mathbb{R}^{n}, as in problem (6.1) below (see also Remark 6.3).

As a corollary to the above proposition, we can give a short proof of a Liouville type result in [97] (see Theorem 1.1 therein), where a squeezing argument involving boundary blow-up solutions (recall the discussion related to [51] at the end of Remark 4.1) was used instead (see also [98], [100]).

Corrolarry 5.1. Let $\lambda \in(-\infty, \infty), p>1$, and $u \in C^{2}\left(\mathbb{R}^{n}\right)$ be a nonnegative solution of

$$
\Delta u=u^{p}-\lambda u \text { in } \mathbb{R}^{n} .
$$

Then, the solution u must be a constant.
Proof. If $\lambda \leq 0$, we have that $-\Delta u+u^{p} \leq 0$. Since $p>1$, it follows from Keller-Osserman theory $[142,173]$ that $u \leq 0$ on \mathbb{R}^{n} (see Theorem B. 1 below). Hence, in this case, the solution u is identically zero.

If $\lambda>0$, it follows readily from Proposition 5.1 that either $u \equiv 0$ or $u \equiv \lambda^{\frac{1}{p}}$ or $0<u(x)<$ $\lambda^{\frac{1}{p}}, x \in \mathbb{R}^{n}$. However, the latter alternative cannot occur, because of the second assertion of Corollary 3.1.

The proof of the proposition is complete.

Remark 5.2. Our method of proof, as well as that of [97, 98, 100], work for a broader class of nonlinearities. In the special case of the Allen-Cahn equation

$$
\begin{equation*}
\Delta u=u^{3}-u \text { in } \mathbb{R}^{n} \tag{5.5}
\end{equation*}
$$

by making use of Kato's inequality and Keller-Osserman theory, it was shown in [55] (see also [105], [163]) that all solutions of this equation satisfy $|u(x)| \leq 1, x \in \mathbb{R}^{n}$ (for different proofs, see Lemma 1 in [69] and Lemma 4.1 in [73]). A parabolic version of this result can be found in [163].

The importance of the above results is that they imply that there is no need for the boundedness assumption is the well known statement of the famous De Giorgi's conjecture: Let u be a bounded solution of equation (5.5) such that $u_{x_{n}}>0$. Then the level sets $\{u=\lambda\}$ are all hyperplanes, at least for dimension $n \leq 8$. There has been tremendous activity in the last years, and this conjecture has been completely resolved in dimensions $n \leq 3$ (see [120], [18]), and typically in dimensions $4 \leq n \leq 8$ (assuming that $u \rightarrow \pm 1$ pointwise as $x_{n} \rightarrow \pm \infty$, see [190]), while a counterexample which shows that the conjecture is false for $n \geq 9$ has been constructed in [91].

6. Nonexistence of nonconstant solutions with Neumann boundary CONDITIONS

6.1. A Liouville theorem arising in the study of traveling waves around an obstacle. In Theorem 6.1 of their article [39], H. Berestycki, F. Hamel, and H. Matano proved the following Liouville type result:

Theorem 6.1. Let Ω be a smooth, open, connected subset of $\mathbb{R}^{n}, n \geq 2$, with outward unit normal ν, and assume that $K=\mathbb{R}^{n} \backslash \Omega$ is compact. Let $\mu_{-} \leq u \leq \mu$ be a classical solution of

$$
\begin{cases}\Delta u=W^{\prime}(u) & \text { in } \Omega \tag{6.1}\\ \nu \nabla u=0 & \text { on } \partial \Omega \\ u(x) \rightarrow \mu & \text { as }|x| \rightarrow \infty\end{cases}
$$

where $W \in C^{2}$ satisfies conditions (a") (defined prior to Lemma 2.3) and (1.15). If K is star-shaped, then

$$
\begin{equation*}
u \equiv \mu \text { on } \bar{\Omega} \tag{6.2}
\end{equation*}
$$

In the study conducted in [39] the set K plays the role of an obstacle.
We remark that the statement in [39] also requires that $W^{\prime}(0)=0$. In our statement, we assume that $W \in C^{2}$ but, as the reader can easily verify from the proofs throughout this paper, this is just for convenience and W^{\prime} being Lipschitz is more than enough in most occasions (besides those that are related to Proposition 3.1, where we employed bifurcation techniques).

Below, we will provide an alternative proof of the above theorem. Loosely speaking, the approach of [39] consists in using a sweeping family of lower solutions of (6.1), having as building block the solution \mathbf{U} of (1.12). Our proof is in the same spirit, but we build lower solutions out of one dimensional solutions of (2.6), capitalizing on the results of Subsection 2.1. In our opinion, our proof is simpler (having knowledge of Lemma 2.1 and Proposition 2.1 herein) and more intuitive. In particular, our proof of Theorem 6.2 below is considerably simpler than the corresponding one of [39]. As will become apparent from the proofs, the
main advantage of our approach is that we use lower solutions that stay away from μ (individually). In contrast, the lower solutions of [39] tend to μ, as $|x| \rightarrow \infty$, causing technical difficulties.

Proof of Theorem 6.1: Up to a shift of the origin, one can assume without loss of generality that K, if not empty, is star-shaped with respect to 0 . By the strong maximum principle and Hopf's boundary point lemma, we deduce that

$$
u>\mu_{-} \text {on } \bar{\Omega},
$$

(we have $W^{\prime}\left(\mu_{-}\right) \leq 0$).
Under our current assumptions on W, it is easy to see that analogous assertions to those of Lemma 2.1 hold for minimizers of the energy $J\left(u ; B_{R}\right)$ with $u-\mu_{-} \in W_{0}^{1,2}\left(B_{R}\right)$. This is also the case with Proposition 2.1. Abusing notation, we will still denote these minimizers by u_{R}. From Proposition 2.1, there exists an $R_{0}>0$ such that these u_{R} 's with $n=1$ are non-degenerate for $R \geq R_{0}$ (abusing notation again). Thus, via the implicit function theorem (see [143]), we can find a continuous family of such minimizing solutions u_{R} (for $R \geq R_{0}$, with respect to the uniform topology, as described in Corollary 2.2 in [137]); in this regard, see also Remark 6.5 below. Increasing the value of R_{0}, if necessary, we may assume that

$$
\begin{equation*}
W^{\prime}\left(u_{R}(0)\right) \leq 0, \quad R \geq R_{0} \tag{6.3}
\end{equation*}
$$

recall (1.15), $\mu_{-} \leq u_{R}<\mu,(2.3)$, and (2.9). By virtue of the asymptotic behavior in (6.1), it follows at once that there exists a large $T>R_{0}$ such that

$$
\begin{equation*}
u(x)>u_{R_{0}}(0)=\max _{\bar{B}_{R_{0}}} u_{R_{0}}, \quad x \in \mathbb{R}^{n} \backslash B_{\left(T-R_{0}\right)}, \quad \text { and } \bar{K} \subset B_{\left(T-R_{0}\right)} \tag{6.4}
\end{equation*}
$$

(this is the main advantage of our proof in comparison to [39]). Let

$$
\underline{u}_{R}(r)= \begin{cases}\mu_{-}, & r \in(0, \max \{T-R, 0\}) \\ u_{R}(r-T), & r \in[\max \{T-R, 0\}, T] \\ u_{R}(0), & r>T\end{cases}
$$

with $r=|x|, x \in \mathbb{R}^{n} \backslash\{0\}$. Since $u_{R}^{\prime}(0)=0$, it follows that $\underline{u}_{R} \in C^{1}(\bar{\Omega})$. Using (2.6), we find that

$$
\Delta \underline{u}_{R}-W^{\prime}\left(\underline{u}_{R}\right)= \begin{cases}-W^{\prime}\left(\mu_{-}\right), & r \in(0, \max \{T-R, 0\}) \tag{6.5}\\ \frac{n-1}{r} u_{R}^{\prime}(r-T), & r \in(\max \{T-R, 0\}, T] \\ -W^{\prime}\left(u_{R}(0)\right), & r>T\end{cases}
$$

In particular, recalling that $W^{\prime}\left(\mu_{-}\right) \leq 0,(2.9)$ and (6.3), we find that

$$
\begin{equation*}
\underline{u}_{R} \text { is a weak lower solution of (3.1) in } \Omega \text {, if } R \geq R_{0} \text {. } \tag{6.6}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\underline{u}_{R} \leq u \text { on } \bar{\Omega}, \text { for all } R \geq R_{0} . \tag{6.7}
\end{equation*}
$$

Suppose that the claim is false, and let

$$
R_{*}=\sup \left\{R>R_{0}: \underline{u}_{s}<u \text { on } \bar{\Omega}, s \in\left(R_{0}, R\right)\right\}<\infty,
$$

(recall (6.4) which implies that the set of such numbers s is nonempty). The set $\bar{\Omega}$ is not compact, so there need not be a point $x \in \bar{\Omega}$ for which $\underline{u}_{R_{*}}(x)=u(x)$. However, there exists a sequence of points $x_{i} \in \bar{\Omega}$ such that $\underline{u}_{R_{*}}\left(x_{i}\right)-u\left(x_{i}\right)$ tends to zero as $i \rightarrow \infty$. Since $u(x) \rightarrow \mu$ as $|x| \rightarrow \infty$, whereas $\underline{u}_{R_{*}}(x) \rightarrow u_{R_{*}}(0)<\mu$ as $|x| \rightarrow \infty$, it follows at once that the x_{i} 's remain bounded (this is the main advantage of our proof in comparison to [39]). Passing to a subsequence, we find that $x_{i} \rightarrow x_{*} \in \bar{\Omega}$ with $\underline{u}_{R_{*}}\left(x_{*}\right)=u\left(x_{*}\right)$. In view of (6.1) and (6.6), we find that

$$
\begin{equation*}
\Delta\left(u-\underline{u}_{R_{*}}\right) \leq Q(x)\left(u-\underline{u}_{R_{*}}\right) \text { weakly in } \Omega \tag{6.8}
\end{equation*}
$$

where Q is a continuous function of the form (2.26). Since $u \geq u_{R_{*}}$ on $\bar{\Omega}$, the weak Harnack inequality (see [124]) tells us that the point x_{*} must lie on the boundary of Ω (otherwise, $\underline{u}_{R_{*}} \equiv u$ which is not possible by (6.5)); note also that at x_{*} we have that $\underline{u}_{R_{*}}$ is smooth so we can apply the strong maximum principle. Since $x_{*} \in \partial \Omega=\partial K$, by (6.8) and Hopf's boundary point lemma, we get that

$$
\begin{equation*}
0>\nu \nabla\left(u-\underline{u}_{R_{*}}\right)=-\nu \nabla \underline{u}_{R_{*}}=-\left(\nu \cdot x_{*}\right) \frac{\underline{u}_{R_{*}}^{\prime}\left(\left|x_{*}\right|\right)}{\left|x_{*}\right|} \text { at } x_{*}, \tag{6.9}
\end{equation*}
$$

(here $\nu=\nu_{x_{*}}$ denotes the outward unit normal to $\partial \Omega$ at x_{*}). On the other hand, since K is star-shaped with respect to the origin, we have that

$$
\begin{equation*}
x \cdot \nu_{x} \leq 0, \quad x \in \partial K \tag{6.10}
\end{equation*}
$$

Also, relation (2.9) implies that

$$
\underline{u}_{R_{*}}^{\prime}\left(\left|x_{*}\right|\right)=u_{R_{*}}^{\prime}\left(\left|x_{*}\right|-T\right)>0, \quad x \in \mathbb{R}^{n} \backslash\{0\} .
$$

The above two relations contradict (6.9). Consequently, claim (6.7) holds.
Now, letting $R \rightarrow \infty$ in (6.7), thanks to (2.3), we arrive at the sought for relation (6.2).
The proof of the theorem is complete.
Remark 6.1. In dimension $n=1$, with K a closed bounded interval, the same arguments can be adapted straightforwardly, and the conclusion of Theorem 6.1 continues to hold.

Remark 6.2. If we plainly use an n-dimensional minimizer from Lemma 2.1 (minimizing over $\mu_{-}+W_{0}^{1,2}\left(B_{R}\right)$), making use of Proposition 2.1, and the sliding argument, we can simplify the proof of the related Proposition 2.1 in [47].
Theorem 6.2. If in Theorem 6.1 we assume that $N \geq 1$ and the obstacle K to be directionally convex instead of star-shaped, then conclusion (6.2) still holds.

Proof. Without loss of generality, we may assume that K is convex in the x_{1} direction, which implies that

$$
\begin{equation*}
\left(x_{1}, \cdots, 0\right) \nu_{x} \leq 0 \quad \forall x=\left(x_{1}, \cdots, x_{n}\right) \in \partial K, \tag{6.11}
\end{equation*}
$$

where ν denotes again the unit outer normal to $\partial \Omega$ (i.e. inner to ∂K). The proof proceeds along the same lines as that of Theorem 6.1. As in the latter theorem, let u_{R} denote a minimizing solution to the equation in (2.6) with $n=1$ and $u_{R}=\mu_{-}$on ∂B_{R}. For $R, T>0$, let

$$
\underline{u}_{R}(x)= \begin{cases}u_{R}\left(x_{1}-T\right), & x_{1} \in(\max \{T-R, 0\}, T+R) \\ u_{R}\left(x_{1}+T\right), & x_{1} \in(-T-R, \min \{-T+R, 0\}), \\ u_{-}, & \text {otherwise. }\end{cases}
$$

From the equation in (2.6) and (2.9), we have that \underline{u}_{R} is a weak lower solution of (3.1) in Ω (see again [30]). As before, there exist large $R_{0}, T>R_{0}$ such that $\underline{u}_{R_{0}}<u$ on $\bar{\Omega}$, and the minimizers u_{R} vary smoothly with respect to $R \geq R_{0}$.

We claim that

$$
\begin{equation*}
\underline{u}_{R} \leq u \text { on } \bar{\Omega} \text { for all } R \geq R_{0} . \tag{6.12}
\end{equation*}
$$

Arguing by contradiction, as in the proof of Theorem 6.1, we get the existence of analogous $R_{*}>R_{0}$ and $x_{*} \in \bar{\Omega}$ (as before, the corresponding sequence $\left\{x_{i}\right\}$ is bounded). To reach a contradiction, it boils down to exclude the case $x_{*} \in \partial K$. Firstly, note that x_{*} cannot be on the hyperplane $\left\{x_{1}=0\right\}$. Indeed, in that case, we would have $R_{*}>T$, and observe that the function

$$
g(t)=\left(u-\underline{u}_{R_{*}}\right)\left(x_{*}+t e\right), \quad e=(1, \cdots, 0),
$$

would be well defined for small $|t|$ and

$$
g^{\prime}\left(0^{-}\right)-g^{\prime}\left(0^{+}\right)=u_{R_{*}}^{\prime}(-T)-u_{R_{*}}^{\prime}(T)=-2 u_{R_{*}}^{\prime}(T) \stackrel{(2.9)}{>} 0,
$$

which is not possible because g has a global minimum at $t=0$. Now, since $x_{*} \in \partial \Omega \backslash\left\{x_{1}=0\right\}$, Hopf's boundary point lemma tells us that (6.9) holds. On the other hand, recalling (2.9), at the point x_{*} we have that

$$
\left(x_{1}, \cdots, 0\right) \nabla \underline{u}_{R_{*}}=x_{1} \partial_{x_{1}} \underline{u}_{R_{*}}= \begin{cases}x_{1} u_{R_{*}}^{\prime}\left(x_{1}-T\right) & \text { if } 0<x_{1}<T \\ x_{1} u_{R_{*}}^{\prime}\left(x_{1}+T\right) & \text { if }-T<x_{1} \leq 0\end{cases}
$$

Hence, relation (2.9) yields that $\left(x_{1}, \cdots, 0\right) \nabla \underline{u}_{R_{*}} \geq 0$ at x_{*}. However, from (6.9) and the latter relation, we get that

$$
\nu \nabla \underline{u}_{R_{*}}= \begin{cases}\nu \cdot\left(x_{1}, \cdots, 0\right) \frac{1}{x_{1}} u_{R_{*}}^{\prime}\left(x_{1}-T\right) & \text { if } x_{*} \in \partial \Omega \cap\left\{x_{1}>0\right\}, \\ \nu \cdot\left(x_{1}, \cdots, 0\right) \frac{1}{x_{1}} u_{R_{*}}^{\prime}\left(x_{1}+T\right) & \text { if } x_{*} \in \partial \Omega \cap\left\{x_{1}<0\right\},\end{cases}
$$

at x_{*}, i.e., $\nu \nabla \underline{u}_{R_{*}} \leq 0$ at $x_{*} ;$ a contradiction. We have therefore shown that claim (2.19) holds.

Letting $R \rightarrow \infty$ in (6.12), as before, we arrive at (6.2).
The proof of the theorem is complete.
Remark 6.3. If in addition W satisfies relations (4.12), and (5.1) with $\mu_{+}=\mu$, then there is no need to assume that $\mu_{-} \leq u \leq \mu$ in the assertions of Theorems 6.1, 6.2 (recall the proof of Proposition 5.1).

Remark 6.4. In Theorems 6.1 and 6.2 , we assumed that the obstacle is smooth for the purposes of applying Hopf's boundary point lemma. In this regard, we refer to [122] for a generalization of the latter lemma to domains with corners.

Remark 6.5. If W satisfies (a") and $W^{\prime}(t)<0, t \in\left(\mu_{-}, \mu\right)$, then the assertions of Theorems 6.1 and 6.2 can be proven easily (recall Remark 5.1).

Adapting the proof of Theorem 6.1, using the n-dimensional u_{R}, we can show the following proposition, which will come in handy when dealing with a class of mixed boundary value problems in Section 9.

