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On the Generalization of the Hébraud-Lequeux

Model to Multidimensional Flows∗

DRAFT

OLIVIER Julien†, RENARDY Michael

December 19, 2012

Abstract

In this article we build a model for multidimensional flows based on the
idea of Hébraud and Lequeux for soft glassy materials. The construction
of the model is based on the ideas of Hébraud and Lequeux but care
is taken to build a frame indifferent multi-dimensional model. The main
goal of this article is to prove that the methodology we have developed to
study the well-posedness and the glass transition for the original Hébraud-
Lequeux model can be successfully generalized. Thus this work may be
used as a starting point for more sophisticated studies in the modeling of
general flows of glassy materials.
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1 Introduction

1.1 Soft glasses

In this article we are interested in the modeling of soft glassy materials. Soft
glassy materials are named after glasses because they exhibit similar behavior:
very complicated free energy landscapes and a transitional behavior akin to
phase transition. Soft glassy materials can be loosely described as “particles”
dispersed inside a Newtonian fluid which may be liquid or gas. When the
particles are solids we obtain what are called suspensions, when the particles
are liquid bubbles we obtain emulsions. Foams and granular flows may also be
included in this category.

Numerous models exist to describe specific materials: one can cite the model
by Jop, Forterre and Pouliquen [11] for dense granular flows or the one by
Bénito, Bruneau, Colin, Gay and Molino [5] for foams and emulsions. We
want to call these two particular models tensorial or multidimensional models
because they give constitutive equations that are not subject to any geometrical
constraint on the flow type: the constitutive law links the full stress tensor to
kinematic quantities such as the deformation tensor, the mass density or the
temperature.

On the other hand we have models for generic soft glassy materials derived
from their analogy to real molecular glasses. The first to have been conceived
was by P. Sollich, Lequeux, Hébraud and Cates and simply called SGR
(for Soft Glassy Rheology) [16] and was originally a model restricted to simple
shear. This model was later generalized to a tensorial version by M. E. Cates
and P. Sollich [8]. However, this model suffers from one drawback: the consti-
tutive relation depends on an ad hoc phenomenological parameter (an effective
temperature) which is hard to interpret. This is why Hébraud and Lequeux
came up with a modified version of the SGR model [9] whose parameters have a
more direct physical interpretation. However, this model is designed for simple
shear and this article is an attempt to give and analyze a tensorial version of this
model. To avoid misunderstandings, we emphasize that, although our tensorial
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model is constructed in a fashion analogous to the one-dimensional HL model,
it does not reduce to this model even if the flow is parallel shear.

1.2 Scalar and tensorial model

Let us make precise what we mean by a tensorial or, respectively, simple shear
model. It is well known that in a continuous medium there is a tensor T ,
that is a field of d × d matrices (d is the space dimension) which describes the
internal force that holds the medium together. This tensor is called the stress
tensor. With ρ denoting the mass density and u the Eulerian velocity field, the
conservation of momentum for an incompressible medium reads:

ρ(∂tu+ u · ∇u) = div T −∇p,

where the divergence of a matrix tensor is the vector of the divergences of its
columns. Here p denotes the pressure, which is implicitly determined by the
incompressiblity constraint

div u = 0.

A constitutive law for a continuous material is a relation between T and
kinematic quantities. For instance Newton’s law of simple fluids reads

T = 2µD(∇u), (1)

where µ is the viscosity, and

D(∇u) =
1

2
(∇u+ (∇u)T )

is the deformation rate tensor.
On the other hand, rheological measurements often emphasize simple shear

flow situations, and constitutive laws are often formulated and verified against
experiments specifically for such flows. If x is the shear direction and y is its
orthogonal, then the velocity field has the special form u = (γ̇(t)y, 0, 0). In this
configuration, γ̇(t) is the shear rate and has the dimension of an the inverse
time. We then suppose that no quantity depends on x (except for the pressure
which may be a linear function of x) and the conservation of momentum reads:

ρ∂tu
x = ∂yT12 − ∂xp. (2)

Thus only one component of the stress tensor is relevant in this situation.
In general, the rheology of a fluid in shear tells us little about its behavior

in other geometries. Thus, there are many ways a model might be generalized.
In our attempt, we are guided by the heuristics underlying the formulation of
Hébraud and Lequeux, and we attempt to preserve the reasoning and formal
structure which led to their model.

1.3 The model

To end this introduction, we give the model we have designed in the original,
dimensionless, physical variables and then transform it by various changes of
dependent and independent variables to put it in a form suited for mathemat-
ical analysis. We assume a three-dimensional flow. In general, our model is a
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Fokker-Planck like equation for a probability density p over the space S3 of real
symmetric matrices whose generic point is denoted by Σ and represents a stress.
We represent a symmetric matrix in the formΣ1

...
Σ6

 7→
 Σ1 Σ4/

√
2 Σ5/

√
2

Σ4/
√

2 Σ2 Σ6/
√

2

Σ5/
√

2 Σ6/
√

2 Σ3

 . (3)

The Euclidean metric in this six dimensional space turns out to be invariant
under transformations which correspond to a rotation in physical space. All
notations like integration, Laplacian etc. will be relative to this metric. We
shall denote by Σ the vector (Σ1,Σ2, ...,Σ6), and byM(Σ) the matrix associated
with it.

Our model has the following form

∂tp(t, x,Σ) + (u · ∇x)p+G(Σ,∇u) : ∇Σp

= −1|Σ|>1(Σ)p(t, x,Σ) + Γ(p)(t, x)ρ(Σ) + µΓ(p)(t, x)∆Σp(t, x,Σ), (4)

where Γ is called the fluidity and is defined by

Γ(p)(t, x) =

∫
|Σ|>1

p(t, x,Σ)dΣ. (5)

Here ρ is a rotationally invariant measure supported inside the unit ball and
having unit integral; in the original HL model ρ is a delta function located at the
origin, and we shall be particularly interested in this case. The term G(Σ,∇u)
represents a drift term. That is, in the absence of stochastic effects, Σ would
satisfy the equation

∂tΣ + (u · ∇x)Σ = G(Σ,∇u). (6)

Below, we shall use h(|Σ|) to denote the characteristic function of |Σ| > 1. For
an explanation of the terms and their physical meaning we refer to Section 3.

All the mathematical analysis we shall do in this paper is concerned with a
situation which is stationary in time and homogeneous in space. We set

∇xu = εM, (7)

where ε is the deformation rate and M the deformation type. Some examples of
deformation types are given in Section 6. Our mathematical analysis will only
be concerned with the situation where ε is small. Moreover, the form of G we
shall use is linear with respect to Σ and ε, i.e.

G(Σ, εM) = ε(AΣ + λA0), (8)

where A is a 6×6 matrix and A0 a vector of IR6 which depend on M . Again see
Section 6 for the constructions of these elements for several deformation types.
As a consequence of the incompressibility condition, the matrix A will always
be traceless.