Proposition 6.1. Assume that $W \in C^{2}$ satisfies conditions (a") and (1.15). Then $u \equiv \mu$ is the only classical solution to the half-space problem

$$
\begin{cases}\Delta u=W^{\prime}(u) & \text { in } \mathbb{R}_{+}^{n}=\mathbb{R}^{n} \cap\left\{x_{n}>0\right\} \tag{6.13}\\ u_{x_{n}}=0 & \text { on } x_{n}=0\end{cases}
$$

such that $\mu_{-} \leq u \leq \mu$ and

$$
\begin{equation*}
u \rightarrow \mu, \text { uniformly in } \mathbb{R}^{n-1}, \text { as } x_{n} \rightarrow \infty \tag{6.14}
\end{equation*}
$$

Proof. As before, by the strong maximum principle and Hopf's boundary point lemma, we deduce that $u>\mu_{-}$on $\overline{\mathbb{R}_{+}^{n}}$. In fact, we claim that

$$
\begin{equation*}
\inf _{x \in \mathbb{R}_{+}^{n}} u(x)>\mu_{-} \tag{6.15}
\end{equation*}
$$

To show this, we will argue by contradiction (see also [22], [120]), namely assume that

$$
u\left(y_{j}^{\prime}, y_{j}\right) \rightarrow \mu_{-} \text {for some } y_{j}^{\prime} \in \mathbb{R}^{n-1}, y_{j} \geq 0
$$

Note that (6.14) implies that there exists an $L>0$ such that

$$
\begin{equation*}
u\left(x^{\prime}, x_{n}\right) \geq \frac{\mu_{-}+\mu}{2} \text { if } x^{\prime} \in \mathbb{R}^{n-1} \text { and } x_{n} \geq L \tag{6.16}
\end{equation*}
$$

It follows that $0 \leq y_{j} \leq L$ and, passing to a subsequence, we find that

$$
y_{j} \rightarrow y_{\infty} \in[0, L] .
$$

Now, let

$$
v_{j}(z)=u\left(z^{\prime}+y_{j}^{\prime}, z_{n}\right), z=\left(z^{\prime}, z_{n}\right) \in \mathbb{R}_{+}^{n} .
$$

Each v_{j} solves (6.13), satisfies $\mu_{-}<v_{j} \leq \mu$, and

$$
v_{j}\left(0, y_{j}\right) \rightarrow \mu_{-} .
$$

Moreover, thanks to (6.16), we have

$$
\begin{equation*}
v_{j} \geq \frac{\mu_{-}+\mu}{2} \text { on } \mathbb{R}^{n-1} \times\left\{z_{n} \geq L\right\} . \tag{6.17}
\end{equation*}
$$

Using standard elliptic regularity estimates [124], and the usual diagonal argument, passing to a subsequence, we find that

$$
v_{j} \rightarrow v_{\infty} \text { in } C_{l o c}^{1}\left(\overline{\mathbb{R}_{+}^{n}}\right)
$$

where v_{∞} solves (6.13), satisfies

$$
\mu_{-} \leq v_{\infty} \leq \mu, \text { and } v_{\infty}\left(0, y_{\infty}\right)=\mu_{-}
$$

Moreover, by virtue of (6.17), we see that v_{∞} cannot be identically equal to μ_{-}.
On the other hand, recalling that $W^{\prime}\left(\mu_{-}\right) \leq 0$, the strong maximum principle and Hopf's boundary point lemma (applied in the equation for $v_{\infty}-\mu_{-}$) imply that $v_{\infty} \equiv \mu_{-}$; a contradiction. Thus, relation (6.15) holds.

Let $u_{R}, R \geq R_{0}$, be as in Theorem 6.1 but with $B_{R} \subset \mathbb{R}^{n}$. By virtue of (6.14), there exists a large $M>R_{0}$ such that

$$
u>u_{R_{0}}(x-Q), \quad x \in B_{R_{0}}(Q), \text { where } Q=(0, \cdots, M)
$$

Then, using the family of weak lower solutions $\underline{u}_{R}(x-Q)$, where \underline{u}_{R} as in (6.19) below (keeping Q fixed), we can conclude as in Theorem 6.1. We point out that relation (6.15) is
used in order to show that the corresponding sequence to $\left\{x_{i}\right\}$ (above (6.8)) remains bounded if the corresponding R_{*} is finite.

The proof of the proposition is complete.
Remark 6.6. In light of the even " 2 -end" solutions to the equation $\Delta u+u-u^{3}=0$ in the plane, studied in $[129,151]$, we infer that the uniform assumption in (6.14) is necessary in Proposition 6.1.
6.2. The case of smooth, bounded, star-shaped domains. In analogy to Theorem 6.1, we have

Proposition 6.2. Let Ω be a smooth bounded domain of $\mathbb{R}^{n}, n \geq 1$, with outward unit normal ν, which is star-shaped with respect to some point $x_{0} \in \Omega$. Let $0 \leq u \leq \mu$ be a classical solution of

$$
\begin{cases}\Delta u=W^{\prime}(u) & \text { in } \Omega \tag{6.18}\\ \nu \nabla u=0 & \text { on } \partial \Omega\end{cases}
$$

where $W \in C^{2}$ satisfies conditions ($\mathbf{a} "$) and (1.15). There exist numbers $R_{0}, \epsilon_{1}>0$, depending only on W, such that if $\bar{B}_{R_{0}}\left(x_{0}\right) \subset \Omega$ and $u(x)>\mu-\epsilon_{1}$ on $\bar{B}_{R_{0}}\left(x_{0}\right)$ then $u \equiv \mu$.

Proof. The proof of this proposition is in the spirit of that of Theorem 6.1. Again, we may assume without loss of generality that $x_{0}=0$. Let $u_{R}, R \geq R_{0}$, be the radial minimizers that we used in Proposition 6.1. As in the first proof of Theorem 1.2, the functions

$$
\underline{u}_{R}= \begin{cases}u_{R}, & x \in B_{R} \tag{6.19}\\ \mu_{-}, & \text {otherwise }\end{cases}
$$

form a smooth family of weak lower solutions to (6.18) for $R \geq R_{0}$. Let $\epsilon_{1}=\mu-u_{R_{0}}(0)$.
Suppose that u is as stated in the proposition with the above choices of $R_{0}, \epsilon_{1}\left(\right.$ and $\left.x_{0}=0\right)$. By the strong maximum principle, and Hopf's boundary point lemma, we deduce that $u>\mu_{-}$ on $\bar{\Omega}$. Clearly, we have

$$
u>\underline{u}_{R_{0}} \text { on } \bar{\Omega} .
$$

Now, similarly to Proposition 3.1, we do "ballooning". As $R>R_{0}$ increases, there are three possibilities. The first one is that there exists some $R_{*}>R_{0}$ and an $x_{*} \in \Omega$ such that $\underline{u}_{R}<u$ on $\bar{\Omega}$ for $R \in\left[R_{0}, R_{*}\right)$ and $\underline{u}_{R_{*}}\left(x_{*}\right)=u\left(x_{*}\right)$. The second possibility is the same as the first but with $x_{*} \in \partial \Omega$. The third possibility is that u and \underline{u}_{R} never touch, namely $u>\underline{u}_{R}$ on $\bar{\Omega}$ for every $R \geq R_{0}$. We make the following observations. The first scenario cannot occur because of the strong maximum principle. In the case that the last scenario holds, letting $R \rightarrow \infty$ and recalling Lemma 2.1, we infer that $u \equiv \mu$ as desired. Therefore, it remains to exclude the second scenario, namely that \underline{u}_{R} and u first touch at a point $x_{*} \in \partial \Omega$ when $R=R_{*}>R_{0}$; note that $0<\left|x_{*}\right|<R_{*}$. To this end, we will argue by contradiction and assume that it holds. Note first that relation (6.9) remains unchanged (notation-wise). Analogously to (6.10), we have $x \nu_{x} \geq 0, x \in \partial \Omega$. Keeping in mind that, in the case at hand, we have

$$
\underline{u}_{R_{*}}^{\prime}\left(\left|x_{*}\right|\right)=u_{R_{*}}^{\prime}\left(\left|x_{*}\right|\right) \stackrel{(2,9)}{<} 0,
$$

we get a contradiction.
The proof of the proposition is complete.

Remark 6.7. If Ω is bounded, smooth and convex, there are no non-constant stable solutions to (6.18) for any W (see [70] and [165]).

In analogy to Theorem 6.2, we can show
Proposition 6.3. Let Ω be a smooth bounded domain of \mathbb{R}^{n}, $n \geq 1$, with outward unit normal ν, which is directionally star-shaped with respect to some direction $x_{i}, i=1, \cdots, n$. Let $0 \leq u \leq \mu$ be a classical solution of (6.18), where $W \in C^{2}$ satisfies conditions (a') and (1.15). There exist numbers $R_{2}, \epsilon_{2}>0$, depending only on W, such that if $u(x)>\mu-\epsilon_{2}$ on $\bar{\Omega} \cap\left\{\left|x_{i}\right| \leq R_{2}\right\}$, then $u \equiv \mu$.

Remark 6.8. The results of this section continue to hold if, instead of (a') and $0 \leq u \leq \mu$, we assume (a") (preceding Lemma 2.3) and $\mu_{-} \leq u \leq \mu$; plainly, instead of u_{R}, one uses the global minimizer of $J\left(\cdot ; B_{R}\right)$ in $\mu_{-}+W_{0}^{1,2}\left(B_{R}\right)$ which has analogous properties.

7. Extensions

Suppose that $W: \mathbb{R} \rightarrow \mathbb{R}$ is C^{2} and there are positive numbers

$$
\mu_{1}<\cdots<\mu_{m}, \quad m \geq 2
$$

such that

$$
W\left(\mu_{1}\right)>\cdots>W\left(\mu_{m}\right), \quad W^{\prime}(0) \leq 0, \quad W^{\prime}\left(\mu_{i}\right)=0, \quad i=1 \cdots, m
$$

and

$$
W(t)>W\left(\mu_{i}\right), \quad t \in\left[0, \mu_{i}\right), \quad i=1, \cdots, m
$$

Note that at the points μ_{i}, the potential W has either minima or saddles. Obviously, we can extend W outside of $\left[0, \mu_{i}\right]$, to a C^{2} potential \tilde{W}_{i}, in such a way that condition (a') is satisfied with $\tilde{W}_{i}(t)-W\left(\mu_{i}\right)$ in place of W and μ_{i} in place of $\mu, i=1, \cdots, m$. Next, consider any

$$
\begin{equation*}
\epsilon \in\left(0, \min _{i=1, \cdots, m}\left(\mu_{i}-\mu_{i-1}\right)\right) \tag{7.1}
\end{equation*}
$$

with the convention that $\mu_{0}=0$, and any

$$
\begin{equation*}
D_{i}>D_{i}^{\prime} \text { where } D_{i}^{\prime} \text { solve } \mathbf{U}_{i}\left(D_{i}^{\prime}\right)=\mu_{i}-\epsilon, \quad i=1, \cdots, m \tag{7.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{U}_{i}^{\prime \prime}(s)=W^{\prime}\left(\mathbf{U}_{i}(s)\right), s>0 ; \quad \mathbf{U}_{i}(0)=0, \lim _{s \rightarrow \infty} \mathbf{U}_{i}(s)=\mu_{i} \tag{7.3}
\end{equation*}
$$

By means of Theorem 1.2, there exist positive numbers $R_{i}^{\prime}>D_{i}$, depending only on ϵ, D_{i}, $\tilde{W}_{i}, i=1, \cdots, m$, and n, such that if Ω has nonempty C^{2}-boundary and contains a closed ball of radius R_{i}^{\prime} then there exists a solution u_{i} of

$$
\begin{equation*}
\Delta u=\tilde{W}_{i}^{\prime}(u), x \in \Omega, \quad u(x)=0, x \in \partial \Omega \tag{7.4}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
0<u_{i}(x)<\mu_{i}, \quad x \in \Omega \tag{7.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{i-1}<\mu_{i}-\epsilon<u_{i}(x), \quad x \in \Omega_{R_{i}^{\prime}}+B_{\left(R_{i}^{\prime}-D_{i}\right)}, \quad i=1, \cdots, m . \tag{7.6}
\end{equation*}
$$

In view of (7.5), we conclude that u_{i} solves the original problem (1.2). Thus, given ϵ and D_{i} as in (7.1) and (7.2) respectively, if Ω contains a closed ball of radius $R^{\prime \prime}$, where $R^{\prime \prime}=$
$\max _{i=1, \ldots, m} R_{i}^{\prime}$, we find that (1.2) has at least m positive solutions which satisfy (7.5)-(7.6). Moreover, keeping in mind Remark 2.17, we know that these solutions are stable.

These solutions may be chosen to be ordered, in the usual sense. In other words, given ϵ and D_{i} as in (7.1) and (7.2) respectively, there are at least m positive, stable solutions of (1.2) such that

$$
\begin{equation*}
u_{1}(x)<\cdots<u_{m}(x), \quad x \in \Omega, \quad 1 \leq i \leq m, \tag{7.7}
\end{equation*}
$$

and (7.5)-(7.6) hold (we have chosen to keep the same notation). Indeed, the solution u_{i} can be captured by using the constant function μ_{i} as an upper solution; and the function $\max \left\{u_{i-1}(x), \underline{u}_{P}^{i}\right\}$ as lower solution, where \underline{u}_{P}^{i} is the lower solution in (2.63) but with $\tilde{W}_{i}(t)-$ $W\left(\mu_{i}\right)$ in place of $W(t), i=1, \cdots, m$, and $u_{0} \equiv 0$. (We use again Proposition 1 in [30], see also Proposition 1 in [152], to make sure that it is a lower solution). As in the first proof of Theorem 1.2, we can sweep with the family of lower solutions $\underline{u}_{Q}^{i}, Q \in \Omega_{R_{i}^{\prime}}$ to extend the lower bound on u_{i} (due to (2.3)) from $B_{\left(R_{i}^{\prime}-D_{i}\right)}(P)$ to $\Omega_{R_{i}^{\prime}}+B_{\left(R_{i}^{\prime}-D_{i}\right)}$. Moreover, the strong inequalities in (7.7) follow from the strong maximum principle. Naturally, the obtained solutions are stable (recall Remark 2.17).

We have just proven the following:
Theorem 7.1. Suppose that Ω and W are as described in this section. Let ϵ and D_{i} be as in (7.1) and (7.2) respectively. There exist positive constants $R_{i}^{\prime}>D_{i}, i=1, \cdots, m$, depending only on ϵ, D_{i}, W and n, such that if Ω contains a closed ball of radius $R^{\prime \prime}=\max _{i=1, \cdots, m} R_{i}^{\prime}$, then problem (1.2) has at least m stable solutions u_{i}, ordered as in (7.7), such that (7.5)-(7.6) hold true.

On the other hand, assuming that Ω is bounded and smooth (a C^{3} boundary suffices), the theory of monotone dynamical systems (see Theorem 4.4 in [165]) guarantees the existence of at least $m-1$ unstable solutions $\hat{u}_{i}, i=1, \cdots, m-1$, of (1.2) such that

$$
\begin{equation*}
u_{i}(x)<\hat{u}_{i}(x)<u_{i+1}(x), \quad x \in \Omega, \quad i=1, \cdots, m-1 . \tag{7.8}
\end{equation*}
$$

This can also be shown by the well known mountain pass theorem, see [90].
In summary, we have
Theorem 7.2. Suppose that, in addition to the hypotheses of Theorem 7.1, the domain Ω is assumed to be smooth and bounded. Then, besides of the m stable solutions u_{i} that are provided by Theorem 7.1, there exist at least $m-1$ unstable solutions \hat{u}_{i} of (1.2), ordered as in (7.8) (keep in mind (7.7)).

The above theorem extends an old result of P. Hess [133], in the context of nonlinear eigenvalue problems (which are included in our setting, see below), where the additional assumption that $W^{\prime}(0)<0$ was imposed (see also [58] for an earlier result in the case $n=1$). In the same context, the case $W^{\prime}(0)=0$ was allowed in [90], at the expense of assuming that $W^{\prime}\left(\mu_{i}\right) \neq 0, i=1, \cdots, m$, and some geometric restrictions on the domain. All these references considered nonlinear eigenvalue problems of the form

$$
\begin{equation*}
\Delta u=\lambda^{2} W^{\prime}(u), x \in \mathcal{D}, \quad u(x)=0, x \in \partial \mathcal{D} \tag{7.9}
\end{equation*}
$$

where \mathcal{D} is a smooth bounded domain of \mathbb{R}^{n}. By stretching variables $x \mapsto \lambda^{-1} x$, assuming that $0 \in \mathcal{D}$ (this we can do without loss of generality), keeping the same notation, we are led to the equivalent problem:

$$
\begin{equation*}
\Delta u=W^{\prime}(u), x \in \Omega, \quad u(x)=0, x \in \partial \Omega \tag{7.10}
\end{equation*}
$$

where $\Omega \equiv \lambda \mathcal{D}$, for $\lambda>0$, which is plainly problem (1.2). If λ is sufficiently large, then certainly the domain Ω contains the ball $B_{R^{\prime \prime}}$, appearing in the assertion of Theorem 7.1, but not the other way around. In contrast to our approach of using upper and lower solutions, De Figueiredo in [90] obtained the corresponding stable solutions as minimizers of the associated energy functionals (with W suitably modified outside of $\left[0, \mu_{i}\right], i=1, \cdots, m$), and a geometric condition had to be imposed on the domain in order to ensure that they are distinct for large λ. In our case, the fact that they are distinct follows at once from (7.5) and (7.6). As we have already pointed out, in [90], the unstable solutions were constructed as mountain passes (saddle points of the energy).

Remark 7.1. It has been proven in [81] that if $W^{\prime}(t)<0, t \in(0, \mu), W^{\prime}(0)<0$, or $W^{\prime}(0)=0$ but $W^{\prime \prime}(0)<0, W^{\prime}(\mu)=0$, and $W^{\prime \prime} \geq 0$ near μ, then (7.9), with \mathcal{D} smooth and bounded, has a unique solution with values $(0, \mu)$ when λ is large, see also [22].

Remark 7.2. If \mathcal{D} is a bounded domain with C^{2}-boundary, it follows from the proof of Theorem 1.2 that the corresponding stable solutions of (7.9), provided by Theorem 7.1, develop a boundary layer of size $\mathcal{O}\left(\lambda^{-1}\right)$, as $\lambda \rightarrow \infty$, along the boundary of \mathcal{D} (see Proposition 8.1 below for more details, and compare with the proof of Theorem 1.1 in [156], as well as with Theorem 4 in [90] and Lemma 2 in [152]). Loosely speaking, this means that the stable solutions u_{i} converge uniformly to μ_{i} on the domain \mathcal{D} excluding the strip that is described by $\operatorname{dist}(x, \partial \mathcal{D}) \leq|\ln \lambda|^{\alpha} \mid \lambda^{-1}, \alpha>0$, as $\lambda \rightarrow \infty$. It follows from (7.8) that the corresponding unstable solutions of (7.9), provided by Theorem 7.2, also develop a (local) boundary layer behavior. In fact, if $W^{\prime \prime}\left(\mu_{i}\right)>0$, the fine structure of the boundary layer of the stable solution u_{i} is determined by the unique solution of the problem (7.3), see [22] and Remark 8.4 below. On the other side, under some restrictions on \mathcal{D} and W, unstable solutions possessing an upward sharp spike layer on top of u_{i}, located near the most centered part of the domain, have been constructed in [83], [84], and [137] (see also [87]). The fine structure of this interior spike layer is determined by the problem

$$
\Delta V=W^{\prime}\left(V+\mu_{i}\right) \text { in } \mathbb{R}^{n} ; \quad V(x) \rightarrow 0,|x| \rightarrow \infty
$$

8. On the boundary layer of global minimizers of singularly perturbed ELLIPTIC EQUATIONS

In this section, assuming only (a'), we will prove a general result on the size of the boundary layer of solutions of (7.9), which minimize the associated energy functional, as $\lambda \rightarrow \infty$ (recall also Remark 7.2). Setting $\varepsilon=\lambda^{-1} \rightarrow 0$, gives rise to a singular perturbation problem of the form

$$
\begin{equation*}
\varepsilon^{2} \Delta u=W^{\prime}(u), \quad x \in \mathcal{D} ; \quad u(x)=0, x \in \partial \mathcal{D} \tag{8.1}
\end{equation*}
$$

and in this regard it might be helpful to recall Remark 2.1.
We emphasize that, in contrast to previous results in this direction, as Theorem 1.1 in [156], here the size of the boundary layer is shown to be independent of the dimension n. This is due to our previous improvement over Lemma 2.2 in [156] that was made in Lemma 2.1 herein (recall the discussion preceding it, and also see Remark 8.3 below). The point is that we have not assumed any nondegeneracy on W at μ; in the case where $W^{\prime \prime}(\mu)>0$ or $n=2$, the structure of the boundary layer is well understood (recall Remark 7.2 and see Remark 8.2 below). For a different possible approach to this, see Remark 8.4 below.

The main result in this section is

Proposition 8.1. Suppose that \mathcal{D} is a bounded domain in $\mathbb{R}^{n}, n \geq 1$, with C^{2}-boundary, and let W satisfy assumption (a'). Consider any $\epsilon \in(0, \mu)$ and $D>D^{\prime}$, where D^{\prime} as in (1.11). There exists a positive constant λ_{*}, depending only on ϵ, D, \mathcal{D}, and W, such that there exists a solution u_{λ} of (7.9), which minimizes the associated energy functional, satisfies

$$
\begin{equation*}
0<u_{\lambda}(x)<\mu, \quad x \in \mathcal{D} \tag{8.2}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{\lambda}(x) \geq \mu-\epsilon, x \in \overline{\mathcal{D}}_{\left(D \lambda^{-1}\right)} \tag{8.3}
\end{equation*}
$$

provided that $\lambda \geq \lambda_{*}$ (recall the definition (1.6), and note that $\mathcal{D}_{\left(D \lambda^{-1}\right)}$ is a connected domain for large λ). (See also the comments at the end of the assertion of Lemma 2.1).
Proof. As in the second proof of Theorem 1.2, recalling the discussion leading to (7.10), there exists a smooth solution of (7.9), which minimizes the associated energy and satisfies (8.2), provided that λ is sufficiently large, say $\lambda \geq \lambda_{0}$, depending not just on W but this time also on the domain \mathcal{D}.

Since $\partial \Omega \in C^{2}$, we know that Ω satisfies the interior ball condition (see [124]). In other words, there exists a radius $r_{0}>0$ and a family of balls $B_{r_{0}}(q) \subseteq \mathcal{D}, q \in \partial \mathcal{D}_{r_{0}}$ (i.e. $q \in \mathcal{D}$ with $\left.\operatorname{dist}(q, \partial \mathcal{D})=r_{0}\right)$ such that, for each such q, the closed ball $\bar{B}_{r_{0}}(q)$ touches $\partial \mathcal{D}$ at exactly one point.

Let $\epsilon \in(0, \mu)$ and $D>D^{\prime}$, where D^{\prime} as in (1.11). It follows from Lemma 2.1 (after a simple rescaling) that there exists a $\lambda_{*}>0$, depending only on ϵ, D, W, and \mathcal{D} (in terms of r_{0}), and a global minimizer $u_{r_{0}, q}$ of the associated energy to the equation of (7.9) in $W_{0}^{1,2}\left(B_{r_{0}}(q)\right)$ such that

$$
0<u_{r_{0}, q}(x)<\mu, x \in B_{r_{0}}(q), \quad \text { and } u_{r_{0}, q}(x) \geq \mu-\epsilon, \quad x \in \bar{B}_{\left(r_{0}-D \lambda^{-1}\right)}(q),
$$

provided that $\lambda \geq \lambda_{*}$. (Without loss of generality, we may assume that $\lambda_{*}>\lambda_{0}$). Thanks to Lemma A. 3 below, we obtain that $u_{\lambda}(x) \geq u_{r_{0}, q}(x), x \in B_{r_{0}}(q)$. Since the center q was any point on $\partial \mathcal{D}_{r_{0}}$, it follows that assertion (8.3) holds true for $x \in \mathcal{D}$ such that

$$
\begin{equation*}
D \lambda^{-1} \leq \operatorname{dist}(x, \partial \mathcal{D}) \leq 2 r_{0}-D \lambda^{-1} \tag{8.4}
\end{equation*}
$$

If $W^{\prime}(t)<0, t \in[\mu-2 \epsilon, \mu)$, then the validity of (8.3), over the entire specified domain, follows at once via the second assertion of Lemma A. 2 (this is also the case when relation (2.25) holds, recall Remark 2.3). Otherwise, we proceed as follows, see also Lemma 2 in [152]: Firstly, we cover $\overline{\mathcal{D}}_{r_{0}}$ by a finite number of balls of radius $\frac{r_{0}}{2}$ with centers on $\overline{\mathcal{D}}_{r_{0}}$. Secondly, if necessary, we increase the value of λ_{*} such that $D \lambda_{*}^{-1}<\frac{r_{0}}{2}$. Lastly, we apply Lemma A. 3 to show that

$$
u_{\lambda}(x) \geq u_{r_{0}, p}(x) \geq \mu-\epsilon, \quad x \in \bar{B}_{\left(r_{0}-D \lambda^{-1}\right)}(p) \supseteq \bar{B}_{\frac{0_{0}}{2}}(p),
$$

for every center p of the finite covering of $\overline{\mathcal{D}}_{r_{0}}$, if $\lambda \geq \lambda_{*}$. We point out that this last part could have also been obtained from the weaker relation (2.12) (with the obvious modifications). The desired estimate (8.3) now follows from the comments leading to (8.4) and the above relation.

The proof of the proposition is complete.
Remark 8.1. A similar result also holds if the domain \mathcal{D} is unbounded.
Remark 8.2. The asymptotic behavior, as $\lambda \rightarrow \infty$, of uniformly bounded from above and below (with respect to λ), stable solutions of (7.9), where $\mathcal{D} \subseteq \mathbb{R}^{n}$ is bounded and smooth, has been studied in [87] in dimensions $n=2,3$ by techniques related to the proof
of De Giorgi's conjecture in low dimensions. For a related result in \mathbb{R}^{4}, see [102]. In fact, since global minimizers are stable, and since assumption (a') implies that $W^{\prime}(0) \leq 0$, the assertions of Proposition 8.1 when $n=2$ follow readily from Theorem 6 in [87]; this is also the case when $n=3$, provided that the monotonicity assumption (b) from our introduction is imposed.

Remark 8.3. Let $\epsilon, D, R^{\prime}>0$ be related as in the assertion of Lemma 2.1. By means of a simple rescaling argument (see also the proof of Theorem 1.1 in [156]), Lemmas 2.1 and A. 3 yield that the solution of (7.9), described in Proposition 8.1, satisfies $\mu-u_{\lambda}(x) \geq \epsilon$, if $\operatorname{dist}(x, \partial \mathcal{D})>D \lambda^{-1}$, provided that λ is sufficiently large (depending on ϵ, W, and \mathcal{D}). Note that relation (2.12) yields the same estimate but over the smaller region that is described by $\operatorname{dist}(x, \partial \mathcal{D})>\frac{R^{\prime}}{2} \lambda^{-1}$, which depends on n, see [156].

Remark 8.4. Let $x_{0} \in \partial \mathcal{D} \in C^{2}$ and \mathcal{R} denote the matrix in $S O(N, \mathbb{R})$ that rotates the vector $(0, \cdots, 0,1)$ onto the inner normal to $\partial \mathcal{D}$ at x_{0}. We can extract a sequence of $\lambda \rightarrow \infty$ such that any global minimizer u_{λ}, provided by Proposition 8.1, satisfies

$$
u_{\lambda}\left(x_{0}+\lambda^{-1} \mathcal{R} y\right) \rightarrow U(y)
$$

uniformly on compacts, as $\lambda \rightarrow \infty$, where U is some nonnegative, global minimizer (in the sense of (2.71), this can be seen as in page 104 of [86]) of the following half-space problem

$$
\Delta u=W^{\prime}(u), y \in \mathbb{R}_{+}^{n} ; \quad u(y)=0, y \in \partial \mathbb{R}_{+}^{n},
$$

see [22], [87] for more details, where $\mathbb{R}_{+}^{n}=\left\{\left(y_{1}, \cdots, y_{n}\right): y_{n}>0\right\}$. Furthermore, this solution is nontrivial by virtue of Remark 8.3. Hence, by the strong maximum principle, recall (\mathbf{a}^{\prime}), we deduce that U is positive in \mathbb{R}_{+}^{n}. As before, combining Lemmas 2.1 and A.3, we obtain that

$$
u(y) \rightarrow \mu \text { as } y_{n} \rightarrow \infty, \text { uniformly in }\left(y_{1}, \cdots, y_{n-1}\right) \in \mathbb{R}^{n-1}
$$

(the weaker assertion (2.12) is sufficient for this). It follows from Theorem 1.4 in [34] that U depends only on the y_{n} variable and therefore coincides with $\mathbf{U}\left(y_{n}\right)$ that was described in (1.12). (If $W^{\prime \prime}(\mu)>0$ then this has been shown earlier in [22], see also [37], [76] for the weaker case (1.15) and Proposition 10.4 below).

Remark 8.5. In [200], the author established an asymptotic expansion of $\nu \nabla u_{\varepsilon}(P), P \in \partial \mathcal{D}$, as $\varepsilon \rightarrow 0$, where u_{ε} solves (8.1) for a class of nonlinearities which in particular satisfy (c) and (1.9) (see also [76] and [116]). As usual, the vector ν denotes the unit outer normal to $\partial \mathcal{D}$ (having assumed that it is smooth and bounded). This expansion reveals that if P_{1} is the only point which attains the minimum of the mean curvature of $\partial \mathcal{D}$, then P_{1} is the steepest point of the boundary layer.

Remark 8.6. By adapting the proof of Lemma 2.3 in [156], and that of our Proposition 8.1, we can study the boundary layer of globally minimizing solutions of inhomogeneous singular perturbation problems of the form

$$
\begin{equation*}
\varepsilon^{2} \Delta u=W_{u}(u, x), x \in \mathcal{D} ; \quad u(x)=0, x \in \partial \mathcal{D} \tag{8.5}
\end{equation*}
$$

as $\varepsilon \rightarrow 0$, for appropriate righthand side that is more general than those that were considered in $[41,42,95,156]$, see also Lemma 7.13 in [100] and Section 13.3 in [160] (roughly, we want (\mathbf{a}^{\prime}) to hold with $a(x)$ instead of μ, for every fixed $x \in \overline{\mathcal{D}}$, for a smooth positive function a).

9. The singular perturbation problem with mixed boundary value CONDITIONS

Let \mathcal{D} be a bounded domain in \mathbb{R}^{n} with C^{2}-boundary. Suppose that $\partial \mathcal{D}=\Gamma_{N} \cup \Gamma_{D}$, where Γ_{N} and Γ_{D} are closed and nonempty. We consider the following mixed boundary value problem:

$$
\begin{cases}\Delta u=\lambda^{2} W^{\prime}(u) & \text { in } \mathcal{D} \tag{9.1}\\ \frac{\partial u}{\partial \nu}=0 & \text { on } \Gamma_{N} \\ u=0 & \text { on } \Gamma_{D}\end{cases}
$$

where $\lambda>0$ is a large parameter, and ν is the unit outward normal to Γ_{N} at $x \in \Gamma_{N}$. Denote

$$
W_{0, \Gamma_{D}}^{1,2}(\mathcal{D})=\left\{u \in W^{1,2}(\mathcal{D}): u=0 \text { on } \Gamma_{D}\right\} .
$$

Under assumption (a') on $W \in C^{2}$, as before, the energy functional

$$
I(u)=\int_{\mathcal{D}}\left[\frac{1}{2}|\nabla u|^{2}+\lambda^{2} W(u)\right] d x, \quad u \in W_{0, \Gamma_{D}}^{1,2}(\mathcal{D})
$$

has a global minimizer u_{λ} such that $0 \leq u_{\lambda} \leq \mu$ (do not confuse with the usual radial minimizer u_{R}). Moreover, as in the second proof of Theorem 1.2, we have that u_{λ} is nontrivial for large λ. It is more or less standard that u_{λ} fashions a weak solution to (9.1) (see Chapter 5 in [49]). Then, from the theory in [206], it follows that u_{λ} is a classical solution.

Similarly to Theorem 1.2, exploiting Proposition 6.1, we have the following result.
Proposition 9.1. Assume \mathcal{D}, W, and u_{λ}, as above and in addition that W satisfies (1.15). Given $\epsilon \in(0, \mu)$, there exist positive constants λ_{*}, M such that

$$
\begin{equation*}
u_{\lambda}(x) \geq \mu-\epsilon \text { if } \operatorname{dist}\left(x, \Gamma_{D}\right) \geq M \lambda^{-1} \text { and } \lambda \geq \lambda_{*} . \tag{9.2}
\end{equation*}
$$

Proof. By using Lemma A. 3 below, and sliding around a radial minimizer of radius $\lambda^{-1} R$ (with R fixed large, as dictated by Lemma 2.1), we infer that there exists a constant $C>0$ such that

$$
\begin{equation*}
u_{\lambda}(x) \geq \mu-\epsilon \text { if } \operatorname{dist}(x, \partial \mathcal{D}) \geq C \lambda^{-1} \tag{9.3}
\end{equation*}
$$

provided that λ is sufficiently large.
Suppose that the assertion of the proposition is false. Then, there exist $\lambda_{j} \rightarrow \infty$ and $x_{j} \in \overline{\mathcal{D}}$ such that $u_{j}=u_{\lambda_{j}}$ satisfies

$$
\begin{equation*}
u_{j}\left(x_{j}\right)<\mu-\epsilon \text { and } \lambda_{j} \operatorname{dist}\left(x_{j}, \Gamma_{D}\right) \rightarrow \infty . \tag{9.4}
\end{equation*}
$$

By virtue of (9.3), we deduce that the numbers $\lambda_{j} \operatorname{dist}\left(x_{j}, \partial \mathcal{D}\right)$ remain bounded as $j \rightarrow \infty$. In particular, for each large j, there exists a unique $\tilde{x}_{j} \in \partial \mathcal{D}$ such that $\left|x_{j}-\tilde{x}_{j}\right|=\operatorname{dist}\left(x_{j}, \partial \mathcal{D}\right)$. Let \mathcal{R}_{j} denote the matrix in $\operatorname{SO}(N, \mathbb{R})$ that rotates the vector $(0, \cdots, 0,1)$ onto the inner normal to $\partial \mathcal{D}$ at \tilde{x}_{j}, and let

$$
v_{j}(y)=u_{j}\left(x_{j}+\lambda_{j}^{-1} \mathcal{R}_{j} y\right) .
$$

Then

$$
\Delta v_{j}=W^{\prime}\left(v_{j}\right) \text { and } v_{j}(0)=u_{j}\left(x_{j}\right)
$$

Making use of standard interior and boundary elliptic regularity estimates (see [124]), and the usual diagonal-compactness argument, passing to a subsequence, we may assume that

$$
v_{j} \rightarrow v \text { in } C_{l o c}^{2}\left(\mathbb{R}^{n} \cap\left\{y_{n} \geq-\ell\right\}\right)
$$

where

$$
\ell=\lim _{j \rightarrow \infty} \lambda_{j} \operatorname{dist}\left(x_{j}, \partial \mathcal{D}\right)
$$

and v satisfies

$$
\Delta v=W^{\prime}(v) \text { in } \mathbb{R}^{n} \cap\left\{y_{n}>-\ell\right\} ; v_{y_{n}}=0 \text { if } y_{n}=-\ell
$$

see also [22], [87], [123], and [156]. (Note that, given $K>0$, the function v_{j} is defined in any set of the form $B_{K} \cap\left\{y_{n}>-\ell\right\}$, provided that j is sufficiently large, and $\left(v_{j}\right)_{y_{n}}=0$ on $B_{K} \cap\left\{y_{n}=-\ell\right\}$, thanks to (9.4); keep in mind that $\left.\lambda_{j} \operatorname{dist}\left(\tilde{x}_{j}, \Gamma_{D}\right) \rightarrow \infty\right)$. Furthermore, via (9.4), we have

$$
\begin{equation*}
v(0) \leq \mu-\epsilon \tag{9.5}
\end{equation*}
$$

Moreover, thanks to (9.3), we have $v(y) \geq \mu-2 \epsilon$ if $y_{n} \geq C^{\prime}$ for some $C^{\prime}>0$ (assuming that $2 \epsilon<\mu$). This implies that v is nontrivial. Now, as in Remark 8.4, we see that $v \rightarrow \mu$, uniformly in \mathbb{R}^{n-1}, as $y_{n} \rightarrow \infty$. On the other hand, Proposition 6.1 implies that $v \equiv \mu$ which is in contradiction to (9.5).

The proof of the proposition is complete.
Remark 9.1. Let Ω be a smooth bounded domain in \mathbb{R}^{n} which is symmetric with respect to some hyperplane, say $\left\{x_{1}=0\right\}$, and W as in Proposition 9.1 and even. Let $\mathcal{D}=\Omega \cap\left\{x_{1}>0\right\}$, $\Gamma_{N}=\partial \Omega \cap\left\{x_{1} \geq 0\right\}$, and $\Gamma_{D}=\bar{\Omega} \cap\left\{x_{1}=0\right\}$. Applying Proposition 9.1, yields a positive solution to (9.1) which satisfies (9.2). (Some care is required at the junction points on $\partial \Omega \cap\left\{x_{1}=0\right\}$, but this regularity issue may be treated by an approximation argument, as described in Remark 1.4, see also [96, 125]). Reflecting this solution oddly across the plane $\left\{x_{1}=0\right\}$, we obtain a solution to the Neumann problem

$$
\begin{equation*}
\Delta u=\lambda^{2} W^{\prime}(u) \text { in } \Omega ; \frac{\partial u}{\partial \nu} \text { on } \partial \Omega, \tag{9.6}
\end{equation*}
$$

which converges, in $L^{1}(\Omega)$, to the step function

$$
\mu \chi_{\Omega \cap\left\{x_{1}>0\right\}}-\mu \chi_{\Omega \cap\left\{x_{1}<0\right\}},
$$

as $\lambda \rightarrow \infty$ (χ denotes the usual characteristic function).
In the general case, where Ω is not symmetric, under some non-degeneracy assumptions, this type of transition-layered solutions have been constructed in two and three dimensions, via perturbation arguments, by [136], [149], and [188] (see also the references in [176]).

If $\Omega \subset \mathbb{R}^{2}$ is smooth, bounded, and symmetric with respect to the coordinate axis, in the same manner, we can construct solutions to (9.6) that converge, in $L^{1}(\Omega)$, to the step function

$$
\mu \chi_{\Omega \cap\left\{x_{1} x_{2}>0\right\}}-\mu \chi_{\Omega \cap\left\{x_{1} x_{2}<0\right\}},
$$

as $\lambda \rightarrow \infty$ (see also a related open question in [115]). Analogous constructions hold in higher dimensions, recall our discussion about "saddle" solutions from the introduction.