Consequently the physical system now reads
− µΓ∆p+ ε(AΣ + λA0) · ∇p+ h(|Σ|)p = Γρ,∫

Σ∈IR6

p(Σ)dΣ = 1.
(9)
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Since h is discontinuous, it is advantageous to split the problem into an
equation inside the unit ball B and another one outside. This leads to the
system 

− µΓ∆q + ε(AΣ + λA0) · ∇q = Γρ in B = {|Σ| < 1},
− µΓ∆r + ε(AΣ + λA0) · ∇r + r = 0 in |Σ| > 1,

q = r on |Σ| = 1,

∂nq = ∂nr on |Σ| = 1,

(10)

and the integral constraint∫
B

q(Σ)dΣ +

∫
IR6\B

r(Σ)dΣ =

∫
B

q(Σ)dΣ + Γ = 1. (11)

Thus p is a solution to (9) if, and only if (p|B , p|IR6\B) is a solution to (10)–(11).
In this form the stress tensor attached to (q, r) (or p) is the vector obtained by
integration:

T ε =

∫
B

q(Σ)M(Σ)dΣ +

∫
IR6\B

r(Σ)M(Σ)dΣ. (12)

We know from our analysis in [15] that the limit ε → 0 we are studying is
mathematically singular but can be regularized by a change of variables. This
is why we introduce the new parameters

a =
ε

µΓ
b =

√
µΓ (13)

Then we define for b > 0 the diffeomorphisms Ψb as

Ψb : ]0,+∞[×∂B → IR6 \ B̄
(θ, η) 7→ (1 + bθ)η

(14)

Here E is the function defined in the unit ball B, solution to the system{
−∆E = ρ in |Σ| < 1,

E = 0 on |Σ| = 1.
(15)

Finally, we look at the the functions q̃ and r̃ given by

q̃(Σ) = µq − E, (16)

r̃(θ, η) = µ(r ◦Ψb)(θ, η) (17)

We shall use the notation

L = (AΣ + λA0) · ∇. (18)

Moreover, for |Σ| > 1, we shall use the formulae

∆ =
1

b2
∂2
θ +

5

b(bθ + 1)
∂θ +

1

(bθ + 1)2
∆tan,

∇Σ =
1

1 + bθ
∇tan +

1

b
η∂θ. (19)
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Here ∆tan and ∇tan are the tangential parts of Laplacian and gradient on the
unit sphere.

System (10) is now transformed into

−∆q̃ + aLq̃ = −aLE,

− ∂2
θ r̃ −

b2

(1 + bθ)2
∆tanr̃ +

ab2

1 + bθ
((1 + bθ)Aη + λA0) · ∇tanr̃

+

(
− 5b

1 + bθ
+ ab((1 + bθ)Aη + λA0) · η

)
∂θ r̃ + r̃ = 0,

q̃(η) = r̃(0, η),

b∂nq̃(η)− ∂θ r̃(0, η) = −b∂nE(η).

(20)

while Eq. (11) is formally transformed into F = µ where

F (a, b) = µc +

∫
B

q̃a,b(Σ)dΣ + b2. (21)

The outline of the paper is the following: after presenting the results in
Section 2 and the construction of the model (4) in Section 3, the system of
(20) and (21) is analyzed in Section 4. From it we deduce the well-posedness
of (10)–(11) in Section 5. The glass transition in our model follows from the
asymptotics of the solution. The formal procedure to compute coefficients in
the asymptotic expansions is discussed at length in our previous paper on the
one-dimensional case [15] and will not be repeated here. In Section 6 we show
that the hypotheses required on the deformation types are valid for standard
deformation types.

2 Main results

2.1 Hypotheses

In our analysis, we shall use the following assumptions:

H1 We assume that ρ is a nonnegative Radon measure on the unit ball which
belongs to W−1,β(B) for some β with 1 < β ≤ 2 and has unit integral.
Also, ρ is rotationally invariant, and the singular support of the distribu-
tion ρ is bounded away from the unit sphere.

H1 implies that E as defined by (15) is in W 1,β
0 (B) but is also C∞ near the

unit sphere. Note also that from (15), we also have E rotation invariant.
We are particularly interested in the case where ρ is the delta function.

H2 Let us define q̃a0 as the W1,β
0 (B) solution of{

−∆q̃a0 + aLq̃a0 = −aLE in |Σ| ≤ 1,

q̃a0 = 0 on |Σ| = 1.
(22)

Then we assume that the function

a 7→
∫
|Σ|≤1

q̃a0(Σ)dΣ (23)
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has a negative derivative over ]0,+∞[. This hypothesis is in general not
easy to check. We shall later verify it numerically for the case when ρ = δ0
and λ is large.

H3 The trajectory of the vector field Σ 7→ AΣ + λA0 originating from every
point of the open unit ball leaves the unit ball in the both directions. This
is evidently true if A0 is nonzero and λ is sufficiently large.

2.2 Well-posedness and regularity

We first study the well-posedness of the differential system (20) with the theory
of elliptic equations and systems. This allow us to define the function F (a, b)
of (21). Then we study the limiting cases a → 0 and b → 0 and set up an
argument based on the implicit function theorem to treat the case when a or b
is small. Finally, another application of the implicit function theorem allows us
to analyze the behavior of (10)–(11) for small nonzero ε.

Proposition 1. For every positive a and b, the system (20) has a unique so-
lution such that q̃ ∈ W 2,β(B), r̃ ∈ H1(IR × ∂B). Moreover, this solution is of
class C∞ outside the singular support of ρ. Finally, for any integer n, there
exists a Cn such that θnr̃ → 0 as θ →∞ if ab2 < Cn. An analogous statement
holds for derivatives of r̃. All bounds of q̃ and r̃ remain uniformly valid as a
and/or b tends to zero. Moreover, the solution depends analytically on a and b.

We are particularly interested in the limit where a or b is zero. In this case,
we still have

Proposition 2. The solutions given by the previous proposition remain C∞

functions of a and b in the limit where a or b or both tend to zero.

We can now define the function F given by

F (a, b) = µc +

∫
B

q̃a,b(Σ)dΣ + b2.

Our goal is now to study F (a, b) = µ, which is related to (11): the couple
(q̃a,b, r̃a,b) for which the parameters satisfy F (a, b) = µ would exactly be the
couple obtained from a solution of (10)–(11) by the change of variables given
by (13), (16) and (17).

Theorem 1. The function F has the following properties:

• F is analytic for a > 0, b > 0.

• F can be continued with C∞ regularity up to the boundaries a = 0 and
b = 0.

• The function
b 7→ F (0, b)

is monotonically increasing from [0,+∞[ to [µc,+∞[. Consequently, for
any µ ≥ µc, there is a unique b0 ≥ 0 (with b0 = 0 when µ = µc) such that
F (0, b0) = µ and when b0 ≥ 0, we also have ∂bF (0, b0) > 0.
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• Because of hypothesis H2 and H3, the function

a 7→ F (a, 0)

is monotonically decreasing from [0,+∞[ to ]0, µc]. Consequently, for any
µ ≤ µc, there is a unique a0 ≥ 0 (with a0 = 0 when µ = µc) such that
F (a0, 0) = µ and when a0 > 0, we also have ∂aF (a0, 0) < 0.

• We have F (0, 0) = µc. Moreover, ∂aF (0, 0) = 0 and ∂2
aaF (0, 0) < 0.

Now we note that when our original parameter ε is small, then either a or
b must be small. From the above properties and the implicit function theorem,
we conclude that near a = 0, we can solve for b as a function of a and µ, while
near b = 0, and for a > 0, we can solve for a as a function of b and µ. From
this, we can deduce the following corollary concerning the original parameters
(ε,Γ):

Corollary 1. • We have the following asymptotic expansions near ε = 0:

– if µ > µc,

Γ ∼
+∞∑
k=0

c̃kε
k,

and we have c̃0 > 0;

– if µ < µc,

Γ ∼
∞∑
k=1

c̃kε
k/2,

and we have c̃1 > 0;

– if µ = µc,

Γ =

∞∑
k=4

c̃kε
k/5,

and we have c̃4 > 0.

• For all µ > 0 and ε > 0 small enough, there exist a unique solution to the
system (10)–(11).

2.3 Glass transition

From the results of the previous subsection, we can deduce the asymptotic form
of the solution. We shall state these results in terms of the original functions q
and r.