The paper [118] contains an analog of Theorem 1.1 for problem (9.1), with $\lambda>0$ fixed, in the case where for each $x \in \Gamma_{N}$ there is a $\rho>0$ such that $\mathcal{B}_{\rho}(x)$ is convex, where $\mathcal{B}_{\rho}(x)$ denotes the connected component of $B_{\rho}(x) \cap \mathcal{D}$ such that $x \in \overline{\mathcal{B}}_{\rho}(x)$. We believe that there is also a corresponding analog of Theorem 1.2. To support this, let us sketch the proof of the following proposition.

Proposition 9.2. Assume that $W \in C^{2}$ satisfies (a), $\lambda>0$, and \mathcal{D} as in this section with Γ_{N} convex in the above sense. Given $\epsilon \in(0, \mu)$, there exist $R_{*}, C>0$ such that the existence of $x_{*} \in \Omega$ such that $\mathcal{B}_{R_{*}}\left(x_{*}\right) \cap \Gamma_{D}=\emptyset$ implies that problem (9.1) has a positive solution $u<\mu$ verifying (1.3). Moreover, there exists a $C>0$ such that

$$
u(x) \geq \mu-\epsilon, \quad \text { if } \mathcal{G}\left(x, \Gamma_{D}\right) \geq C
$$

here $\mathcal{G}\left(x, \Gamma_{D}\right)$ denotes the geodesic distance of x from Γ_{D}, namely

$$
\mathcal{G}\left(x, \Gamma_{D}\right)=\inf _{\gamma\left(x, \Gamma_{D}\right)} \mathcal{H}^{1}\left(\gamma\left(x, \Gamma_{D}\right)\right),
$$

where \mathcal{H}^{1} is the one-dimensional Hausdorff measure and the infimum is taken on the set of the absolutely continuous paths $\gamma\left(x, \Gamma_{D}\right) \subset \overline{\mathcal{D}}$ joining x to Γ_{D}.

Proof. (Sketch) Plainly note that the function $\underline{u}=u_{R_{*}}\left(x-x_{*}\right), x \in \mathcal{B}_{R_{*}}\left(x_{*}\right)$, zero otherwise, is a lower solution to (9.1). The key point is that the convexity property of Γ_{N} implies that

$$
\frac{\partial \underline{u}}{\partial \nu} \leq 0 \text { on } \Gamma_{N} .
$$

Then, we can slide around that lower solution in \mathcal{D}, as long as we stay away from Γ_{D} (in the geodesic sense), to obtain the desired lower bound.

10. Some one-dimensional symmetry properties of certain solutions to the Allen-Cahn equation

10.1. Symmetry of entire solutions. Many authors have studied the one-dimensional symmetry of certain entire solutions to problem (1.22) with W as in (1.23), namely

$$
\begin{equation*}
\Delta u+u\left(1-u^{2}\right)=0 \text { in } \mathbb{R}^{n} \tag{10.1}
\end{equation*}
$$

Their study was motivated by De Giorgi's conjecture (recall Remark 5.2) and Gibbon's conjecture. The latter claims that any solution to (10.1) which tends to ± 1 as $x_{1} \rightarrow \pm \infty$, uniformly in \mathbb{R}^{n-1}, is one-dimensional, i.e.

$$
\begin{equation*}
u(x)=\tanh \left(\frac{x_{1}-a}{\sqrt{2}}\right) \text { for some } a \in \mathbb{R} \tag{10.2}
\end{equation*}
$$

Remark 10.1. Keep in mind that problem (10.1) is invariant under translations and rotations.

Gibbon's conjecture was proven almost at the same time by three different approaches: in [27] by probabilistic arguments, in [37] by the sliding method, and in [107] based on [33]. In fact, it was proven earlier for dimensions up to three in [120].

In this section, we will present some related new one-dimensional symmetry results, based on Proposition 3.1 as well as on an old result in [65] which does not seem to have been exploited up to this moment.

After this section was written, we found that the same result of Theorem 10.1 below, under the additional assumption that W^{\prime} is odd, was proven previously in [98]. The strategy in the latter reference was to take advantage of the oddness of W^{\prime}, adapting some techniques from [33] and [37], to show that the solution under consideration is odd (in a certain direction); this property then reduces the one-dimensional symmetry problem to Gibbon's conjecture which was already resolved (recall our previous discussion). Moreover, it was assumed in
[98] that (1.15) holds (in this regard, see Remark 10.2 below). On the other side, the proof in [98] holds for W^{\prime} Lipschitz.

Our main result is
Theorem 10.1. Let $u \in C^{2}\left(\mathbb{R}^{n}\right)$ be a solution to (10.1) such that there exists a point P on the hyperplane $\left\{x_{1}=0\right\}$, say the origin, such that $u(P)=0$ and $u>0$ in $\mathbb{R}^{n} \cap\left\{x_{1}<0\right\}$, then u is one-dimensional of the form (10.2).

Proof. As we showed in Remark 5.2, we have $|u(x)|<1, x \in \mathbb{R}^{n}$. Similarly to the proof of Proposition 3.1 (see also Remark 3.1), we have

$$
\begin{equation*}
u_{R}(x-Q)<u(x), \quad x \in B_{R}(Q), \tag{10.3}
\end{equation*}
$$

provided that $B_{R}(Q) \subset \mathbb{R}^{n} \cap\left\{x_{1}<0\right\}$, where u_{R} is a solution to problem (2.6) such that (2.2) holds. Since u is positive in $\mathbb{R}^{n} \cap\left\{x_{1}<0\right\}$, we can slide the ball $B_{R}(Q)$ (keeping R fixed) so that it is tangent to the hyperplane $\left\{x_{1}=0\right\}$ at the origin, while keeping (10.3). In other words, relation (10.3) holds, with $Q=(-R, 0, \cdots, 0)$, for all $R>0$. In particular, we have

$$
\begin{equation*}
u\left(x_{1}, 0, \cdots, 0\right)>u_{R}\left(R-x_{1}\right), \quad x_{1} \in(-R, 0), \quad(\text { with the obvious notation }), \tag{10.4}
\end{equation*}
$$

and $u(0, \cdots, 0)=u_{R}(R)=0$, for all $R>0$. By Hopf's boundary point lemma (in the equation for $u-u_{R}$), we deduce that

$$
u_{x_{1}}(0, \cdots, 0)<u_{R}^{\prime}(R) \text { for all } R>0
$$

(clearly u cannot be identically equal to $u_{R}(x-Q)$ in $\left.B_{R}(Q)\right)$. So, recalling that $u_{R}^{\prime}(R)<0$, we arrive at

$$
\left[u_{x_{1}}(\mathbf{0})\right]^{2}>\left[u_{R}^{\prime}(R)\right]^{2} \text { for all } R>0
$$

where $\mathbf{0}$ denotes the origin of \mathbb{R}^{n}. Note that the left-hand side of the above relation does not depend on R. Now, letting $R \rightarrow \infty$ (do ballooning), and recalling Lemma 2.2 (see also (2.13)), we infer that

$$
\left[u_{x_{1}}(\mathbf{0})\right]^{2} \geq 2 W(0)
$$

On the other hand, it is known that every bounded solution to (10.1) satisfies the gradient bound (2.57), and the only solutions for which equality is achieved at some point are onedimensional of the form (10.2) (see Theorem 5.1 in [65]). The above relation clearly implies that equality is achieved at $x=\mathbf{0}$ (recall that $u(\mathbf{0})=0$). Consequently, the solution u is one-dimensional.

The proof of the theorem is complete.
It is well known that there is a deep connection between the "blown-down" level sets of solutions to (10.1) and the theory of minimal surfaces, see for example [3], [91], [176] and [190]. Let us suggest a naive argument which connects Theorem 10.1 to the theory of minimal surfaces. If u satisfies the assumptions of Theorem 10.1, its zero set near the origin is a graph of x_{1} over $\mathbb{R}^{n-1}\left(u_{x_{1}}(\mathbf{0})<0\right.$, thanks to Hopf's lemma, so we can apply the implicit function theorem) which is tangent to the plane $\left\{x_{1}=0\right\}$. In the "blown-down" problem (assuming for the sake of our argument that u is a minimizer in the sense of [138]), near the origin, we get two minimal graphs (the one being a plane) which are tangent at the origin and the one is above the other. The strong maximum principle for minimal surfaces, see [78] and Lemma 1 in [192], tells us that both surfaces are planes. This property can be rephrased as saying that, as we translate a hyperplane towards a minimal surface, the first point of contact must be on the boundary.

Remark 10.2. The assertion of Theorem 10.1 remains true for (1.22), with $W \in C^{3}$ as in Proposition 3.1 and $W^{\prime}(0)=0$, provided that we assume in advance that $-\mu<u<\mu$.

Remark 10.3. It has been shown recently in [111] that any energy minimizing solution (as described in [138]) to (10.1) is one-dimensional provided that it is positive for $x_{1}<0$ (it is not required a-priori that the level set of u touches $x_{1}=0$ at some point).

Remark 10.4. The ballooning and sliding arguments of Theorem 10.1, together with the gradient bound (2.57), can give a different proof of relation (4.5) in [196], namely that any saddle solution of (1.22) satisfies $u_{x_{1}}\left(0, x_{2}\right) \rightarrow \sqrt{2 W(0)}$ as $x_{2} \rightarrow \infty$ (see also [62], [89]). In fact, we can show this without assuming (1.15). For W 's enjoying the qualitative properties of (1.23), the rate of this convergence is exponentially fast (see [89]). In higher dimensions, it has been remarked in [64] that this convergence is of algebraic rate. Combining our approach with the fact that, for such W 's, there holds

$$
u_{R}^{\prime}(R)=-\sqrt{2 W(0)}+\frac{(N-1) \int_{0}^{\mu} \sqrt{2(W(0)-W(t))} d t}{\sqrt{2 W(0)}} R^{-1}+\mathcal{O}\left(R^{-2}\right) \text { as } R \rightarrow \infty
$$

see [200], we may quantify this rate. For example, for the three-dimensional saddle solution in [5], we get
$2 W(0)-\mathcal{O}\left(\frac{1}{\sqrt{x_{2}^{2}+x_{3}^{2}}}\right) \leq u_{x_{1}}^{2}\left(0, x_{2}, x_{3}\right)+u_{x_{2}}^{2}\left(0, x_{2}, x_{3}\right)+u_{x_{3}}^{2}\left(0, x_{2}, x_{3}\right) \leq 2 W(0)$ as $x_{2}^{2}+x_{3}^{2} \rightarrow \infty$.
Similarly to Theorem 10.1, making use of Proposition 2.1 (as we did in Section 6), we can show
Proposition 10.1. Assume that $W \in C^{2}$ satisfies conditions (a") (defined prior to Lemma 2.3), (1.15), and is even. Let $\mu_{-} \leq u \leq \mu$ be a solution to (1.22) such that $u \rightarrow \mu$ as $x_{1} \rightarrow-\infty$, uniformly in \mathbb{R}^{n-1}, and is periodic in the remaining variables $\left(x_{2}, \cdots, x_{n}\right)$. Then, u is one-dimensional in x_{1} and non-increasing.
10.2. One-dimensional symmetry in half-spaces. Consider the problem

$$
\begin{cases}\Delta u=W^{\prime}(u) & \text { in } \mathbb{R}_{-}^{n}=\left\{x_{1}<0\right\} \tag{10.5}\\ u=0 & \text { on }\left\{x_{1}=0\right\} \\ u>0 & \text { in } \mathbb{R}_{-}^{n}\end{cases}
$$

As we have already seen in Remark 8.4, this type of problems arise after blowing-up, close to the boundary, singular perturbation problems of the form (8.1) (see also Proposition 9.1).

The following result was proven by Angenent in [22] by the method of moving planes:
Proposition 10.2. Assume that $W \in C^{2}$ satisfies $W^{\prime}(0)=0, W^{\prime \prime}(0)<0,(1.15), W^{\prime}(\mu)=0$, $W^{\prime \prime}(\mu)>0$, and $W^{\prime}(t)>0, t>\mu$. Then, any bounded solution to (10.5) depends only on the x_{1} variable (such solution exists and is strictly decreasing in x_{1}, recall (1.12)).

Based on Theorem 10.1, we can provide a completely different proof and remove the condition $W^{\prime \prime}(\mu)>0$. Let us mention that in [33] the authors relaxed this condition to W^{\prime} being non-decreasing near μ and allowed for W^{\prime} merely Lipschitz. In fact, the condition W^{\prime} being non-decreasing near μ is not needed, as shown in [99] with a different approach (for more general equations); this will also be the case here.

Proposition 10.3. Assume that $W \in C^{3}$ satisfies the hypotheses in Proposition 10.2, except from $W^{\prime \prime}(\mu)>0$. Then, the same assertion of the latter proposition holds.

Proof. Firstly, note that, as in Proposition 5.1, it follows that $0<u<\mu$ in \mathbb{R}_{-}^{n} (see also Lemma 2.4 in [109]). Then, arguing as in Theorem 10.1, we can show that

$$
\begin{equation*}
u_{x_{1}}^{2} \geq 2 W(0) \text { on }\left\{x_{1}=0\right\} \tag{10.6}
\end{equation*}
$$

Now, let

$$
\tilde{W}(t)=\left\{\begin{aligned}
W(t), & t \geq 0, \\
W(-t), & t<0,
\end{aligned} \quad \text { and } \tilde{u}(x)=\left\{\begin{array}{cc}
u\left(x_{1}, \cdots, x_{n}\right), & x_{1} \leq 0 \\
-u\left(-x_{1}, \cdots, x_{n}\right), & x_{1}>0
\end{array}\right.\right.
$$

Since $W^{\prime}(0)=0$, it follows that $\tilde{W} \in C^{2}$. Clearly $\tilde{u} \in C^{1}\left(\mathbb{R}^{n}\right) \cap C^{2}\left(\mathbb{R}^{n} \backslash\left\{x_{1}=0\right\}\right)$, and satisfies

$$
\Delta \tilde{u}=\tilde{W}^{\prime}(\tilde{u}) \text { in } \mathbb{R}^{n} \backslash\left\{x_{1}=0\right\} .
$$

In particular, since the righthand side belongs in $C^{\alpha}\left(\mathbb{R}^{n}\right), \alpha \in(0,1)$, standard interior Schauder estimates (see [124]) tell us that $\tilde{u} \in C^{2+\alpha}\left(\mathbb{R}^{n}\right)$. Hence, we infer that \tilde{u} is a classical bounded solution to the above equation. Moreover, by its construction \tilde{u} is odd with respect to x_{1}. It follows, via (10.6), that

$$
|\nabla \tilde{u}|^{2} \geq 2 W(\tilde{u}) \text { on }\left\{x_{1}=0\right\}
$$

Since $\tilde{W}(t) \geq 0, t \in \mathbb{R}, \tilde{W} \in C^{2}$, and vanishes at $t= \pm \mu$, Theorem 5.1 in [65] yields that \tilde{u} is one-dimensional. The assertion of the proposition follows immediately.

The proof of the proposition is complete.
Similarly, as in Section 6, making use of the non-degeneracy result of Proposition 2.1, we can show

Similarly, as in Section 6 (in particular as in Theorem 6.2), making use of the nondegeneracy result of Proposition 2.1, we can show the following proposition.

Proposition 10.4. Suppose that $W \in C^{2}$ satisfies (a') and (1.15). If $u<\mu$ is a solution to (10.5) such that $u \rightarrow \mu$ as $x_{1} \rightarrow-\infty$, uniformly in \mathbb{R}^{n-1}, then u is one-dimensional.

The above proposition was proven originally (with $W \in C^{2+\alpha}, \alpha \in(0,1)$) by Clément and Sweers in [76], see Proposition 2.5 therein, using comparison arguments with suitable one-dimensional upper and lower solutions and shooting arguments. Subsequently, it was improved in [32] (see also Theorem 1.4 in [34] and [37]).

In fact, taking advantage of a recent result of [109] which extends the gradient bound (2.57) to the case of half-spaces, under the additional assumptions $W^{\prime}(0) \leq 0$ and $u \geq 0$, we can show:

Proposition 10.5. The assertions of Propositions 10.3, 10.4 remain true if $W^{\prime}(0)<0$ and (1.9) hold, together with $W^{\prime}(t)>0, t>\mu$, for Proposition 10.3; relation (1.15) for Proposition 10.4.

Proof. As in Proposition 10.3 (recalling that Proposition 3.1 works for such W), we find that (10.6) holds. On the other side, by Theorem 1.4 in [109], we have

$$
\begin{equation*}
|\nabla u|^{2} \leq 2 W(u) \text { in } \mathbb{R}_{-}^{n-1} \tag{10.7}
\end{equation*}
$$

In particular, from (10.6) and the above relation with $x_{1}=0$ (recalling that $u=0$ there), we obtain that

$$
\begin{equation*}
u_{x_{1}}=-\sqrt{2 W(0)}, u_{x_{i}}=0, i=2, \cdots, n, \text { on }\left\{x_{1}=0\right\} . \tag{10.8}
\end{equation*}
$$

However, it has not been shown in [109] that, if equality in (10.7) is achieved at some point on $\left\{x_{1} \leq 0\right\}$, the solution is one-dimensional (actually, this was shown in the subsequent paper [110]). Rather than try to prove this, we will argue as follows. From the relation that corresponds to (10.4), recalling (2.18) and (2.19), we get

$$
u(x) \geq \mathbf{U}\left(-x_{1}\right) \quad \text { in } \mathbb{R}_{-}^{n-1}
$$

where \mathbf{U} is as in (1.12) (in the analog of (10.3), when the ball is tangent at $\left(0, x^{\prime}\right)$, we consider any strip $[-L, 0] \times \mathbb{R}^{n-1}$, look only at the x^{\prime}-slice, and let $\left.R \rightarrow \infty\right)$. On the other hand, since both $u(x)$ and $\mathbf{U}\left(-x_{1}\right)$ solve (10.5), by the strong maximum principle and Hopf's boundary point lemma (applied to the linear equation for $u-\mathbf{U}$), we deduce that either $u_{x_{1}}<-\mathbf{U}^{\prime}(0)=-\sqrt{2 W(0)}$ on $\left\{x_{1}=0\right\}$ or $u(x) \equiv \mathbf{U}\left(-x_{1}\right)$ in \mathbb{R}_{-}^{n-1}. In view of (10.8), we conclude that the latter scenario holds.

The proof of the proposition is complete.
As noted in [34], one-dimensional symmetry results for (10.5) can be thought of as extensions of the Gidas, Ni and Nirenberg [122] symmetry result for spheres, when the radius of the sphere increases to infinity while a point on the boundary is being kept fixed. This is essentially what we do in Theorem 10.1. In fact, all bounded solutions to (10.5) are onedimensional, for any $W \in C^{2}$, provided that $n=2$ or $n=3$ and $W^{\prime}(0) \leq 0$ (see Theorem 1.5 in [34], and [109] for a different approach). In this regard, see also [3] and Section 6 in [121]. Moreover, it was shown in Corollary 1.3 in [34] that any solution to (10.5) satisfies

$$
\frac{\partial u}{\partial x_{1}}<0 \text { in } \mathbb{R}_{-}^{n}
$$

provided that $n=2$ or $n \geq 3$ and $W^{\prime}(0) \leq 0$ (see [82] for earlier results with $n \geq 2, u$ bounded, and $\left.W^{\prime}(0) \leq 0\right)$.