Proposition 3. Let us denote by (qε, rε) the unique solution of (10)–(11).
Then under hypotheses H1–H3 we have asymptotic expansions of the following
form:

• If µ > µc, {
q(Σ) ∼ Q0

+ εQ
1

+ ε2Q
2

+ . . . ,

r(Σ) ∼ R0
+ εR

1
+ ε2R

2
+ . . . ,

(24)

where the profiles Q
k

and R
k

are functions of Σ.
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• If µ < µc, {
q(Σ) ∼ Q0

+ ε1/2Q
1

+ εQ
2

+ . . . ,

r(Σ) ∼ ε1/2R1 + εR2 + . . . ,
(25)

where the profiles Q
k

are functions of Σ and the Rk are functions of
(Σ/|Σ|, (|Σ| − 1)/ε1/2).

• If µ = µc, {
q(Σ) ∼ Q0

+ ε1/5Q
1

+ ε2/5Q
2

+ . . . ,

r(Σ) ∼ ε2/5R2 + ε3/5R3 + . . . ,
(26)

where the profiles Q
k

are functions of Σ and the Rk are functions of
(Σ/|Σ|, (|Σ| − 1)/ε2/5).

The result of physical interest of this paper is

Theorem 2. Let T ε be the macroscopic stress vector computed from (qε, rε)
through (12) By integration we can deduce from Proposition 3 the following
results:

• If µ > µc,
T ε ∼ λκ(µ, ρ)εM(A0) + ε2T 2 + . . . (27)

• If µ < µc,
T ε ∼ T 0 + ε1/2T 1 + . . . (28)

• If µ = µc,
T ε ∼ ε1/5T 1 + ε2/5T 2 + . . . (29)

Remark 1. Note that when µ > µc, we have Newtonian behavior, with a vis-
cosity κ which depends on µ and ρ. For µ < µc, we have a yield stress, while at
µ = µc, we have a shear thinning power law fluid. This is a generalization of a
known result on the original HL model [9, 14, 15].

3 Construction of the model

This section is dedicated to the modeling aspects of our work. We first review
the main features of the Hébraud-Lequeux (HL) model of [9] which we try to
generalize. Then we explain the minimal symmetry constraint that our equa-
tions must satisfy for the required frame indifference property. Finally we give
a possible generalization of the HL model.

3.1 The simple shear Hébraud-Lequeux model

We will now review the (HL) model which is the foundation of our model.
The HL model comes from the mean field theory. It describes the state of the
material at a mesoscopic level and then takes some average of this mesoscopic
description to give the properties of the material at the macroscopic scale. From
a mathematical point of view the model is given by a Fokker-Planck type equa-
tion:
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∂tp(t, σ) = −G0γ̇(t)∂σp − 1

T0
H(|σ| − σc)p(t, σ)

+ Γ(p(t))δ(σ) + αΓ(p(t))∂2
σp(t, σ),

Γ(p) =
1

T0

∫
H(|σ| − σc)p(t, σ)dσ,∫

σ∈IR

p(t, σ)dσ = 1.

(30)

Let us now describe the rationale behind this equation. First note that p is
a function of the time t and of a variable σ which is a “mesoscopic stress”. Then
σc and α are constants depending on the fluid: σc is a stress threshold above
which the fluid relaxes to a zero stress state with typical time T0 (H designates
the Heaviside function), and α acts as a control parameter: the higher α, the
less the fluid can structure itself and the more it behaves like a Newtonian fluid.

The idea behind this model is to imagine that in the material is composed of
mesoscopic particles which undergo the shear rate γ̇(t). Each of these particle
has its own stress. Then p(t, σ)dσ is the number of particles whose stress is in
an interval dσ around σ. Now when submitted to a shear rate γ̇(t) the stress
of a particle evolves with the following rule: if it is smaller than the stress
threshold σc, then it evolves linearly in time. This behaviour is called an elastic
behaviour since it mimics the behaviour of macroscopic elastic Hookean solids.
If the stress grows beyond σc, then the particle will enter into a relaxation phase
and its stress may instantaneously drop to 0 in a random decay process with a
certain relaxation time. The last mechanism is the following: when a particle
relaxes to 0 it will induce a random modification of the stress to all the other
particles. This is modeled as a diffusion in stress space..

For a given probability distribution p, we recover the macroscopic stress τ
as ∫

σ∈IR

σp(t, σ)dσ.

For more details on the underlying physical ideas, we refer to [9] and [15].

3.2 Frame invariance

An extension to a multidimensional setting needs to be consistent with frame
invariance. Frame invariance is the statement that when working in different
frames one should observe the same behaviour of the material. Specifically, a
rotation of the medium given by a matrix Q should not change the stress except
for rotating its principal axes with the medium, i.e. the stress should change to

T ∗ = QTQT . (31)

For this reason, we cannot simply replace Hooke’s linear law with

∂tT + (u · ∇)T = G0∇u. (32)

However, J. Oldroyd showed in [13] that this can be rectified by adding non-
linear terms. More precisely let us define

ga(T,M) = TW (M)−W (M)T − a(D(M)τ + τD(M)), (33)
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where D(M) and W (M) are the symmetric and skew-symmetric part of the
3×3 matrix M and a is a parameter usually taken in [−1, 1] for stability issues.
We can now define

DaT = ∂tT + u · ∇T + ga(∇u, T ) (34)

and prove that an admissible law is given by

DaT = 2G0D(∇u). (35)

We shall adopt this law for the deterministic part of stress evolution.

3.3 Full tensorial modeling

The modeling of the stochastic terms is less straightforward. We are guided
by a desire to keep the equations as simple as possible. Thus, we shall replace
the yield criterion by a critical level of a stress magnitude |T |, although other
possibilities exist. Also, we make no attempt, for instance, to build positive
definiteness constraints into our admissible stress space, even though our deter-
ministic model of stress evolution is naturally associated with the condition that
G0I + aT is positive definite. We note that, for instance, traditional dumbbell
models such as described by R.B. Bird, O. Hassager, R.C. Armstrong
and C.F. Curtiss [6], are given in terms of a probability distribution for an
orientation vector R and then the stress is given in terms of the dyadic product
RRT , which naturally enforces positive definiteness. On the other hand, the
materials for which the Hébraud-Lequeux model is intended are not naturally
modeled by dumbbells. Moreover, stress tensors violating positive definiteness
will occur with low probability if our dimensionless parameter λ is large, which,
in any case, is the only situation for which we have definitive results.

To make sense of integrals, diffusion operators etc., we need to define a
Euclidean metric in stress space. We note that the quantity∑

i,j

T 2
ij (36)

is frame invariant, and if we set

T =

 Σ1 Σ4/
√

2 Σ5/
√

2

Σ4/
√

2 Σ2 Σ6/
√

2

Σ5/
√

2 Σ6/
√

2 Σ3

 , (37)

then this frame invariant measure is simply the usual Euclidean norm in Σ-space.
The deterministic evolution transforms to a law of the form

∂tΣ = G(Σ,∇u). (38)

We thus obtain a frame indifferent model of the same general structure as
HL by the equation

∂tp(t, x,Σ) + (u · ∇x)p+G(Σ,∇u) : ∇Σp =

−
1|Σ|>σc

(Σ)

T0
p(t, x,Σ) + Γ(p)(t, x)ρ(Σ) + αΓ(p)(t, x)∆Σp(t, x,Σ). (39)
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Here ρ will usually taken to be the delta function at the origin, but it could be
a more general radially symmetric function of unit integral.