11. One-dimensional Symmetry in convex cylindrical domains

In $[69,106]$, the authors considered energy minimizing solutions to

$$
\begin{equation*}
\Delta u+u-u^{3}=0 \text { in } \mathbb{R} \times \omega ; \frac{\partial u}{\partial \nu}=0 \text { on } \mathbb{R} \times \partial \omega \tag{11.1}
\end{equation*}
$$

such that

$$
u \rightarrow \pm 1, \text { uniformly for } x^{\prime} \in \omega, \text { as } x_{1} \rightarrow \mp \infty
$$

where ω is a smooth bounded domain of \mathbb{R}^{n-1} and ν denotes $\mathbb{R} \times \partial \omega$'s outer normal (in fact, they studied minimizers of the energy with ω merely bounded without looking at the Euler-Lagrange equation). Using a rearrangement argument, they showed that u is one dimensional (see also [56] and [141]). Related results can be found in [36].

Surprisingly enough, if $n=2$, our Proposition 10.1 implies that the limit in just one direction is needed to reach the same conclusion without even assuming that u is an energy minimizing solution. In this section, following the strategy of the previous section, we will show that the same property holds true in any dimension, provided that ω is convex. We emphasize that our approach applies to more general nonlinearities and does not make use
of the oddness of the nonlinearity in hand (recall Section 6, and see the smoothness that is required in Proposition 11.1 that follows).
11.1. A gradient bound in convex cylindrical domains. In order to apply the strategy of Section 10, we will first prove that the gradient bound (2.57) continues to hold in this setting. For the corresponding problem with Dirichlet boundary conditions, this was shown recently in [110]. As in the latter reference, we will follow the lines that were set in [65] for the whole space problem, with the necessary modifications in order to deal with the presence of the boundary. To this end, in contrast to the case of Dirichlet boundary conditions, we have to impose much higher regularity on W than [110] and also appeal to a result in [207] (originally due to [70, 165]).
Proposition 11.1. Let $\Omega=\Omega_{0} \times \mathbb{R}^{n-n_{0}}$, where $\Omega_{0} \subset \mathbb{R}^{n_{0}}$ is a bounded, smooth ($\partial \Omega$ at least C^{2}) and convex domain, and $1 \leq n_{0} \leq n$. Let $u \in C^{2}(\bar{\Omega}) \cap L^{\infty}(\Omega)$ be a solution to

$$
\begin{equation*}
\Delta u-W^{\prime}(u)=0, x \in \Omega ; \quad \frac{\partial u}{\partial \nu}=0, x \in \partial \Omega \tag{11.2}
\end{equation*}
$$

where ν denotes the outer unit normal vector to $\partial \Omega$, and $W \in C^{4}(\mathbb{R})$. If $W(t) \geq 0, t \in \mathbb{R}$, then

$$
|\nabla u|^{2}-2 W(u) \leq 0, \quad x \in \Omega
$$

Proof. Let u be as in the assertion of the proposition. We set

$$
\mathcal{F}=\left\{v \in C^{2}(\bar{\Omega}) \text { solutions of (11.2) with }|v| \leq\|u\|_{L^{\infty}(\Omega)} \text { on } \bar{\Omega}\right\} .
$$

Clearly $u \in \mathcal{F}$. Next, let

$$
P(v, x)=|\nabla v(x)|^{2}-2 W(v(x)), \quad v \in \mathcal{F}, x \in \bar{\Omega} .
$$

These type of P-functions have been extensively investigated in the PDE literature (see Chapter 5 in [204]).

By formula (2.7) in [65], for $v \in \mathcal{F}$ we have

$$
\begin{equation*}
|\nabla v(x)|^{2} \Delta P(v, x)-2 W^{\prime}(v(x)) \nabla v(x) \nabla P(v, x) \geq \frac{|\nabla P(v, x)|^{2}}{2} \text { if } x \in \Omega \text { and } \nabla v(x) \neq 0 \tag{11.3}
\end{equation*}
$$

Moreover, we find

$$
\frac{\partial}{\partial \nu} P(v, x)=\frac{\partial}{\partial \nu}\left(|\nabla v|^{2}\right)-2 W^{\prime}(v) \frac{\partial v}{\partial \nu}=\frac{\partial}{\partial \nu}\left(|\nabla v|^{2}\right) \quad \text { on } \partial \Omega
$$

Since Ω is smooth and convex, and $v \in C^{2}(\bar{\Omega})$ satisfies $\frac{\partial v}{\partial \nu}=0$ on $\partial \Omega$, it follows from Lemma 2.2 in [207] (see also [70], Lemma 5.3 in [165], and page 79 in [204]) that

$$
\frac{\partial}{\partial \nu}\left(|\nabla v|^{2}\right) \leq 0 \text { on } \partial \Omega .
$$

In turn, this implies that

$$
\begin{equation*}
\frac{\partial}{\partial \nu} P(v, x) \leq 0 \text { on } \partial \Omega \text { for every } v \in \mathcal{F} \tag{11.4}
\end{equation*}
$$

Now, we consider

$$
P_{0} \equiv \sup _{\substack{v \in \mathcal{F} \\ x \in \bar{\Omega}}} P(v, x) .
$$

By elliptic regularity theory (see [124]), there exists a constant $C>0$ such that

$$
\begin{equation*}
\|v\|_{C^{2}(\bar{\Omega})} \leq C \text { for all } v \in \mathcal{F} \tag{11.5}
\end{equation*}
$$

Hence, it follows that P_{0} is finite, i.e. $P_{0} \in \mathbb{R}$. The proposition will be proved if we show that

$$
P_{0} \leq 0 .
$$

To this end, we will argue by contradiction, namely we assume that

$$
P_{0}>0 .
$$

We then take $v_{k} \in \mathcal{F}$ and $x_{k} \in \bar{\Omega}$ such that

$$
\begin{equation*}
P_{0}-\frac{1}{k} \leq P\left(v_{k}, x_{k}\right) \leq P_{0}, \quad k \geq 1 \tag{11.6}
\end{equation*}
$$

We write

$$
x_{k}=\left(y_{k}, z_{k}\right) \in \bar{\Omega}, \quad \text { where } y_{k} \in \bar{\Omega}_{0}, z_{k} \in \mathbb{R}^{n-n_{0}},
$$

and set

$$
u_{k}(x)=v_{k}\left(x+\left(0, z_{k}\right)\right), \quad x \in \bar{\Omega} .
$$

Making use of (11.5), elliptic regularity (see [124]; this is the reason that we required $W \in$ C^{4}), passing to a subsequence, we may assume that

$$
u_{k} \rightarrow u_{\infty} \text { in } C_{l o c}^{2}(\bar{\Omega})
$$

for some $u_{\infty} \in C^{2}(\bar{\Omega})$, satisfying (11.2), with $\left|u_{\infty}\right| \leq\|u\|_{L^{\infty}(\Omega)}$ on $\bar{\Omega}$. In particular, we have $u_{\infty} \in \mathcal{F}$. We may further assume that

$$
y_{k} \rightarrow y_{\infty} \in \bar{\Omega}_{0} .
$$

From (11.6), we obtain that

$$
P\left(u_{\infty}, x_{\infty}\right)=P_{0}, \quad \text { where } x_{\infty}=\left(y_{\infty}, 0\right) \in \bar{\Omega} .
$$

Consider the set

$$
\mathcal{U}=\left\{x \in \bar{\Omega} \text { such that } P\left(u_{\infty}, x\right)=P_{0}\right\} .
$$

We already know that \mathcal{U} is nonempty (because $\left.x_{\infty} \in \mathcal{U}\right)$. Moreover, since $u_{\infty} \in C^{2}(\bar{\Omega})$, it follows that

$$
\begin{equation*}
\mathcal{U} \text { is closed in } \bar{\Omega} . \tag{11.7}
\end{equation*}
$$

We plan to prove that

$$
\begin{equation*}
\mathcal{U} \text { is open in } \bar{\Omega} . \tag{11.8}
\end{equation*}
$$

Let $x_{0} \in \mathcal{U}$. Firstly, since $W \geq 0$, observe that

$$
\left|\nabla u_{\infty}\left(x_{0}\right)\right|^{2}=P_{0}+2 W\left(u_{\infty}\left(x_{0}\right)\right) \geq P_{0}>0 .
$$

So, there exists an $r>0$ such that

$$
\left|\nabla u_{\infty}(x)\right|>0, \quad x \in B_{r}\left(x_{0}\right) \cap \bar{\Omega} .
$$

It follows from (11.3) that

$$
\Delta P\left(u_{\infty}, x\right)-2 \frac{W^{\prime}\left(u_{\infty}(x)\right)}{\left|\nabla u_{\infty}(x)\right|^{2}} \nabla u_{\infty}(x) \nabla P\left(u_{\infty}, x\right) \geq 0, \quad x \in B_{r}\left(x_{0}\right) \cap \bar{\Omega} .
$$

Keep in mind that

$$
P\left(u_{\infty}, x\right) \leq P_{0}, x \in \bar{\Omega} \text { and } P\left(u_{\infty}, x_{0}\right)=P_{0}
$$

Two cases can occur:

- If $x_{0} \in \Omega$, it follows at once from the strong maximum principle that

$$
P\left(u_{\infty}, x\right)=P_{0}, \quad x \in B_{r}\left(x_{0}\right) \cap \bar{\Omega}
$$

namely $B_{r}\left(x_{0}\right) \cap \bar{\Omega} \subset \mathcal{U}$;

- If $x_{0} \in \partial \Omega$, by (11.4) and Hopf's boundary point lemma, we are led again to the same conclusion.
Thus, we have shown that relation (11.8) holds. By (11.7), (11.8), and the connectedness of $\bar{\Omega}$, we conclude that

$$
\mathcal{U}=\bar{\Omega} .
$$

In other words, we have arrived at

$$
\begin{equation*}
\left|\nabla u_{\infty}(x)\right|^{2}=P_{0}+2 W\left(u_{\infty}(x)\right) \geq P_{0}>0, \quad x \in \bar{\Omega} . \tag{11.9}
\end{equation*}
$$

We will show that this contradicts the fact that u_{∞} is bounded. We fix a $Q \in \Omega$ and consider the gradient flow

$$
\left\{\begin{array}{l}
\gamma^{\prime}(t)=\nabla u_{\infty}(\gamma(t)) \\
\gamma(0)=Q
\end{array}\right.
$$

We note that γ is globally defined since $\nabla u_{\infty} \in L^{\infty}(\Omega)$ and γ cannot hit $\partial \Omega$ due to $\frac{\partial u_{\infty}}{\partial \nu}=0$ on $\partial \Omega$. We have

$$
\frac{d}{d t}\left[u_{\infty}(\gamma(t))\right]=\nabla u_{\infty}(\gamma(t)) \cdot \gamma^{\prime}(t)=\left|\nabla u_{\infty}(\gamma(t))\right|^{2} \stackrel{(11.9)}{\geq} P_{0}>0
$$

Thus, we get

$$
u_{\infty}(\gamma(t)) \geq u_{\infty}(Q)+P_{0} t, \quad t \geq 0
$$

which implies that u_{∞} is unbounded; a contradiction.
The proof of the proposition is complete.
11.2. The symmetry result. Our main result in this section is the following:

Proposition 11.2. Let u be a nonconstant bounded solution to (11.1) such that $u \rightarrow 1$ as $x_{1} \rightarrow-\infty$ uniformly for $x^{\prime} \in \omega$. If ω is smooth and convex, then u is one dimensional.

Proof. Let u_{R} be as in Lemma 2.1, with $n=1$ and $W^{\prime}(t)=t^{3}-t(\mu=1)$, and $R_{0}>0$ be such that the assertion of Proposition 2.1, namely that u_{R} is non-degenerate, holds for $R \geq R_{0}$. Making use of the uniform limit assumption of u as $x_{1} \rightarrow-\infty$, given any $R \geq R_{0}$, there exists a large $M>R$ such that

$$
\begin{equation*}
u>u_{R}\left(x_{1}+M\right) \text { on } \bar{\Omega} \cap\left\{\left|x_{1}+M\right| \leq R\right\} \tag{11.10}
\end{equation*}
$$

Let

$$
\underline{u}_{R, Q_{1}}\left(x_{1}, x^{\prime}\right)= \begin{cases}u_{R}\left(x_{1}+Q_{1}\right), & \left|x_{1}+Q_{1}\right|<R, x^{\prime} \in \omega \\ 0, & \text { otherwise }\end{cases}
$$

Note that

$$
\frac{\partial \underline{u}_{R, Q_{1}}}{\partial \nu}=0 \text { on } \partial \Omega .
$$

Therefore, invoking once more a result from [30], we deduce that the function $\underline{u}_{R, Q_{1}}$ is a weak lower solution to (11.1) for all $R \geq R_{0}$ and $Q_{1} \in \mathbb{R}$.

We claim that u vanishes at some point on $\mathbb{R} \times \bar{\omega}$. Indeed, if not, as in Corollary 3.1, we can let $R \rightarrow \infty$ in (11.10) (keeping M fixed, this we can do thanks to Serrin's sweeping technique) to obtain that $u \equiv 1$, which cannot happen since u is assumed to be nonconstant.

Now, by virtue of the uniform limit assumption for u as $x_{1} \rightarrow-\infty$, we may assume without loss of generality that

$$
\begin{equation*}
u>0 \text { if } x_{1}<0 \text { and } u(P)=0 \text { at some } P=\left(0, P^{\prime}\right) \text { with } P^{\prime} \in \bar{\omega}, \tag{11.11}
\end{equation*}
$$

(because (11.1) is invariant with respect to translations in the x_{1}-direction). So, in view of (11.10), we can slide $\underline{u}_{R, Q_{1}}$ along the x_{1}-axis (decreasing Q_{1}), below the graph of u, until we reach

$$
u(x)>\underline{u}_{R, R}(x), \quad x \in\left\{x_{1}<0\right\} \times \bar{\omega} .
$$

In particular, recalling (11.11), we get

$$
\begin{equation*}
u\left(x_{1}, x^{\prime}\right)>u_{R}\left(x_{1}+R\right), \quad-R<x_{1}<0, x^{\prime} \in \bar{\omega}, \text { and } u\left(0, P^{\prime}\right)=0=u_{R}(R), \text { where } P^{\prime} \in \bar{\omega} \tag{11.12}
\end{equation*}
$$

As in Proposition 10.5, letting $R \rightarrow \infty$ in (11.12) yields

$$
\begin{equation*}
u(x) \geq \mathbf{U}\left(-x_{1}\right) \text { on }\left\{x_{1} \leq 0\right\} \times \bar{\omega}, \text { and } u=\mathbf{U} \text { at } P=\left(0, P^{\prime}\right) \tag{11.13}
\end{equation*}
$$

where \mathbf{U} as in (1.12).
Two cases can occur:

- If $P^{\prime} \in \omega$, by Hopf's boundary point lemma (applied to the equation for $u-\mathbf{U}\left(-x_{1}\right)$), we deduce that either

$$
u_{x_{1}}<-\mathbf{U}^{\prime}(0)=-\sqrt{2 W(0)} \text { at } P=\left(0, P^{\prime}\right) \in \Omega
$$

or $u \equiv \mathbf{U}\left(-x_{1}\right)$ on $\left\{x_{1} \leq 0\right\} \times \bar{\omega}$. Since ω is convex and u is bounded, as in Proposition 10.5, the former scenario cannot happen by virtue of the gradient bound in Proposition 11.1 (this is the first time in the proof that we used the convexity of ω). We conclude that $u(x)=\mathbf{U}\left(-x_{1}\right)$ on $\left\{x_{1} \leq 0\right\} \times \omega$ and, by the unique continuation principle [135] (applied to the equation for $u-\mathbf{U}\left(-x_{1}\right)$), we get that $u \equiv \mathbf{U}\left(-x_{1}\right)$ in Ω, as desired.