We shall throughout assume that the flow is incompressible, i.e. u has zero
divergence. It can then be shown that the normalization∫

p(t, x,Σ) dΣ = 1 (40)

is preserved if we set

Γ =
1

T0

∫
|Σ|>Σc

pdΣ. (41)

To rewrite the system in non dimensional variables, we set

Σ′ =
Σ

σc
, p′ = σ6

cp, Γ′ =

∫
|Σ′|>1

p′(Σ′)dΣ′, (42)

for mesoscopic variables and

x′ =
x

L
, t′ =

t

T0
, u′ =

T0

L
u (43)

for macroscopic variables. Here L is a length scale which actually disappears in
the final equation. Finally, we set

G′(Σ′,∇′u′) =
T0

σc
G(Σ,∇u). (44)

Now we introduce the dimensionless number

µ =
α

σ2
c

. (45)

We obtain the system (4)

∂tp(t, x,Σ) + (u · ∇x)p+G(Σ,∇u) : ∇Σp =

− 1|Σ|>1(Σ)p(t, x,Σ) + Γ(p)(t, x)ρ(Σ) + µΓ(p)(t, x)∆Σp(t, x,Σ),

completed with the constraint ∫
IR6

pdΣ = 1, (46)

the definition of the fluidity

Γ(p)(t, x) =

∫
|Σ|>1

p(t, x,Σ)dΣ,

and some initial condition.

4 Well-posedness of the model for steady homo-
geneous flow

This section is devoted to the proof of Propositions 1 and 2 and Theorem 1.

12



4.1 Proof of Propositions 1 and 2

We first address the solvability of the problem when a and b are positive and
ignore questions about the limit when a or b tends to zero. In this case, it is
most convenient to use the original form of the equation

−µΓ∆p+ εLp+ h(|Σ|)p = Γρ. (47)

Let q̂ be the solution of the equation

−µΓ∆q̂ + εLq̂ = Γρ (48)

inside B, with Dirichlet conditions on ∂B. The function q̂ is in W 1,β(B) and is
C∞ outside the singular support of ρ. We can thus smoothly extend q̂ outside
B such that the extended function has compact support. Let this extended
function be denoted by p̂ and let P = p− p̂. Then P satisfies the equation

LP := −µΓ∆P + εLP + h(|Σ|)P = h(|Σ|)(µΓ∆p̂− εLp̂− p̂) =: R. (49)

By construction, the right hand side R of this equation is C∞ outside B with
a jump across ∂B; in particular it is in H−1(IR6).

If we formally multiply (49) by P and integrate by parts, we obtain

µΓ

∫
IR6

|∇P |2 dΣ +

∫
IR6\B

P 2 dΣ =

∫
IR6

RP dΣ, (50)

which yields the estimate

‖P‖H1(IR6) ≤ C‖R‖H−1(IR6). (51)

The only nonstandard feature in the justification of this estimate is that the
operator L has unbounded coefficients. To get around this difficulty, we tem-
porarily replace L by an operator of the form V (Σ) · ∇Σ, where V (Σ) is diver-
gence free and has compact support. We note that once we know (51), we can
immediately sharpen it to

‖P‖H1 + ‖LP‖H−1 ≤ C‖R‖H−1 . (52)

Next, we consider the behavior at infinity. From (49), we find

L(P |Σ|n) = R|Σ|n + R̃, (53)

where R̃ has a bound of the form

P (n2|Σ|n−2 + nε|V (Σ)||Σ|n−1) + n|∇P ||Σ|n−1. (54)

Note that R has compact support. As long as V has a bound of the form
|V (Σ)| ≤ C|Σ| and ε is small relative to 1/n, we can repeat the estimate above
and obtain a bound on the H1 norm of P |Σ|n. We now take a sequence Vk
which converges to AΣ + λA0. All the estimates are uniform in k and hence
persist in the limit. In particular, if ε is small enough, the solutions will be
uniformly integrable, which means we still have∫

IR6\B
p dΣ = Γ (55)
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in the limit.
Elliptic regularity (see S. Agmon, A. Douglis and L. Nirenberg [2, 3])

yields the statement that the solutions are of class C∞ on both sides of ∂B and
outside the singular support of ρ. In particular, regularity near the interface ∂B
can be obtained by mapping both sides to a half plane and then regarding the
equations on both sides with the interface conditions as an elliptic system [3].
Moreover, the analytic dependence on ε and Γ is a straightforward consequence
of (52) and standard perturbation theory.

We further note that all the estimates discussed so far remain valid uniformly
as ε → 0 while Γ remains positive, with the only exception of (52). It is the
failure of (51) in the limit which leads to a potential loss of analyticity for
ε = 0. However, we can take derivatives of (47) with respect to ε and repeat
the arguments above. If we take one derivative, for instance, we find

L∂εp = −Lp+ ∂εR. (56)

This problem is of the same form as the equation for p itself, and we can repeat
the same estimates. We can repeat the procedure for higher derivatives. As a
consequence, we find bounds on all derivatives of p which remain valid as ε→ 0.

On the other hand, ellipticity is lost for Γ → 0, and we need a different
argument. This is why we transformed our variables to get the system (20),
which remains nondegenerate in the radial direction in the limit. We now show
how (20) can be used to obtain estimates which are uniform as b→ 0.

In an analogous fashion as above, we subtract from q̃ a reference function
which satisfies −∆q̂ + aLq̂ = −aLE, with Dirichlet boundary conditions, and
from r̃ a smooth reference function which has compact support and satisfies the
interface conditions. We then end up with a problem of the form

−∆Q+ aLQ = 0,

− ∂2
θR−

b2

(1 + bθ)2
∆tanR+ ab2((Aη) · ∇tan)R

+ ab(1 + bθ)(Aη · η)∂θR+R+ SR = f,

Q(η) = R(0, η),

b∂nQ(η)− ∂θR(0, η) = 0.

(57)

Here f is a smooth function of compact support which depends smoothly on a
and b, and S denotes a linear operator which is easily dealt with as a perturba-
tion in the estimates.

We multiply the first equation in (57) by bQ, the second equation by R, and
integrate. After an integration by parts, this yields an estimate of the form

√
b‖Q‖H1(B) + ‖R‖L2(IR×∂B) + ‖∂θR‖L2(IR×∂B) ≤ C. (58)

Here and in the following C is a generic constant which does not depend on
a and b. Now take χ to be any smooth radial function on B which is 1 in a
neighborhood U of ∂B and 0 in a neighborhood of the origin. Moreover, let
∂t be any derivative tangent to ∂B. We can then apply ∂t to all the equations
of (57), multiply the first equation by χb∂tQ, the second equation by ∂tR and
repeat the same steps that led to (58) to obtain

√
b‖∂tQ‖H1(U) + ‖∂tR‖L2(IR×∂B) + ‖∂t∂θR‖L2(IR×∂B) ≤ C. (59)
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This yields a bound for ‖R‖H1(∂B). Using the first equation of (57) and the first
of the interface conditions, we get a bound for ‖Q‖H3/2(B). It is now easy to see
how to bootstrap this argument to get estimates for higher derivatives.

For the behavior at infinity, multiply the second equation of (57) by θnR
and integrate by parts. This yields a bound of the form

‖θn/2R‖L2(IR×∂B) ≤ C. (60)

Here n can be taken arbitrarily large as ab2 → 0.
We now have estimates for Q and R which hold uniformly in a and b. Now

we make take derivatives of (57) with respect to a and b and observe that the
derivatives of Q and R satisfy elliptic systems of the same form, with inhomoge-
neous terms that depend on Q and R. We can thus repeat the same estimates to
get bounds for the derivatives. The same procedure can be repeated for higher
order derivatives.

4.2 Study of the function F when a or b become zero

4.2.1 Study of the function b 7→ F (0, b)

When we set a = 0 in (20) we get the system

−∆q̃ = 0

− ∂2
θ r̃ −

b2

(1 + bθ)2
∆tanr̃ −

5b

1 + bθ
∂θ r̃ + r̃ = 0

q̃(η) = r̃(0, η)

b∂nq̃(η)− ∂θ r̃(0, η) = −b∂nE(η)

(61)

which has the property of being “rotation invariant” in the sense that the so-
lution does not depend on η. Indeed ρ being itself invariant by rotation, E is
a radial function and ∂nE(η) is actually a constant, denoted by E′(1) in the
sequel. Precisely we can compute

q̃0,b =
bE′(1)

B′(1/b)
B (1/b) , (62)

r̃0,b =
bE′(1)

B′(1/b)
B
(

1

b
+ θ

)
. (63)

where B(x) = K2(x)/x2, and K2 is the modified Bessel function of the second
kind and order 2. Then plugging these expressions into (21) yields,

F (0, b) = µc −
1

6

b

B′(1/b)
B (1/b) + b2. (64)

We note that

− B(ω)

B′(ω)
→ω→+∞ 1, (65)

by classical estimates on the modified Bessel function of the second kind (see
M. Abramowitz and I.A. Stegun [1]), and hence

lim
b→0+

F (0, b) = µc. (66)
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We shall prove that the function b 7→ −bB(1/b)/B′(1/b) is monotone increasing.
We immediately conclude that

F (0, b) ≥ µc + b2, (67)

and thus
lim

b→+∞
F (0, b) = +∞. (68)

It remains to show the monotonicity of the function b 7→ −bB(1/b)/B′(1/b).
Obviously, this equivalent to showing that the function

φ(x) = −xB
′(x)

B(x)
=
xK3(x)

K2(x)
(69)

is monotone increasing. We find

φ′(x) =
x2(K1(x)2 +K3(x)2)− (16 + 2x2)K2(x)2

2xK2(x)2
.

The positivity of this function follows from the recurrence relation (again see
[1])

K3(x) = K1(x) +
4

x
K2(x),

and the Turan inequality (see M.E.H Ismail and M.E. Muldoon [10])

K2(x)2 < K1(x)K3(x) = K1(x)2 +
4

x
K1(x)K2(x).

4.2.2 Study of the function a 7→ F (a, 0)

We compute F (a, 0) via (21) to obtain:

F (a, 0) = µc +

∫
|Σ|>1

q̃a,0(Σ)dΣ (70)

and Hypothesis H2 exactly states that this function has a strictly negative
derivative with respect to a. When a vanishes we obtain{

−∆q̃0,0 = 0,

q̃0,0(η) = 0,
(71)

thus q̃0,0 = 0 and
F (0, 0) = µc. (72)

On the other hand we will show that

lim
a→+∞

q̃a,0 = −E, (73)

which proves that
lim

a→+∞
F (a, 0) = 0. (74)

What we are studying is actually a singular limit of a diffusion-transport equa-
tion to a stationary transport equation for vanishing viscosity. We require the
following lemma:
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Lemma 1. There is a function ζ of class C2, such that we have the following
estimates:

m1 ≤ ζ ≤ m2, − (AΣ + λA0) · ∇ζ ≥ m3, |∇ζ| ≤ m4, |∆ζ| ≤ m5,

where mi are positive constants.

The proof of Lemma 1 requires that all trajectories of the vectorfield Σ 7→
AΣ + A0 which start inside the unit ball leave the ball in both directions. In
this case, we can simply initialize m on the part of the unit ball where these
trajectories exit. Let ζ equal any smooth positive function at these points.
Inside the ball, we then set m(ζ) = m(ζ+) + l(ζ). Here ζ+ is the point where
the trajectory leaves the ball and l(ζ) is the length of the trajectory between ζ
and ζ+. See D. Bresch and J. Simon [7].

Now, recall that A depends on a and M . Recall also that A0 depends only
on M . The following proposition gives a general result:

Proposition 4. For every deformation type M with M + MT 6= 0, and for
every a, there exists λm ≥ 0, so that, for λ ≥ λm, the characteristic curves of
the vector field Σ 7→ AΣ + λA0 cross the unit sphere.

This proposition is essentially noting that the vector field depends very sim-
ply on λ: when λ is large, the vector field is in the limit a constant vector field
and characteristic curves are parallel lines.

Now we apply the lemma to prove (73). We consider a sequence of approxi-
mate problems

−1

a
∆Hj

a + (AΣ + λA0) · ∇Hj
a =

1

a
ρj , (75)

with Dirichlet boundary conditions, and nonnegative smooth ρj . By the max-
imum principle, Hj

a is also nonnegative. Let ζ be a smooth function verifying
the estimates of Lemma 1. Multiply the equation by ζ and integrate. We find,
after integrating by parts,

−1

a

∫
B

(∆ζ)Hj
a −

1

a

∫
∂B

ζ∂nH
j
a −

∫
B

((AΣ + λA0) · ∇ζ)Hj
a =

1

a

∫
B

ρjζ. (76)

On the left side, the first term is bounded from below by −m5/a
∫
B
Hj

a, the
second term is nonnegative by the maximum principle, and the third term is
bounded below by m3

∫
B
Hj

a. The right hand side is bounded by m2/a
∫
B
ρj .

We conclude that ∫
B

Hj
a ≤

m2

m3a−m5

∫
B

ρj . (77)

This is true for any nonnegative function ρj . Now let ρj → ρ when j → +∞.
What we need is the convergence of both sides of (77) as j → +∞. The right-
hand side can be written ∫

B

ρj = 〈ρj ,1〉M,C0(B̄), (78)

and as such converges to 〈ρ,1〉M,C0(B̄). On the other hand we actually want

to know if
∫
B
Hj

a →
∫
B

(
q̃a,0 + E

)
. We note first that since Hj

a is positive,
(77) gives us a uniform bound in L1(B) when a is fixed. Consequently any
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j-subsequence of (Hj
a) weakly converges to a positive measure χa. Moreover we

have that
χa(B) ≤ m2

m3a− C1
, (79)

so that χa(B) tends to 0 as a→ +∞.
We now use the fact that when a is fixed, the linear operator (−∆ + aL)−1

is continuous over W−1,β with value in W1,β
0 . Consequently Hj

a converges to
q̃a,0 +E at least strongly in Lβ and thus in L1(B) when j → +∞. Which means
that for any j-subsequence

∫
B
Hj

a converges to
∫
B

(
q̃a,0 + E

)
and thus∫

B

(
q̃a,0 + E

)
= χa(B)→a→+∞ 0. (80)

This is we what we wanted to prove.

4.2.3 Study of the case µ = µc

From (72) we get that
F (0, 0) = µc. (81)

We are left with the task of proving

∂bF (0, 0) > 0, (82)

∂aF (0, 0) = 0, (83)

∂2
aaF (0, 0) < 0. (84)

(85)

Computation of ∂bF (0, 0). We use (64) to write:

F (0, b)− F (0, 0)

b
= −1

6

1

B′(1/b)
B (1/b) + b, (86)

and by the limit (65) we get

∂bF (0, 0) =
1

6
. (87)

Computation of ∂aF (0, 0). We differentiate (q̃a,0, r̃a,0) with respect to a and
set a = 0. We obtain the relations (recall that q̃0,0 = 0):

−∆∂aq̃
0,0 = −LE for |Σ| < 1,

∂aq̃
0,0(η) = 0 for |η| = 1,

∂ar̃
a,0(θ, η) = 0 for θ > 0 and |η| = 1,

(88)

and thus by (21),

∂aF (0, 0) =

∫
B

∂aq̃
0,0(Σ)dΣ. (89)

To compute this integral let us introduce the test function

ψ0 =
1

12
(1− |Σ|2), (90)
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This function has the property that{
−∆ψ0 = 1 for |Σ| ≤ 1,

ψ0(η) = 0 for |η| = 1.
(91)

Consequently multiplying the equation of ∂aq̃
0,0 from (88) by ψ0 and integrating

by parts yields:∫
B

∂aq̃
0,0(Σ)dΣ = −

∫
B

LE(Σ)ψ0(Σ)dΣ

= −
∫ 1

r=0

1− r2

12
E′(r)r5

(∫
|η|=1

(Aηr + λA0) · ηdη

)
dr,

(92)

using that by Hypothesis H1, E is radial. We now use the fact thatA is traceless
so that ∫

|η|=1

(Aηr + λA0) · ηdη = 0, (93)

which ends the proof.