- If $P^{\prime} \in \partial \omega$, from (11.13) and the gradient bound of Proposition 11.1, we obtain that

$$
\begin{equation*}
u_{x_{1}}\left(0, P^{\prime}\right)=-\sqrt{2 W(0)} \tag{11.14}
\end{equation*}
$$

Actually, by the strong maximum principle and Hopf's boundary point lemma, unless $u \equiv \mathbf{U}\left(-x_{1}\right)$, there is strict inequality in (11.13) at points in $\left\{x_{1}<0\right\} \times \bar{\omega}$. In the latter case, we would like to employ Hopf's boundary point lemma to get $u_{x_{1}}\left(0, P^{\prime}\right)<$ $-\sqrt{2 W(0)}$, which contradicts (11.14). However, this time we cannot fit a ball in $\left\{x_{1}<0\right\} \times \omega$ which is tangent to P. Nevertheless, with a little care, we can adapt the standard proof of Hopf's boundary point lemma to cover the situation at hand, where the point is on a corner of the boundary of the domain $\left\{x_{1}<0\right\} \times \omega$. Indeed, let

$$
\begin{equation*}
\varphi=\mathbf{U}\left(-x_{1}\right)-u . \tag{11.15}
\end{equation*}
$$

We have

$$
\Delta \varphi-c(x) \varphi=0, \varphi<0 \text { in }\left\{x_{1}<0\right\} \times \omega
$$

for some bounded function c, say $|c(x)|<d$, and $\varphi\left(0, P^{\prime}\right)=0$. For $a>0$ to be determined, let

$$
v(x)=v\left(x_{1}, x^{\prime}\right)=e^{-a\left(x_{1}+1\right)}-e^{-a}>0, \quad x_{1} \in(-1,0) \times \omega .
$$

We can choose $a>0$ sufficiently large so that

$$
\begin{equation*}
\Delta v-d v>0 \text { on }[-1,0] \times \bar{\omega} \tag{11.16}
\end{equation*}
$$

Now, let

$$
\tilde{v}=\frac{\ell}{2 v(-1)} v, \quad \text { where } \ell=\max _{x_{1}=-1} \varphi<0
$$

It follows that \tilde{v} satisfies (11.16), $\frac{\partial \tilde{v}}{\partial \nu}=0$ on $[-1,0] \times \partial \omega, \tilde{v}=\frac{\ell}{2}<0$ on $x_{1}=-1$; $\tilde{v}=0$ and

$$
\begin{equation*}
\tilde{v}_{x_{1}}>0 \text { on } x_{1}=0 . \tag{11.17}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\varphi-\tilde{v} \leq 0 \text { on }[-1,0] \times \bar{\omega} . \tag{11.18}
\end{equation*}
$$

We have that

$$
\varphi-\tilde{v} \leq 0 \text { on } x_{1}=-1 \text { and } x_{1}=0, \text { and } \frac{\partial(\varphi-\tilde{v})}{\partial \nu}=0 \text { on }[-1,0] \times \partial \omega
$$

Suppose that the maximum of $\varphi-\tilde{v}$ over $[-1,0] \times \bar{\omega}$ is positive and is achieved at some x_{0} therein. Note that

$$
\Delta(\varphi-\tilde{v})>c(x) \varphi-d \tilde{v}>(c(x)-d) \varphi>0 \text { at } x=x_{0}
$$

(we have silently used that $\varphi, \tilde{v} \in C^{2}(\bar{\Omega})$ in case $x_{0} \in \partial \Omega$). Clearly, the point x_{0} cannot be an interior point nor on $x_{1}=-1$ or $x_{1}=0$. Moreover, by the usual Hopf's boundary point lemma, the point x_{0} can neither be in $(-1,0) \times \partial \omega$. We are led to a contradiction, which means that relation (11.18) holds true. It follows in particular that the restriction of $\varphi-\tilde{v}$ on $\left\{x_{1} \leq 0\right\} \times\left\{P^{\prime}\right\}$ attains its maximum value at $x_{1}=0$, which implies, via (11.15), that

$$
u_{x_{1}}\left(0, P^{\prime}\right) \leq-\mathbf{U}^{\prime}(0)-\tilde{v}^{\prime}(0) \stackrel{(11.17)}{<}-\mathbf{U}^{\prime}(0)=-\sqrt{2 W(0)} .
$$

Recalling that $u\left(0, P^{\prime}\right)=0$, the above relation contradicts (11.14). We conclude again that $u \equiv \mathbf{U}\left(-x_{1}\right)$, as desired.
The proof of the proposition is complete.
12. One-dimensional symmetry of a partially over-determined problem in a CONVEX EPIGRAPH

In [33], the authors considered the following over-determined problem

$$
\begin{cases}\Delta u=W^{\prime}(u), & u>0 \text { in } \Omega \\ u=0, & \text { on } \partial \Omega \\ \frac{\partial u}{\partial \nu}=\alpha, & \text { constant on } \partial \Omega\end{cases}
$$

with Ω an entire epigraph, as described in (4.10), where ν denotes its outer unit normal, and W^{\prime} essentially satisfying the conditions of Proposition 3.1 but being merely Lipschitz continuous (see also Remark 3.3 herein). Assuming additionally that $\partial \Omega$ is C^{2}, asymptotically flat (see relation (7.2) in [33] for the precise definition), and $u \leq \mu$, they showed that Ω must be a half-space and u is one-dimensional. Their study was motivated by a classical result of Serrin which asserts that Ω must be a ball if it is smooth and bounded (see also the references in [187]).

The flatness assumption has been removed in low dimensions in [109], whereas its necessity in higher dimensions has been demonstrated by means of a counterexample in [94].

In this section, motivated from Section 10 and the recent paper [110], we will prove a one-dimensional symmetry result for a related partially over-determined problem in two dimensions. For more results concerning partially over-determined elliptic problems, using different approaches, we refer the interested reader to [112].

Proposition 12.1. Suppose that

$$
\Omega=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{2}>\phi\left(x_{1}\right), x_{1} \in \mathbb{R}\right\}
$$

where $\phi \in C^{2}(\mathbb{R}), \phi^{\prime \prime}\left(x_{1}\right) \geq 0$ for $x_{1} \in \mathbb{R}$, and

$$
\lim _{x_{1} \rightarrow \infty}\left(\phi\left(x_{1}\right)-a x_{1}-b\right)=0, \quad \lim _{x_{1} \rightarrow \infty} \phi^{\prime}\left(x_{1}\right)=a, \quad \lim _{x_{1} \rightarrow \infty} \phi^{\prime \prime}\left(x_{1}\right)=0
$$

for some $a \geq 0, b \in \mathbb{R}$. Let $W \in C^{2}(\mathbb{R})$ with $W(t) \geq 0, t \geq 0$, and $W^{\prime}(0) \leq 0$, and let u solve

$$
\begin{cases}\Delta u=W^{\prime}(u), & u>0 \text { in } \Omega \tag{12.1}\\ u=0, & \text { on } \partial \Omega, \\ \frac{\partial u}{\partial \nu}=\alpha, & \text { constant on } \partial \Omega \cap\left\{x_{1} \in[L, \infty)\right\}\end{cases}
$$

for some $L>0$ (as usual, by ν we denote Ω 's outer unit normal vector). If u is bounded, then Ω is the half-space $\left\{x_{2}>0\right\}$ (i.e. $\phi \equiv 0$) and u is one-dimensional (i.e. u is as in (1.12)).

Proof. Firstly, as in $[126,129]$ (see also Remark 10.4 herein), it follows that

$$
\frac{\partial u}{\partial \nu}\left(x_{1}, \phi\left(x_{1}\right)\right) \rightarrow-\sqrt{2 W(0)} \text { as } x_{1} \rightarrow \infty
$$

(in fact, making use of the symmetry results in half-spaces in \mathbb{R}^{2} of [34], we suspect that the assumed asymptotic behavior on ϕ can be considerably relaxed). Therefore, we must have

$$
\frac{\partial u}{\partial \nu}=-\sqrt{2 W(0)} \text { on } \partial \Omega \cap\left\{x_{1} \geq L\right\}
$$

In turn, via the Cauchy-Schwarz inequality, we obtain

$$
|\nabla u|^{2} \geq\left(\frac{\partial u}{\partial \nu}\right)^{2}=2 W(0)=2 W(u) \text { on } \partial \Omega \cap\left\{x_{1} \geq L\right\}
$$

Since Ω has nonnegative mean curvature, we infer from the main result of the recent article [110] (concerning problem (1.2)) that Ω is the half-space $\left\{x_{2}>0\right\}$ and u is one-dimensional. The main result of [110] says that if Ω is an epigraph of the form (4.10) with nonnegative mean curvature, and $W \in C^{1,1}$ satisfies $W \geq 0$ and $W^{\prime}(0) \leq 0$, then the corresponding gradient bound (2.57) holds for all bounded solutions to (1.2). Moreover, if equality is achieved at some point of $\bar{\Omega}$ then Ω must be a half-space and u is one-dimensional.

The proof of the proposition is complete.

Appendix A. Some useful "Comparison" lemmas of the calculus of VARIATIONS

The following is essentially Lemma 2.1 in [118].
Lemma A.1. Let $\mathcal{O} \subset \mathbb{R}^{n}$ be an open set and let $v \in W^{1,2}(\mathcal{O})$. Define $\tilde{v}: \mathcal{O} \rightarrow \mathbb{R}$ as

$$
\tilde{v}(x)= \begin{cases}v(x) & \text { if } v(x) \in[0, \mu] \\ \mu & \text { if } v(x) \in(-\infty,-\mu) \cup(\mu, \infty) \\ -v(x) & \text { if } v(x) \in(-\mu, 0)\end{cases}
$$

Then $\tilde{v} \in W^{1,2}(\mathcal{O})$ and, if W is C^{2} and satisfies (\mathbf{a}^{\prime}), we have

$$
\int_{\mathcal{O}}\left\{\frac{1}{2}|\nabla \tilde{v}|^{2}+W(\tilde{v})\right\} d x \leq \int_{\mathcal{O}}\left\{\frac{1}{2}|\nabla v|^{2}+W(v)\right\} d x .
$$

Proof. (Sketch) Firstly, note that $\tilde{v}=G(v), x \in \mathcal{O}$, for some Lipschitz (piecewise linear) function $G: \mathbb{R} \rightarrow \mathbb{R}$. Thus, $\tilde{v} \in W^{1,2}(\mathcal{O})$, see for instance [104]. Then, to finish, note that

$$
\begin{equation*}
|\nabla \tilde{v}| \leq|\nabla v| \text { and, thanks to (a'), } W(\tilde{v}) \leq W(v) \text { a.e. in } \mathcal{O}, \tag{A.1}
\end{equation*}
$$

(the former inequality may be proven as in page 93 in [144]).
The following is an extension of Lemma A.1, and is motivated from [13] (see also [14] for an extension). Our proof follows [205].

Lemma A.2. Let $\Omega \subset \mathbb{R}^{n}, n \geq 1$, be a bounded domain with Lipschitz boundary, and $W: \mathbb{R} \rightarrow \mathbb{R}$ be a C^{2} potential such that conditions (a') and (2.25) hold. Further, let $\mathcal{A} \subset \Omega$ be a bounded domain with Lipschitz boundary such that $\overline{\mathcal{A}} \subset \Omega$. Moreover, assume that

- $u \in W^{1,2}(\Omega), 0 \leq u \leq \mu$ a.e. in Ω
- $\mu-u \leq \eta$ a.e. on $\partial \mathcal{A}$, in the sense of Sobolev traces (see [104]), for some $\eta \in\left(0, \frac{d}{2}\right)$. Then, there exists $\tilde{u} \in W^{1,2}(\Omega)$ such that

$$
\left\{\begin{array}{l}
\tilde{u}(x)=u(x), \quad x \in \Omega \backslash \mathcal{A} \tag{A.2}\\
\mu-\eta \leq \tilde{u}(x) \leq \mu, \quad x \in \mathcal{A}, \\
\int_{\Omega}\left\{\frac{1}{2}|\nabla \tilde{u}|^{2}+W(\tilde{u})\right\} d x \leq \int_{\Omega}\left\{\frac{1}{2}|\nabla u|^{2}+W(u)\right\} d x
\end{array}\right.
$$

If condition (2.25) holds with strict inequality, and there exists a set $\mathcal{B} \subset \mathcal{A}$ of nonzero measure such that

$$
u<\mu-\eta \text { a.e. on } \mathcal{B},
$$

then the last relation in (A.2) holds with a strict inequality.
Proof. (Sketch) The first assertion of the lemma can be deduced similarly to Lemma A.1. Indeed, the desired function is

$$
\tilde{u}(x)= \begin{cases}\min \{\mu, \max \{u(x), 2 \mu-2 \eta-u(x)\}\}, & x \in \mathcal{A}, \tag{A.3}\\ u(x), & x \in \Omega \backslash \mathcal{A} .\end{cases}
$$

We point out that $\tilde{u} \in W^{1,2}(\mathcal{A})$ similarly to Lemma A.1, and $\tilde{u} \in W_{0}^{1,2}(\Omega)$ because \mathcal{A} has Lipschitz boundary and $\tilde{u}=u$ on $\partial \mathcal{A}$ in the sense of Sobolev traces (see again [104]). Note that if $\mu-2 \eta \leq u(x) \leq \mu$ then $\mu-d<u(x) \leq \tilde{u}(x) \leq \mu$, so relation (2.25) implies that $W(\tilde{u}(x)) \leq W(u(x))$. Furthermore, if $0 \leq u(x) \leq \mu-2 \eta$ then $\tilde{u}(x)=\mu$ and $W(\tilde{u}(x))=$ $0 \leq W(u(x))$. Also keep in mind the first relation in (A.1).

The second assertion can be shown with a little more care. Replacing u by the minimizer of the corresponding energy functional $J(\cdot ; \mathcal{A})$ (recall (2.1)) among functions $v \in W^{1,2}(\mathcal{A})$ such that $v-u \in W_{0}^{1,2}(\mathcal{A})$, we may assume that u is a smooth solution of (3.1) in \mathcal{A}. Firstly, we consider the case where

$$
\mu-2 \eta \leq u(x) \leq \mu \text { on } \overline{\mathcal{A}}
$$

In that case, we have that $\mu-d<u<\tilde{u} \leq \mu$ on \mathcal{B}. In turn, from the assumption that the inequality in (2.25) is strict, we obtain that $W(\tilde{u})<W(u)$ on \mathcal{B}. Since the set \mathcal{B} has positive measure, taking into account our previous discussion for the first assertion, we arrive at

$$
\begin{equation*}
\int_{\Omega} W(\tilde{u}) d x<\int_{\Omega} W(u) d x \tag{A.4}
\end{equation*}
$$

Hence, the second assertion holds in this case. On the other side, if

$$
0 \leq u\left(x_{0}\right)<\mu-2 \eta \text { for some } x_{0} \in \mathcal{A}
$$

then $0 \leq u \leq \mu-2 \eta \leq \tilde{u}=\mu$ in an open neighborhood of x_{0}. In this neighborhood, via (\mathbf{a}^{\prime}), we have that $W(u) \geq \min _{t \in[0, \mu-2 \eta]} W(t)>0$ while $W(\tilde{u})=0$. It follows that relation (A.4) holds in this case as well. Keeping in mind the first relation in (A.1), we conclude that the second assertion of the lemma holds.

The sketch of proof of the lemma is complete.
The following is Lemma 2.3 in [86], which is reproduced in Lemma 1 in [152] and Lemma 2.1 in [156], see also Theorem 1.4 in [117] and Lemma 3.1 in [138].

Lemma A.3. Let \mathcal{D} be a bounded domain in \mathbb{R}^{n} with smooth boundary. Let $g_{1}(x, t), g_{2}(x, t)$ be locally Lipschitz functions with respect to t, measurable functions with respect to x, and for any bounded interval I there exists a constant C such that $\sup _{x \in \mathcal{D}, t \in I}\left|g_{i}(x, t)\right| \leq C$, $i=1,2$, holds. Let

$$
G_{i}(x, t)=\int_{0}^{t} g_{i}(x, s) d s, i=1,2
$$

For $\eta_{i} \in W^{1,2}(\mathcal{D}), i=1,2$, consider the minimization problem:

$$
\inf \left\{J_{i}(u ; \mathcal{D}) \mid u-\eta_{i} \in W_{0}^{1,2}(\mathcal{D})\right\}, \quad \text { where } \quad J_{i}(u ; \mathcal{D})=\int_{\mathcal{D}}\left\{\frac{1}{2}|\nabla u|^{2}-G_{i}(x, u)\right\} d x
$$

Let $u_{i} \in W^{1,2}(\mathcal{D}), i=1,2$, be minimizers to the minimization problems above. Assume that there exist constants $m<M$ such that

- $m \leq u_{i}(x) \leq M$ a.e. for $i=1,2, x \in \mathcal{D}$,
- $g_{1}(x, t) \geq g_{2}(x, t)$ a.e. for $x \in \mathcal{D}, t \in[m, M]$,
- $M \geq \eta_{1}(x) \geq \eta_{2}(x) \geq m$ a.e. for $x \in \mathcal{D}$.

Suppose further that $\eta_{i} \in W^{2, p}(\mathcal{D})$ for any $p>1$, and that they are not identically equal on $\partial \mathcal{D}$. Then, we have

$$
u_{1}(x) \geq u_{2}(x), \quad x \in \mathcal{D} .
$$

Appendix B. A Liouville-type theorem

Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, and

$$
\left\{\begin{array}{l}
f(0)=0 \\
f(t)>0, t>0 \\
f \text { is non-decreasing and convex on }[0, \infty) \\
\int_{t_{0}}^{\infty}\left[\int_{t_{0}}^{t} f(s) d s\right]^{-\frac{1}{2}} d t<\infty \quad \forall t_{0}>0
\end{array}\right.
$$

In the mathematical literature, the above integral condition is known as Keller-Osserman condition, see [108], [142] and [173]. These conditions are clearly satisfied for

$$
\begin{equation*}
f(t)=t|t|^{p-1} \quad \text { with } p>1 \tag{B.1}
\end{equation*}
$$

The following is Theorem 4.7 in the review article [108]. As we have already discussed at the end of Remark 4.1, it was originally proven in [51] for the special case of the power nonlinearity (B.1).

Theorem B.1. Let f satisfy the above properties.
(i): Suppose $u \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ is such that $f(u) \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ and

$$
-\Delta u+f(u) \leq 0 \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right) \text { (distributionally) }
$$

Then $u \leq 0$ a.e. on \mathbb{R}^{n}.
(ii): Assume also that f is an odd function. Suppose $u \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ is such that $f(u) \in$ $L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ and

$$
-\Delta u+f(u)=0 \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)
$$

Then $u=0$ a.e. on \mathbb{R}^{n}.

Appendix C. A doubling lemma

The following is a very useful result from [179].
Lemma C.1. Let (X, d) be a complete metric space, $\Gamma \subset X, \Gamma \neq X$, and $\gamma: X \backslash \Gamma \rightarrow(0, \infty)$. Assume that γ is bounded on all compact subsets of $X \backslash \Gamma$. Given $k>0$, let $y \in X \backslash \Gamma$ be such that

$$
\gamma(y) \operatorname{dist}(y, \Gamma)>2 k
$$

Then, there exists $x \in X \backslash \Gamma$ such that

- $\gamma(x) \operatorname{dist}(x, \Gamma)>2 k$,
- $\gamma(x) \geq \gamma(y)$,
- $2 \gamma(x) \geq \gamma(z) \quad \forall z \in B_{\frac{k}{\gamma(x)}}$.

We remark that this doubling lemma is proven similarly as Baire's category theorem.

Appendix D. Some remarks on equivariant entire solutions to a class of ELLIPTIC SYSTEMS OF THE FORM $\Delta u=W_{u}(u), u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

In this appendix, motivated from Remark 2.9, we indicate how to simplify some arguments of the recent paper [12], in the case of the equations that are considered there as representative examples.

We will use exactly the same notation of [12]. This appendix should be read with a copy of [12] at hand.

In [12], the author provides a simpler proof of the recent result in [11], concerning the existence of equivariant entire solutions to a class of semilinear elliptic systems of the form $\Delta u=W_{u}(u), u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ (the same approach applies for the case $u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$). Besides of assuming that W_{u} is also equivariant, the main assumption in the latter papers, which was subsequently removed completely in [119] (recall also our Theorem 1.2 for more general results in the scalar case), is that of "Q-monotonicity" (this essentially corresponds to assumption (b) from our introduction). In all the examples of W^{\prime} 's found in $[11,12]$, for which this assumption could be verified, the function Q was plainly

$$
Q(u)=\left|u-a_{1}\right|
$$

In the sequel, except from Remark D.1, we will assume this choice of Q.
We may assume that

$$
\begin{equation*}
W(u) \geq c^{2}\left|u-a_{1}\right|^{2}=c^{2} Q^{2}(u), \quad u \in D \cap B_{M} \tag{D.1}
\end{equation*}
$$

because $a_{1} \in \mathbb{R}^{n}$ is the only minimum of $W \in C^{2}$ in $D, W>0$ in $D \backslash\left\{a_{1}\right\}$, and a_{1} is nondegenerate. Let $x_{R} \in D \cap B_{4 R}$ be any point as in the beginning of Section 6 in [12] (namely with $\left.B_{3 R}\left(x_{R}\right) \subset D\right)$. From Lemma 4.1 in [12], via the above relation (we have $\left|u_{R}\right| \leq M$), we obtain that

$$
\Delta Q\left(u_{R}\right) \geq 0 \text { in } D \text { (weakly) and } \int_{B_{2 R}\left(x_{R}\right)} Q^{2}\left(u_{R}(x)\right) d x \leq C R^{n-1}
$$

for some constant $C>0$ that is independent of R. Now, as in Remark 2.9 herein, we infer that

$$
\sup _{B_{R}\left(x_{R}\right)} Q\left(u_{R}\right) \leq C R^{-n} \int_{B_{2 R}\left(x_{R}\right)} Q\left(u_{R}\right) d x \leq C R^{-n} R^{\frac{n}{2}} R^{\frac{n-1}{2}}=C R^{-\frac{1}{2}} \rightarrow 0 \quad \text { as } R \rightarrow \infty
$$

(C is again independent of R). Let us mention that Section 6 in [12] was devoted to proving a similar relation (in fact, weaker but without making use of (D.1)) using De Giorgi's oscillation lemma and a complicated iteration scheme.