Computation of ∂2
aaF (0, 0). We differentiate twice (q̃a,0, r̃a,0) with respect to

a and set a = 0. We obtain the relations (recall that q̃0,0 = 0):
−∆∂2

aaq̃
0,0 = −L∂aq̃0,0 for |Σ| < 1,

∂2
aaq̃

0,0(η) = 0 for |η| = 1,

∂2
aar̃

a,0(θ, η) = 0 for θ > 0 and |η| = 1.

(94)

Note that from (21) and taking into account that ∂2
aar̃ = 0 we have

∂2
aaF (0, 0) =

∫
B

∂2
aaq̃

0,0(Σ)dΣ, (95)

so we have to prove that this integral is negative. Again we use the test function
ψ0 defined by (90) to write∫

B

∂2
aaq̃

0,0(Σ)dΣ = −
∫
B

L∂aq̃
0,0(Σ)ψ0(Σ)dΣ

= −
∫
B

(AΣ + λA0) · ∇∂aq̃0,0(Σ)ψ0(Σ)dΣ

(96)

We decompose A = As +Aa where As is the symmetric part of A and Aa
its skew-symmetric part. This decomposition is somewhat reminiscent of the
decomposition of ∇u into its symmetric and skew-symmetric part in the study
of the well posedness of some stationary Fokker-Planck equation arising in the
study of polymeric fluid that is done by Jourdain, Le Bris, Lelièvre and
Otto [12] or Arnold, Carillo and Manzini [4]. We can then write

AsΣ + λA0 = ∇
(

1

2
AsΣ · Σ + λA0 · Σ

)
, (97)
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and integrate by parts to find:

−
∫
B

(
AΣ + λA0

)
· ∇∂aq̃0,0(Σ)ψ0(Σ)dΣ

=−
∫
B

∇
(

1

2
AsΣ · Σ + λA0 · Σ

)
· ∇∂aq̃0,0(Σ)ψ0(Σ)dΣ

−
∫

(AaΣ) · ∇∂aq̃0,0(Σ)ψ0(Σ)dΣ

=

∫
B

(
1

2
AsΣ · Σ + λA0 · Σ

)
∆∂aq̃

0,0ψ0(Σ)dΣ

+

∫
B

(
1

2
AsΣ · Σ + λA0 · Σ

)
∇∂aq̃0,0 · ∇ψ0(Σ)dΣ

−
∫
B

(AaΣ) · ∇∂aq̃0,0(Σ)ψ0(Σ)dΣ

=

∫
B

(
1

2
AsΣ · Σ + λA0 · Σ

)
∆∂aq̃

0,0ψ0(Σ)dΣ

−
∫
B

∂aq̃
0,0div

((
1

2
AsΣ · Σ + λA0 · Σ

)
∇ψ0(Σ)

)
dΣ

−
∫
B

(AaΣ) · ∇∂aq̃0,0(Σ)ψ0(Σ)dΣ

= I1 − I2 − I3

(98)

We now compute each of the Ik separately.

Computation of I3. We first note that

I3 = −
∫
B

ψ0(Σ)Σ · Aa∇∂aq̃0,0(Σ)dΣ

= −
∫
B

∇

(∫ |Σ|
rψ0(r)dr

)
· Aa∇∂aq̃0,0(Σ)dΣ

=

∫
B

(∫ |Σ|
rψ0(r)dr

)
div

(
Aa∇∂aq̃0,0

)
(Σ)dΣ

= 0,

(99)

because div (Aa∇∂aq̃0,0) = Aa : d2∂aq̃
0,0 and this contracted product is 0 since

d2∂aq̃
0,0 is a symmetric matrix and Aa a skew-symmetric one. We also note

that the boundary term in the last integration by parts vanishes, since ∇∂aq̃0,0

is normal to the boundary, and then Aa maps this vector to a vector which is
tangent to the boundary.

Computation of I1. We use the equation obeyed by ∂aq̃
0,0 from (88) to write

I1 =

∫
B

(
1

2
AsΣ · Σ + λA0 · Σ

)(
AΣ + λA0

)
· ∇E(Σ)ψ0(Σ)dΣ

=

∫
B

(
1

2
AsΣ · Σ +A0 · Σ

)(
AΣ + λA0

)
·
(
E′(|Σ|) Σ

|Σ|

)
ψ0(Σ)dΣ

(100)
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We can simplify this last integral by using the change of variable Σ → −Σ to
remove the odd part of the function. This leads to:∫

B

(
1

2
AsΣ · Σ + λA0 · Σ

)(
AΣ + λA0

)
·
(
E′(|Σ|) Σ

|Σ|

)
ψ0(Σ)dΣ

=
1

2

∫
B

ψ0(Σ)E′(|Σ|)
|Σ|

(AsΣ · Σ)
2

dΣ

+ λ2

∫
B

ψ0(Σ)E′(|Σ|)
|Σ|

(
A0 · Σ

)2
dΣ

(101)

We note that since As is symmetric we can use an orthogonal matrix to
change variables and write:

1

2

∫
B

ψ0(Σ)E′(|Σ|)
|Σ|

(AsΣ · Σ)
2

dΣ

=
1

2

∫
B

ψ0(Σ)E′(|Σ|)
|Σ|

(∑
i

λiΣ
2
i

)2

dΣ

=
1

2

∑
i,j

λiλj

∫
B

ψ0(Σ)E′(|Σ|)
|Σ|

Σ2
iΣ

2
jdΣ,

(102)

where the λi are the eigenvalues of As, the symmetric part of A. But it is clear
that ∫

B

ψ0(Σ)E′(|Σ|)
|Σ|

Σ2
iΣ

2
jdΣ

does not depend on (i, j) when i 6= j and does not depend on i when i = j.
Moreover, because As is traceless when A is, we have

∑
i 6=j λiλj = (

∑
i λi)

2 −∑
i λ

2
i = −

∑
i λ

2
i , and thus

∑
i,j

λiλj
1

2

∫
B

ψ0(Σ)E′(|Σ|)
|Σ|

Σ2
iΣ

2
jdΣ

=
1

4

(∑
i

λ2
i

)∫
B

ψ0(Σ)E′(|Σ|)
|Σ|

(
Σ4

1 + Σ4
2 − 2Σ2

1Σ2
2

)
dΣ (103)

Note that by Maximum principle, E′ is negative. Consequently, we get

1

2

∫
B

ψ0(Σ)E′(|Σ|)
|Σ|

(AsΣ · Σ)
2

dΣ = −C1

(∑
i

λ2
i

)
. (104)

where

C1 = −1

4

∫
B

ψ0(Σ)E′(|Σ|)
|Σ|

(
Σ4

1 + Σ4
2 − 2Σ2

1Σ2
2

)
dΣ

= −1

4

∫
B

ψ0(Σ)E′(|Σ|)
|Σ|

(
Σ2

1 − Σ2
2

)2
dΣ

(105)

is a positive constant depending only on ρ. In the same way, we can change
variables so that A0 = |A0|(1, 0 . . . , 0). We would obtain that there is a positive
constant C2 with expression
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C2 =

∫
B

ψ0(Σ)|E′(|Σ|)|
|Σ|

Σ2
1dΣ. (106)

such that

I1 = −

(
C1

∑
i

λ2
i + C2λ

2|A0|2
)
. (107)

Computation of I2. Recall that we have

I2 =

∫
B

∂aq̃
0,0div

((
1

2
AsΣ · Σ + λA0 · Σ

)
∇ψ0(Σ)

)
dΣ. (108)

With some elementary differential calculus we find

div

((
1

2
AsΣ · Σ + λA0 · Σ

)
∇ψ0(Σ)

)
= −

(
2

3
AsΣ · Σ +

7

6
λA0 · Σ

)
(109)

and thus:

I2 = −
∫
B

(
2

3
AsΣ · Σ +

7

6
A0 · Σ

)
∂aq̃

0,0dΣ. (110)

We need to decompose into even and odd parts (with respect to Σ) which means
we have to identify the even and odd parts of ∂aq̃

0,0.
First note that we have from (88) that

−∆∂aq̃
0,0 = −LE

= −(AΣ + λA0) · E
′(|Σ|)Σ
|Σ|

= −E
′(|Σ|)
|Σ|

(AsΣ · Σ)− λE
′(|Σ|)
|Σ|

A0 · Σ.

(111)

The even part of ∂aq̃
0,0 is thus given by G1 and the odd part by G2, where −∆G1 = −E′(|Σ|)A

sΣ · Σ
|Σ|

in |Σ| < 1,

G1 = 0 on |Σ| = 1,

(112)

and  −∆G2 = −λE
′(|Σ|)
|Σ|

A0 · Σ in |Σ| < 1,

G2 = 0 on |Σ| = 1,

(113)

With G1 and G2 we can split I2 in two terms:

I2 = −
∫
B

(
2

3
AsΣ · Σ

)
G1(Σ)dΣ− 7

6

∫
B

(
A0 · Σ

)
G2(Σ)dΣ

= J1 + J2.

(114)

Computation of J1. We now introduce an orthogonal matrix Q such that
QTAsQ is a diagonal matrix. We change variables by setting Σ = QS and
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consider the function G∗1 such that G∗1(S) = G1(Σ). The function G∗1 thus
satisfies the following equation:

−∆G∗1 = −
∑
i

λi
E′(|S|)
|S|

S2
i . (115)

Now we introduce G1 which satisfies: −∆G1 = −
E′(
√
y2 + |y′|2)√
y2 + |y′|2

y2,

G1 = 0,

(116)

where (y, y′) belongs in the unit ball of IR6. G1 can be seen as a function of y
and |y′| or a vector function over the unit ball of IR × IR5. We can now write,
by linearity,

G∗1(S1 . . . , S6) =
∑
i

λiG1(Si, |Ŝi|),

where Ŝi denotes any vector of IR5 with components Sj with j 6= i. Using now
the matrix Q to change variable in the integral we can write:∫

B

(
2

3
AsΣ · Σ

)
G1(Σ)dΣ =

2

3

∫
B

(∑
i

λiS
2
i

)
G∗1(S)dS

=
2

3

∫
B

(∑
i

λiS
2
i

)∑
j

λjG1(Sj , |Ŝj |)

dS

=
2

3

∑
i,j

λiλj

∫
B

S2
iG1(Sj , |Ŝj |)dS

(117)

Once again we see that
∫
|S|≤1

S2
iG1(Sj , |Ŝj |)dS does not depend on (i, j) if i 6= j

and on i for the terms i = j. This proves that there is a numerical constant

C3 =
2

3

∫
|S|≤1

(S2
1 − S2

2)G1(S1, Ŝ1)dS. (118)

so that
J1 = −C3

∑
i

λ2
i . (119)

To evaluate this integral we introduce the following test function:

ψ1(y, y′) = − 3

64
y4 − 7

160
y2|y′|2 +

1

24
y2 +

1

320
|y′|4 − 1

120
|y′|2 +

1

192

= (1− y2 − |y′|2)

(
3

64
y2 − 1

320
|y′|2 +

1

192

)
,

(120)

where y ∈ IR and y′ ∈ IR5. One can check that this function satisfies −∆ψ1 = y2

and obviously, ψ1 vanishes on the unit sphere. Now we have the following
relation: ∫

|S|≤1

(S2
1 − S2

2)G1(S1, Ŝ1)dS (121)

= −
∫
|S|≤1

E′(|S|)S2
1√

S2
1 + |Ŝ1|2

(ψ1(S1, Ŝ1)− ψ1(S2, Ŝ2))dS. (122)
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One can check using the definition of ψ1 that

ψ1(S1, Ŝ1)− ψ1(S2, Ŝ2) =
1

20
(S2

1 − S2
2)(1− |S|2), (123)

so that what is left to compute is∫
|S|≤1

(S2
1 − S2

2)G1(S1, Ŝ1)dS = −
∫
|S|≤1

E′(|S|)S2
1(S2

1 − S2
2)(1− |S|2)

20|S|
dS.

(124)
Now using the change of variable which exchanges the variables S1 and S2 and
writing the average we have that the integral is also∫
|S|≤1

(S2
1 −S2

2)G1(S1, Ŝ1)dS = −
∫
|S|≤1

E′(|S|)(S2
1 − S2

2)2(1− |S|2)

40|S|
dS. (125)

Therefore

C3 =
1

5

∫
B

ψ0(Σ)|E′(|S|)|
|S|

(S2
1 − S2

2)2dS. (126)

By comparing this expression with the expression of C1 from (105) we have
C3/C1 = 4

5 < 1. This implies that C5 = C1 − C3 > 0.

Computation of J2. The integral J2 is treated using the same method. We in-
troduce an orthogonal matrix Q0 such that (Q0)TA0 is the vector (|A0|, 0 . . . , 0)
and we write S = Q0Σ and G∗2(S) = G2(Σ). We thus have by a change of
variable that:

J2 = −7

6

∫
|Σ|≤1

(
λA0 · Σ

)
G2(Σ)dΣ = −7λ|A0|

6

∫
|S|≤1

S1G
∗
2(S)dS, (127)

with  −∆G∗2 = −λ|A0|E
′(|S|)
|S|

S1 in |Σ| < 1,

G∗2 = 0 on |S| = 1.

(128)

Consequently, there is a numerical constant C4 such that :

J2 = −C4λ
2|A0|2, (129)

and this constant has the following expression:

C4 =
7

6

∫
|S|≤1

S1G2(S1, Ŝ1)dS, (130)

where  −∆G2 = −
E′(
√
y2 + |y′|2)y√
y2 + |y′|2

,

G2 = 0.

(131)

We now introduce the test function ψ2(y, y′) = 1
16y(1 − (y2 + |y′|2)) which

satisfies −∆ψ2 = y and ψ2 vanishes on the sphere. Thus we have:

C4 =
7

6

∫
|S|≤1

S1G2(S1, Ŝ1)dS

= −7

6

∫
|S|≤1

E′(|S|)S1

|S|
S1

16
(1− |S|2)dS

=
7

8

∫
|S|≤1

ψ0(S)|E′(|S|)|
|S|

S2
1dS.

(132)
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Comparing C4 to C2 from (106) we can see that C4/C2 = 7
8 < 1 and thus

C6 = C2 − C4 > 0.
Finally we have proven,

I2 = −

(
C3

∑
i

λ2
i + C4λ

2|A0|2
)
. (133)

In conclusion, one gets

∂2
aaF (0, 0) =

∫
B

∂2
aaq̃

0,0(Σ)dΣ

= (I1 − I2 − I3)

= −(C5

∑
i

λ2
i + C6λ

2|A0|2) < 0.