Remark D.1. Perhaps, the use of the function ϑ in [12] can be avoided (as well as the covering argument of [118]) in order to extend the domain of validity of the above bound. To support this, we note that the function $Q\left(u_{R}\right)$ is a weak lower solution to a problem of the form

$$
\Delta u=f(u)= \begin{cases}c^{2}(a-u), & 0 \leq u \leq a \tag{D.2}\\ 0, & u \geq a\end{cases}
$$

in D (see also the relation between (45) and (46) in [10]). As we observed in our introduction, the continuous patching of the radial comparison functions, analogously to (1.7) (after reflecting them), together with zero can form a weak upper solution to (D.2) which may also be chosen to lie above $Q\left(u_{R}\right)$ on $B_{R}\left(x_{R}\right)$. Then, one can extend the domain of validity of the
above estimate by plainly sliding around x_{R} in D (a fixed distance away from the boundary), using a weak version of the sliding method (the point is that the function f is Lipschitz).

Acknowledgment. I would like to thank D. Antonopoulou for her insightful comments. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7-REGPOT-2009-1) under grant agreement n 245749.

References

[1] R. Adams, Sobolev spaces, Academic Press, New York, 1975.
[2] A. Aftalion, S. Alama, and L. Bronsard, Giant vortex and the breakdown of strong pinning in a rotating Bose-Einstein condensate, Arch. Ration. Mech. Anal. 178 (2005), 247-286.
[3] G. Alberti, L. Ambrosio, and X. Cabré, On a long-standing conjecture of E. De Giorgi : symmetry in 3D for general nonlinearities and a local minimality property, Acta Applicandae Math. 65 (2001), 9-33.
[4] F. Alessio, A. Calamai, and P. Montecchiari, Saddle-type solutions for a class of semilinear elliptic equations, Adv. Differential Equations 12 (2007), 361-380.
[5] F. Alessio, and P. Montecchiari, Saddle solutions for bistable symmetric semilinear elliptic equations, Nonlinear Differ. Equ. Appl. (2012), DOI 10.1007/s00030-012-0210-1
[6] N. D. Alikakos, and D. Phillips, A remark on positively invariant regions for parabolic systems with an application arising in superconductivity, Quart. Appl. Math. 45 (1987), 75-80.
[7] N. D. Alikakos, and H. C. Simpson, A variational approach for a class of singular perturbation problems and applications, Proc. Roy. Soc. Edinburgh Sect. A 107 (1987), 27-42.
[8] N. D. Alikakos, and P. W. Bates, On the singular limit in a phase field model of phase transitions, Ann. Inst. Henri Poincaré 5 (1988), 141-178.
[9] N. Alikakos, G. Fusco, and V. Stefanopoulos, Critical spectrum and stability of interfaces for a class of reaction-diffusion equations, J. Differential Equations 126 (1996), 106-167.
[10] N. D. Alikakos, Some basic facts on the system $\Delta u-W_{u}(u)=0$, Proc. Amer. Math. Soc. 139 (2011), 153-162.
[11] N. D. Alikakos, and G. Fusco, Entire solutions to equivariant elliptic systems with variational structure, Arch. Rat. Mech. Anal. 202 (2011), 567-597.
[12] N. D. Alikakos, A new proof for the existence of an equivariant entire solution connecting the minima of the potential for the system $\Delta u-W_{u}(u)=0$, Communications in Partial Differential Equations 37 (2012), 2093-2115.
[13] N. D. Alikakos, and G. Fusco, A replacement lemma for obtaining pointwise estimates in phase transition models, arXiv:1010.5455
[14] N. D. Alikakos, and N. Katzourakis, Heteroclinic travelling waves of gradient diffusion systems, Trans. Amer. Math. Soc. 363 (2011), 1362-1397.
[15] N. D. Alikakos, and P. Smyrnelis, Existence of lattice solutions to semilinear elliptic systems with periodic potential, Electr. J. Diff. Equations 2012 (2012), 1-15.
[16] N. D. Alikakos, and A. Faliagas, The stress-energy tensor and Pohozaev's identity for systems, Acta Math. Scientia 32 (2012), 433-439.
[17] H. Amann, A uniqueness theorem for nonlinear elliptic boundary value problems, Arch. Rational Mech. Anal. 44 (1971/72), 178-181.
[18] L. Ambrosio, and X. Cabré, Entire solutions of semilinear elliptic equations in \mathbb{R}^{3} and a conjecture of De Giorgi, J. Amer. Math. Soc. 13 (2000), 725-739.
[19] A. Ambrosetti, and P. Hess, Positive solutions of asymptotically linear elliptic eigenvalue problems, J. Math. Anal. Appl. 73 (1980), 411-422.
[20] A. Ambrosetti, and A. Malchiodi, Nonlinear analysis and semilinear elliptic problems, Cambridge studies in advanced mathematics 104, Cambridge university press, 2007.
[21] N. André, and I. Shafrir, Minimization of a Ginzburg-Landau type functional with nonvanishing Dirichlet boundary condition, Calc. Var. Partial Differential Equations 7 (1998), 1-27.
[22] S. B. Angenent, Uniqueness of the solution of a semilinear boundary value problem, Math. Annalen 272 (1985), 129-138.
[23] V. I. Arnol'd, Ordinary Differential Equations, Springer-Verlag, 1992.
[24] D. G. Aronson, and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math. 30 (1978), 33-76.
[25] M. Badiale, and E. Serra, Semilinear elliptic equations for beginners existence results via the variational approach, Springer, 2011.
[26] M. Bardi, and B. Perthame, Eponential decay to stable states in phase transitions via a double Log-transformation, Comm. Partial Diff. Eqns. 15 (1990), 1649-1669.
[27] M. T. Barlow, R. F. Bass, and C. Gui, The Liouville property and a conjecture of De Giorgi, Comm. Pure Appl. Math. 53 (2000), 1007-1038.
[28] P. W. Bates, and C. Zhang, Traveling pulses for the Klein-Gordon equation on a lattice or continuum with long-range interaction, Discrete Contin. Dyn. Syst. 16 (2006), 235-252.
[29] P. W. Bates, G. Fusco, and P. Smyrnelis, Entire solutions with six-fold junctions to elliptic gradient systems with triangle symmetry, Advanced Nonlinear Studies 13 (2013), 1-12.
[30] H. Berestycki, and P. L. Lions, Some applications of the method of sub- and supersolutions, Lecture Notes in Math. 782 (1980), Springer, Berlin, 16-41.
[31] H. Berestycki, and P. L. Lions, Nonlinear scalar field equations I: Existence of a ground state, Arch. Rat. Mech. Anal. 82 (1983), 313-347.
[32] H. Berestycki, L. A. Caffarelli, and L. Nirenberg, Symmetry for elliptic equations in a half space, in Boundary value problems for partial differential equations and applications, 27-42, RMA Res. Notes Appl. Math. 29, Masson, Paris, 1993.
[33] H. Berestycki, L. A. Caffarelli, and L. Nirenberg, Monotonicity for elliptic equations in unbounded Lipschitz domains, Comm. Pure Appl. Math. 50 (1997), 1089-1111.
[34] H. Berestycki, L. Caffarelli, and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains, Ann Scuola Norm Sup Pisa 25 (1997), 69-94.
[35] H. Berestycki, and L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat. 22 (1991), 1-39.
[36] H. Berestycki, and L. Nirenberg, Travelling fronts in cylinders, Ann. Inst. H. Poincar, A-N 9 (1992), 497-572.
[37] H. Berestycki, F. Hamel, and R. Monneau, One-dimensional symmetry of bounded entire solutions of some elliptic equations, Duke Math. J. Volume 103 (2000), 375-396.
[38] H. Berestycki, F. Hamel, and N. Nadirashvili, The speed of propagation for KPP type problems. I. Periodic framework, J. Eur. Math. Soc. 7 (2005), 173-213.
[39] H. Berestycki, F. Hamel, and H. Matano, Bistable traveling waves around an obstacle, Comm. Pure Appl. Math. 62 (2009), 729-788.
[40] H. Berestycki, S. Terracini, K. Wang, and J. C. Wei, Existence and stability of entire solutions of an elliptic system modeling phase separation, preprint (2012), arXiv:1204.1038
[41] M. S. Berger, and L. E. Fraenkel, On the asymptotic solution of a nonlinear Dirichlet problem, J. Math. Mech. 19 (1970), 553-585.
[42] M. S. Berger, and L. E. Fraenkel, On singular perturbations of nonlinear operator equations, Indiana Univ. Math. J. 20 (1971), 623-31.
[43] F. Béthuel, H. Brezis, and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional, Calc. Var. Partial Differential Equations 1 (1993), 123-148.
[44] F. Béthuel, G. Orlandi, and D. Smets, Slow motion for gradient systems with equal depth multiplewell potentials, J. Differential Equations 250 (2011), 53-94.
[45] F. Béthuel, H. Brezis, and F. Hélein, Ginzburg-Landau vortices, PNLDE 13, Birkhäuser Boston, 1994.
[46] I. Birindelli, and E. Lanconelli, A negative answer to a one-dimensional symmetry problem in the Heisenberg group, Calc. Var. 18 (2003), 357-372.
[47] J. Bouhours, Bistable traveling wave passing an obstacle: perturbation results, arXiv:1207.0329
[48] A. Braides, A handbook of Γ-convergence, in Handbook of differential equations, Stationary partial differential equations, Vol. 3, edited by M. Chipot and P. Quittner, North-Holland, Amsterdam, 2006, pp. 101-213.
[49] S. C. Brenner, and L. R. Scott, The mathematical theory of finite element methods, 3rd ed., Springer, 2008.
[50] H. Brezis, and L. Véron, Removable singularities for some nonlinear elliptic equations, Arch. Rational Mech. Anal. 75 (1980), 1-6.
[51] H. Brezis, Semilinear equations in \mathbb{R}^{n} without conditions at infinity, Appl. Math. Optimization 12 (1984), 271-282.
[52] H. Brezis, and L. Oswald, Remarks on sublinear elliptic equations, Nonlin. Anal. 10 (1986), 55-64.
[53] H. Brezis, and L. Oswald, Singular solutions for some semilinear elliptic equations, Archive For Rational Mechanics And Analysis 99 (1987), 249-259.
[54] H. Brezis, Symmetry in Nonlinear PDE's, in Proc. Symp. Pure Math. 65, Florence, 1996, Amer. Math. Soc., 1999, 1-12.
[55] H. Brezis, Comments on two notes by L. Ma and X. Xu, C. R. Acad. Sc. 349 (2011), 269-271.
[56] F. Brock, An elementary proof for one-dimensionality of travelling waves in cylinders, J. Inequal. Appl. 4 (1999), 265-281.
[57] F. Brock, Rearrangements and applications to symmetry problems in PDE, in M. Chipot, editor, Handbood of Differential Equations: Stationary Partial Differential Equations, vol. 1, pages 1-61. Elsevier, 2007.
[58] K. J. Brown, and H. Budin, On the existence of positive solutions for a class of semilinear elliptic boundary value problems, SIAM J. Math. Anal. 10 (1979), 875-883.
[59] X. Cabré, Topics in regularity and qualitative properties of solutions of nonlinear elliptic equations, Discrete and Continuous Dynamical Systems 8 (2002), 331-359.
[60] X. Cabré, and A. Capella, On the stability of radial solutions of semilinear elliptic equations in all of \mathbb{R}^{n}, C. R. Acad. Sci. Paris, Ser. I 338 (2004), 769-774.
[61] X. Cabré, and J. Terra, Saddle-shaped solutions of bistable diffusion equations in all of $\mathbb{R}^{2 m}$, J. Eur. Math. Soc. 11 (2009), 819-843.
[62] X. Cabré, and J. Terra, Qualitative properties of saddle-shaped solutions to bistable diffusion equations, Communications in Partial Differential Equations 35 (2010), 1923-1957.
[63] X. Cabré, and J. Terra, Qualitative properties of saddle-shaped solutions to bistable diffusion equations, Comm. Partial Differential Equations 35 (2010), 1923-1957.
[64] X. Cabré, Uniqueness and stability of saddle-shaped solutions to the Allen-Cahn equation, J. Math. Pures Appl. 98 (2012), 239-256.
[65] L. Caffarelli, N. Garofalo, and F. Segála, A gradient bound for entire solutions of quasi-linear equations and its consequences, Comm. Pure Appl. Math. 47 (1994), 1457-1473.
[66] L. Caffarelli, and A. Córdoba, Uniform convergence of a singular perturbation problem, Comm. Pure Appl. Math. 48 (1995), 1-12.
[67] L. Caffarelli, and A. Vasseur, The De Giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics, Discrete and Continuous Dynamical Systems S 3(2010), 409 427; see also the tutorial video at http://www.youtube.com/watch?v=tchWSv6msQY
[68] L. A. Caffarelli, and F. Lin, Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries, Journal of AMS 21 (2008), 847-862.
[69] G. Carbou, Unicité et minimalité des solutions d'une équation the Ginzburg-Landau, Ann. Inst. H.Poincaré-AN 12 (1995), 305-318.
[70] R. G. Casten, and C. J. Holland, Instability results for reaction diffusion equations with Neumann boundary conditions, J. Differential Equations 27 (1978), 266-273.
[71] T. Cazenave, and A. Haraux, An introduction to semilinear evolution equations, Clarendon press, Oxford, 1998.
[72] N. Chafee, and E. F. Infante, A bifurcation problem for a nonlinear partial differential equation of parabolic type, Applicable Anal. 4 (1974/75), 17-37.
[73] X. Chen, Global asymptotic limit of solutions of the Cahn-Hilliard equation, J. Diff. Geom. 44 (1996), 262-311.
[74] C. Chicone, The monotonicity of the period function for planar hamiltonian vector fields, J. Differential equations 69 (1987), 310-321.
[75] P. Clément, and L. A. Peletier, On a nonlinear eigenvalue problem occurring in population genetics. Proc. Royal Soc. Edinburgh 100A, 85-101 (1985).
[76] P. Clément, and G. Sweers, Existence and multiplicity results for a semilinear elliptic eigenvalue problem, Ann. Scuola Norm. Sup. Pisa 14 (1987), 97-121.
[77] E. A. Coddington, and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955.
[78] T.H. Colding, and W. P. Minicozzi II, Minimal surfaces, Courant Lecture Notes in Math. 4, 1999.
[79] M. Comte, A. Haraux, and P. Mironescu, Multiplicity and stability topics in semilinear parabolic equations, Differential and Integral Equations 13 (2000), 801-811.
[80] E. N. DANCER, On the structure of solutions of an equation in catalysis theory when a parameter is large, J. Differential Equations 37 (1980), 404-437.
[81] E. N. Dancer, On the number of positive solutions of weakly nonlinear elliptic equations when a parameter is large, Proc. London Math. Soc. 53 (1986), 429-452.
[82] E. N. Dancer, Some notes on the method of moving planes, Bull. Austral. Math. Soc. 46 (1992), 425-434.
[83] E. N. Dancer, and J. Wei, On the profile of solutions with two sharp layers to a singularly perturbed semilinear Dirichlet problem, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), 691-701.
[84] E. N. Dancer, and J. Wei, On the location of spikes of solutions with two sharp layers for a singularly perturbed semilinear Dirichlet problem, J. Differential Equations 157 (1999), 82-101.
[85] E. N. Dancer, New solutions of equations on \mathbb{R}^{n}, Ann. Scuola Norm. Sup. Pisa 30 (2001), 535-563.
[86] E. N. DANCER, and S. Yan, Construction of various types of solutions for an elliptic problem, Calc. Var. Partial Differential Equations 20 (2004), 93-118.
[87] E. N. Dancer, Stable and finite Morse index solutions on \mathbb{R}^{n} or on bounded domains with small diffusion, Trans. Amer. Math. Soc. 357 (2005), 1225-1243.
[88] E. N. Dancer, Stable and finite Morse index solutions on \mathbb{R}^{n} or on bounded domains with small diffusion II, Indiana Univ. Math. J. 53 (2004), 97-108.
[89] H. Dang, P. C. Fife, and L. A. Peletier, Saddle solutions of the bistable diffusion equation, Z. Angew. Math. Phys 43 (1992), 984-998.
[90] D. G. De Figueiredo, On the existence of multiple ordered solutions of nonlinear eigenvalue problems, Nonlinear Anal. 11 (1987), 481-492.
[91] M. del Pino, M. Kowalczyk, and J. Wei, On De Giorgi conjecture in dimensions $N \geq 9$, Annals of Mathematics $\mathbf{1 7 4}$ (2011), 1485-1569.
[92] M. del Pino, M. Musso, and F. Pacard, Solutions of the Allen-Cahn equation which are invariant under screw motion, Manuscripta Mathematica 138 (2012), 273-286.
[93] M. del Pino, M. Kowalczyk, and J. Wei, Entire solutions of the Allen-Cahn equation and complete embedded minimal surfaces of finite total curvature in \mathbb{R}^{3}, J. Diff. Geometry 93 (2013), 67-131.
[94] M. del Pino, F. Pacard, and J. Wei, Overdetermined semilinear elliptic problems: the role of minimal and constant mean curvature surfaces, In preparation.
[95] J. M. De Villiers, A uniform asymptotic expansion of the positive solution of a nonlinear Dirichlet problem, Proc. London Math. Soc. 27 (1973), 701-722.
[96] S. Dipierro, Concentration of solutions for a singularly perturbed mixed problem in non smooth domains, arXiv:1202.0975v1
[97] Y. Du, and L. MA, Logistic type equations on \mathbb{R}^{n} by a squeezing method involving boundary blow-up solutions, J. London Math. Soc. 64 (2001), 107-124.
[98] Y. Du, and L. Ma, Some remarks related to De Giorgi's conjecture, Proc. Amer. Math. Soc. 131 (2002), 2415-2422.
[99] Y. Du, and Z. Guo, Symmetry for elliptic equations in a half-space without strong maximum principle, Proceedings of the Royal Society of Edinburgh 134A (2004), 259-269.
[100] Y. Du, Order structure and topological methods in nonlinear partial differential equations Vol 1: Maximum principles and applications, World Scientific, 2006.
[101] Y. Du, and K. Nakashima, Morse index of layered solutions to the heterogeneous Allen-Cahn equation, J. Differential Equations 238 (2007), 87-117.
[102] L. Dupaigne, Stable solutions of elliptic partial differential equations, CRC press, 2011.
[103] M. Efendiev, and F. Hamel, Asymptotic behavior of solutions of semilinear elliptic equations in unbounded domains: Two approaches, Advances in Mathematics 228 (2011), 1237-1261.
[104] L. C. Evans, and R. F. Gariepy, Measure theory and fine properties of functions, CRC Press, Boca Raton, FL, 1992.