(134)

4.3 Verification of Hypothesis H2

We shall assume that λ is large, so we can neglect AΣ relative to λA0. Without
loss of generality, we may assume that A0 = (1, 0, 0, 0, 0, 0). The equation
satisfied by qa0 is then

−∆qa0 + aλ
∂

∂Σ1
qa0 = −aλ ∂E

∂Σ1
, (135)

with Dirichlet boundary condition. We set qa0 = q − E to find

−∆q + aλ
∂q

∂Σ1
= −∆E = ρ. (136)

We may further set q = p exp(aλΣ1/2). This leads to the axisymmetric problem

−∆p+
a2λ2

4
p = ρ exp(−aλΣ1/2). (137)

To simplify, we set aλ/2 = a. With ρ = δ, and Dirichlet conditions for p, this
has the solution

p(r) =
a2

8ω5

K2(ar)I2(a)− I2(ar)K2(a)

I2(a)r2
. (138)

Here ω5 is the surface area of the 5-dimensional sphere. To verify the hypothesis,
we need to evaluate ∫

B

q dΣ =

∫
B

p(r) exp(aΣ1) dΣ. (139)

We now set

ρ =
√
r2 − Σ2

1, Σ1 = r cos(θ), ρ = r sin θ. (140)

The integral then becomes∫ 1

0

∫ π

0

p(r) exp(ar cos θ)ω4r
5(sin θ)4 dθ dr. (141)
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Figure 2: Plot of the integrand

We can carry out the θ integration explicitly and finally end up with

1

a2

∫ 1

0

3πω4r
3p(r)I2(ar) dr. (142)

We omit irrelevant positive factors which do not depend on a, and we finally
have to investigate the function

S(a) =

∫ 1

0

r
K2(ar)I2(a)− I2(ar)K2(a)

I2(a)
I2(ar) dr. (143)

Figure 1 shows a plot of this function, which is clearly decreasing with a.
Indeed, it appears that the integrand in (143), for any fixed r, is a decreasing
function of a. Figure 2 shows a plot of the function

s(a, r) =
K2(ar)I2(a)− I2(ar)K2(a)

I2(a)
I2(ar). (144)
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5 Proof of Corollary 1

This proof is the same as in the 1d case which can be found in [15]. We reproduce
it here for the sake of completeness.

5.1 The case µ > µc

If µ > µc, let be b0 be the unique positive number such that F (0, b0) = µ.
Since we have ∂bF (0, b0) > 0 we can apply the implicit function theorem which
defines a function g such that F (a, b) = µ is locally equivalent to b = g(µ, a).
In terms of the parameters ε and Γ (see (13)) one finds the equation√

µΓ = g

(
µ,

ε

µΓ

)
. (145)

Fix µ and define g̃(ε,Γ) = µΓ− g(µ, ε/(µΓ))2 and you find that

• g̃(0, b2
0/µ) = 0,

• ∂Γg̃(0, b2
0/µ) = µ,

so that Γ can be expressed as an analytic function of ε for small ε. Moreover at
ε = 0 one finds Γ = b2

0/µ.

5.2 The case µ < µc

If µ < µc, let a0 be the unique positive number such that F (a0, 0) = µ. Since we
have ∂aF (a0, 0) < 0 we can apply the implicit function theorem which defines
a function g such that F (a, b) = µ is locally equivalent to a = g(µ, b). In terms
of the parameters ε and Γ (see (13)) one finds the equation

ε = Γµg
(
µ,
√

Γµ
)
. (146)

Since we have

∂√Γ

(√
Γµ

√
g(µ,

√
Γµ)

)
|
√

Γ=0

=
√
µg(µ, 0) =

√
µa0 > 0, (147)

we can use the local inversion theorem to write
√

Γ as a function of
√
ε for small

ε. Consequently, Γ itself is a C∞ function of
√
ε near ε = 0 with leading order

Γ ∼ ε/(µa0).

5.3 The case µ = µc

If µ = µc we have F (0, 0) = µc. Moreover,

∂bF (0, 0) > 0, (148)

so that, by applying the implicit function theorem, we obtain that F (a, b) = µc
is locally equivalent to b = h(a), and hence√

µΓ = h

(
ε

µΓ

)
. (149)
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We set
√

Γ = Γ̃ε2/5. In terms of ε and Γ̃ we have the relation:

Γ̃5 =
Γ̃4

√
µε2/5

h

(
ε1/5

µΓ̃2

)
=: h̃

(
ε1/5

Γ̃2

)
, (150)

where h̃(a) = h(a/µ)/(
√
µa2). We have h(0) = 0 and we calculate

h′(0) = −∂aF (0, 0)

∂bF (0, 0)
= 0 (151)

h′′(0) = − ∂2
aaF (0, 0)

∂bF (0, 0)∂bg(0, 0)
> 0. (152)

Consequently h̃ is a C∞ function with a positive limit h̃(0) = c > 0. Finally,
we apply the implicit function theorem one last time to express Γ̃ as a function
of ε1/5 which is possible since

∂Γ̃

(
Γ̃5 − h̃

(
ε1/5

Γ̃2

))
|ε1/5=0,Γ̃=c1/5

= 5c4/5 > 0. (153)

We finally get that
Γ = ε4/5Γ̃(ε1/5)2, (154)

with Γ̃ a C∞ function converging to c1/5 as ε1/5 goes to 0.

6 The form of A and A0 and examples

6.1 The form of the drift term

The deterministic stress evolution, in dimensionless variables, has the form

DtT = ∂tT + (u · ∇x)T

= ε

(
1 + a

2
(MT + TMT )− 1− a

2
(TM +MTT ) + λ(M +MT )

)
.

(155)

Here λ = G0/σc, where G0 is a stress modulus. In components, this reads

DtTij = ε

(∑
k

[
1 + a

2
(MikTkj +MjkTki)−

1− a
2

(TikMkj + TjkMki)

]
+ λ(Mij +Mji)

)
.

(156)

We then need to transform this to the components of Σ. Instead of doing
this in generality, we shall discuss the specifics for three classical rheological
flows: the Couette flow and two types of elongational flows.

6.2 Couette flow

We are interested in comparing the results of our model with the original HL
model. In stationary Couette flow, we have

M =

0 1 0
0 0 0
0 0 0

 . (157)
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This leads to the equations

DtT11 = (1 + a)T12,

DtT22 = −(1− a)T12,

DtT33 = 0,

DtT12 =
1 + a

2
T22 −

1− a
2

T11 + λ,

DtT13 =
1 + a

2
T23,

DtT23 = −1− a
2

T13. (158)

This leads to a matrix A which is

A =



0 0 0
√

2
2 (1 + a) 0 0

0 0 0
√

2
2 (−1 + a) 0 0

0 0 0 0 0 0√
2

2 (−1 + a)
√

2
2 (1 + a) 0 0 0 0

0 0 0 0 0 1+a
2

0 0 0 0 −1+a
2 0


, (159)

and a vector
A0 = (0, 0, 0,

√
2, 0, 0)T . (160)

6.3 Elongational flows

Elongational flow are characterized by a diagonal deformation rate tensor. We
distinguish two main types of elongational flows. The first kind is axisymmetric
flow in which

M =

2 0 0
0 −1 0
0 0 −1

 . (161)

In this case the matrix A is given by

A =


4a 0 0 0 0 0
0 −2a 0 0 0 0
0 0 −2a 0 0 0
0 0 0 a 0 0
0 0 0 0 a 0
0 0 0 0 0 −2a

 , (162)

The vector A0 is given by

A0 = (4,−2,−2, 0, 0, 0)T . (163)

The second kind of elongational flows are planar elongational flows for which

M =

1 0 0
0 −1 0
0 0 0

 . (164)
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This leads to

A =


2a 0 0 0 0 0
0 −2a 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 a 0
0 0 0 0 0 −a

 , (165)

and a vector
A0 = (2,−2, 0, 0, 0, 0)T . (166)
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