[105] A. Farina, Finite-energy solutions, quantization effects and Liouville-type results for a variant of the Ginzburg-Landau systems in \mathbb{R}^{k}, Diff. Integral Eqns. 11 (1998), 975-893.
[106] A. Farina, Some remarks on a conjecture of De Giorgi, Calc. Var. 8 (1999), 233-245.
[107] A. FARINA, Symmetry for solutions of semi-linear elliptic equations in \mathbb{R}^{N} and related conjectures, Rend. Mat. Acc. Lincei 10 (1999), 255-265.
[108] A. Farina, Liouville-type theorems for elliptic problems, Handbook of differential equations: Stationary partial differential equations, Vol. IV, 60-116, Elsevier/North-Holland Amsterdam, 2007.
[109] A. Farina, and E. Valdinoci, Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems, Arch. Rational Mech. Anal. 195 (2010) 1025-1058.
[110] A. Farina, and E. Valdinoci, A pointwise gradient estimate in possibly unbounded domains with nonnegative mean curvature, Advances in Mathematics 225 (2010), 2808-2827.
[111] A. Farina, and E. Valdinoci, 1D symmetry for solutions of semilinear and quasilinear elliptic equations, Trans. Amer. Math. Soc. 363 (2011), 579-609.
[112] A. Farina, and E. Valdinoci, Partially and globally overdetermined problems of elliptic type, Advances in Nonlinear Analysis 1 (2012), 27-45.
[113] P. C. Fife, Semilinear elliptic boundary value problems with small parameters, Arch. Rational Mech. Anal. 52 (1973), 205-232.
[114] P. C. Fife, H. Kielhöfer, S. Maier-Paape, and T. Wanner, Perturbation of doubly periodic solution branches with applications to the Cahn-Hilliard equation, Physica D 100 (1997), 257-278.
[115] G. Flores, P. Padilla, and Y. Tonegawa, Higher energy solutions in the theory of phase transitions: A variational approach, J. Differential Equations 169 (2001), 190-207.
[116] J. M. Fraile, J. Lopezgomez, and J. C. Delis, On the global structure of the set of positive solutions of some semilinear elliptic boundary value problems, J. Differential Equations 123 (1995), 180-212.
[117] A. Friedman, and D. Phillips, The free boundary of a semilinear elliptic equation, Trans. Amer. Math. Soc. 282 (1984), 153-182.
[118] G. Fusco, F. Leonetti, and C. Pignotti, A uniform estimate for positive solutions of semilinear elliptic equations, Trans. Amer. Math. Soc. 363 (2011), 4285-4307.
[119] G. FUsco, Equivariant entire solutions to the elliptic system $\Delta u-W_{u}(u)=0$ for general G-invariant potentials, Calc. Var. DOI 10.1007/s00526-013-0607-7
[120] N. Ghoussoub, and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann. 311 (1998), 481-491.
[121] N. Ghoussoub, and C. Gui, On De Giorgi's conjecture in dimensions 4 and 5, Ann. of Math. 157 (2003), 313-334.
[122] B. Gidas, W. M. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243.
[123] B. Gidas, and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Diff. Equations 6 (1981), 883-901.
[124] D. Gilbarg, and N. S. Trudinger, Elliptic partial differential equations of second order, second ed., Springer-Verlag, New York, 1983.
[125] P. Grisvard, Elliptic problems in nonsmooth domains, Classics in applied mathematics, SIAM, 2011
[126] C. Gui, Hamiltonian identities for elliptic partial differential equations, J. Functional Analysis 254 (2008), 904-933.
[127] C. Gui, and F. Zhou, Asymptotic behavior of oscillating radial solutions to certain nonlinear equations, Methods Appl. Anal. 15 (2008), 285-296.
[128] C. Gui, Symmetry of traveling wave solutions to the Allen-Cahn Equation in \mathbb{R}^{2}, Arch. Rational Mech. Anal. 203 (2012), 1037-1065.
[129] C. Gui, Symmetry of some entire solutions to the Allen-Cahn equation in two dimensions, J. Differential Equations 252 (2012), 5853-5874.
[130] M. Gurtin, and H. Matano, On the structure of equilibrium phase transitions within the gradient theory of fluids, Quart. Appl. Math. 46 (1988), 301-317.
[131] D. B. Henry, J. F. Perez, and W. F. Wreszinski, Stability theory for solitary-wave solutions of scalar field equations, Commun. Math. Phys. 85 (1982), 351-361.
[132] A. Haraux, and P. Polacik, Convergence to a positive equilibrium for some nonlinear evolution equations in a ball, Acta Math. Univ. Comenian. (N.S.) 61 (1992), 129-141.
[133] P. Hess, On multiple solutions of nonlinear elliptic eigenvalue problems, Comm. Partial Diff. Eqns. 6 (1981), 951-961.
[134] M. Holzmann, and H. Kielhöfer, Uniqueness of global positive solution branches of nonlinear elliptic problems, Math. Ann. 300 (1994), 221-241.
[135] L. Hörmander, The analysis of linear partial differential operators III: Pseudo-differential operators, Springer-Verlag, 1985.
[136] T. Iibun, and K. Sakamoto, Internal layers intersecting the boundary of domain in the Allen-Cahn equation, Japan Journal of Industrial and Applied Mathematics 18 (2001), 697-738.
[137] J. Jang, On spike solutions of singularly perturbed semilinear Dirichlet problems, J. Differential Equations 114 (1994), 370-395.
[138] D. Jerison, and R. Monneau, Towards a counter-example to a conjecture of De Giorgi in high dimensions, Annali di Matematica 183 (2004), 439-467.
[139] R. Kajikiya, A priori estimates of positive solutions for sublinear elliptic equations, Trans. Amer. Math. Soc. 361 (2009), 3793-3815.
[140] G. Karali, and C. Sourdis, The ground state of a Gross-Pitaevskii energy with general potential in the Thomas-Fermi limit, arXiv:1205.5997v2
[141] B. Kawohl, Symmetrization-or how to prove symmetry of solutions to a PDE, in Partial differential equations (Praha, 1998), 214-229, Chapman and Hall/CRC Res. Notes Math. 406, Chapman and Hall/CRC, Boca Raton, FL, 2000.
[142] J. B. Keller, On solutions of $\Delta u=f(u)$, Comm. Pure Appl. Math. 10 (1957), 503-510.
[143] H. Kielhöfer, Bifurcation theory : An introduction with applications to PDE's, Applied mathematical sciences 156, Springer-Verlag, New York, 2004.
[144] D. Kinderlehrer, and G. Stampacchia, An introduction to variational inequalities and their applications, Academic Press, New York, 1980.
[145] A. Kiselev, J-M. Roquejoffre, and L. Ryzhik, PDEs for a Metro ride, lecture notes available online at http://math.stanford.edu/ ryzhik/STANF272-12/lect-notes-12.pdf
[146] P. Korman, Solution curves for semilinear equations on a ball, Proc. Amer. Math. Soc. 125 (1997), 1997-2005.
[147] P. Korman, Global solution curve for a class of semilinear equations, Electronic Journal of Differential Equations, Conference 01, (1997), 119-127.
[148] P. Korman, Global solution curves for semilinear elliptic equations, World Scientific, 2012.
[149] M. Kowalczyk, On the existence and Morse index of solutions to the Allen-Cahn equation in two dimensions, Annali Matematica Pura et Applicata 184 (2005), 17-52.
[150] M. Kowalczyk, and Y. Liu, Nondegeneracy of the saddle solution of the Allen-Cahn equation, Proc. Amer. Math. Soc. 139 (2011), 4319-4329.
[151] M. Kowalczyk, Y. Liu, and F. Pacard, The space of 4-ended solutions to the Allen-Cahn equation in the plane, Ann. I. H. Poincaré AN 29 (2012), 761-781.
[152] K. Kurata, and H. Matsuzawa, Multiple stable patterns in a balanced bistable equation with heterogeneous environments, Applicable Analysis 89 (2010), 1023-1035.
[153] I. Kuzin, and S. Pohozaev, Entire solutions of semilinear elliptic equations, Birkhäuser, 1997.
[154] L. Lassoued, and P. Mironescu, Ginzburg-Landau type energy with discontinuous constraint, J. Anal. Math. 77 (1999), 1-26.
[155] J. Leray, and J. Schauder, Topologie et équations fonctionelles, Ann. Sci. Ec. Norm. Super. 51 (1934), 45-78.
[156] G. Li, J. Yang, and S. Yan, Solutions with boundary layer and positive peak for an elliptic Dirichlet problem, Proc. Royal Soc. Edinburgh 134A (2004), 515-536.
[157] F. Li, and K. Nakashima, Transition layers for a spatially inhomogeneous Allen-Cahn equation in multi-dimensional domains, Discrete Cont. Dyn. Syst. 32 (2012), 1391-1420.
[158] C. S. Lin, and W.-M. Ni, A counterexample to the nodal domain conjecture and a related semilinear equation, Proc. Amer. Math. Soc. 102 (1988), 271-277.
[159] F-H. Lin, Static and moving vortices in Ginzburg-Landau theories, in Nonlinear partial differential equations in geometry and physics (Knoxville, TN, 1995), 71-111, Progr. Nonlinear Differential Equations Appl. 29, Birkhäuser, Basel, 1997.
[160] J. L. Lions, Perturbations singuliéres dans les problémes aux limites et en contrôle optimal, Lecture notes in mathematics 323, Springer-Verlag, 1973.
[161] P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Review $\mathbf{2 4}$ (1982), 441-467.
[162] O. Lopes, Radial and nonradial minimizers for some radially symmetric functionals, Electr. J. Diff. Equations 1996 (1996), 1-14.
[163] L. MA, Liouville type theorems for Lichnerowicz equations and Ginzburg-Landau equation: Survey, Advances in Pure Mathematics 1 (2011), 99-104.
[164] S. Maier-PaApe, and T. Wanner, Solutions of nonlinear planar elliptic problems with triangle symmetry, J. Differential Equations 136 (1997), 1-34.
[165] H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci. 15 (1979), 401-454.
[166] P. Mironescu, and V. Radulescu, Periodic solutions of the equation $-\Delta v=v\left(1-|v|^{2}\right)$, Houston Math. Journal 20 (1994), 653-670.
[167] C. B. Morrey Jr., Multiple integrals in the calculus of variations, Springer-Verlag, New York, 1966.
[168] W.-M. Nı, On the elliptic eqation $\Delta U+K U^{(n+2) /(n-2)}=0$, its generalization and application in geometry, Indiana J. Math. 4 (1982), 493-529.
[169] W.-M. Ni, Qualitative properties of solutions to elliptic problems, in M. Chipot and P. Quittner, editors, Handbood of Differential Equations: Stationary Partial Differential Equations, vol. 1, pages 157-233. Elsevier, 2004.
[170] E. S. Noussair, On semilinear elliptic boundary value problems in unbounded domains, J. Differential Equations 41 (1981), 334-348.
[171] E. S. Noussair, and C. A. Swanson, Global positive solutions of semilinear elliptic problems, Pacific J. Math. 115 (1984), 177-192.
[172] A. Ogata, On existence and multiplicity theorems for semilinear elliptic equations in exterior domains, Funkcial. Ekvac. 27 (1984), 281-299.
[173] R. Osserman, On the inequality $\Delta u \geq f(u)$, Pacific J. Math. 7 (1957), 1641-1647.
[174] T. Ouyang, and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problems, J. Differential Equations 146 (1998), 121-156.
[175] T. OUYANG, and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problem II, J. Differential Equations 158 (1999), 94-151.
[176] F. Pacard, Geometric aspects of the Allen-Cahn equation, Matematica Contemporânea 37 (2009), 91-122.
[177] R. S. Palais, The principle of symmetric criticality, Comm. Math. Phys. 69 (1979), 19-30.
[178] L. A. Peletier, and J. Serrin, Uniqueness of positive solutions of semilinear equations in \mathbb{R}^{n}, Arch. Rat. Mech. Anal. 81 (1983), 181-197.
[179] P. Polacik, P. Quittner, and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems, I: Elliptic equations and systems, Duke Math. J. 139 (2007), 555-579.
[180] P. Polacik, Symmetry of nonnegative solutions of elliptic equations via a result of Serrin, Comm. Partial Differential Equations 36 (2011), 657-669.
[181] M. H. Protter, and H. F. Weinberger, Maximum principles in differential equations, Englewood Cliffs, NJ, Prentice-Hall, 1967.
[182] P. Quittner, and P. Souplet, Symmetry of components for semilinear elliptic systems, SIAM J. Math. Anal. 44 (2012), 2545-2559.
[183] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. in Math., Vol. 65, Providence, RI: A.M.S., 1986.
[184] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487-513.
[185] P. H. Rabinowitz, Pairs of positive solutions of nonlinear elliptic partial differential equations, Indiana Univ. Math. J. 23 (1973/74), 173-186.
[186] V. Radulescu, Qualitative analysis of nonlinear elliptic partial differential equations, Hindawi Publ. Corp., 2008.
[187] A. Ros, and P. Sicbaldi, Geometry and topology of some overdetermined elliptic problems, arXiv:1202.5167v2
[188] K. Sakamoto, Existence and stability of three-dimensional boundary-interior layers for the AllenCahn equation, Taiwanese Journal of Mathematics 9 (2005), 331-358.
[189] D. H. Sattinger, Topics in stability and bifurcation theory, Lecture Notes in Math. 309, Springer, Berlin, 1973.
[190] O. Savin, Regularity of flat level sets in phase transitions, Ann. of Math. 169 (2009), 41-78.
[191] M. Schatzman, On the stability of the saddle solution of Allen-Cahn's equation. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), 1241-1275.
[192] R. M. Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces, J. Differential Geom. 18 (1983), 791-809.
[193] R. M. Schoen, Analytic aspects of the harmonic map problem, Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983), 321-358, Math. Sci. Res. Inst. Publ. 2, Springer, New York, 1984.
[194] J. Serrin, A remark on the preceding paper of Amann, Arch. Rational Mech. Anal. 44 (1971/72), 182-186.
[195] J. Shi, Semilinear Neumann boundary value problems on a rectangle, Trans. Amer. Math. Soc. 354 (2002), 3117-3154.
[196] J. SHI, Saddle solutions of the balanced bistable diffusion equation, Comm. Pure Appl. Math. 55 (2002), 815-830.
[197] J. Shi, Asymptotic spatial patterns and entire solutions of semilinear elliptic equations, Proceedings of the Ryukoku Workshop 2003, 2003.
[198] J. Shi, and R. Shivaji, Persistence in reaction diffusion models with weak allee effect, J. Math. Biol. 52 (2006), 807-829.
[199] J. SHI, Solution set of semilinear elliptic equations: Global bifurcation and exact multyplicity, World Scientific Publ., 2008.
[200] T. Shibata, The steepest point of the boundary layers of singularly perturbed semilinear elliptic problems, Trans. Amer. Math. Soc. 356 (2004), 2123-2135.
[201] I. M. Sigal, Applied Partial Differential Equations MAT1508/APM446, Lecture notes that are available on the author's webpage, 2012.
[202] J. Smoller, and A. Wasserman, Existence, uniqueness, and non-degeneracy of positive solutions of semilinear elliptic equations, Commun. Math. Phys. 95 (1984), 129-159.
[203] J. Smoller, and A. Wasserman, Existence of positive solutions for semilinear elliptic equations in general domains, Arch. Ration. Mech. Anal. 98 (1987), 229-249.
[204] R. Sperb Maximum principles and their applications, Academic Press, New York, 1981.
[205] C. Sourdis, On the profile of globally and locally minimizing solutions of the spatially inhomogeneous Allen-Cahn and Fisher-KPP equation, Arxiv preprint (2012).
[206] G. Stampacchia, Problemi al contorno misti per equazioni del calcolo delle variazioni, Ann. Matematica Pura Appl. 40 (1955), 193-209.
[207] P. Sternberg, and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Rational Mech. Anal. 141 (1998), 375-400.
[208] W. A. Strauss, Existence of solitary waves in higher dimensions, Commun. Math. Phys. 55 (1977), 149-162.
[209] G. Sweers, On the maximum of solutions for a semilinear elliptic problem, Proc. Royal Soc. Edinburgh A 108 (1988), 357-370.
[210] M. TANG, Uniqueness of positive radial solutions for $\Delta u-u+u^{p}=0$ on an annulus, J. Differential Equations 189 (2003), 148-160.
[211] A. Tertikas, Stability and instability of positive solutions of semiposition problems, Proc. Amer. Math. Soc. 114 (1992), 1035-1040.
[212] S-K. Tin, N. Kopell, and C.K.R.T. Jones, Invariant manifolds and singularly perturbed boundary value problems, SIAM Journal on Numerical Analysis 31 (1994), 1558-1576.
[213] A. B. Vasil'eva, and V. S. Pilyugin, Singularly perturbed boundary value problems with a power-law boundary layer, Differential Equations 45 (2009), 323-334.
[214] A. B. VASIL'eva, Two-point boundary value problem for a singularly perturbed equation with a reduced equation having multiple roots, Computational Mathematics and Mathematical Physics 49 (2009), 10211032.
[215] A. B. Vasil'eva, Boundary layers in the solution of singularly perturbed boundary value problem with a degenerate equation having roots of multiplicity two, Computational Mathematics and Mathematical Physics 51 (2011), 351-354.
[216] S. Villegas, Asymptotic behavior of stable radial solutions of semilinear elliptic equations in \mathbb{R}^{N}, J. Math. Pures Appl. 88 (2007), 241-250.
[217] S. Villegas, Nonexistence of nonconstant global minimizers with limit at ∞ of semilinear elliptic equations in all of \mathbb{R}^{n}, Comm. Pure Appl. Anal. 10 (2011), 1817-1821.
[218] W. Walter, Ordinary differential equations, Graduate texts in mathematics 182, Springer-Verlag, New York, 1998.
[219] K. Wang, and J. Wei, On solutions with polynomial growth to an autonomous nonlinear elliptic problem, to appear in Advanced Nonlinear Studies (2013).
[220] J. Wei, Exact multiplicity for some nonlinear elliptic equations in balls, Proc. Amer. Math. Soc. 125 (1997), 3235-3242.
[221] M. Willem, Minimax theorems, Birkhäuser, 1996.
Department of Applied Mathematics and Department of Mathematics, University of Crete, GR-714 09 Heraklion, Crete, Greece.

E-mail address: csourdis@tem.uoc.gr

